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A B S T R A C T

Wheat grain quality characteristics have experienced increasing attention as a central fac-

tor affecting wheat end-use products quality and human health. Nonetheless, in the last

decades a reduction in grain quality has been observed. Therefore, it is central to develop

efficient quality-related phenotyping tools. In this sense, one of the most relevant wheat

features related to grain quality traits is grain nitrogen content, which is directly linked

to grain protein content and monitorable with remote sensing approaches. Moreover, the

relation between nitrogen fertilization and grain nitrogen content (protein) plays a central

role in the sustainability of agriculture. Both aiming to develop efficient phenotyping tools

using remote sensing instruments and to advance towards a field-level efficient and sus-

tainable monitoring of grain nitrogen status, this paper studies the efficacy of various sen-

sors, multispectral and visible red–greenblue (RGB), at different scales, ground and

unmanned aerial vehicle (UAV), and phenological stages (anthesis and grain filling) to esti-

mate grain nitrogen content. Linear models were calculated using vegetation indices at

each sensing level, sensor type and phenological stage. Furthermore, this study explores

the up-scalability of the best performing model to satellite level Sentinel-2 equivalent data.

We found that models built at the phenological stage of anthesis with UAV-level multispec-

tral cameras using red-edge bands outperformed grain nitrogen content estimation

(R2 = 0.42, RMSE = 0.18%) in comparison with those models built with RGB imagery at

ground and aerial level, as well as with those built with widely used ground-level multi-

spectral sensors. We also demonstrated the possibility to use UAV-built multispectral linear

models at the satellite scale to determine grain nitrogen content effectively (R2 = 0.40,

RMSE = 0.29%) at actual wheat fields.
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1. Introduction

One of United Nations’ Sustainable Development Goals is

achieving improved nutrition while promoting sustainable

agriculture [1]. Wheat (Triticum) together with maize (Zea

mays) and rice (Oryza sativa) is one of the three most-

cultivated cereals globally [2]. Moreover, wheat in the form

of bread, as reported by Peña [3], has historically provided

more nutrients to the world population than any other single

food source. Nonetheless, in the last decades cereal breeder

focus on improving grain yield has resulted in a genetic ero-

sion of quality traits [4]. Meanwhile, products made with

low-quality grains have been associated with nutritious and

health issues for consumers [5–7]. Protein content, together

with grain hardness or starch properties, among other fac-

tors, are grain characteristics that affect the end-use quality

of wheat-based products [8]. Furthermore, reductions in grain

protein content (GPC) have been closely linked to reductions

in grain nitrogen content (GNC) after breeding programs

focused on high-yielding ideotypes [9–11]. Vogel et al. [12],

after analysing 12 600 genotypes at the USDA World Wheat

Collection, reported a range of GPC between 7 and 22%, corre-

sponding to 1.2–3.7% of nitrogen in grains, which accounts for

an average value of around 16% of grain protein composition

[14]. Specifically in Spain, where this study takes place,

Sánchez-Garcia et al. [11] observed a decrease of 0.21% per

year in GPC during the XX century and Acreche and Slafer

[13] observed that GNC was reduced in modern varieties after

breeding for increased grain yields.

GPC is determined by genetic and environmental factors

(notably the availability of nitrogen fertilization and water

[14–16]) and is directly linked to GNC, which can be monitored

with non-destructive remote sensing approaches at ground,

unmanned aerial vehicle (UAV) and satellite levels. GNC can-

not be directly observed as there are resolution (grain size)

and spectral sensing limitations (nitrogen content in plants

is not discernible because nitrogen absorption features are

obscured by liquid water in the crop canopy [17–19]). However,

chlorophyll spectral features can be sensed within the visible

and red-edge parts of the spectrum and chlorophyll-related

vegetation indices can be used as proxies of crop nitrogen

concentration [20], which in turn may be related to GNC. In

this sense, a precise assessment of the spectral features could

likely allow differentiating nitrogen-based proteins from

other constituents at canopy level [21].

Accessible and effective ways to estimate GNC can provide

optimized strategies for both phenotyping high-quality lines

at experimental fields and to assist farmers with crops man-

agement at field level. High-quality bread wheat lines will

experience an increasing demand due to current nutritious

and health challenges [22,23]. Therefore, low-cost and acces-

sible quality-oriented phenotyping is pivotal. Furthermore,

developing an improved monitoring of nitrogen accumulation
uk, N. Aparicio et al., Mul
ion Processing in Agricultu
in wheat grains at field-level is central for crops management.

It is a key aspect regarding both the importance of environ-

mental factors on GNC and the aim to advance towards

high-quality grains within a sustainable agriculture [24].

Various studies related with GNC monitoring and remote

sensing have been published in recent years. At the ground

level, different authors [25–28] showed significant positive cor-

relations between canopy spectral indices and nitrogen accu-

mulation in wheat grains. At the UAV level, several studies

have successfully correlated vegetation indices, calculated

with multispectral instruments, with nitrogen accumulated

in wheat grains [29–31]. At the satellite level, until recently

GPC or GNCmonitoringwas limited due to the spatial, spectral

and temporal resolutions of the orbiting satellites [32]. Several

GNC related studies, showed potentialities regarding regional/

field-levelGNCmonitoring, for instancewith theLandsat satel-

lite [33–35] or its combination with MODIS satellite [36].

Notwithstanding, Sentinel-20s recent fully operational and

improved spectral, spatial and temporal resolutions have

opened up opportunities [37], such as for the case of GNCmon-

itoring [38].

