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A B S T R A C T   

We present a novel approach to harmonic disturbance removal in single-channel wind turbine 
acceleration data by means of time-variant signal modeling. Harmonics are conceived as a set of 
quasi-stationary sinusoids whose instantaneous amplitude and phase vary slowly and continu-
ously in a short-time analysis frame. These non-stationarities in the harmonics are modeled by 
low-degree time polynomials whose coefficients capture the instantaneous dynamics of the cor-
responding waveforms. The model is linear-in-parameters and is straightforwardly estimated by 
the linear least-squares algorithm. Estimates from contiguous analysis frames are further com-
bined in the overlap-add fashion in order to yield overall harmonic disturbance waveform and its 
removal from the data. The algorithm performance analysis, in terms of input parameter sensi-
tivity and comparison against three state-of-the-art methods, has been carried out with synthetic 
signals. Further model validation has been accomplished through real-world signals and stabili-
zation diagrams, which are a standard tool for determining modal parameters in many time- 
domain modal identification algorithms. The results show that the proposed method exhibits a 
robust performance particularly when only the average rotational speed is known, as is often the 
case for stand-alone sensors which typically carry out data pre-processing for structural health 
monitoring. Moreover, for real-world analysis scenarios, we show that the proposed method 
delivers consistent vibration mode parameter estimates, which can straightforwardly be used for 
structural health monitoring.   

1. Introduction 

Operational Modal Analysis (OMA) is a generic name for output-only system identification strategies, which provide character-
ization of large structures – wind turbines (WT), bridges, buildings, etc. – from vibration signals under operating conditions. There are 
two main reasons why the application of conventional modal analysis techniques, requiring the use of well-controlled excitation 
signals, is impossible in those cases. First, the size of the structures does not allow the excitation with the required energy, for either 
stationary or impulsive signals. Second, the characteristics of the structure under test are not the same under static or operating 
conditions due for instance to aeroelastic effects. OMA techniques, formerly known also as Natural Excitation Techniques (NExT), 
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make use of natural excitation signals such as wind, waves, rain or road traffic as the only, or even the most adequate, excitation signals 
available. 

An extensive overview of the principal OMA techniques in the context of structural health monitoring (SHM) is given in [1], which 
include time and frequency domain, parametric and non-parametric procedures. Whatever the case, OMA assumes routinely that the 
system input is the realization of a stochastic process which can be modelled by white noise [2]. However, this is not always the case, 
particularly for structures containing rotating parts such as turbines of any kind or gearboxes. In these cases, measured output signals 
contain a mixture of the structure response and harmonic perturbations in the frequencies of the rotating parts and their higher order 
harmonics. 

If not properly taken into account, those disturbances may seriously hamper the OMA procedure by introducing bias in the esti-
mation of the natural frequencies or identifying the harmonics as structural modes, particularly when mode frequencies are close to 
some harmonic [3]. This happens in wind turbines, but a number of applications [4–6] are reported where harmonics constitute a 
severe limitation for the proper application of OMA techniques to estimate modal frequencies, damping and mode shapes. It is 
interesting to note how historically the inception of OMA was with vertical wind turbines [7] while in today’s horizontal wind turbines 
the problem of harmonic interference has hardly been dealt with until recently. 

There are a few review papers that describe and compare to a given extent the available procedures for either harmonic removal, or 
their consideration in the identification procedure to mitigate their influence. In particular [8] proposes a classification of methods, 
independently of the application. Previously Manzato et al. [9,10] reviewed some methods as they apply to wind turbines, and in a 
recently published review paper [11], the authors analyze and classify methods to circumvent the presence of harmonics in the light of 
OMA methods for off-shore wind turbines. In this last paper, algorithms, combining OMA and harmonic removal techniques, are 
classified according to their suitability for damping estimation, taking into account nine different criteria. 

From the analysis of the literature, it becomes clear that an optimal solution does not exist, since the most appropriate one is always 
problem driven. However, the classifications proposed in the above-mentioned papers, based on criteria such as the prior knowledge of 
the harmonics frequency, or on the distinction between “pre-processing techniques” and those that incorporate the harmonics into the 
identification method, may help to find the best choice. In this paper we will focus on on-shore wind turbines, for which we propose a 
novel technique that overcomes some of the main limitations found with previously published methods. 

The oldest reported methods belong to the techniques denoted broadly as Time Synchronous Averaging (TSA), which are intui-
tively sound and easy to implement, at least in their most basic form. TSA was proposed for wind turbines in Peeters et al. [12] and has 
been more recently used in Manzato et al. [10]. The idea is to average consecutive cycles of the signal to eliminate its stochastic part 
and retain the deterministic (periodic) one; this is to say, TSA is an implementation of a so called comb filter, as shown in Braun [13]. 
TSA has been historically used in the domain of order tracking to obtain the harmonics shape, once the fundamental frequency is 
known. In the case of OMA, once the periodic signal, i.e. harmonic, is obtained, it is removed from the raw data and then the OMA 
method at hand is routinely applied. 

The limitations of TSA become evident. First of all, the frequency of the fundamental harmonic (averaging period), must be known. 
If the frequency is not constant, the signal should have been sampled in the “angle domain”, in such a way that the number of samples 
per cycle is constant. If the signal is uniformly sampled in time, then it has to be up-sampled, to generate afterwards by down-sampling 
a constant number of samples per cycle. The procedure must be inverted after TSA to reconstruct the identified harmonic and remove it 
from the raw signal. Therefore, and even though the instantaneous harmonic frequency is known (this can be the case in wind tur-
bines), the procedure can be cumbersome to apply. Moreover, there are other effects which may affect the assumed periodicity of the 
signals (e.g. inharmonicity) introducing a kind of “base line”, or even amplitude modulation, which make the averaging senseless. 

This is the reason why this family of techniques has found limited use for the problem at hand, in favor of novel proposals, though 
there have been recent attempts to introduce modifications, which circumvent some limitations to make TSA usable. This recently 
published paper, [4], introduces two methods to correct in some way the non-repetitivity of the cycles to be averaged. The technique is 
demonstrated with two different gearboxes of a helicopter power turbine and a turbojet engine, but has not been tried with wind 
turbines. In fact, TSA methods have so far demonstrated limited success with wind turbines [14]. 

Another method that makes use of the angular domain sampling is the Order domain deletion (ODD) [15]. Unlike TSA, the har-
monic removal is thoroughly carried out in the frequency domain, by DFT editing in the band around the harmonic frequency. The 
editing is performed by a linear or spline fit between the band edges. It is extremely simple when it comes to implementation, and 
seemingly very effective when the harmonic perturbation is highly stationary. In wind turbines, unfortunately, the harmonics are 
strongly time-variant in both amplitude and frequency. Moreover, the DFT editing process is highly sensitive to noise, which acts as an 
uncertainty on the interpolation parameters. 

Let us also mention the so-called Random Decrement Technique (Randomdec), which resembles TSA in the sense that selected 
portions of the signal are properly averaged. It was proposed in the context of vibration signature analysis [16] and revisited in OMA 
[17], as a method to estimate autocorrelation functions [18,19]. More recently, it has also been proposed for harmonic removal [20] 
but it has only been tested on synthetic signals. 

We have already mentioned that TSA analysis requires prior knowledge of the frequency of harmonics to be estimated and 
removed. This can be accomplished in the frequency domain from the acceleration signals if we assume that harmonics show up as 
isolated, narrow, spectral peaks, centered at the harmonic frequency. This is equivalent to the assumption that harmonics are those 
calculated, by the OMA procedure, as modes with zero damping. 

Unfortunately, this is not what happens in real situations where we have a mixture of mechanical modes and harmonics with 
considerable frequency spread (leakage). To discriminate between harmonics and real modes, and eventually eliminate them, several 
procedures are proposed. 
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First of all, we can mention procedures based on ceptstral analysis, a classical signal processing technique, applied for the first time 
for OMA in Randall et al. [21]. According to this idea, harmonics become clear ceptstral peaks (called rahmonics), whereas modes 
show up broader. Such cepstral peaks can then be edited (removed) [22], and then the inverse transformation is applied resulting in a 
signal free from harmonics. This technique has also been used in Liu et al. [23], as a preprocessing step for SSI (Stochastic Subspace 
Identification) based OMA, but making use of synthetic data for a quarter vehicle model, with very controllable inputs. From the same 
authors in Randall et al. [24], in the work [25] it is shown how signal preprocessing based on cepstrum editing renders even poorer 
results than with TSA. Polymax algorithm was used to identify the modes. 

