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ABSTRACT For the controller design and stability analysis of power electronic converters, the Bode stability
criterion and its subsequent revisions are the most practical tools. However, even though the control of the
power converter is usually implemented in amicroprocessor, none of thesemethods is infallible when applied
to a discrete system. This article therefore proposes a new stability criterion, named the Discrete Generalized
Bode Criterion (DGBC). This method is based on the Nyquist criterion but developed from the open-loop
Bode diagram, evaluated also at 0 Hz and at the Nyquist frequency. The proposed criterion combines the
advantages of the Nyquist and Bode criteria, since it is always applicable and provides an interesting and
useful tool for the controller design process. The method is applied to design an active damping control of
an inverter with LCL filter, showing how the proposed criterion accurately predicts stability, in contrast to
the existing Bode criteria. The theoretical analysis is validated through experimental results performed with
a three-phase inverter and an LCL filter.

INDEX TERMS Active damping control, control design, frequency domain analysis, LC-filtered voltage
source inverter (VSI), stability criteria.

I. INTRODUCTION
The grid connection of renewable energy and Flexible AC
Transmission Systems (FACTS) is growing steadily thanks to
increasingly competitive costs [1]–[5]. The cost reduction is
a result of a number of factors, which often create challenges
with regard to the electronic converter control design and sta-
bility analysis, such as a reduction in component size [6]–[9],
the use of high-power converters to benefit from economies
of scale [10], [11], or the use of new topologies [12]–[14]. For
this reason, a reliable tool which makes it possible to readily
analyze the system stability is of the utmost importance.

Nowadays, the control of the power converter is usually
implemented in a microprocessor [15], [16]. As a result,
the controller handles digital signals and, strictly speaking,
digital control theory should be used for the stability analy-
sis. However, in some situations, the sampling frequency is
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high enough for the discrete signals to be nearly continuous
and, therefore, continuous methods of analysis and design
can be employed [17]–[19]. Conversely, other systems show
relevant dynamics close to the Nyquist frequency, and the
use of continuous modeling methods often results in controls
with limited performance and may even lead to incorrect
conclusions about stability [20]–[23].

In order to make the most of the electronic converter
and microprocessor capability, there are many applications
in which the control method dynamically responds at high
frequencies near the Nyquist frequency. One example of
this situation is the control of the inverters operating within
renewable energy plants, where the pressure to optimize
the cost has led to a reduction in the size of the output
LCL filter. As a result, its resonance frequency increases,
moving close to the Nyquist frequency [24]–[28]. At the
same time, the control may be required to dynamically
respond at the resonance frequency in order to provide active
damping. Furthermore, electronic converters must sometimes
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control the injected harmonic components, often reaching
high frequencies, as in the case of active filters [29]–[31],
stand-alone inverters [32], [33], power amplifiers in audio
systems [34], or compensation of the PWMvoltage distortion
[35]–[37]. In the same way, some converters are required to
achieve very fast dynamics in order to track the reference
or quickly reject the load disturbance, for example in the
case of power supplies [38]–[40] and front-end rectifiers
[41]. In all these occasions, the system should be modelled
as a discrete one and discrete control methods should be
applied [17], [20], [24].

Digital control theory appeared subsequent to continuous
control theory and adapted the existing stability criteria and
design techniques. The original Evans’ root locus can be
adapted to assess how the closed-loop poles move in the
z-plane as one system parameter is modified [16]. However,
this method is usually employed to analyze the control robust-
ness rather than to design it since it does not provide any
indication about the choice of controller type [24], [25], [42],
[43]. Other pole-placement techniques, such as the direct
design method of Ragazzini or similar ones, are better suited
for the control design since they make it possible to place the
closed-loop poles at the desired locations and then determine
all controller parameters [17], [44], [45]. The problem here
is that high-order controllers are often encountered and it is
difficult to select the pole locations which result in feasible
controllers [17], [44].

Frequency response methods are currently the most pop-
ular for control design in the power electronics sector. The
Nyquist stability criterion applied to discrete systems uses
information about the open-loop transfer function and is an
infallible tool to assess stability [17], [46]–[48]. However,
it is still difficult to apply to the controller design process
as its plot can be convoluted, making the controller tuning
complicated [46]–[49]. In contrast, the Bode stability crite-
rion applied to discrete systems is intuitive and greatly eases
the controller design, making it the preferred method within
the industry [50], [51], but is based on specific cases of the
Nyquist criterion and is only valid under certain conditions
[25], [43], [52]. For the purpose of extending the Bode cri-
terion applicability, a number of revisions can be found in
the literature [49], [53]–[56]. Among these criteria, the Gen-
eralized Bode Criterion (GBC) [56], is the most general and
is valid for every continuous feedback loop. However, when
adapted to discrete systems, the GBC also fails to determine
the stability of certain common systems, as will be shown in
this article for an active damping control of an inverter with
LCL filter.

This article proposes to extend the generalized Bode cri-
terion to discrete systems. The new method, named Discrete
Generalized Bode Criterion (DGBC), is based on the discrete
Nyquist criterion but uses the information obtained from
the open-loop Bode diagram, evaluated also at 0 Hz and at
the Nyquist frequency. Consequently, the proposed criterion
combines the advantages of the Nyquist and Bode criteria.
It can be applied to any discrete system, as it is based on the

discrete Nyquist criterion, and it is also easy to apply to the
design of controllers, as it uses information from the Bode
diagram.

This article is organized as follows. Section II presents the
basis of theDGBC. In section III, as a case-studywith dynam-
ics close to the Nyquist frequency, the proposed criterion is
applied to design the active damping control of an inverter
with LCL filter. It is showed that the DGBC correctly deter-
mines its stability, in contrast to the existing Bode criteria.
Then, in section IV, experimental results are provided in order
to validate the DGBC and, finally, section V concludes this
article.

II. PROPOSED STABILITY CRITERION: THE DGBC
A. FORMULATION OF THE DGBC
The block diagram of a sampled-data system is shown in
Fig. 1(a), and its discrete equivalent, after determining the
z-transform of the continuous plant, is depicted in Fig. 1(b),
where C(z) represents the digital controller, H (z) the digital
feedback controller, G(s) the continuous plant, G(z) the dis-
cretized plant, R denotes the reference signal, U the control
signal, Y the output signal, and Ts the sampling time.