Besides focusing on single sensing levels, few studies have

dealt with various platforms such as satellite/ground [39] or

UAV/satellite [40] spectral data tomonitor GNC. The study here

presented goes a step forward and works across phenotypes

with remotely sensed data on three sensing scales (ground,

UAV and satellite). Moreover, it discusses the most efficient

sensors, either visible red–green–blue (RGB) or multispectral,

and phenological stages for GNC monitoring. Vegetation

indices sensitive to chlorophyll content, greenness and bio-

mass were calculated at each level, and linear models were

developed to find the most optimal GNC estimators. This

research paper aims to develop accessible and reliable GNC

empirical models with remote sensing data that can support

cereal phenotyping and cropmanagement. In order to achieve

this, in experimental plots growing various wheat lines, RGB

and multispectral sensors were deployed at both ground and

UAV levels. Vegetation indices calculated from the sensed

spectral reflectancedatawere correlatedwithGNCusing linear

models. Regarding the satellite level, the most suitable GNC

estimation model was applied to actual farmer fields with

equivalent Sentinel-2 data over two years. For each farmer’s

field, carbon isotopic composition (d13C) was obtained as an

indicator for photosynthetic performance, in this study we

aim to use this indicator as a proxy to characterize water con-

ditions across agroclimates which may eventually affect GNC.

Thus, water stress causes a decrease in stomatal conductance

which subsequently will increase the d13C of photoassimilates

and then of grains. Nonetheless, carbon isotopic composition

wasnotused in themodels aswe focuson spectral information

in modelling. The research was structured around 4 questions

to investigate which sensors, sensing levels and phenological

stages were the most efficient for GNC monitoring in wheat:
tiscale assessment of ground, aerial and satellite spectral data for mon-
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(i) Which imagery, RGB vs Multispectral, can contribute

the most to estimate wheat GNC?

(ii) Which sensing level, UAV vs ground images, is more

effective to generate models for GNC monitoring?

(iii) How relevant is phenology for GNC estimation?

(iv) Are models built with ground or UAV images up-

scalable to equivalent Sentinel-2 images?

This study concludes by testing the most optimal GNC

model to estimate field-level GNC on an agro-ecosystem

scale.
2. Materials and methods

2.1. Study site and field data

The study area was located at two sites. The experimental

plots were located at the research station of Zamadueñas in

Valladolid (Spain) and farmer field trials were located in three

climatic regions within the community of Navarre in North-

ern Spain (Fig. 1). Valladolid has annual rainfalls ranging from

400 to 500 mm. Regarding Navarre, it incorporates several

agroclimates, with rainfall averaging from 800 to 1 000 mm

in the northern areas, 300 to 800 mm in the middle and

around 300 mm in the southern areas.

At the Zamadueñas research station a set of 38 post green

revolution and advanced wheat lines were grown in experi-

mental plots. The design consisted of three randomized

blocks with one replicate per genotype in each block, two

plots (one in each corner) were sown to avoid edge effects.

The cultivars had support irrigation due to 2016–2017 severe

droughts in the region (a total of 129 mm of rainfall plus

60 mm of support irrigation). At the panel, 31 bread wheat
Fig. 1 – Maps of the study sites, Zamadueñas research station in

30N, ETRS89) are indicatedwith a yellow dot. Themap of whole S

OpenStreetMap data.
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(Triticum aestivum L.) lines and two durum wheat (Triticum tur-

gidum L. subsp. durum (Desf) Husn.) cultivars were utilized

(Table 1). Five genotypes were no further utilized for GNC esti-

mation in this study due to their unevenness and unsuitabil-

ity for modelling. The 33 genotypes utilized are described in

Table 1. The basal fertilization in the plots consisted in

300 kg/ha of 8–15–15 (NPK) in addition to top-dressing re-

fertilization of 300 kg/ha of Nitrosylsulphuric acid 27% at

the phenological stage of stem elongation. Plots were 6 m

long and 1.5 m wide and were sown on December 2nd,

2016. At maturity, grains were sampled for further analysis.

On July 20th, 2017, the plots were harvested. The experimen-

tal plots were visited at two phenological stages, in middle-

May 2017, at anthesis, and in the second week of June 2017

at grain filling.

In Navarre, during 2017–2018 and 2018–2019 growing sea-

sons 19 rain-fed famers’ fields were monitored. The agricul-

tural fields were growing either Marcopolo (RAGT) or

Camargo (Disasem) commercial lines of bread wheat. As

reportedby the farmers, theanalysedfields receivedabasal fer-

tilization with either superphosphate 45% or pig slurry, top-

dressing fertilization was also applied with granulated urea at

most fields. In the northern region wheat was sown around

the 20th of October, in the middle region around the 28th of

October, and in the southern around the 30th of October. The

harvest was collected around the middle of July in the North

and during the first week of July in the Middle and South.

2.2. Nitrogen content and carbon isotope composition in
grains

Three half-square-meter representative areas were manually

harvested at each farmers’ field in Navarre (Spain), the grains
Valladolid, and farmers’ fields in Navarre (EPSG: 25,830 (UTM

pain is also shown. The background terrainmap is based on

tiscale assessment of ground, aerial and satellite spectral data for mon-
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Table 1 – The utilized genotypes to develop the grain nitrogen content estimation models, the breeders of the lines are
referenced.