With the same aim to distinguish between real modes and harmonics, two related procedures have been proposed. They are based 
on the assumption that harmonics and modes exhibit a very different behavior in terms on their statistical distribution, or PDF. Ac-
cording to [26], the structural response in the case of a structural mode is approximately Gaussian, whereas for an ideal harmonic is 
close to that of a sinusoidal signals, exhibiting high tails [8]. To asses which is the case, the raw signal must be filtered by a bank of 
narrow bandpass filters centered at every frequency bin, and the output evaluated to see if it corresponds to a harmonic or a mode [5]. 

This is a qualitative approach that can be quantified by the use of a numerical indicator such as the Kurtosis [3,5,26–28] which 
measures the extremities or tails of the distribution. Another alternative parameter, less used, is Entropy [29]. It is known that a 
Gaussian distribution has a kurtosis of 3, whereas for a pure harmonic is close to 1.5. As in the case of the PDF calculation, a bank of 
filters need to be used, which is a cumbersome procedure. Some recent work, and our own experience, questions the distinction of 
harmonics and modes on the basis of their statistical behavior for the case of wind turbines [30] where harmonics exhibit both fre-
quency and amplitude modulation. Let us also mention the Gabor transform/expansion for order tracking [31], a well-known tool for 
manipulating signals in the time–frequency domain, which is equivalent to a filter bank analysis. A particular component Gabor 
expansion is a result of a simple spectrogram masking where the bins of interest are kept and the rest is pulled to zero. This is a filter 
with a sharp cutoff, whose bandwidth can be adjusted by a masking function. 

Another family of methods is based on the so called Transmisibility Functions (TF) introduced in [32–34]. The original idea is to 
calculate ratios between different responses in the structures, in such a way that the poles of such ratios are independent of the 
excitation and thus the harmonics. Actually, this constitutes by itself an alternative method for OMA (denoted TOMA by the authors) 
making no assumptions on the excitation signal. Apart from the need to have available a number of signals (sensors), the load con-
ditions on the wind tower must be sufficiently different to obtain the different transmissibility functions. To cope with this practical 
limitations the same authors have proposed a time varying version of the TOMA [35]. The technique has limited practical application, 
as recognized by the same authors in Daems et al. [36] mainly due to the need of a multiplicity of signals, and is difficult to automate. 
Other approaches include separation for blind identification [37] and periodogram ratio based harmonic removal [38]. 

To complete the picture, we should mention OMA methods that incorporate, in some way, an a priori knowledge of the harmonics, 
as known solutions, forcing that unknown solutions correspond exclusively to modes (mathematical modes may remain). Therefore, in 
contrast with other previously referred techniques, harmonics are not subtracted from the raw signal or “deleted” from the spectrum. 
There are in the literature several combinations of ways to model the harmonics (known solutions) and the OMA method, and thus is 
not easy to compare them or even categorize. We can mention an early work on the modification of the Least-Square Complex 
Exponential (LSCE) [39] identification, and by the same authors using Eigensystem Realization Algorithm (ERA) [40], which requires 
an exact knowledge of the poles representing the harmonics. A similar approach, but now with the Stochastic Subspace Identification 
(SSI) method has been proposed in Dong et al. [41] and applied to off-shore wind turbines. Gres et al. also make use of (SSI) [6,42,43], 
though it is not evident how the harmonics are estimated before to project them onto the raw signal before applying SSI algorithm. 

A major constraint of the majority of the state-of-the-art methods described above is related to the assumption that the harmonic 
content is quasi-stationary, which means that their instantaneous parameters generate a negligible bandwidth around the nominal 
frequencies. This assumption is, however, not valid for wind turbines because persistent wind field fluctuations in the rotor plane 
induce constant time changes in aerodynamic loads [14,44]. These loads acting on the rotor affect the azimuth that, in turn, give rise to 
non-stationary instantaneous amplitude (IA) and phase (IP) in the harmonics [45]. The result is a harmonic spectral peak broadening – 
harmonic bandwidth increase – which can jeopardize the estimation of structural modes [8]. This is especially important for low-order 
harmonics (e.g. 1P – rotor rotational frequency and 3P – tower shadow effect), which possess a considerable energy and are clustered 
together with the first bending Fore-Aft natural frequency (FA). 

If it is true that some of the referenced papers consider the possibility of frequency (or phase) variations, i.e. frequency modulation, 
the relevance of amplitude modulation, that significantly contributes to peak broadening in WT, has not been highlighted until 
recently [36]. Amplitude modulation is the main concern of this paper that do not consider simultaneous frequency modulations. 

Aware of the drawbacks mentioned above, we have designed a novel approach to harmonic estimation and removal in wind 
turbines inspired by the techniques which appear in speech and audio signal synthesis and coding [46–49]. It turns out that audio 
signals bear certain similarity to vibration signals, in the sense that tonal music sounds are made out of time-variant deterministic plus 
stochastic contribution. For instance, in a wind instrument the deterministic sound component stems from the sustained oscillations in 
the resonator cavity whilst the stochastic component comes from the turbulent airflow through the instrument’s slit. Accordingly, the 
sustained sounds produced by musical instruments can be modeled as the sum of non-stationary sinusoids plus a residual. In the 
present work, the harmonic disturbances in vibration signals are conceived as a collection of time-varying harmonically related si-
nusoids whose instantaneous amplitude and phase change over the time record. Those variations are simultaneously captured by low- 
degree polynomials, whose coefficients describe the relationship between harmonic instantaneous amplitude and phase in the analysis 
frame. Assuming that the harmonic dynamics evolve in time around some mean fundamental frequency, we show that the proposed 
model is unique and computationally reduces to resolving an overdetermined linear system of equations. The minimum-norm solution 
yields an estimate of the harmonic polynomial coefficients, which can readily be plugged in the signal model to obtain the 
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corresponding waveform. The full record harmonic disturbance is synthesized by combining neighboring analysis frames via the 
weighted overlap-add method (WOLA), which ensures smooth waveform transitions over the frames [50]. The final step in the pro-
posed method consists in subtracting the estimated harmonic waveform from the input data, which is now harmonic-free and can 
further be analyzed by well-known OMA techniques. A schematic overview of the herein proposed method is outlined in Fig. 1. 

An additional advantage of the method proposed, with respect to other approaches described above, is that the value of the 
instantaneous frequency does not need to be accurately known, and of course, it is not assumed constant. The algorithm actually 
provides an estimate of the harmonic instantaneous phase and thus frequency, which can be useful in tracking applications. In this 
sense, it goes further than classic schemes of harmonic (or order) tracking based for instance in Vold-Kalman filtering [51–54]. 
Moreover, each desired harmonic can be separately estimated, without the limitation of other approaches that estimate all orders of a 
given fundamental frequency. 

We have conducted an algorithm performance study involving three distinct state-of-the-art methods for estimation of harmonic 
content in acceleration data. The reference methods were chosen to be the Local Synchronous Fitting approach [4] (from now on LSF), 
the second-generation Vold-Kalman Filter [51,52] (from now on VKF) and the Order Domain Deletion (from now on ODD) [15]. LSF 
method is an extension of the Time Synchronous Average approach (TSA) to deal with non-stationary harmonic perturbations. The 
algorithm core makes use of the polynomial fit over a reduced number of fundamental periods to estimate time-variant mean. As the 
method relies on the component period length normalization, the data needs to be resampled in the angular domain, processed and 
interpolated back onto the original time grid. The VKF is a classical approach to harmonic component tracking in vibration data. The 
problem is formulated through the structure and data equations, which are combined into a set of linear equations whose solutions are 
harmonic instantaneous amplitudes. The instantaneous frequency is assumed known. The filter can be formulated with different 
numbers of poles to alter its band-pass characteristics. An input parameter is the filter bandwidth or, interchangeably, the weighting 
factor, which controls filter selectivity in the frequency domain. Although there are adaptive, computationally more efficient versions 
of the VKF, the present study is not focused on the computational cost. 