To evaluate the stability of the feedback control loop shown
in Fig. 1, the discrete Nyquist criterion uses information about
the frequency response of the open-loop transfer function,
L(z) = C(z) · G(z) · H (z). Provided that the Nyquist diagram
is represented for increasing frequencies, from −π < ω · Ts
≤ π , this criterion states that the number of unstable closed-
loop poles (outside the unit circle in the z-plane), Z , is equal
to the number of unstable open-loop poles, P, minus the total
number of anticlockwise encirclements around −1 on the
plot, N [17]:

Z = P− N . (1)

While it is not complicated to obtain P, it can be a complex
task to determineN by counting the number of encirclements.
A simpler approach to compute N was proposed in [57]. If an
auxiliary ray is traced in a random direction starting at −1,
then counting the number of times that the ray crosses the
Nyquist diagram gives N . As a result, the Nyquist stability
criterion can be rewritten as

Z = P− N = P− (N+c − N
−
c ). (2)

FIGURE 1. Block diagrams: a) sampled-data system, b) discrete
equivalent.
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where N+c is the number of crossings between the ray and the
Nyquist plot with increasing phase, and N−c is the number of
crossings with decreasing phase.

In [57], it is then proposed to select the ray direction so that
the crossings can be obtained using the Bode plot instead of
the Nyquist one. In fact, if the ray is placed in the direction
of the real negative axis, all crossings have a phase equal to
±n · 180◦ (with n an odd number), and a magnitude greater
than the unity (greater than 0 dB). These crossings are easy
to identify on the Bode diagram, as can be observed in Fig. 2,
where C+ and C− are the number of crossings counted in the
Bode diagram when the phase is increasing and decreasing,
respectively.

FIGURE 2. Equivalence between Bode and Nyquist diagrams of an
open-loop L(z) and their crossings with the ray.

While the Nyquist diagram is defined for positive and
negative frequencies, −π < ω · Ts ≤ π , the Bode diagram
is only defined for positive frequencies, 0 < ω · Ts < π .
However, given that every L(z) with real coefficients meets

L
(
e−jωTs

)
= L

(
ejωTs

)
, (3)

it can be assured that there is an identical number of crossings
at positive and negative frequencies and, as a result, C+ and
C−must bemultiplied by 2 in order to obtain the total number
of crossings [56].

Crossings can also appear at 0 Hz. However, since this
frequency is not represented in the Bode diagram, the cor-
responding crossings are not visible, especially when L(z)
presents poles at z = 1. At the same time, these poles at z
= 1 lead to a complex representation in the Nyquist plot [47].
To avoid this complication, these intersections at 0 Hz can
be obtained from a simple table which uses the open-loop
transfer function evaluated at 0 Hz, as will be explained
in section II.C for discrete systems. The number of these
crossings is termed C0, being positive when occurring with
an increasing phase and negative otherwise [56].

Similarly, since the discrete Nyquist diagram is continuous
from ω = (π /Ts)− to ω = (−π /Ts)+ [17], there can also
be crossings at the Nyquist frequency, fN = fs/2 (ωN =
π /Ts). Again, as it is difficult to identify these intersections
in the Bode plot and they are not visible at all when L(z)
has poles at z = −1, they are obtained from the open-loop
transfer function evaluated at the Nyquist frequency, as will
be explained in section II.B. The number of such crossings

is defined as CN , being positive when occurring with an
increasing phase and negative otherwise.

Taking everything into account, the total number of cross-
ings, N , can now be obtained. This leads to the DGBC for-
mulation, which proposes to compute the number of unstable
closed-loop poles as

Z = P−
[
2 ·
(
C+ − C−

)
+ C0 + CN

]
. (4)

B. DETERMINATION OF CN
The value of CN can be obtained from the open-loop transfer
function evaluated at the Nyquist frequency, fN = fs/2 (ωN =
π /Ts). For this purpose, some parameters are first defined.
A general form of the open-loop transfer function can be
expressed as

L(z) =
Kg

(z− 1)k · (z+ 1)l
·

NZs∏
i=1
(z− rZsi)

NPs∏
i=1
(z− rPsi)

·

×

NZc∏
i=1

(
z2 − 2rZci cos θZci · z+ r2Zci

)
NPc∏
i=1

(
z2 − 2rPci cos θPci · z+ r2Pci

) (5)

where k is the number of integrators or poles at z = 1, l
the number of poles at z = −1 (negative k or l means
number of zeros), NPs the number of other real poles, NPc
the number of pairs of complex conjugate poles, NZs the
number of real zeros, and NZc the number of pairs of complex
conjugate zeros. Parameters rZs and rPs can have any value
other than 1 or−1, thus including real zeros and poles inside
and outside the unit circle. In turn, parameters rZc and rPc are
always positive and angles θZc and θPc can have any value
from 0 to π , which comprises all possible pairs of complex
conjugate poles, inside and outside the unit circle, and also
on its circumference.

In order to compute CN , an important value is the gain of
function L(z) without taking into account the poles at z= −1,
and evaluated atω = ωN , i.e. for z=−1. This value cannot be
obtained by inspection of the Bode plot when l > 0, but can be
determined analytically, being useful not only for the stability
analysis but also for the controller design. This gain, termed
KN , is always a real number (it can be positive or negative),
and from (5) can be obtained as

KN =
Kg
(−2)k

·

NZs∏
i=1
(−1− rZsi)

NPs∏
i=1
(−1− rPsi)

·

×

NZc∏
i=1

(
1+ 2rZci cos θZci + r2Zci

)
NPc∏
i=1

(
1+ 2rPci cos θPci + r2Pci

) (6)
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When there are poles at z = −1, L(z) cannot be evaluated
at ω = ωN = π /Ts, and the original Nyquist contour z =
exp(jωTs) must be modified [17], [58]. In order to exclude
these poles, the contour is indented around z = −1 as z =
−1 +ε·exp(jφ), with ε positive and sufficiently small, and
φ increasing from π /2 to 3π /2. Evaluating now L(z) for the
indentation leads to

L
(
z = −1+ εejφ

)
=

KN
εl ejlφ

=
KN
εl
e−jlφ . (7)