Name Breeder Species

Atomo LG Seeds Triticum aestivum
Bisanzio MAS Seeds
Galera LG Seeds
Togano SARL Raoul Rolly
Eneas Dafisa
08THES1262 Batlle
Albertus Saatzucht Donau
Algoritmo RAGT
Bologna Batlle
Dolly SARL Raoul Rolly
Forcalli KWS
Ingenio CC Benoist
Mecano Secobra
Rebelde Agri-Obtentions
Rimbaud Secobra
Tribat Batlle
Chambo LG Seeds
Complice Florimond Desprez
Cosmic Lemaire Deffontaines
Ippon Florimond Desprez
Nemo Secobra
Oregrain Florimond Desprez
PR22R58 Pioneer Hi-Bred
Soberbio Caussade
Soisson Florimond Desprez
MH1307 KWS
MH1341 KWS
MH1444 KWS
MH1411 KWS
Craklin LG Seeds
Marcopolo RAGT
Mimmo PRO.SE.ME Triticum durum
Credit PRO.SE.ME
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were subsequently mixed. The 19 rain-fed famers’ fields used

in this study ranged from 3.14 to 11.19 ha. At Zamadueñas

research station in Valladolid (Spain), one sample was taken

for each harvest of the experimental plots. The harvested

mature grains were dried at 60 �C for 48 h and grinded (Mixer

Mill MM 400; Retsch GmbH, Haan; Germany). After this, 1 mg

of each sample was weighed in tin capsules to analyse carbon

and nitrogen stable isotope signatures. Total nitrogen content

was expressed as the percentage (%) of total nitrogen on dry

matter basis. The carbon isotopic composition (d13C) was

expressed following the Eq. (1):

d13C (‰) = [(Rsample/Rstandard) � 1] � 1000 ð1Þ

where Rsample is the 13C/12C ratio of the sample, while Rstandard

is the molar abundance ratio of the secondary standard cali-

brated against the primary standard Pee Dee Belemnite

(d13C) [41]. Different secondary standards were used for car-

bon (IAEA–CH7, IAEA–CH6 and IAEA-600, and USGS 40) iso-

tope analyses. For further information see Rezzouk et al.

[42]. Isotopes and elemental analyses were performed

employing an elemental analyser operating in a continuous

flow mode with a mass spectrometer (Delta C IRMS;

ThermoFinnigan, Bremen; Germany), at the Scientific and

Technical facilities of the University of Barcelona (Centres
Please cite this article as: J. Segarra, F. Z. Rezzouk, N. Aparicio et al., Mul
itoring wheat grain nitrogen content, Information Processing in Agricultu
Cientı́fics i Tecnològics de la Universitat de Barcelona

(CCiTUB)).

2.3. Instruments and indices

At the ground level, RGB images were taken zenithally at

80 cm above the canopy with a Sony ILCE-QX1 (Sony Europe

Limited, Brookland, United Kingdom), which has a resolution

of 20.1 megapixels, is equipped with a 23.2 mm � 15.4 mm

sensor (type CMOS Exmor HD), and uses a 16 mm focal lens

with an exposure time of 1/60 s. Also at ground level, the nor-

malized difference vegetation index (NDVI) was measured at

each plot using a GreenSeeker (Trimble, Sunnyvale, CA,

USA), which is a hand held spectroradiometer with an active

self-illuminated sensor in red (660 ± 10 nm) and near infrared

(780 ± 15 nm) [43]. As described by Barmeier and Schmidhalter

[44], the measurements were taken at a constant height of

60 cm from above the soil with a perpendicular position to

the canopy.

At aerial level, RGB images were taken with a Lumix GX7

(Panasonic, Osaka, Japan) at 50 m, which has a resolution of

16 megapixels with an image sensor size of 17.3 � 13.0 mm

(type Live MOS) and uses a 20 mm focal lens with an exposure

time of 1/8000 s. The camera was mounted on a manually
tiscale assessment of ground, aerial and satellite spectral data for mon-
re, https://doi.org/10.1016/j.inpa.2022.05.004
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controlled UAV (Drone Mikrokopter OktoXL 6S12, Moormer-

land, Germany). Aerial multispectral images were taken with

a Tetracam micro-MCA at 50 m a.g.l. with the same UAV used

with the RGB camera. The multispectral sensors of the Tetra-

cam micro-MCA consists of 11 bands with 450 ± 40 nm,

550 ± 10 nm, 570 ± 10 nm, 670 ± 10 nm, 700 ± 10 nm,

720 ± 10 nm, 780 ± 10 nm, 840 ± 10 nm, 860 ± 10 nm,

900 ± 20 nm and 950 ± 40 nm of spectral resolution (band cen-

tre and FWHM of the filter spectral response curve). Moreover,

the camera possesses one sensor dedicated to calibration

(Incident Light Sensor, ILS), which provides band-by-band

reflectance calibration in real-time, correcting the 11 bands

to reduce atmospheric and sun angle effects and provide

image by image correction to at-sensor reflectance.