The LSF is shown to be equivalent to an LTI comb filter whose bandwidth depends on the polynomial degree and window length. In 
practice, it means that all the band-pass replicas are configured by two degrees of freedom. This renders the same bandwidth and 
selectivity for all harmonic bands, which may hamper the algorithm’s discrimination performance in scenarios of structural mode – 
harmonic spectral overlap. The VKF can also be seen as a bank of band-pass filters, where the bandwidth can be orthogonally adjusted 
for each filter. This feature, which is shared by the proposed method, can be very useful in selective harmonic removal, given that some 
a priori knowledge about the system under test are known. In practical applications of the VKF one does not tune the noise variance: 
the parameters to be tuned by the user are either the variance ratio (also known as the weighting factor in the loss function) or the 
bandwidth. Often, it is the bandwidth that is adjusted, as this parameter is more user-friendly than the former (e.g. we usually know an 
approximate bandwidth for a given rotating machinery application). The relationship between those parameters is explained in the 
literature e.g. [52]. 

The ODD method, similarly to the LSF, makes use of the angular domain signal resampling in order to mitigate the effect of time- 
varying instantaneous rotating frequency. However, unlike the LSF and VKF, the ODD does not aim at extracting the harmonic 
disturbance components from the data. It rather manipulates the magnitude DFT samples in the band around the harmonic frequency, 
by replacing them with a linear trend or a local spline – spectrum editing. Finally, the modified DFT is transformed back in the angular 
domain and the resulting signal is resampled in the time domain. To improve the accuracy, the process relies on large oversampling 
factors (10–20). 

This paper is organized as follows. In the following Section 2, we present in detail the time-variant harmonic and residual signal 
model for wind turbine acceleration data, together with the linear least-squares solution and its implementation for long duration 
registers. In Section 3, the method is validated with synthetic signals and also with signals generated by a wind turbine simulation tool. 
Comparisons are made against the above-mentioned methods. In section 4 we carry out a similar analysis with signals from a real 

Fig. 1. Schematic pipeline of the proposed harmonic removal algorithm.  
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turbine. Finally, the conclusions appear in Section 5. 

2. Methods 

Fig. 1 outlines the chief signal processing steps in the proposed algorithm. The input single-channel acceleration data x(tm),m =

1,2,⋯,M is split into a series of overlapped analysis frames xl(tn) = x(tn +ltd),l = 1,2,⋯,L, whose processing yields the corresponding 
short-term harmonic components ĥl(tn), n = 1,2,⋯,N. Next, those components are windowed by w(tn) and merged by means of the 
WOLA method to obtain the long-term harmonic component ̃h(tm). In the last step, the estimated harmonic perturbation is subtracted 
from the input and the residue r(tm) is harmonic-free. 

2.1. Short-term harmonic signal modeling 

Structural analysis of wind turbines is based on acceleration registers taken at different tower heights, when available, or at the 
nacelle, under natural excitation conditions. One such register can be modeled in a length-N analysis frame [48,49]: 

x(tn) = h(tn)+ r(tn) =
∑K

k=1
Ak(tn)cos

(
2πkf0tn + φk(tn)

)
+ r(tn), n = 1, 2,⋯,N. (1) 

The harmonic component h(tn) has its origin in the rotating behavior of the structure, remarkably the tower shadow effect (3P). It is 
therefore represented by a set of K harmonically related sinusoids with instantaneous amplitudes Ak(tn) and phases 2πkf0tn + φk(tn), 
being f0 the average fundamental frequency which is usually known (e.g. a rotary encoder) and φk(tn) the non-linear instantaneous 
phase deviation which can also accommodate errors in the initial estimation of f0. The residue r(tn) is stochastic in nature and contains 
the contribution from the structural modes and noise. The model (1) cannot be uniquely identified because analytically, it represents a 
non-linear underdetermined system of equations. In order to relax the non-linearity constraint we rewrite (1) as a combination of the 
in-phase and quadrature terms: 

x(tn) =
∑K

k=1
(pk(tn)sin(2πkf0tn)+ qk(tn)cos(2πkf0tn) )+ r(tn) (2)  

pk(tn) = − Ak(tn)sin(φk(tn) ), qk(tn) = Ak(tn)cos(φk(tn) ) (3) 

The system (2) is now linear-in-parameters but it still has more unknowns than equations. Let us assume that both pk(tn) and qk(tn)
are in origin continuous functions of time. Accordingly, the products (3) are also continuous and can therefore be approximated in the 
analysis window by low-degree polynomials: 

pk(tn) ≈ pk,0 + pk,1tn +⋯+ pk,DtD
n , qk(tn) ≈ qk,0 + qk,1tn +⋯+ qk,DtD

n (4) 

Combining the D-degree polynomials (3)–(4) with (2) we obtain the signal model for the input data: 

x(tn) =
∑K

k=1

(
∑D

i=0
pk,i ti

nsin(2πkf0tn)+
∑D

i=0
qk,i ti

ncos(2πkf0tn)

)

+ r(tn). (5) 

The last expression is next rewritten in the computationally more convenient matrix form: 

x = Bθ+ r (6) 

Vectors x ∈ RN and r ∈ RN contain the observations and noise samples respectively whilst the model parameters are stored in a 
vector 

θ =
(

p1,0p1,1⋯p1,Dq1,0q1,1⋯q1,D⋯pK,1⋯pK,DqK,1⋯qK,D

)T
∈ RK(2D+2)

with ( • )T being the transpose operator. The regression matrix B is a block matrix whose structure is given as: 

B = (B1 B2 … BK) ∈ RN×K(2D+2) (7)  

Bk = (αkβk) ×

(
Z 0
0 Z

)

∈ RN×(2D+2) (8)  

αk = diag([sin(2πkfot1)sin(2πkfot2)⋯sin(2πkfotN) ] ) ∈ RN×N (9)  

βk = diag([cos(2πkfot1)cos(2πkfot2)⋯cos(2πkfotN) ] ) ∈ RN×N (10) 

with Z ∈ RN×D+1 being the time Vandermonde matrix: 
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Z =

⎡

⎢
⎢
⎣

1 ⋯ tD
1

⋮ ⋱ ⋮
1 ⋯ tD

N

⎤

⎥
⎥
⎦

The estimation of the parameters θ reduces to minimizing the following cost function: 

θ̂ = argmin
θ

‖x − Bθ‖2
2 =

(
BT B

)− 1BT x = B+x (11)  

where ( • )+ designates the pseudoinverse of a matrix. A straightforward combination of the solution in (11) with (6) – (10) yields the 
estimate of the harmonic component in the analysis frame 

ĥ(tn) =
∑K

k=1

(
∑D

i=0
p̂k,i t

i
nsin(2πkf0tn)+

∑D

i=0
q̂k,i t

i
ncos(2πkf0tn)

)

, n = 1, 2,⋯,N. (12) 

In addition, we estimate the instantaneous amplitude and phase deviation for each harmonic in the analysis window: 

Âk(tn) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
∑D

i=0
p̂k,i ti

n

)2

+

(
∑D

i=0
q̂k,i ti

n

)2
√
√
√
√ (13)  

φ̂k(tn) = − atan

(∑D
i=0 p̂k,i ti

n
∑D

i=0 q̂k,i ti
n

)

, k = 1, 2,⋯,K. (14) 

Expressions (13) and (14) will be useful for calculating the harmonic bandwidth as part of the stochastic synthesis. 