As can be observed in this expression, as φ changes from
π /2 to 3π /2 (ω changes from (π /Ts)− to (−π /Ts)+), each pole
at z= −1 introduces a 180◦ clockwise rotation in the Nyquist
diagram with infinite gain, from −π /2 to −3π /2.
Another relevant aspect for the stability assessment is

to determine whether the phase of the open-loop in the
Nyquist diagram is increasing or decreasing at ωN . Similarly
to parameter KN , this can be determined analytically by
evaluating the sign of the phase derivative at ωN . Since this
derivative does not exist when there are poles at z = −1, the
lateral derivatives are obtained instead, which are equal due
to symmetry, and can be calculated as

ϕ′N =
dϕ
(
L
(
ejωTs

))
dω

∣∣∣∣∣
ω=( πT )

−

=
dϕ
(
L
(
ejωTs

))
dω

∣∣∣∣∣
ω=(− πT )

+

=

=

NZs∑
i=1

Ts
1+ rZsi

+

NZc∑
i=1

2Ts · (1+ rZci cos θZci)

1+ 2rZci cos θZci + r2Zci

−
Ts
2
· (k + l)−

NPs∑
i=1

Ts
1+ rPsi

−

NPc∑
i=1

2Ts · (1+ rPci cos θPci)

1+ 2rPci cos θPci + r2Pci
. (8)

Now that KN and ϕ′N are identified, the value of CN is
analyzed for different numbers of poles at z = −1 up to 2
(l ≤ 2). The cases with more poles at z = −1 could be
analyzed following the same reasoning. The corresponding
Nyquist diagrams are shown in Fig. 3, where the values at fre-
quenciesω = (−π /Ts)+, 0−, 0+ and (π /Ts)− are highlighted.
The values of CN for the cases studied are summarized in
Table 1.
1) L(z) With Zeros z = −1 (l < 0): In this case, the

Nyquist plot at ωN is located at the origin and thus CN is
always 0.
2) L(z) With No Poles at z = −1 (l = 0): The Nyquist

diagram at ωN is placed at KN , always in the real axis (see
Fig. 3(a)-(c)). When KN > −1, the value at ωN is situated
to the right of −1 (see Fig. 3(a)). Consequently, no crossings
occur with the auxiliary ray, which is highlighted in red in
the figure, leading to CN = 0. However, if KN < −1, the
diagram at ωN is placed just on the ray (see Fig. 3(b) and (c)).
In this situation, if ϕ′N > 0, the phase is increasing and thus
CN =+1. Conversely, if ϕ′N < 0, the phase is decreasing and
then CN = −1.

FIGURE 3. Nyquist diagrams and value of CN for different transfer
functions.

3) L(z) With One Pole at z = −1 (l = 1): As shown in
(7), the presence of the pole at z = −1 produces, around ωN ,
a 180◦ clockwise rotation in the Nyquist diagramwith infinite
gain, which is represented by dashed lines in Fig. 3. When
considering only this pole, the phase goes from −90◦ at
ω = (π /Ts)− to −270◦ at ω = (−π /Ts)+. As a result,
if KN > 0, there is one crossing with the auxiliary ray at
ωN , leading to CN = −1 (see Fig. 3(d)). On the other hand,
if KN < 0, the phase goes from +90◦ at ω = (π /Ts)− to
−90◦ at ω = (−π /Ts)+, no crossings occur, and CN = 0
(see Fig. 3(e)).
4) L(z) With Two Poles at z = −1 (l = 2): The two poles

at z = −1 provoke a 360◦ clockwise rotation in the Nyquist
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TABLE 1. Determination of CN for open-loop transfer functions with up
to two poles at z = −1.

diagramwith infinite gain at ωN , from−180◦ at ω = (π /Ts)−

to −540◦ at ω = (−π /Ts)+. Therefore, if KN < 0, the phase
goes from 0◦ at ω = (π /Ts)− to −360◦ at ω = (−π /Ts)+,
and one crossing always occurs, leading to CN = −1 (see
Fig. 3(f)). If KN > 0, the Nyquist diagram is placed on the
ray for both ω = (π /Ts)− and ω = (−π /Ts)+. Under these
circumstances, increasing phase at ωN , ϕ′N > 0, means that
ϕ((π /Ts)−) < −180◦ and ϕ((−π /Ts)+) > −540◦, resulting
in no crossings and CN = 0 (see Fig. 3(g)). On the contrary,
decreasing phase ϕ′N < 0 results in ϕ((π /Ts)−) > −180◦

and ϕ((−π /Ts)+) < −540◦, which leads to two crossings,
CN = −2 (see Fig. 3(h)).

C. DETERMINATION OF C0
The value of C0 can be obtained in a similar way to CN by
analyzing the open-loop transfer function at ω = 0. For this
reason, the procedure is summarized below.

The gain of function L(z) without integrators evaluated at
ω = 0, i.e. for z = 1, is defined as K0. This gain is always a
real number (it can be positive or negative), and from (5) can
be obtained as

K0 =
Kg
2l
·

NZs∏
i=1
(1− rZsi)

NPs∏
i=1
(1− rPsi)

·

NZc∏
i=1

(
1− 2rZci cos θZci + r2Zci

)
NPc∏
i=1

(
1− 2rPci cos θPci + r2Pci

) .
(9)

It is also important to know whether the phase of the
open-loop in the Nyquist diagram is increasing or decreasing
at ω = 0, which can be determined analytically by evaluating
the sign of the phase derivative at 0. Since this derivative does
not exist when there are integrators, the lateral derivatives are
calculated instead, which are equal due to symmetry, and can
be calculated as

ϕ′0 =
dϕ
(
L
(
ejωTs

))
dω

∣∣∣∣∣
ω=0+

=
dϕ
(
L
(
ejωTs

))
dω

∣∣∣∣∣
ω=0−
=

=

NZs∑
i=1

Ts
1− rZsi

+

NZc∑
i=1

2Ts · (1− rZci cos θZci)

1− 2rZci cos θZci + r2Zci

TABLE 2. Determination of C0 for open-loop transfer functions with up to
two integrators.