Aerial multispectral images were spatially aligned and

radiometrically calibrated using PixelWrench 0.2 version

1.2.2.2 (Tetracam, Chatsworth, CA, USA). Aerial RGB and mul-

tispectral image mosaics were reconstructed using Agisoft

Photoscan Pro (Agisoft LLC, St. Petersburg, Russia, https://

www.agisoft.com) [45]. This software overlaps images

(a minimum of 30 images with at least 80% overlapping is

required) and removes UAV flight effects to produce accurate

orthomosaics. Once the whole experimental field image was

resampled, the plots were cropped and processed using the

MosaicTool software (developed by S. C. Kefauver and others,

for details, https://integrativecropecophysiology.com/soft-

ware-development/mosaictool/, freely available at https://git-

lab.com/sckefauver/MosaicTool/, University of Barcelona,

Barcelona, Spain) integrated as a plugin for the open source

image analysis platform FIJI (Fiji is Just ImageJ; https://fiji.sc/

Fiji) [46].

RGB vegetation indices collected from both ground and

aerial platforms were obtained using an updated version of

the original Breedpix 2.0 software [47]. From the CIE (Commis-

sion Internationale de l’Eclairage; the International Commis-

sion on Illumination), CIELab colour space was used to

calculate lightness component, a* and b* dimensions; and

CIELuv colour space was used to calculate u* and v* coordi-

nates. The b* and v* express the blue to yellow spectrum,

while a* and u* represent the green to red spectrum. HIS col-

our space, referring to the components Hue, Saturation, and

Intensity, was also used. Hue is described as the chroma

traversing the visible spectrum in the form of an angle

between 0� and 360�, where 0� and 360� are decrypted into

red, 60� into yellow, 120� into green and 180� into cyan.

Derived from the Hue, the indices Green Area (GA) and

Greener Area (GGA) were described as the fraction area pre-

sented by green pixels in the image, and which Hue ranges

from 60� to 180� (GA) and from 80� to 180� (GGA). While GA

gives a broader perception to canopy greenness, GGA

excludes yellowish green pixels [47,48]. The following RGB

indices were also calculated: the triangular green index

(TGI) [49], which estimates chlorophyll concentration in cano-

pies; the normalized green–red difference index (NGRDI) [50],

which compares the differences between the green and red

bands in a calculation similar to NDVI but with less marked

differences and less signal saturation; and the crop senes-

cence index (CSI) [51,52], which combines GA and GGA to pro-

vide an index of canopies greenness. The instruments and

indices calculated are summarized in Table 2.
Please cite this article as: J. Segarra, F. Z. Rezzouk, N. Aparicio et al., Mul
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Regarding multispectral indices, 14 vegetation indices

(VIs) were calculated (summarized in Table 2): CCCI (Canopy

Chlorophyll Content Index) [53], CCI (Chlorophyll/Carotenoid

Index) [54], Cl Green (Chlorophyll Index Green) [55], Cl Red

Edge (Chlorophyll Index Red Edge) [55], CVI (Chlorophyll

Vegetation Index) [56], EVI (Enhanced Vegetation Index)

[57], MCARI (Modified Chlorophyll Absorption Ratio Index)

[90], NDVI (Normalized Difference Vegetation Index) [59],

OSAVI (Optimized Soil Adjusted Vegetation Index) [60], RDVI

(Renormalized Difference Vegetation Index) [61], SAVI (Soil

Adjusted Vegetation Index) [62], TCARI (Transformed Chloro-

phyll Absorption Index) [58], TCARI/OSAVI [58] and TCI (Tri-

angular Chlorophyll Index) [63]. Theses indices were

chosen due to its sensitiveness to chlorophyll content and

capacities to monitor plants’ nitrogen related features. At

aerial level, VIs were calculated on Microsoft Excel (2010)

with the obtained reflectance from the Tetracam micro-

MCA mounted on a UAV.

2.4. Grain nitrogen content estimation

In order to see the GNC gradient in the genotypes grown at

the experimental site, a post hoc analyses was calculated on

R studio [64] (‘‘agricolae”). After, stepwise multilinear regres-

sions and simple regressions between GNC and VIs were cal-

culated in order to obtain empirical models for GNC

estimation. The VIs means were extracted for each field. Pre-

liminary, simple R-Pearson regressions of all the VIs against

GNC were calculated with the function ‘‘cor.test” on R studio

[64] for each phenological stage (anthesis and grain filling),

sensing level (ground and aerial) and sensor type (RGB and

multispectral). In order to represent these results understand-

ably, they were plotted in a heatmap, the obtained R-Pearson

values were added in a matrix and plotted on R studio [64]

(‘‘ggplot2”).

At aerial and ground level, stepwise multilinear models

were calculated with RGB and multispectral indices against

GNC with the exception of ground multispectral data, which

only had one parameter (NDVI) and thus a simple regression

was calculated. In all cases a 70% of each dataset (RGB

ground, RGB aerial, multispectral ground and multispectral

aerial) was used for training the model while 30% was used

for validation. In order to find the most suitable combination

of parameters (indices) for the stepwise multilinear regres-

sion the library ‘‘caret” was used on Rstudio. With the func-

tions ‘‘trainControl” and ‘‘train” a 10-fold cross validation

was used to estimate the average predicting error, root mean

square (RMSE), and select the most optimal model. With the

best models, the variance inflator factor (VIF) was measured

as it is an efficient method to asses collinearity [65–67], which

strongly limits stepwise selection method. With the 30% of

the dataset that was not used for the training the models

were tested.

In order to ease the reading of the models’ validation

results, a bar chart was plotted on Rstudio (‘‘ggplot2”) to show

R square, RMSE and the significance of the tested linear mod-

els regarding the two phenological stages (anthesis and grain

filling), type of sensor (RGB and multispectral images), and

sensing level (ground and aerial level). The original graphs

of validation are shown in the Appendix B.
tiscale assessment of ground, aerial and satellite spectral data for mon-
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Table 2 – Summary of sensing levels, sensors type, instruments used, and vegetation indices calculated for each case. The
spatial resolution of the instruments is also indicated. The reference (Ref.) is specified too.