2.2. Long-term harmonic synthesis 

Let us suppose that we have acquired from the response analogue signal a total of M samples at the time instants t1,t2,⋯,tM = M/fs,
M ≫ N, with fs being the sampling rate. A vector ∈ RM, which contain the aforementioned samples, is segmented in L overlapped 
analysis frames xl(tn) = x(tn +ltd), l = 1, 2,⋯, L where td is the time delay between contiguous frames whilst L is the number of frames 
covering the total duration of the input data. A successive application of the above algorithm to the overlapped analysis frames xi(tn)
(Fig. 1, left panel) generate a set of short-term harmonic segments ĥl(tm − ltd), l = 1,2,⋯,L. The synthesis of the long-term harmonic 
waveform is carried out by means of the weighted overlap-add technique [50], which consists in the following steps (Fig. 1, central 
panel): 

1) Each segment ĥl(tm − ltd) is scaled by an analysis window w(tn), whose role is to mitigate potential discontinuities at the 
boundaries of adjacent analysis frames. The typical choice is a raised-cosine window e.g. Hann, which possesses a convenient scaling 
property: 

∑

l∈Z

w
(

tm − l
N
2fs

)

= 1 

2) The windowed segments are linearly combined with an appropriate weighting, which compensates the windowing effect. The 
resulting waveform is the estimate of the harmonic disturbances in the data whose length covers M samples: 

h̃(tm) =

∑L
l=1w(tn)ĥl(tm − ltd)
∑L

l=1w(tm − ltd)
,m = 1, 2,⋯M (15) 

By combining (13) – (15), we also obtain the harmonic instantaneous amplitude and phase deviation for the duration of the input 
data: 

Ãk(tm) =

∑L
l=1w(tn)Âl(tm − ltd)
∑L

l=1w(tm − ltd)
(16)  

φ̃k(tm) =

∑L
l=1w(tn)φ̂l(tm − ltd)
∑L

l=1w(tm − ltd)
(17) 

Finally, by subtracting the estimated harmonic contribution from the input data we obtain the residue, which contains the natural 
frequencies: 

r(tm) = x(tm) − h̃(tm),m = 1, 2,⋯,M. (18)  
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2.3. Model tuning 

For the sake of implementation of the proposed harmonic signal model, we need to adjust the following analysis parameters: the 
number of harmonics K, the polynomial degree D and the analysis frame duration Nts. The number of harmonics will utterly depend on 
the application. For instance, in the context of the present application, both 1P component and the 3P harmonic series can potentially 
shadow the structural modes. Accordingly, in the harmonic signal model (5) the corresponding terms in the sum (k = 1, 3, 6, 9, etc.) 
should be considered. In other circumstances, we may need to monitor the dynamics of the tower’s first bending mode, so that it is not 
coupled to the 1P component. In that case, the harmonic signal model would contemplate a single term corresponding to the 
fundamental rotational component (k = 1). 

The polynomial degree and analysis frame time duration determine the goodness-of-fit of the model to the data in the given 
bandwidth around the harmonic frequencies. They act in a mutually correlated fashion in order to constrain the model to the specific 
bandwidth and avoid possible undesirable effects of under and overfitting. Given the polynomial degree, shorter analysis frame yields 
small modeling bias but can inflate variances of the estimated parameters - overfitting. Conversely, enlarging the analysis frame 
duration, the uncertainty of the estimates reduces and modeling bias gets larger - underfitting. Moreover, we want to keep the 
polynomial degree as low as possible (the parsimony principle) in order to avoid numerical instabilities when evaluating the Moore- 
Penrose pseudoinverse matrix in (11). 

Bearing in mind the above argumentation, let us first discuss on the choice of the analysis frame duration for the problem at hand. 
The minimum frame duration is clearly conditioned on the mean period of the fundamental harmonic (1P or 3P as the case may be). As 
the signal model (5) represents sinusoids whose energy is clustered around the harmonic frequencies, the analysis frame must cover at 
least one period of 1P; otherwise, the fundamental component would become a trend, thus invalidating the harmonicity assumption 
(recall that a trend can be seen as a sinusoid whose period is larger than a given time register). In the context of the present application, 
we adjust the number of observations N in the way that the analysis frame covers approximately-two 1P periods: N = 2fs/f0. 

As for the polynomial degree, we will assume that the instantaneous amplitude and phase deviation evolve linearly in the analysis 
frame. Accordingly, the expressions (3) become: 

pk(tn) = −
(
Ak,0 +Ak,1tn

)
sin
(
φk,0 +φk,1tn

)
(19.a)  

qk(tn) =
(
Ak,0 +Ak,1tn

)
cos
(
φk,0 +φk,1tn

)
(19.b) 

Applying the sum-of-angles trigonometric identities to the last expressions and making use of the small argument Taylor series 
approximation (sin

(
φk,1tn

)
≈ φk,1tn, cos

(
φk,1tn

)
≈ 1), we have: 

pk(tn) ≅ − Ak,0sin
(
φk,0
)
−
(
Ak,0φk,1cosφk,0 +Ak,1sinφk,0

)
tn −

(
Ak,1φk,1cosφk,0

)
t2
n =

= pk,0 + pk,1tn + pk,2t2
n (20.a)  

qk(tn) ≅ Ak,0cos
(
φk,0
)
−
(
Ak,0φk,1sinφk,0 − Ak,1cosφk,0

)
tn −

(
Ak,1φk,1sinφk,0

)
t2
n =

= qk,0 + qk,1tn + qk,2t2
n (20.b) 

Subsequently, we choose the second-degree polynomials for the estimation of the harmonic model (5). Observe in (20.a) and (20.b) 
that the parameters pi, qi, i = 0, 1,2 possess certain internal structure, which depend on 

(
Ak,0,Ak,1,φk,0,φk,1

)
. Albeit this information 

might enclose certain relationships between the instantaneous amplitude and phase deviation, it will not be dealt with in the present 
work. In the next section, we show that this choice for the polynomial degree and analysis frame duration is well suited to real wind 
turbine signals. 

2.4. Stochastic synthesis 

By subtracting the estimated long-term harmonic component from the input data, we obtain a residue that contains the structural 
modes and background noise. The harmonic removal, however, generates dips in the residual power spectrum around the harmonic 
frequencies. This stems from the fact that we do not assume an a priori knowledge on the noise power spectral distribution; conse-
quently, we ignore the mixing between the harmonics and noise. Accordingly, we treat the noise in a non-parametric way and thus 
allow the harmonic model to be locally contaminated i.e. the harmonic bandwidth contains some small fraction of noise as well. 

In order to compensate this effect, for each harmonic we generate a narrow-band noise centered at the harmonic average frequency 
and delimited by the harmonic bandwidth. From the time–frequency analysis theory, we know that this parameter can be readily 
calculated as in [55]: 

BW2
k = BW2

k,A +BW2
k,φ =

1
fs

∑M

m=1

(

Ã
′

k(tm)

)2

+
1
fs

∑M

m=1

(

φ̃
′

k(tm) − 2πf0

)2(

Ãk(tm)

)2

(21) 

In the last expression, BW2
k,A and BW2

k,φ are the instantaneous amplitude and phase contributions to the harmonic bandwidth 

respectively. The operator (′) is the first time derivative whereas Ãk(tm) and φ̃k(tm) are calculated as in (16) and (17). Although the 

M. Zivanovic et al.                                                                                                                                                                                                     



Mechanical Systems and Signal Processing 189 (2023) 110095

8

current stochastic synthesis step successfully reconstructs the wind turbine power spectrum around the harmonic perturbations, it is 
not essential for the correct operation of the proposed harmonic removal algorithm and can thus be omitted. For this reason, it is not 
part of the algorithm general scheme in Fig. 1. 

3. Results: Synthetic data 

We have carried out a number of studies, concerning both synthetic and real data, in order to assess the performance of the 
proposed algorithm. First, we present a sensitivity analysis of the input parameters – frame size and polynomial degree. Next, we 
describe a comparative study, which involves three reference state-of-the-art methods and a number of representative analysis sce-
narios regarding the present application. In section 4, we will complement this analysis with the discussion of three illustrative real- 
world case studies. 

3.1. Input parameters sensitivity 

The aim of the present sensitivity study is to evaluate the goodness-of-fit of the proposed method as a function of the input pa-
rameters i.e. how well the method can capture the non-stationarities in a harmonic component given the frame size and polynomial 
order. To that end, we made use of synthetic data for simulating non-stationary harmonics in presence of a stochastic perturbation. A 
harmonic is conceived as a carrier sinusoid, jointly modulated in amplitude and phase (AMPM): 

He(tn) = H(tn)+ e(tn) = (1+ μaa(tn) )sin(2πf0tn + μφφ(tn) )+ e(tn) (22)  

where a(tn) and φ(tn) are the amplitude and phase modulator respectively, μa and μφ are the modulation indices whilst f0 is the carrier 

a) b)

c) d)

Fig. 2. A single realization of the AMPM harmonic sinusoid defined in (22).  
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frequency and e(tn) the normally distributed measurement noise. The modulators are generated as an output of an autoregressive 
process AR(1) defined as: 

a(tn) = βaa(tn− 1)+ γ(tn− 1), γ∝N

(
0, σ2

γ

)

φ(tn) = βφφ(tn− 1)+ δ(tn− 1), δ∝N
(
0, σ2

δ

)

βa =
ra,0 − εa

ra,0
, σ2

γ = ra,0 − βa
(
ra,0 − εa

)
,

βφ =
rφ,0 − εφ

rφ,0
, σ2

δ = rφ,0 − βφ
(
rφ,0 − εφ

)
.