−
Ts
2
· (k + l)−

NPs∑
i=1

Ts
1− rPsi

−

NPc∑
i=1

2Ts · (1− rPci cos θPci)

1− 2rPci cos θPci + r2Pci
. (10)

In contrast to continuous systems, this expression shows
that the integrators do contribute to the phase derivative in
discrete systems.

Knowing the parameters K0 and ϕ′0, the value of C0 can
be obtained depending on the number of integrators and is
given in Table 2 up to two (k ≤ 2). The cases with more
integrators are not of practical interest. For more information
about how this table is prepared, the reader can refer to [56],
where the value of C0 is analyzed for continuous systems in a
similar way to how the value of CN is computed for discrete
systems in section II.B. When observing Table 1 and 2 for
the calculation of CN and C0, respectively, it can be seen
that all values are equal except for case l = 1 and k = 1.
This can be explained by comparing the effect at ωN of
one pole at z = −1 with the influence at ω = 0 of one
integrator. Whereas the former modifies the phase from−90◦

at ω = (π /Ts)− to −270◦ at ω = (−π /Ts)+, the latter
modifies it from +90◦ at 0− to −90◦ at 0+, giving rise to
a difference of −180◦ between them. For this reason, rows
with even l and k will be equivalent in relation to CN and
C0 while rows with odd l and k will differ in the sign of KN
and K0.

D. DETERMINATION OF CN AND C0 BY INSPECTION
In the previous sections, the values ofCN andC0 are obtained
from Table 1 and Table 2, respectively. For this purpose,
the detailed system model is required. However, in some
occasions the designer has no information about the transfer
function expression but instead obtains the Bode plot by
frequency response measurements. In this case, it is also
possible to determine CN and C0 by inspection of the Bode
diagram.
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TABLE 3. Determination of CN by inspection for open-loop transfer
functions with up to two poles at z = −1.

FIGURE 4. Three-phase grid-connected converter with LCL filter.

Table 3 shows how to obtain the value of CN by the
inspection of the Bode diagram near the Nyquist frequency
ωN , for open-loop transfer function with up to two poles at z
= −1. With this aim, one must first evaluate the magnitude
at ω = ωN , dBN , and the phase at ω → ω−N , ϕ

−

N , which are
easily obtained from the Bode plot.
1) dBN < 0: In this case, it is not important if there are

crossings with ±n·180◦ (with n an odd number), since they
would not be counted, always resulting in CN = 0.
2) dBN> 0 and Finite: A finite dBN value means that there

are no poles at z = −1. Thus, the phase can only be ϕ−N ≈
0, i.e. there are no crossings and CN = 0, or ϕ−N ≈ −180

◦,
i.e. there is one crossing. The sign of this crossing can be
determined by analyzing the phase variation in the Bode plot,
at frequencies just below the Nyquist frequency. If the phase
is increasing (ϕ′N > 0), or equivalently the phase is lower than
−180◦ (ϕ−N < −180

◦), thenCN = +1 (see Fig. 3(b)). In con-
trast, if the phase is decreasing (ϕ′N < 0), or equivalently the
phase is higher than −180◦ (ϕ−N > −180◦), CN = −1 (see
Fig. 3(c)).
3) dBN → ∞: An infinite dBN value means that there

are one or two poles at z = −1. In the case with one pole,
the phase can be ϕ−N ≈ −90

◦, which leads to CN = −1
(see Fig. 3(d)), or ϕ−N ≈ −270

◦, resulting in CN = 0 (see
Fig. 3(e)). On the other hand, with two poles at z = −1, the
phase can be ϕ−N ≈ 0, leading to CN = −1 (see Fig. 3(f))
or ϕ−N ≈ −180

◦. In the latter case, the number of crossings
again depends on the phase variation at frequencies just below
the Nyquist frequency. If the phase is increasing (ϕ′N > 0),
or equivalently the phase is lower than−180◦ (ϕ−N <−180

◦),
then CN = 0 (see Fig. 3(g)). In contrast, if the phase is
decreasing (ϕ′N < 0), or equivalently the phase is higher than
−180◦ (ϕ−N > −180

◦), CN = −2 (see Fig. 3(h)).

TABLE 4. Determination of C0 by inspection for open-loop transfer
functions with up to two integrators.

Following a similar reasoning, the value of C0 can be
obtained by the inspection of the Bode diagram near 0 Hz,
for open-loop transfer function with up to two integrators,
and is shown in Table 4. For this purpose, one must first
evaluate the magnitude at ω → 0+, dB0, and the phase at
ω → 0+, ϕ+0 , which are easily obtained from the Bode
plot.

III. CASE-STUDY: DESIGN OF AN ACTIVE DAMPING
CONTROL OF AN INVERTER WITH LCL FILTER
A. OPEN-LOOP WITH NO POLES AT Z = −1: ACTIVE
DAMPING WITH CAPACITOR CURRENT FEEDBACK
Figure 4 shows a three-phase voltage-source converter con-
nected to the grid through an LCL filter. The filter comprises
a converter-side inductor L1, a capacitor Cf , and a grid-side
inductor L2, which includes the filter and the equivalent grid
inductances. The equivalent series resistances are small and
can be disregarded for the analysis.

This converter controls the current injected into the grid.
Converter-side current can be controlled in αβ axis as repre-
sented in Fig. 5. This diagram includes the active damping
of the LCL filter by using the capacitor current feedback,
which is the focus of the case study. In the figure, C(z)
represents the current controller,H (z) the feedback controller,
z−1 the computational delay, ZOH the zero-order hold,Gic(s)
the control to capacitor current transfer function, Gi1ic(s)
the transfer function which relates ic and i1, Hi(s) the anti-
aliasing current filter, and Ts the sampling time.
The plant for the active damping, Gic(s), and its corre-

sponding z-domain transfer function after applying the ZOH
discretization, Gic(z), can be expressed as [15]

Gic(s) =
ic(s)
v(s)
=

1
L1
·

s
s2 + ω2

r
, (11)

Gic(z) =
ic(z)
v(z)
=

sin (ωrTs)
ωrL1

·
z− 1

z2 − 2z cos (ωrTs)+ 1
, (12)

where ωr is the filter resonance frequency, defined as

ωr =

√
L1 + L2
L1 L2 Cf

. (13)
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FIGURE 5. Block diagram of the current control with active damping
based on the capacitor current.