Level Spectral data Sensor Index Description Ref.

Ground Multispectral GreenSeeker

(60 cm spatial resolution)

NDVI (B840-B670)/
(B840 + B670)

[59]

RGB Sony ILCE-QX1
(0.01 mm/pixel)

Intensity HIS color space [48]
Saturation HIS color space [48]
Lightness CIElab color space [48]
a* CIElab color space [48]
b* CIElab color space [48]
u* CIEluv color space [48]
v* CIElluv color space [48]

UAV RGB Lumix GX7

(5 cm/pixel)

Hue HIS color space [48]
GA % of pixels in hue from 60� to 180� [48,49]
GGA % of pixels in hue from 80� to 180� [48,49]
CSI ((GA-GGA)/GA) � 100 [51,52]
NGRDI (GREEN-RED)/

(GREEN + RED)
[50]

TGI ((GREEN-0.39) �(RED-0.61)
) � BLUE

[49]

Multispectral Tetracam micro-MCA
(5 cm/pixel)

CCCI ((B840B700)/(B840 + B700))/((B840-B670)/
(B840 + B670)

[53]

CCI (B550-B570)/(B550 + B670) [54]
CI Green (B840/B560)-1 [55]
CI red edge (B840/B700)-1 [55]
CVI (B840/B560) � (B670/B560) [56]
EVI (2.5�(B840-B670))/(B840+(6 � B670)-

(7.5 � B450) + 1)
[57]

MCARI (B700-B670) – 0.2 � (B700 – B550) � (B700/
B670)

[90]

Satellite Multispectral Sentinel-2 a + b
(10 and 20 m/pixel)

NDVI (B840-B670)/(B840 + B670) [59]
OSAVI (1.16) � (B780 – B670)/(B780 + B670 + 0.16) [60]
RDVI (B840-B670)/

p
(B840 + B670) [61]

SAVI (B840-B670)/(B840 + B670) [62]
TCARI 3 � (B700 – B670) – 0.2� (B700-B550) � (B700/

B670)
[58]

TCARI/
OSAVI

TCARI/OSAVI [58]

TCI 1.2 � (B700 – B550) – 1.5 � (B670 – B550)�p
(B700/B670)

[63]
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2.5. Sentinel-2 imagery

The specific dates of Sentinel-2 images for 2018 and 2019

were selected as those closest to the most suitable phe-
Table 3 – Anthesis phenological stage estimated with GDD and

North

Anthesis (GDD) 10–05–18 / 08–05–19
Sentinel-2 (dates) 09–05–18 / 09–05–19

Please cite this article as: J. Segarra, F. Z. Rezzouk, N. Aparicio et al., Mul
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nological stage for GNC monitoring (Table 3). At regional

scale the phenological stage was estimated with growing

degree days (GDD) calculations as described by Arnold

[68] (Eq. (2)).
Sentinel-2 closest date during 2018 and 2019 seasons.

Middle South

17–05–18 / 15–05–19 26–04–18 / 29–04–19
19–05–18 / 14–05–19 24–04–18 / 29–04–19

tiscale assessment of ground, aerial and satellite spectral data for mon-
re, https://doi.org/10.1016/j.inpa.2022.05.004
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GDD ¼
XNov

Jun

TmaxþTmin

2
� Tbase ð2Þ

where GDD is the growing degree days and
Pnov

jun indicates the

sum throughout the season, November to June, of daily max-

imum and minimum temperatures (Tmax and Tmin) divided by

2, minus the base temperature (Tbase), which in this case was

considered 0 �C.
This data is used following Segarra et al. [69] study for the

case of Navarre. The average temperature data, in order to

estimate the crop phenological stages through the calculation

of GDD in each zone (North, Middle and South), was obtained

from 30 openly accessible regional government meteorologi-

cal stations (https://www.meteo.navarra.es/estaciones), GDD

and phenology for the wheat lines was obtained from the

genotypes information as described by Goñi [70], correspond-

ing to 1105 accumulated GDD for anthesis as the average for

both (Camargo and Marcopolo wheat lines).

In Table 3 the estimated phenological date and the closest

Sentinel-2 image is detailed. The Sentinel-2 images were

downloaded from Copernicus Open Access Hub (https://sci-

hub.copernicus.eu/) as a 2A product (Bottom of Atmosphere

reflectance images) and with a maximum cloud cover thresh-

old of 30%.

Sentinel-2 bands are shown in Table 4, with these bands

the following most suitable VIs from the model, Cl red-edge

[56] (Eq.(3)), TCARI [63] (Eq.(4)), and EVI [58] (Eq.(5)), were cal-

culated on ArcGIS Pro 2.3.0 with the corresponding Sentinel-

2 bands:

CI red� edge ¼ ðB8Þ
ðB5Þ � 1 ð3Þ

TCARI ¼ 3� B5� B4ð Þ � 0:2� B5� B3ð Þ � B5
B4

ð4Þ

EVI ¼ 2:5� ðB8� B4Þ
ðB8þ ð6 � B4Þ � ð7:5 � B2Þ þ 1

ð5Þ
3. Results

The GNC among the utilized wheat lines ranged between

2.07% and 2.74% (Fig. 2). The highest GNC was in the group
Table 4 – Bands and resolution of Sentinel-2 Multispectral Instr