The autoregressive model parameters were set as ra,0 = rφ,0 = 1, εa = 5 × 10− 3, εφ = 10− 3; the settings for the model in (22) were 
μa = 0.75, μφ = 2, f0 = 0.6Hz and the measurement noise variance equal to 1.5. The modulators are further smoothed out by an order- 
3 Butterworth filter of cutoff frequency equal to 0.2 Hz. An illustration of a single realization of (22) is shown in Fig. 2. 

The goodness-of-fit (GOF) of the proposed model to the data was defined as the Residue-to-Harmonic ratio: 

GOFdB = 10log10

∑
n(H(tn) − Ĥ(tn) )

2

∑
nH2(tn)

Fig. 3. Goodness-of-fit for the single harmonic as a function of the input parameters.  

Fig. 4. Goodness-of-fit for the mode-harmonic mixture as a function of the input parameters.  
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a) b)

c) d)

e) f)

g) h)

i) j)

(caption on next page) 
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where Ĥ(tn) is the estimated harmonic waveform. For each combination of frame duration (ranging from 2 s to 20 s) and polynomial 
degree (ranging from 1 to 3) 100 realizations of (22) were performed and the mean GOF was calculated. The overall results for a single 
harmonic are shown in Fig. 3. The curves corresponding to different polynomial degree (P) exhibit a similar general trend, comprising 
global minima, which indicate the most optimal working point in the sense of mean square error. The minima shift towards larger 
frame durations as P increases, because the model flexibility grows as well. The curve segment to the left of a minimum designates an 
underfit, whilst the segment to the right specifies an overfit. Working with P = 1 allows for a short frame duration; however, its 
relatively sharp minimum can easily drive the analysis into the over/underfit zone. Larger P yields broader minima and accordingly an 
extended flexibility in choosing the frame duration. The aforementioned discussion is immediately extended to a set of harmonics 
simultaneously present in the data. 

In the context of the present application, we often encounter the situation of a partial collision (overlap) between a vibration mode 
and a harmonic. Such scenarios typically comprehend the interaction between the 1st FA and 3P component, as well as between the 
2nd FA and a higher order harmonic. Under these circumstances, the above analysis needs to be reexamined because harmonic 
removal could seriously corrupt the vibration mode content and consequently hamper its identification. Therefore, we seek to estimate 
the harmonics and simultaneously preserve the modal content as much as possible. As for the synthetic signal, we have considered the 
following: 

He(tn) = M(tn)+H(tn)+ e(tn) =
∑2

k=1

(
1+ μa,kak(tn)

)
sin
(
2πf0,ktn + μφ,kφk(tn)

)
+ e(tn) (23) 

In the last expression, the mode M(tn) and the harmonic H(tn) share the same model, whilst the carrier frequencies are f0,1 = 0.4Hz 
and f0,2 = 0.6Hz respectively. We believe that this assumption is valid because a vibration mode driven by a stochastic enforcement 
manifests itself in the signal domain as a modulated sinusoid. The GOF for the current model was defined with respect to the vibration 
mode: 

GOFdB = 10log10

∑
n(M(tn) + H(tn) − Ĥ(tn) )

2

∑
nM2(tn)

.

The same analysis was performed as in the single harmonic study, and the results are shown in Fig. 4. The global minima in the 
curves, which quantify the algorithm’s discrimination capacity, correspond to larger frame duration values when compared to the 
results in Fig. 3. This is equivalent to restricting the model flexibility in order to avoid hampering the information from the vibration 
mode. It turns out that such a situation is quite common in wind turbine acceleration signals and will be taken into account in the 
following studies. 

An example of the present harmonic extraction scenario is illustrated in Fig. 5, where the analysis and synthesis algorithm steps are 
shown in both frequency and time–frequency domain. The input signal power spectrum and its spectrogram appear in a) and b) 
respectively. By a visual inspection of the local maxima position in the spectrogram one might judge that the components do not 

Fig. 5. Illustration of the mode-harmonic collision scenario analysis/synthesis.  

Table 1 
NREL 5 MW wind turbine principal vibration mode characteristics.  

Vibration mode Natural frequency (Hz) Damping (%) 

Fore-aft 1 (1st FA)  0.33  8.1 
Fore-aft 2 (2nd FA)  2.89  1.9  

Table 2 
Synthetic data wind speed – 3P frequency relationship.  

Wind speed (m/s) 3P frequency mean ± standard deviation (Hz) 

8 0.452 ± 0.055 
10 0.534 ± 0.060 
12 0.596 ± 0.019 
20 0.604 ± 0.026  

Table 3 
Input parameter values for the comparative study.  

Wind speed LSF VKF ODD Proposed  

Order Window length (3P cycles) Order Bandwidth (Hz) Interpolation Bandwidth (Hz) Order Window length (1P cycles) 

8 m/s 3 7 2  0.12 linear  0.12 1 2 
10 m/s 3 7 2  0.21 linear  0.21 1 2 
12 m/s 3 5 2  0.26 linear  0.26 2 2 
20 m/s 3 5 2  0.30 linear  0.30 2 2  
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overlap in frequency and that they are fully resolved. This is, however, far from true and to this end, we illustrate the overlap effect on 
two signal segments localized at 36 s and 238 s with respect to the full segment duration. In c) and d) the components are indeed 
resolved in the frequency domain. However, in e) and f) the components strongly overlap, in the way that they merge into a single 
spectrum peak. These examples show that the non-stationarity in amplitude and phase can create very different analysis scenarios 
across the analysis frames, producing the time-varying harmonic bandwidth. 

The effect of harmonic removal on the residue is shown in g) and h). For the sake of clarity, the power spectrum of the residue is 
plotted on top of the original power spectrum. Inlet i) shows the synthesized power spectrum of the residue by means of (21), together 
with the mode power spectrum. Finally, the synthesized residue spectrogram is shown in (j). 

3.2. Performance comparative study on synthetic wind turbine data 

As we are dealing with an application in the context of wind energy, the current study has been carried out using the OpenFAST 
software [56]. This is a free and open software developed by NREL (National Renewable Energy Laboratory) that is certified for the 
design of on-shore and off-shore wind turbines. This software is a standard for the design of components and aerodynamic, aeroelastic, 
structural and control system simulations. It allows highly realistic simulations under different wind turbine operating conditions. It is 
able to determine the position, velocity and acceleration of several points of the machine as well as the structural loads applied to its 
components. 

OpenFAST models a wind turbine with 24 degrees of freedom (DOFs): 6 DOFs for the base/cementation movement, another 4 DOFs 
to describe the tower flexibility (2 lateral and 2 longitudinal), 1 DOF representing the nacelle yaw, 1 DOF for the generator rotation and 
1 more for the drive-train flexibility. In turn, each blade is modeled by means of 3 DOFs, 2 flapwise and 1 edgewise mode. The last 2 
DOFs consider the rotor- and tail-furl motion. The model allows specifying the structural properties (stiffness, damping, inertias) of 
tower, drive-train and blades, as well as the geometrical and aerodynamic properties of tower and blades. In addition, it allows the 
placement of virtual sensors (accelerometers, IMU-s and strain sensors) at arbitrary locations of tower, drive-train and blades. This 
allows obtaining information of these variables in simulation for off-line post-processing. 

The 5 MW on-shore wind turbine simulated in this work consists of a 3-bladed, 126 m diameter wind rotor on a tower 87.6 m high. 

Fig. 6. Comparative study results in terms of relative error.  
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This wind turbine model has also been developed by NREL, and has widely been used in a plethora of research projects. For the most 
salient properties of the turbine, the reader is referred to [57]. 

The characterization of the principal vibration modes (1st FA and 2nd FA) in terms of natural frequency and damping is to be found 
elsewhere in the literature [58,59]. In Bir et al. [58], these values are calculated making an eigenanalysis of the azimuthally-averaged 
linearized system after applying the Multi-Blade Coordinate (MBC) transformation. Due to internal and external anisotropies, the MBC 
transformation does not produce an exact Linear Time-Invariant (LTI) system, and a Floquet analysis is required to capture the in-
fluence of all periodic terms, leading to a more accurate stability analysis [59]. In both cases, the simulations have been performed 
using deterministic winds, while the simulations performed in this paper have been carried out with turbulent winds, so small dif-
ferences in the values of frequencies and modal damping obtained are to be expected. The mode characteristics used for the present 
study are shown in Table 1. 

a) b)

d)c)

Fig. 7. Harmonic removal by the benchmark methods for wind speed of 20 m/s.  