As can be observed in (11) and (12), the system plant has
two resonant poles at ωr , which complicates the design of
the current control and reduces its bandwidth. To avoid these
problems, capacitor current feedback is included in order to
increase the damping of these poles. The proposed DGBC
will be used to design the active damping control. For this
purpose, the open-loop transfer function is required and can
be obtained as

L(z) = H (z) · z−1 · Gic(z). (14)

Most frequently, a constant feedback controller is selected,
H (z) = Kd , where Kd is the damping constant and can be
positive or negative [22], [59]. Thus, from (12) and (14), the
open-transfer function becomes

L(z) = Kd ·
sin (ωrTs)
ωrL1

·
z− 1
z
·

1
z2 − 2z cos (ωrTs)+ 1

.

(15)

As can be observed, L(z) includes one pole with r = 0
due to the computational delay, one zero at z = 1, and two
resonant poles with r = 1 and θ = ωr · Ts.
In order to carry out the stability analysis and controller

design with the DGBC, the number of closed-loop unsta-
ble poles is evaluated by means of (4). For this purpose,
the value of P, C+, C−, C0 and CN must be computed.
There are no open-loop unstable poles in (15) and thus
P = 0. In addition, the zero at z = 1 translates to k =
−1 and, from Table 2, C0 is always 0. Therefore, in this
case both P and C0 are independent of the parameters and
are not relevant for the design. Examples in which they
are important in the controller design can be consulted
in [56] and [60].

Then, from (15), the phase of L(z) can be calculated as

ϕ
(
L
(
ejωTs

))
= π

/
2 · sign (Kd )−

3/
2 · ω · Ts, if ω < ωr

ϕ
(
L
(
ejωTs

))
= π

/
2 · sign (Kd )− π −

3/
2 · ω · Ts,

if ω > ωr (16)

where the delay of −3/2·ω · Ts is due to the computational
delay together with the ZOH, and the abrupt phase reduction
of π at ωr is due to the resonance.

Equation (16) shows that the open-loop phase decreases for
all frequencies. Thus, in this situation,C+ is always 0 andCN
can only be 0 or negative. Taking everything into account,
from the DGBC equation, (4), the number of closed-loop
unstable poles, Z , is

Z = 2 · C− − CN = 2 · C− + |CN | . (17)

FIGURE 6. Bode diagram of the open-loop transfer function for positive
proportional feedback of the capacitor current.

Thus, C− = 0 and CN = 0 are necessary conditions to
avoid unstable poles for active damping with proportional
capacitor current feedback.

For Kd > 0, the Bode plot of the open-loop transfer
function, L(z), is represented in Fig. 6 for three different
ratios between the resonance and the sampling frequencies.
The effect of the resonant poles and the phase tendency as
stated by (16) can be clearly observed. To obtain the number
of crossings at ωN , CN is computed using Table 1. There are
no poles at z = −1, so l = 0. In addition, Kd > 0 leads to
KN = L(z = −1) > 0 from (15). Thus, by using the table,
CN is equal to 0. Concerning C−, Fig. 6 shows that there is
always one crossing with −180◦, which must be counted if
the gain is higher than 0 dB. From the yellow curve in the
figure or (16), it is clear that the crossing occurs at ωr when
fr > fs/6. This crossing is with infinite gain, leading to C− =
1 and two unstable poles, Z = 2. In contrast, when fr < fs/6,
it can be obtained from (16) that the crossing is at f = fs/6,
which is after the resonance in this case (see the blue curve
in Fig. 6). At this frequency, ω · Ts = π /3 and, from (15), the
open-loop magnitude is∣∣∣L(ejπ/3)∣∣∣ = Kd

ωrL1
·

sin (ωrTs)
2 cos (ωrTs)− 1

. (18)

In order to have C− = 0, this gain must be lower
than 1 and the maximum value of the proportional gain,
Kd,max , is obtained in (19). Thus, Kd > Kd,max leads to
C− = 1 and two unstable poles appear in the closed-loop.
However, with Kd < Kd,max , then C− = 0 and the active
damping loop is stable, although its effect is very weak when
fr is close to fs/6.

Kd,max = ωrL1 ·
2 cos (ωrTs)− 1

sin (ωrTs)
. (19)

The conclusions about the stability analysis with propor-
tional and positive feedback of the capacitor current are
summarized in the first half of Table 5. As can be observed,
active damping can be provided only when fr is below fs/6.
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FIGURE 7. Bode diagram of the open-loop transfer function for negative
proportional feedback of the capacitor current.

However, in high-power converters fr is usually higher than
fs/6 and this method will become unstable. In this case, it is
better to use a negative gain Kd as proportional feedback.
As stated above, for Kd < 0, (15)–(17) apply and P = C0 =

C+ = 0, meaning that C− = 0 and CN = 0 are again
necessary conditions for stability.

For Kd < 0, the Bode plot of the open-loop transfer
function, L(z), is represented in Fig. 7 for four different ratios
between the resonance and the sampling frequencies. It can
be observed that there is always one crossing with+180◦ and
decreasing phase, which must be counted if the gain is higher
than 1 (higher than 0 dB). From the blue curve or (16), this
crossing is at ωr when fr < fs/6, resulting in C− = 1 and an
unstable control. However, when fr > fs/6, it can be obtained
from (16) that the crossing is at f = fs/6, which is below the
resonance (see the yellow and purple curves in Fig. 7). At this
frequency, ω · Ts = π /3 and, from (15), the open-loop gain,
and the maximum value of the proportional gain to achieve
C− = 0, can be obtained as∣∣∣L(ejπ/3)∣∣∣ = |Kd |

ωrL1
·

sin (ωrTs)
1− 2 cos (ωrTs)

, (20)∣∣Kd,max,C−
∣∣ = ωrL1 · 1− 2 cos (ωrTs)

sin (ωrTs)
. (21)

In order to determine CN , the crossings at ωN must be
evaluated. In this case, since l = 0 and KN < 0, there is
always one crossing with −180 at ωN , as can be observed
in Fig. 7. From Table 1, to accomplish CN = 0, KN must be
higher than −1, in other words,

KN =
Kd
ωrL1

·
sin (ωrTs)

1+ cos (ωrTs)
=

Kd
ωrL1

· tan
(
ωrTs
2

)
> −1

(22)

From this equation, the maximum value of the proportional
gain which ensures CN = 0 can be derived as∣∣Kd,max,Cn

∣∣ = ωrL1 · 1
tan (ωrTs/2)

. (23)

TABLE 5. Stability analysis for active damping with proportional
feedback of the capacitor current.