MSI Band Spatial Resolut

B1: Coastal Aerosol 60
B2: Blue 10
B3: Green 10
B4: Red 10
B5: Red-Edge 20
B6: Red-Edge 20
B7: Red-Edge 20
B8: NIR 10
B8A: Vegetation RE 20
B9: Water Vapour 60
B10: SWIR Cirrus 60
B11: SWIR 20
B12: SWIR 20
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formed by the genotypes Dolly, Mimmo, Galera, 08THES1262,

Albertus and Rebelde, while the group with the lowest GNC

was formed by PR22R58, Nemo, MH1411, Cosmic, Rimbaud,

Oregrain, Marcopolo, Mecano, Chambo, Complice, Soberbio,

Craklin and Togano (see the appendix Table A1 for the post

hoc test and the averaged GNC per wheat line). The genotypes

with the highest GNC ranged between 2.74% and 2.60%, while

the lowest ranged from 2.26% to 2.07%.

In comparison with grain filling, which presented lower

values of R-Pearson, the descriptive results presented in the

heat map (Fig. 3) show that the highest R-Pearson values of

the simple regressions between GNC and multispectral and

RGB indices were observed at the phenological stage of anthe-

sis. At anthesis and aerial level, the multispectral vegetation

indices showed a positive direct relationship with GNC.

Regarding the RGB indices at aerial level, positive correlations

were observed. However, a* and u* indices showed to be more

negative with greener vegetation due to the nature of the col-

our space conversion. Hence, an inverse relationship was

observed in this case. Counterintuitively, this was not

observed at RGB ground level.

As shown in Fig. 4, the less negative d13C values were

found, in general terms, in fields located in the southern

and middle areas of Navarre, while the most negative values

were mainly found in fields in the North.

In Fig. 5, the obtained GNC estimation accuracy (R2) of the

validated models at all the sensing levels and sensor type is

shown. At anthesis, the multispectral sensors at UAV level

were the ones with the most precise GNC estimation capaci-

ties with a significant R2 of 0.42 (Fig. 6). At grain filling, the

UAV-multispectral sensor effectiveness at estimating GNC

was reduced to a R2 of 0.29. At ground level, the validation

of the model built with RGB data to estimate GNC was signif-

icant at the phenological stage of anthesis with a R2 of 0.19.

None of the validation of the rest of models (UAV RGB and

ground multispectral at anthesis; and ground RGB, UAV RGB

and ground multispectral at grain filling) showed significant

results.

The most suitable GNC estimation model obtained from

multispectral imagery at UAV level at the phenological stage

of anthesis is summarized in Table 5. The most optimal veg-
ument (MSI).

ion(m) Central Wavelength(nm)

443
490
560
665
705
740
783
842
865
945
1375
1610
2190

tiscale assessment of ground, aerial and satellite spectral data for mon-
re, https://doi.org/10.1016/j.inpa.2022.05.004
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Fig. 2 – Posthoc analyses of the utilized wheat lines at the experimental station of Zamadueñas, the significance letters are

shown in the appendix, Table A1.

Fig. 3 – Heatmap descriptive representation of R Person correlations between GNC and various multispectral and RGB indices

at aerial and ground levels. In the colour scale, red represents the highest positive R value, while green is the lowest negative

R value.
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etation indices as estimators were TCARI, Cl red edge and EVI.

The parameters were significant and had VIF values of 9.0 for

TCARI, 9.7 for Cl red edge and 1.6 for EVI. Regarding the good-

ness of the model the best performing model showed absence

of collinearity as all VIF values (9 for TCARI, 9.7 for Cl red edge

and 1.6 for EVI) were closer to the collinearity threshold value

of 10 [71].
Please cite this article as: J. Segarra, F. Z. Rezzouk, N. Aparicio et al., Mul
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The model built with UAV data that best suited GNC esti-

mation was applied at satellite level with Sentinel-2 imagery.

Over the two years the validation of the model with satellite

data was significant. The estimation of GNC with satellite

data reached an R2 = 0.40 and RMSE = 0.29% (Fig. 7), alike

the one obtained with the UAV multispectral imagery

(R2 = 0.42 and RMSE = 0.18%, Fig. 6).
tiscale assessment of ground, aerial and satellite spectral data for mon-
re, https://doi.org/10.1016/j.inpa.2022.05.004

https://doi.org/10.1016/j.inpa.2022.05.004


Fig. 4 – Carbon isotopic composition (d13C, ‰) against grain nitrogen content (%) to assess C isotopic discrimination and

characterize hydric conditions across the agroclimates (in North, Middle and South of Navarre, Spain) where the farmers’

fields are located.