Fig. 8. Estimated harmonic 3P and 15P waveforms by the LSF (blue), VKF (red) and proposed (black) for wind speed of 20 m/s. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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e) f)
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(caption on next page) 
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We have generated a number of synthetic 10-minute acceleration data records in such a way to cover scenarios of both low and 
high-speed wind, which in turn produce a variety of interactions between the vibration modes and harmonics. The relationship wind 
speed – 3P frequency for the data is shown in Table 2. Observe that low wind speed scenarios produce two undesired effects: 1) the 3P 
component is moved closer to the 1st FA, 2) the 3P standard deviation gets larger. As a consequence, the overlap between the 1st FA 
and 3P grows bigger, which seriously hampers harmonic removal. Similar argumentation can be brought out for the 2nd FA and the 
surrounding high-order 3P harmonics. 

In the present study, our aim was to emulate a scenario, which becomes more and more frequent in in OMA-related applications. 
Instead of performing the full structural analysis off-line, the current trends in structural health monitoring point towards in-situ signal 
processing by a stand-alone low-cost sensor. The fact that some calculations are performed on-line allows for a larger time margin for 
maintenance-related mechanisms. The downside to this is that only few, if any, SCADA information channels are available, which often 
means that there is no access to the instantaneous tachometer output. Accordingly, the data input to the benchmark methods is the 
fore-aft acceleration and average rotational speed over 10 min registers. 

In order to establish a fair comparison, we ensured that the input parameters of the methods were adjusted optimally in the context 
of the present application. Regarding input frequency information, the 3P mean was fed to all the methods. As for the additional input 
parameters, we proceeded as follows. In the LSF, the filter order was set to 3 for all the data (as recommended in Abboud et al. [4]), 
whilst the window length was signal customized in order to set the lower cutoff 3P bandwidth at the arithmetic average between the 
1st FA and 3P mean frequency. For the VKF the filter order was equal to two; as for the bandwidth, the same criterion as for the LSF was 
applied. The ODD also used the same bandwidth criterion, whilst the interpolation mode was linear in all the cases. In the proposed 
method, the frame duration was adjusted according to the two-1P-period criterion from Section 2.3. The polynomial order was set to 
quadratic for large wind speeds (12 and 20 m/s) and linear for low wind speeds (8 and 10 m/s). The summary of the input parameter 
values is given in Table 3. 

Recall that the LSF is a comb filter, where all the band-pass replicas have the same frequency response and bandwidth determined 
by the polynomial order and window length. In contrast to the LSF, the VKF, ODD and proposed method allow each harmonic to adjust 
independently the frequency response by means of an additional degree-of-freedom (the harmonic bandwidth parameter for the VKF 
and ODD, and harmonic polynomial order for the proposed). This algorithm feature might be useful in scenarios where a selective 
harmonic removal is required e.g. closely spaced components with different frequency overlap percentage in the analysis bandwidth. 
However, this characteristic has not been considered in the present study. 

For each signal and method the estimated harmonic perturbation is subtracted from the data, the natural frequency and damping 
for the principal vibration modes are estimated by the SSI_COV method [1] assuming a 4th order model and relative estimation error 
with respect to Table 1 is calculated and plotted in Fig. 6. No spectrum stochastic synthesis like (21) or similar has been applied in the 
present study. 

Regarding natural frequency estimation, the LSF, VKF and proposed method exhibit a good performance for both vibration modes. 
Due to the aforementioned mode-harmonic overlap effect, the error is somewhat larger for a low-speed wind, whilst the estimation 
improves, as the wind gets stronger. The situation is quite different when it comes to the damping ratio estimation. While the proposed 
method achieves fairly reasonable estimates for both modes (ranging in 10–30 % for the 1st FA and 10–20 % for the 2nd FA), the 
reference methods turn to be much less accurate. The LSF presents the largest damping ratio deviations (ranging in 30–50 % for the 1st 
FA and 50–65 % for the 2nd FA), whilst the VKF estimates are better (ranging in 20–30 % for the 1st FA and 28–55 % for the 2nd FA). 
When it comes to the ODD only the 1st FA natural frequency estimates come in the neighborhood of the benchmark methods. In turn, it 
exhibits larger estimation errors especially for low wind speeds. The 2nd FA natural frequency estimates range between roughly 1 % 
and 2 %, whilst the damping ratio estimates reveal important errors (ranging in 30–60 % for the 1st FA and 30–110 % for the 2nd FA). 

The effect of harmonic estimation and subtraction on the residual for the methods is illustrated for the frequency and time domain 
in Fig. 7 and Fig. 8 respectively (as the LSF returns the sum of harmonics, we have obtained each particular harmonic waveform by 
means of a set of second order Butterworth filters centered at the harmonic frequencies; in addition, the ODD retrieve no harmonic 
waveforms and is therefore not represented in Fig. 8). Both LSF and VKF act as a genuine filter, removing large portions of the spectral 
content in the harmonic analysis bandwidth. This strongly hampers the basic assumption in OMA, that the observed response is the 
output of a structure to a zero-mean broadband system excitation. In spite of that, the frequency content of the 1st FA is fairly preserved 
in both methods and thus the good mode characterization returned by the SSI_COV. The situation is rather different regarding the 2nd 
FA because an important fraction of the mode is removed by the filtering action, which causes the damping ratios to be under-
estimated. The interpolation in the harmonic bands in the ODD is highly sensitive to the surroundings spectral content. The uncertainty 
in the magnitude of the spectral samples often produces a large variance in the interpolation parameters. Moreover, such a procedure 
yields sharp cut-offs at the band edges, thus rejecting large portions of the power in the neighborhood of the structural modes. 
Regarding the proposed signal modeling method, the harmonic removal better preserves the overall frequency content of the residual. 
This is the consequence of the fact that the assumption of linear amplitude and phase evolution in the analysis frame (19) generate 
modeling inaccuracies in the harmonic bandwidth (the true instantaneous harmonic amplitude and phase might not always have a 
genuine linear dynamic in the analysis frame). This ensures a robust performance in the neighborhood of lightly damped components 
(the 2nd FA, in the present) where, due to a small bandwidth, a loss of information can lead to large inaccuracies in damping ratio 
estimates. 

Fig. 9. Case study 1 - Quasi-uniform high-speed wind with considerable amount of turbulence. The frame length is 9 s and polynomial order equal 
to 2. 

M. Zivanovic et al.                                                                                                                                                                                                     



Mechanical Systems and Signal Processing 189 (2023) 110095

16

a) b)

c) d)

e) f)

g) h)

i) j)

1P

3P

6P

9P

(caption on next page) 

M. Zivanovic et al.                                                                                                                                                                                                     



Mechanical Systems and Signal Processing 189 (2023) 110095

17

4. Results: real-world case studies 

The set of real-world data used to validate the proposed method corresponds to accelerations measured in the nacelle of two 3 MW 
wind turbines. It contains standard 10-minute records, sampled at 10 ms in the x-axis (wind direction). This accelerometer used for 
data acquisition was not originally intended for SHM for the following reasons: 1) it is fixed on the wind turbine nacelle instead at 
appropriate tower heights, 2) only the wind direction accelerations are provided. In spite of these inconveniences, we show next that 
the proposed method is capable of properly removing the harmonic disturbances from single-channel raw acceleration data. The 
SCADA (Supervisory Control and Data Acquisition) system also provides the rotating speed of the high-speed shaft, as well as the wind 
speed measured at the nacelle. 

Among a number of data registers processed by the proposed method, we herein present three illustrative cases, which represent 
different wind speed trends in 10-minute acquisitions from two turbines:  

• Case study 1 (CS1): quasi-uniform high-speed wind with considerable amount of turbulence.  
• Case study 2 (CS2): raising low speed wind with approximately constant positive slope.  
• Case study 3 (CS3): drooping low-speed wind with approximately constant negative slope. 