The conclusions about the stability analysis with propor-
tional and negative feedback of the capacitor current are
summarized in Table 5. As can be observed, the propor-
tional and negative feedback of the capacitor current is able
to provide active damping when fr is above fs/6, given
that the conditions (21) and (23) are fulfilled. It can be
verified that the constraint (21) is more restrictive when
fr < fs/4, while the constraint (23) becomes more restrictive
when fr > fs/4.

Using the GBC instead of the proposed DGBC can result
in important errors about stability. Specifically, applying the
GBC for a system with fr < fs/4 will lead to C− = 0
as necessary condition for stability. As a consequence,
when (21) is fulfilled but (23) is not, the GBC will pre-
dict stability while it has been shown that one unstable
pole will appear. This case is represented in intense red
in Table 5.

B. ADVANTAGES OF THE DESIGN WITH DGBC: ACTIVE
DAMPING WITH VARIABLE RESONANT FREQUENCY
In order to design an active damping control of a grid-
connected inverter with LCL filter, the variation range of
the grid inductance must be taken into account, which leads
to the appearance of a variable resonant frequency. As an
example, in this section the DGBCwill be used for the design
of an active dampingmethod with capacitor current feedback,
as shown in Fig. 5, for a system in which the grid short-circuit
ratio can vary from 20 to 6, which translates to a resonant
frequency variation range from fr = fs/6.5 to fr = fs/5.
When using a constant feedback controller H(z)= Kd , the

analysis made in section III.A by means of the DGBC (see
Table 5) shows that it is not possible to remain stable for
the whole resonant frequency range. This analysis can also
be carried out using the Nyquist diagram of the open-loop
transfer function, (see (15)), which is represented in Fig. 8
for Kd > 0 and the boundary frequencies fr = fs/6.5 and
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FIGURE 8. Nyquist diagram of the open-loop transfer function for
positive proportional feedback of the capacitor current.

fr = fs/5. Since there are no open-loop poles, and the number
of anticlockwise encirclements around −1 is N = 0 for fr =
fs/6.5 andN = −2 for fr = fs/5, theNyquist stability criterion
confirms that the damping method will be stable for fr =
fs/6.5 and unstable for fr = fs/5. Comparing this figure with
the Bode diagram shown in Fig. 6, it can be observed that it
is much more complicated to count the encirclements around
−1 in the Nyquist diagram than the −180◦ crossings with
positive magnitude in the Bode plot. For other systems which
include integrators and more resonant poles, for example due
the presence of multi-resonant controllers, the advantage of
the Bode criterions become even clearer (see Fig. 8 in [56]).

In any case, the most important advantage of the Bode
criterions arises from the controller design, which explains
its success within the industry [50], [51]. Focusing on the
Nyquist diagram shown in Fig. 8, it is difficult for the designer
to know how the controller H(z) should be modified in order
to make the control stable for both cases. However, looking
at the Bode diagram for Kd > 0, shown in Fig. 6, it is clear
to see that the open-loop phase could be increased in order to
avoid the−180◦ crossing with positive magnitude. Similarly,
focusing on the Bode diagram for Kd < 0, shown in Fig. 7,
in this case it is intuitive to realize that the open-loop phase
could be decreased in order to avoid the 180◦ crossing with
positive magnitude.

Although both alternatives are suitable to make the damp-
ing method stable for the whole resonant frequency range, the
design of the latter solution is chosen for demonstration since
it is superior in terms of noise rejection. For this purpose,
a feedback controller which includes a real pole is selected.
Its expression and its phase can be written as

H (z) = Kd ·
1− r
z− r

, Kd < 0, (24)

ϕ
(
H (ejωTs )

)
= −

ω · Ts
2
− arctan

(
1+ r
1− r

· tan
(
ω · Ts
2

))
,

(25)

where r represents the location of the pole.

FIGURE 9. Bode diagram of the open-loop transfer function for the
feedback controller (24) and using the capacitor current.

In order to apply the DGBC, the Bode diagram of the
compensated open-loop transfer function is represented in
Fig. 9 for fr = fs/6.5 and fr = fs/5. The location of the
controller pole z = r is chosen so that the minimum phase
distance to+180◦ or−180◦ at the resonant frequency, named
γ , is equal for both curves. There are no open-loop unstable
poles so P = 0. From the figure or the corresponding tables,
there are no crossings at 0 Hz or at the Nyquist frequency,
which results in C0 = CN = 0. Furthermore, since there
are no crossings with increasing phase, one also obtains
C+ = 0. Finally, for each curve, there are two crossings
with decreasing phase, which must be counted if the gain
is higher than 0 dB. The minimum gain margin GM is rep-
resented for each curve, which in this case is the same due
to symmetry. Since the diagram is plotted for Kd = −1,
the gain margin provides the maximum value of the damping
constant to achieve C− = 0 and thus a stable control, in this
example |Kd,max | = 29.2.

C. OPEN-LOOP WITH ONE POLE AT Z = −1: ACTIVE
DAMPING WITH CAPACITOR VOLTAGE FEEDBACK
As shown in section III.A, active damping based on negative
proportional feedback of the capacitor current is effective
for fr > fs/6. However, as fr approaches fs/2, the maximum
feedback constant is limited to very low values as dictated
by (23), and thus the active damping effect becomes very
weak. As a result, in applications where fr is around or above
fs/2 [25]–[27], an interesting alternative is to use the propor-
tional feedback of the capacitor voltage. The corresponding
diagram is shown in Fig. 10, where Gvc(s) is the control to
capacitor voltage transfer function, and Gi1vc(s) the transfer
function which relates vc and i1.

The plant for the active damping, Gvc(s), and its corre-
sponding z-domain transfer function after applying the ZOH
discretization, Gvc(z), can be expressed as [15]

Gvc(s) =
vc(s)
v(s)
=

1
L1Cf

·
1

s2 + ω2
r
, (26)
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FIGURE 10. Block diagram of the current control with active damping
based on the capacitor voltage.