Fig. 5 – Summary of the obtained R2 at validation for GNC estimation with RGB andmultispectral sensors at ground and aerial

levels, the * indicates a significance of p-value < 0.05 while ns refers to no significance. The two phenological stages studied

are shown (anthesis and grain filling).
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4. Discussion

The models developed in this study using UAV multispectral

sensors outperformed RGBmodels (at ground and aerial level)

as well as models built with a widely used multispectral

ground-level sensor (GreenSeeker). Coming back to the ques-

tions one (which imagery, RGB vs Multispectral, can con-

tribute the most to estimate wheat GNC?) and two (which

sensing level, UAV vs ground images, is more effective to
Please cite this article as: J. Segarra, F. Z. Rezzouk, N. Aparicio et al., Mul
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generate models for GNC monitoring?) the following was

observed. When validating the GNC estimation models with

multispectral data at UAV level the best results showed

(Fig. 5) an R2 of 0.42 and RMSE of 0.18% at anthesis, which

aligns to the range reported by Zhao et al. [38]. No significant

correlations were observed with models built with RGB data

at ground and aerial level, expect for the low yielding

(R2 = 0.19, RMSE = 0.19%) of the ground RGB model at anthesis

(Fig. 5). High spectral resolution in the visible photosyntheti-
tiscale assessment of ground, aerial and satellite spectral data for mon-
re, https://doi.org/10.1016/j.inpa.2022.05.004

https://doi.org/10.1016/j.inpa.2022.05.004


Fig. 6 – Validation of the stepwise multilinear regression models for UAV multilinear data at anthesis as the most suitable

model for GNC estimation, 30% of the data set of the experimental plots were used for validation. The equation of the model

is shown in Table 5. The R2, p-value and root mean square (RMSE) are shown. The red line indicates 1:1.

Table 5 – Summary of stepwise multilinear results for the UAV multispectral model at anthesis, it shows the equation, the
selected vegetation indices and the VIF.

Parameter Estimate p VIF

Intercept �1.09 <0.01
TCARI 31.50 <0.01 9.0
Clrededge 0.60 <0.01 9.7
EVI �1.74 <0.01 1.6
Model Summary
Grain N content = � 1.09 + 31.5 � TCARI + 0.60 � Clrededge – 1.74 � EVI
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cally active wavelength regions (RGB) has been shown to be

capable of assessing crop nitrogen content [72], nonetheless

we observed that it is not assessable when using broad band

reflectance measurements provided by commercial RGB cam-

eras, regardless of their high spatial resolution and reliable

colour calibration [73]. Hence, we can argue that in this study

the model built with multispectral data at UAV level con-

tributed the most to GNC estimation. The multispectral

instrument used at the ground level only measures red and

near-infrared reflectance (computed as NDVI) and showed

no significant correlations. This might be related, first to the

lack of relationship between a biomass sensitive index such

as NDVI and GNC, which is related to N content in the plant.

Moreover, the saturation of NDVI, which is reached in high

vegetation density covers such as anthesis, does not con-

tribute to generate an indicator of the plant that could be

likely linked to GNC. In addition, Greenseeker has spatial res-

olution limitations in comparison with UAV sensors (Table 2).

These results demonstrate the superior capacities of multiple

bands and multispectral information itself, as well as spatial

resolution, for the case of GNC estimation.

Due to the nature of the data, empirical models were cho-

sen in contrast with other approaches. Radiative transfer
Please cite this article as: J. Segarra, F. Z. Rezzouk, N. Aparicio et al., Mul
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models, for instance, offer an improved understanding of

the structure and physiological features of the crop canopy

although are very dependent on large datasets and computa-

tionally demanding algorithms. Empirical models, such as

VIs regressions, sometimes experience limitations, as are

more affected by site and sensor conditions, but are more

versatile when having reduced datasets and widely used

and understood. In this case, 14 VIs were calculated at

UAV level using Tetracam multispectral data while only

one multispectral index was calculated at ground level

(NDVI). Although the Greenseeker is a low-cost and widely

used ground multispectral instrument for phenotyping

[46,74,75], the spectral resolution it features is insufficient

for GNC estimation. On the other hand, this contrasts with

the generally more costly and logistically demanding (i.e. a

minimum 5 m long-poles or UAV) multispectral cameras.

Nonetheless, in the last years multispectral cameras prices

have decreased and their use in phenotyping and research-

oriented proposes is increasing. Hence, nowadays multispec-

tral cameras mounted on UAVs are common, as the

reviewed scientific literature from the last years shows [76],

and may further contribute to phenotyping quality related

traits.
tiscale assessment of ground, aerial and satellite spectral data for mon-
re, https://doi.org/10.1016/j.inpa.2022.05.004

https://doi.org/10.1016/j.inpa.2022.05.004


Fig. 7 – Application of the most suitable stepwise multilinear model with Sentinel-2 data at actual farmers’ fields in Navarre,

Spain, across three agroclimatic regions (North, Middle and South). The R2, p-value and root mean square (RMSE) are shown.
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The UAV remotely sensed multispectral data in this study

has several advantages over the RGB data. We observed that

among the three selected vegetation indices (TCARI, Cl red-

edge and EVI) as the most suitable for the best performing

stepwise multilinear model (Table 5), EVI uses RGB and NIR

bands, while TCARI and Clred-edge, besides those, use a band

in the red-edge part of the spectrum (700 ± 10 nm). The

advantages of indices using red-edge bands for determining

nitrogen up-taken into grains have been observed in various

studies [28,77,78], as the study here presented also corrobo-

rates. EVI is an index sensitive to biomass, which has

nonetheless been successfully used in plant nitrogen concen-

tration estimations [79], also in the estimation of grain pro-

tein content in wheat [32]. EVI has improved features to

prevent atmospheric and soil influences, which make it more

responsive to canopy variations in comparison with other

indices [80]. In this sense, the results suggest that the amount

of spectral information available from multi-band multispec-

tral sensors increases GNC estimation effectiveness in com-

parison with the RGB visible three-band data, red–

greenblue, as it expands the sensing spectrum further to red

(>670 nm). The red-edge part of the spectrum is highly sensi-

tive to chlorophyll changes and therefore can be used as a

nitrogen proxy [20,81]. TCARI has been successfully used at

estimating grain protein content in cereals [82], as well as Cl-

red-edge at UAV level in the case of wheat with a reported R2 of

0.50 [30]. We can argue that the spectral resolution (bands in

the red-edge) is especially relevant when the sensing aim,

nitrogen in grains, is indirectly discernible and highly depen-

dent on chlorophyll-related spectral information.