CS1 and CS2 belong to a same turbine (WT1) whereas CS3 describes another turbine (WT2). The only information about the 
turbines we knew a priori was the approximate values for the principal vibration mode natural frequencies (for 1st FA in range 
0.34–0.37 Hz and 2nd FA in range 1.57–1.8 Hz) and that one of the towers exhibited a structural problem. Together with the fact that 
the data was single-dimension collected from the nacelle, it was quite a challenge to obtain meaningful results. 

Each case study is characterized by a figure: CS1- Fig. 9, CS2 – Fig. 10 and CS3 – Fig. 11. The figures have the same internal inlet 
structure, as explained next.  

a) Wind speed (m/s) – acquired by a digital cup anemometer at 20 Hz, located at the nacelle, downstream of the rotor, and 3P rotating 
frequency (Hz) – measured by a rotary coder at 10 Hz.  

b) Input acceleration signal (cm/s2) – acquired by a sensor device at 100 Hz.  
c) Power spectrum of the input acceleration signal shown in the range [0–3] Hz – it contains the principal vibration modes (1st FA and 

2nd FA) and rotational harmonics (1P, 3P, 6P, 9P). The vertical lines are located at the values of the vibration modes frequencies, 
estimated from the stabilization diagram in inlet-f, and average values of the rotational harmonics.  

d) Estimated individual harmonic waveforms – these are the individual components in (12) corresponding to 1P, 3P, 6P and 9P. The 
analysis frame duration used was 10 s (CS1), 11 s (CS2) and 14 s (CS3) according to the criterion from Section 2.3. As for the 
harmonic frequency, the full-record 3P averaged was used in CS1, whilst for the rest of the cases the measured instantaneous 
frequency is averaged over the analysis frames. 

e) Input signal stabilization diagram – it is calculated from the input acceleration signal by the OoMA Toolbox [60] using the sto-
chastic subspace identification algorithm SSI-COV [1] with the following criteria: 1 % error in frequency, 5 % error in damping, and 
98 % confidence in mode shape vectors. The identification algorithm outputs information about stable poles (‘×’) and unstable 
poles (‘•’) up to a maximum specified model order (equal to 12 in the present study). Vertical alignments of stable poles – stability 
lines – indicate the presence of vibration modes within the frequency range of analysis.  

f) Output signal stabilization diagram – it is calculated from the residual acceleration signal (14) using the same procedure and 
settings as in inlet-e. 

g)–h) 1st FA natural frequency and damping ratio estimates vs model order before (Original) and after (Residue) harmonic removal. 
i)–j) 2nd FA natural frequency and damping ratio estimates vs model order before (Original) and after (Residue) harmonic removal. 
The stabilization diagrams is a standard tool in OMA for identifying and removing spurious (a.k.a. mathematical) modes from the 

physical modes of the system under test. If the information about the mode shapes is not available (as it is the case of single-channel 
data records), the stabilization criteria deal with the natural frequency and damping ratio. It compares the mode characteristics for a 
given model order to those obtained from a one-order lower model. If a mode appears in most of the models with consistent natural 
frequency and damping ratio, it is marked as stable, meaning that it is most probably a true physical mode; otherwise, it is labeled as 
unstable and treated as a spurious mode. 

4.1. Case study 1 (CS1) 

Our first case study deals with a wind turbine working in the pitch control operation mode (Fig. 9). The wind speed is sustained at 
about 18 m/s with occasional peaks due to sporadic wind gusts. Accordingly, the measured 3P rotational frequency is very stable at 
about 0.67 Hz. The power spectrum shows that the harmonics 3P and 9P fall in the neighborhood of the principal vibration modes (1st 
FA and 2nd FA, respectively). This fact may not be critical for the mode identification as long as the harmonics are (quasi) stationary 
and thus hardly interfere with the vibration modes. Unfortunately, this is not the case as we observe in inlet-c that the spectral peaks 

Fig. 10. Case study 2 - Raising low speed wind with approximately constant positive slope. The frame length is 11 s and polynomial order equal 
to 2. 
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exhibit a substantial spread around its average frequencies because of the underlying non-stationarity. At this point, we ignore the 
exact nature and dynamics of those non-stationarities; however, knowing that the 3P frequency is roughly time-invariant, we expect 
the harmonic bandwidth (21) to be mostly determined from the instantaneous amplitude. Accordingly, we may expect a considerable 
amount of interference between the neighboring signal components. 

Inlet-d displays the waveforms of the individual estimated harmonics 1P, 3P, 6P and 9P in (12). This inlet is of key importance as it 
1) confirms the hypothesis on non-stationary harmonics; 2) shows the dynamics in the instantaneous harmonic amplitude; 3) provides 
a deeper insight into the contribution of the individual harmonics to the input signal. Accordingly, we observe that 3P and 9P com-
ponents contribute most to the harmonic perturbation, whilst the impact from 1P and 6P is negligible. What is more, a visual inspection 
of the waveforms reveals strong and rapid instantaneous amplitude fluctuations, which do not seem to exhibit any particular corre-
lation among them, neither with the wind speed. 

The third row in Fig. 9 shows the stabilization diagrams for the input acceleration signal (inlet-e) and residual acceleration signal 
(inlet-f), the latter obtained by removing the estimated harmonic perturbation from the data (14). In the diagrams appear stable 
(‘×’)/unstable (‘•’) poles, as well as the smoothed power spectrum of the corresponding signal. Regarding the input acceleration 
signal, only two incomplete stability lines associated to 3P (0.67 Hz) and 2nd FA (1.85 Hz) components appear in the corresponding 
diagram, whereas 1st FA (0.39 Hz) accounts mostly for unstable poles. It might seem rather curious that, 

in spite of a positive visual discrimination 1st FA – 3P from the power spectrum, the SSI-COV algorithm fails to identify the principal 
vibration mode. On the other hand, this does not really come as a surprise as we know that OMA struggles in analysis scenarios 
characterized by strong non-stationarities and component interference (collision). As a result, two stability lines clearly stand out at 
0.39 Hz (1st FA) and 1.85 Hz (2nd FA) which allows for an accurate identification of the principal natural frequencies, as well as the 
associated damping factors. 

The natural frequency and damping ratio estimates as a function of model order are shown in the bottom rows of Fig. 9. We observe 
that after removing the harmonics from the original data, the estimates become much more concentrated in both parameters. We 
cannot discuss the damping ratio estimates, due to the lack of a priori information; nevertheless, the values seem plausible because 
they are situated roughly around the average of the large-deviation estimates from the original input data. 

4.2. Case study 2 (CS2) 

This case (Fig. 10) describes the operation of the same wind turbine as in CS1 in the torque-control operation mode (between cut-in 
and rated wind speed). The blade pitch is constant whereas the generator torque is varying, so that both the blade tip speed and rotor 
speed increase proportionally to the wind speed [61]. The wind speed is slowly increasing, which might not be immediately evident 
because of the inlet-a y-axis scaling. Nevertheless, the 3P frequency is clearly increasing as well. Similar to CS1, the power spectrum 
shows frequency locations of the principal vibration modes and harmonic components. Again, a substantial energy dispersion around 
average harmonic frequencies, due to the presence of non-stationarities, is clearly visible; moreover, observe in inlet-e that visual 
identification of 1st FA is hampered by the fact that 3P harmonic dominates low-frequency spectrum. As the 3P frequency is gradually 
changing, it is clear that the harmonic bandwidth (21) will be determined by the combined dynamics of both the instantaneous 
amplitude and phase. 

The estimated individual harmonics are shown in inlet-d. 3P harmonic is evidently the most prominent, followed by 9P harmonic. 
Like in CS1, we cannot discuss the morphology of the individual harmonic waveforms, as we are not acquainted with the mechanical 
actions that yield such an outcome. Nevertheless, we can verify that these waveforms do not resemble those generated by a sustained 
wind forcing (CS1). 

The stabilization diagram of the data completely fails in identifying stable vibration modes. Once more, this case study illustrates 
the fact that the SSI-COV is seriously jeopardized by the presence of non-stationarities in data, as well as colliding components. The 
suppression of the estimated harmonics from the data delivers the residue, whose stabilization diagram shows two stability lines 
located at the frequencies of the principal vibration modes: 0.39 Hz (1st FA) and 1.85 Hz (2nd FA). Furthermore, inlets-g to –j show a 
consistency in the principal mode parameter estimates with CS1. 