Gvc(z) =
vc(z)
v(z)
=

L2
L1 + L2

(1− cos (ωrTs)) ·

×
z+ 1

z2 − 2z cos (ωrTs)+ 1
. (27)

Although the DGBC can be applied to any discrete system,
the purpose of this subsection is to show how to apply the
method to a real system in which there are poles at z = −1.
For this reason, it is considered that the resonance frequency
is equal to the Nyquist frequency, i.e. fr = fs/2. Although this
equality may not be imposed by design, it is very likely to
occur due to grid inductance variations when the rated values
of fr and fs/2 are not far from each other [25], [26]. In this
situation, ωr · Ts = π and, from (27), the plant becomes

Gvc(z) =
vc(z)
v(z)
=

2L2
L1 + L2

·
1

z+ 1
. (28)

Including now the computational delay and a constant
feedback controller, H (z) = Kv, where Kv is the damping
constant, the open-loop transfer function can be obtained as

L(z) = Kv ·
2L2

L1 + L2
·
1
z
·

1
z+ 1

. (29)

As can be observed, L(z) includes one pole with r = 0 due
to the computational delay, and one pole at z= −1 due to the
concurrence of the resonance and Nyquist frequencies.

To perform the stability analysis and controller design, the
DGBC is now applied to the open-loop transfer function. For
this purpose, the value of P, C+, C−, C0 and CN in (4) must
be computed. There are no open-loop unstable poles in (29),
so P = 0.
From (27), the phase of L(z) can be determined as

ϕ
(
L
(
ejωTs

))
=

1− sign (Kv)
2

· π − 3/
2 · ω · Ts,

if ω < ωN . (30)

This equation shows that the open-loop phase decreases for
all frequencies below ωN . Thus, C+ is always 0 whereas C0
can only be 0 or negative. Furthermore, since there is one pole
at z = −1, l = 1 and, from Table 1, CN can only be 0 or
negative. Taking everything into account, from the DGBC
equation, (4), the number of closed-loop unstable poles, Z ,
is

Z = 2 · C− − C0 − CN = 2 · C− + |C0| + |CN | . (31)

Thus, C− = 0, C0 = 0 and CN = 0 are necessary
conditions to avoid unstable poles for active damping with
proportional feedback of capacitor voltage when fr = fs/2.

FIGURE 11. Bode diagram of the open-loop transfer function for
proportional feedback of the capacitor voltage.

The Bode plot of the open-loop transfer function for
fr = fs/2, L(z), is represented in Fig. 11 for positive (Kv > 0)
and negative (Kv < 0) feedbacks. Focusing on the fig-
ure for the Nyquist frequency, it seems that there are no
crossings with −180◦. However, to correctly determine CN ,
Table 1 must be applied taking into account that l = 1.
Parameter KN is required which, from its definition and (29),
can be obtained as

KN = −Kv ·
2L2

L1 + L2
. (32)

Using this equation and Table 1, it is clear that negative
feedback (Kv < 0) leads toKN > 0,CN = −1, and the control
will be unstable independently of other possible crossings.
In contrast, positive feedback (Kv > 0) leads to KN < 0 and
CN = 0, meaning that the control will be stable given that the
remaining parameters are zero, that is C− = 0 and C0 = 0.
For Kv > 0, C0 can be obtained from Table 2. Since there

are no poles at z = 1, i.e. k = 0, and K0 > 0, C0 is always 0.
Concerning C−, Fig. 11 shows that there is one crossing with
−180◦, which must be counted if the gain is higher than 1
(higher than 0 dB). Applying (30) reveals that this crossing
is at f = fs/3. As a result, using (29), the open-loop gain and
the condition to achieve C− = 0 are∣∣∣L(ej2π/3)∣∣∣ = Kv ·

2L2
L1 + L2

< 1⇒ Kv,max =
L1 + L2
2L2

. (33)

The conclusions about the stability analysis with propor-
tional feedback of the capacitor voltage for fr = fs/2 are
summarized in Table 6. The condition for stable damping is
the application of positive feedback (Kv > 0) with a gain
that meets constraint (33). It is worth noting that the use of
the existing Bode stability criteria instead of the proposed
DGBCwould have led to incorrect conclusions about stability
since the crossings at ωN are not detected. Specifically, the
existing Bode stability criteria would have concluded that
active damping can also be achieved with negative feedback
(Kv < 0), which has been shown to be incorrect.
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TABLE 6. Stability analysis for active damping with proportional
feedback of the capacitor voltage.

TABLE 7. System parameters used for the validation.

IV. VALIDATION OF THE DGBC CASE-STUDY
A. ROOT LOCUS
The two active damping methods presented in the previous
section (see Fig. 5 and Fig. 8) are analyzed here for the system
parameters shown in Table 7. In both cases, the converter-
side current is regulated by using a proportional controller
designed to achieve a crossover frequency fc = 150 Hz, and
the measured current is filtered with an analog filter with a
low cutoff frequency fc,i1 = 1060 Hz.
It has been shown that the active damping action, analyzed

in section III, makes it possible to mitigate the resonance.
However, when including afterwards the current controller,
setting a high cross-over frequency can modify the stability
margins of the active damping. Thus, for the validation of
the case-study, the values of fc and fc,i1 are selected relatively
small so that the current controller hardly affects the perfor-
mance of the active damping.

For active damping with capacitor current feedback, the
switching and sampling frequencies are set to 5000 Hz.
Since fr = fs/2.67 > fs/6, the damping constant
Kd must be negative for a stable control. Further-
more, from the DGBC stability criterion, summarized
in Table 5, its absolute value must be lower than
|Kd,max,C−| = 96.9 (see (21)) to avoid C− crossings, and
also lower than |Kd,max,Cn| = 12.0 (see (23)) to avoid
CN crossings. Thus, −12.0 < Kd < 0 defines the stable
region whereas −96.9 < Kd < −12.0 results in one unstable
closed-loop pole, Z = 2 · C− −CN = 0 − (−1) = 1,
and Kd < −96.9 leads to three unstable closed-loop poles,
Z = 2·C− − CN = 2 – (−1) = 3.

FIGURE 12. Root locus for active damping with negative capacitor current
feedback (fr = fs/2.67).