4.3. Case study 3 (CS3) 

Fig. 11 characterizes the third case study, which describes a different wind turbine (WT2) operating in the below-rated region. 
Unlike CS2, here the turbine progressively reduces the rotation speed as the wind speed drops with almost constant rate of about 
− 0.57 m/s per minute. The 3P is decreasing accordingly around the cut-in limit after 5.5 min approximately, when the wind speed falls 
below 5 m/s. At this point, the control system keeps the rotor speed nearly constant. 

Compared to the previous case studies, the input data exhibits smaller acceleration values; in a like manner, the power spectrum 
magnitude drops accordingly. Observe that, in the present case study, the position of the principal vibration modes is 0.33 Hz (1st FA) 
and 1.51 Hz (2nd FA). As the rotation speed is decreasing, it is to expect that both instantaneous amplitude and phase will contribute to 
the harmonic bandwidth (21). In the corresponding spectrogram, we observe that the 3P harmonic’s energy level is especially sig-
nificant around the beginning and end of the data recording. On the contrary, the 1st FA exhibits an important energy spread for the 

Fig. 11. Case study 3 - Drooping low-speed wind with approximately constant negative slope. The frame length is 13 s and polynomial order equal 
to 2. 
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Fig. 12. Case study 1 – Results for the LSF, VKF and ODD methods. LSF: window length equal to 7 and order equal to 3. VKF: bandwidth equal to 
0.18 Hz and order equal to 2. ODD: bandwidth 0.18 Hz – linear interpolation. 
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whole duration of the data, as a consequence of the interaction with the 3P harmonic. 
This is supported by the estimated individual harmonic waveforms where we observe a drop in 3P instantaneous amplitude around 

the middle of the data recording. 3P and 9P harmonic waveforms reveal quite different energy time distribution, although their overall 
energy is similar. Analogous to the previous case studies, the contribution from 1P and 6P is negligible. 

In the stabilization diagram of the input data, two stability lines are found at 0.47 Hz (3P) and 1.51 Hz (2nd FA). Thus, OMA 
successfully detects the second vibration mode but fails to capture 1st FA. On the contrary, the smoothed power spectrum of the residue 
shows that the harmonic removal resolves the spectral clusters around the 1st FA, which in turn yields two stability lines at 0.33 Hz (1st 
FA) and 1.51 Hz (2nd FA). Similar to the previous case studies, the algorithm delivers very stable estimates vs model order. Note, 
however, that there is a certain mismatch between the initial guess about the 2nd FA natural frequency and its estimate, which we 
believe stem from the known tower structural problem. 

4.4. LSF, VKF and ODD in the context of real signals 

In order to check the performance of the LSF, VKF and ODD in the real wind turbine signals, we have incorporated the information 
about instantaneous 3P frequency measurement in all the algorithms: in the LSF and ODD by resampling the data in the angular 
domain and in the VKF by calculating the instantaneous phase for the filter structure equation. The input parameters for all the al-
gorithms have been adjusted following the same criteria as in Section 3.2. In particular, for the LSF the order was set to 3 and window 
length to 7 cycles. For the VKF the order was set to 2 and bandwidth to 0.17 Hz; the same bandwidth was used for the ODD whilst the 
interpolation mode was set to linear. 

Finally, for the proposed method the order was set to 2 and the frame length to 2 1P cycles. Moreover, the stochastic spectrum 
synthesis (21) has been applied to both methods. 

We have analyzed the three case study data and we show in Figs. 12 – 14 respectively the results when applied to the LSF, VKF and 
ODD. For all the cases the stabilization diagrams show that for LSF and VKF methods the principal vibration modes are detected. 
However, in some cases the stabilization diagram also exhibits a closely-spaced double column of stable poles, which appears around 
the vibration modes (for example, Fig. 12 inlet-a). This effect is a consequence of a partially resolved mode-harmonic collision 
problem, which means that a fraction of the harmonic energy is still present in the analysis bandwidth. Similar conclusions can be 
drawn for the ODD results e.g. a closely-spaced double column of stable poles for the 2nd FA in Figs. 12, 13 and14 inlet-c. In addition, 
in CS1 and CS2 the 1st FA is hardly detected (Fig. 12 and Fig. 13 inlet-c), because the method is seriously degraded when dealing with 
strongly overlapped components. 

The estimated harmonic waveforms roughly resemble those obtained by the proposed method, although eye-catching differences 
appear in 1P and 9P waveforms (we recall that the ODD cannot extract the harmonic waveforms). The large variance in the 1P 
waveform estimated by the LSF (for example Fig. 13 inlet-d) comes from the low-pass comb filter effect (the method does not filter 
around the 1P frequency; it removes the spectral content below the 1st FA). The low-variance 9P waveform estimated the VKF (for 
example Fig. 13 inlet-e) corroborates the aforementioned argumentation on the unresolved closely-spaced components. Similar ex-
amples could be found elsewhere in Figs. 12 – 14 by a visual inspection. 

Furthermore, we show on inlet-f through –i, the principal vibration mode parameter estimation for the benchmark methods. We see 
that the estimates for all the methods fall roughly in the same range as for the proposed method. However, unlike the proposed method, 
which yields a consistent parameter estimates over the increasing model order, the LSF, VKF and ODD estimates manifest an erratic/ 
fluctuating behavior. Moreover, the mean of the estimates partially matches only for the damping ratios, whilst there is a mismatch for 
the natural frequencies. Such estimates might seriously hamper the SHM, where consistent vibration mode parameter estimates across 
10-min data registers are needed to ensure a proper wind turbine mechanical structure supervision. 

5. Conclusions 

As the main conclusion of our work, we can say that the method proposed in this paper is highly effective in removing the influence 
of the harmonics in acceleration data acquired from the tower of a wind turbine, while keeping intact the information required to 
properly calculate the structural vibration modes. This affirmation is validated by a parameter sensitivity analysis, a comparative study 
involving three state-of-the-art methods on synthetic data and a number of real-world experimental tests, from which we have selected 
the three illustrative cases, corresponding to different operation regimes. It is important to stress that the signals taken from sensors at 
the nacelle were not intended to perform structural health monitoring (SHM); therefore, the presence of the harmonics in the data has 
rendered the analysis scenario far more complex. 

The chief benefit of our approach is that it deals with non-stationarities in the harmonics in both amplitude and phase, delivering 
quality principal vibration mode parameter estimates even in presence of strong component interference. In real data, we have used 
the information of the rotation speed provided by the SCADA, sampled at 100 ms, but we have also estimated instantaneous frequency/ 
phase variations. This means that the algorithm could also work with an initial guess of the rotations speed, and then update its value 
from the estimated phase. In addition, the algorithm has also obtained an estimate of the harmonic instantaneous amplitude. 

We have shown through a benchmark study that when only the average rotational speed is known, the proposed method 

Fig. 13. Case study 2 – Results for the LSF, VKF and ODD methods. LSF: window length equal to 5 and order equal to 3. VKF: bandwidth equal to 
0.16 Hz and order equal to 2. ODD: bandwidth 0.16 Hz – linear interpolation. 
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Fig. 14. Case study 3 – Results for the LSF, VKF and ODD methods. LSF: window length equal to 5 and order equal to 3. VKF: bandwidth equal to 
0.16 Hz and order equal to 2. ODD: bandwidth 0.16 Hz – linear interpolation. 
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outperforms the reference state-of-the art methods, in terms of structural mode parameter estimation relative error. In real wind 
turbine data analysis scenarios where instantaneous rotational speed can be delivered by a measurement device, the proposed method 
yields consistent parameter estimates, which can readily be used for SHM. The LSF, VKF and ODD yielded inconsistent estimates which 
also incorporated certain fluctuation dynamics. 

The fact that we have introduced a precise non-stationary model for all relevant harmonics allows not only removing them from the 
original signal, but also obtain information about the harmonics themselves, and eventually, we believe, information of the system. For 
instance, it seems noteworthy to us that there seems not to exist any correlation between wind speed and the 3P harmonic. Much in the 
same way, the harmonic envelopes, and therefore the instantaneous power of the different harmonics exhibit seemingly unrelated time 
patterns. These observations suggest a deeper analysis to find out what kind of factors, external or internal, influence the charac-
teristics of the harmonics, and if they contain information on the structure (or, perhaps, the wind) which may be useful to determine 
possible failures in the turbine mechanical structure. This is an open area for future research. 
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