FIGURE 13. Root locus for active damping with capacitor voltage
feedback (fr = fs/2).

These results are confirmed by the root locus applied to
(15), shown in Fig. 12. In this figure, it can be observed
that three poles appear, two being due to the LCL filter
resonance and one to the discretization. For Kd = 0, the
original filter resonance is not damped whereas setting Kd =
−5 successfully provides active damping. As |Kd | continues
to increase, the filter resonance remains well damped up to
very high values, and the poles go outside the unit circle for
Kd < −96.9. This was predicted by the DGBC but also by the
continuous GBC due to the −180◦ crossing in the Bode plot
at a positive frequency 0 < f < fs/2. Concerning the pole
due to discretization, its damping rapidly decreases, and it
becomes unstable as soon as Kd < −12.0. The appearance of
this instability was predicted by the DGBC due to the−180◦

crossing at the Nyquist frequency f = fs/2. However, none of
the existing Bode criteria considers this crossing, which may
result in an unstable response of the active damping.

For active damping with capacitor voltage feedback, the
switching and sampling frequencies are set to 3700 Hz and
thus fr = fs/1.98 ≈ fs/2. From the DGBC stability crite-
rion, summarized in Table 6, the stable region is defined by
0 < Kv < 1.68. On the contrary, −3.37 < Kv < 0 results
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FIGURE 14. Experimental setup.

in one unstable closed-loop pole, Z = 2·C− − CN = 0 –
(−1)= 1, while Kv > 1.68 leads to two unstable closed-loop
poles, Z = 2·C− − CN = 2 – 0 = 2.
These results are validated by the root locus applied to (29),

shown in Fig. 13. As can be observed, setting Kv < 0 always
results in one pole outside the unit circle, which was predicted
by the proposed DGBC due to the −180◦ crossing at the
Nyquist frequency f = fs/2. However, this crossing is not
visible in the Bode plot and thus this pole is not detected by
the existing Bode criteria. For 0 < Kv < 1.68, both poles
are inside the unit circle, first in the real axis and then they
become complex. Finally, both poles again become unstable
for Kv > 1.68.
It is worth noting that the root locus is convenient for

the validation since only one parameter alters, in this case
the damping constant. However, using this tool for the con-
troller design when two or more parameters change becomes
complicated. Contrariwise, in section III, the DGBC has
been shown to be intuitive for the design when two or three
parameters change, specifically the damping constant, the
frequencies ratio fs/fr and the controller parameter r .

B. EXPERIMENTAL RESULTS
Figure 14 shows the setup used for the experimental vali-
dation at the top, and a zoom of the control board at the
bottom. The setup comprises a three-phase inverter connected
to an LCL filter and then short-circuited. Although the test
platform is not connected to the grid, the results are exten-
sible to a grid-connected system since the grid voltage is a
disturbance and has no influence on the stability analysis. The
converter-side current control, together with the two active

FIGURE 15. Experimental results for active damping with proportional
feedback of the capacitor current (fr = fs/2.67).

FIGURE 16. Experimental results for active damping with proportional
feedback of the capacitor voltage (fr = fs/1.98).

dampingmethods, as described above (see Fig. 5 and Fig. 10),
are implemented in the Arduino Due. The control board also
includes an Arduino Micro where the converter protections
are executed. The oscilloscope is a TektronixMDO3054, with
a bandwidth of 500 MHz and a sampling rate of 2.5 GS/s.
The current probes are two Yokogawa 701930, with a band-
width of 10 MHz, and the voltage differential probes are two
Tektronix P5200, with a bandwidth of 50 MHz. The system
parameters are the same as previously, as shown in Table 7.

Figure 15 shows the experimental results for active damp-
ing with proportional feedback of the capacitor current
when fr = fs/2.67, where the represented variables are two
converter-side currents and two line-to-line capacitor volt-
ages. At the beginning, the damping constant Kd is set to−5,
and a stable and well-damped control is achieved. Then, Kd
is modified to −12.3, which causes the system to become
unstable. The oscillation is at the Nyquist frequency, i.e.
f = fs/2 = 2500 Hz. This is in accordance with the DGBC
analysis, which predicted the appearance of one unstable pole
for Kd < −12 due to the −180◦ crossing at the Nyquist
frequency. Finally, Kd is again set to −5, resulting in a
damped response.

Figure 16 shows the experimental results for active damp-
ing with proportional feedback of the capacitor voltage when
fr = fs/1.98≈ fs/2, where the same variables are represented.
Similarly to the previous case, first the control is damped and

VOLUME 9, 2021 37851



A. Urtasun et al.: Control Design and Stability Analysis of Power Converters: The Discrete Generalized Bode Criterion

stable for Kv = 0.5, it becomes unstable for Kv = −0.5, and
then it is stabilized for Kv = 0.5. The oscillation is again at
the Nyquist frequency, in this case f = fs/2 = 1850 Hz. This
was expected thanks to the DGBC analysis, which detected
the appearance of one unstable pole for Kv < 0 due to the
−180◦ crossing at the Nyquist frequency.

V. CONCLUSION
This article proposes a new stability criterion for discrete
systems, called DGBC, which combines the advantages of
the Nyquist and Bode criteria. As it uses information from
the open-loop Bode plot, the DGBC is easy to apply and can
provide clear guidelines about the controller design. At the
same time, since it is based on the Nyquist criterion, it is
applicable under any conditions, unlike the existing Bode
criteria.

For the formulation of the DGBC, particular attention is
paid to what occurs at 0 Hz and the Nyquist frequency, as this
information is not visible in the Bode plot and it is very
important for the stability of discrete systems.

As a case-study, the proposed method is applied to deter-
mine the stability and provide design guidelines for the active
damping of an inverter with LCL filter. First, the active
damping with capacitor current feedback is analyzed, which
corresponds to an open-loop with no poles at z = −1. Then,
the active damping with capacitor voltage feedback when
fr = fs/2 is studied, which corresponds to an open-loop with
one pole at z = −1. For both cases, and in contrast to the
existing Bode criteria, the DGBC is able to accurately obtain
the stability region, including the oscillation which appears
at the Nyquist frequency. These conclusions are validated
through experimental results performed with a three-phase
inverter and an LCL filter.
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