Regarding the third question (how relevant is phenology

for GNC estimation?) we observed that phenology was central

for GNC estimation (Figs. 3 and 5). At anthesis, the UAV mul-

tispectral GNC estimation model reached an R2 of 0.42, while
Please cite this article as: J. Segarra, F. Z. Rezzouk, N. Aparicio et al., Mul
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at grain filling it decreased to 0.29. This aligns with the con-

ceptualization that wheat nitrogen accumulation in grains

start happening at grain filling. Namely, plants nitrogen con-

centration starts descending at the grain filling stage. Thus,

the results here presented suggest that VIs sensitive to nitro-

gen concentration at anthesis can be an indicator for the final

GNC in wheat, as was also observed by Dupont and Altenbach

[83]. In wheat, between 60 and 95% of the nitrogen is remobi-

lized from leaves and stems into grains, being the most

important sources of GNC [84,85] and thereby of protein in

wheat grains. The results of the study show that it is possible

to monitor GNC through these vegetation indices sensitive to

chlorophyll if plant nitrogen content is sensed around anthe-

sis. This phenological stage corresponds to the maximum

nitrogen accumulation [86,87] in wheat plants, before it is

remobilized into grains.

At the agro-ecosystem scale, the higher (i.e. less negative)

carbon isotope composition (d13C) values of mature grains in

the Middle and Southern parts of Navarre compared with the

Northern area (Fig. 4) suggests the occurrence of more

drought stress in the central and southern areas of Navarra.

This is in agreement with their lower rainfall, higher temper-

atures, and lower grain yields observed for the fields in this

study in Middle and Southern Navarre [69]. In general, grain

nitrogen content (GNC) was higher in the Middle and South-

ern areas than in the Northern area, probably related with a

smaller grain size, caused by drought stress during grain fill-

ing, in the former areas. In that sense d13C and GNC across

sites and areas were positively correlated (Fig. 4) and served

to explain agroclimatic features linked to wheat physiology

and GNC.

This study demonstrates that the stepwise multilinear

model built at the UAV level could be up-scaled with

Sentinel-2 data and cover field-level GNC estimations. Hence,
tiscale assessment of ground, aerial and satellite spectral data for mon-
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regarding the fourth question (Are models built with ground

or UAV images up-scalable to equivalent Sentinel-2 images?),

we observed that the applied model over two seasons reached

an R2 coefficient of 0.40 and RMSE of 0.29% (Fig. 7), which is in

the same range as the one obtained with the validation at the

experimental plots with the UAVmultispectral data (R2 of 0.42

and RMSE of 0.18%, Fig. 6). The RMSE is slightly higher when

the model is applied at the field-level; nonetheless, these

results align with other studies that concomitantly used

UAV obtained spectral data to build models and apply them

with Sentinel-2 data [88,89], as well for the case of GNC esti-

mation [38] where several N sensitive stepwise models

showed a RMSE range of 0.19–0.53%. Building models with

actual field-level to regional data requires vast field work, cov-

ering large spatial extensions. On the other hand, building the

models at smaller experimental sites eases the process. The

study here discussed confirms that the simultaneous use of

UAV multispectral cameras and Sentinel-2 data with equiva-

lent spectral bands allows GNC estimation.

This study has been able to define the most optimal

approaches for estimating GNC with applications at both

experimental plots and agricultural fields. The novel compar-

ison presented here among different sensing platforms and

phenological stages, sets the basis for an improved quality-

oriented phenotyping and crop monitoring. Often, quality

traits have been under-considered in breeding programs

[9,10] and the development of models able to separate high

GNC phenotypes from others could help identify the most

suitable lines in wheat populations exhibiting genetic vari-

ability. In this sense, the genotypic range used for this study

was 2.07% to 2.74% of GNC, it could be broader (1.2–3.7%)

when adding a bigger diversity of genotypes, from modern

varieties to landraces. Therefore, the model is specific for a

range of GNC in the instance of our study. Despite the

achieved R2 is inferior to 0.5, the significance of the models

and the results at validation proves its effectiveness in pheno-

typing at experimental plots and monitoring GNC at actual

agricultural fields, while selecting the subset of genotypes

with the desired range values of N content. Currently, these

models cannot determine GNC with potential applications

in precise certification of grain protein content before harvest.

For this aim destructive measurements would still be needed.

Nonetheless, the obtainedmodels can orient farmers on grain

quality after a quick UAV flight before harvest and could also

potentially be used in smart farming to spot low and high

GNC concentration areas in a field. This information could

contribute to optimize the use of resources by prioritizing

increased top-dressing fertilization in poor GNC zones, and

thus helping to advance to agricultural stability in terms of

GNC. In addition, at the agroecosystem level with the use of

Sentinel-2 imagery, the current reliability of the models might

provide support for developing regional GNC estimation maps

which can contribute to understand environmental and soil

features affecting GNC, as well as to help farmers and institu-

tions to manage croplands sustainably. The Sentinel-2 spatial

resolution makes their direct application as a phenotyping

platform in breeding programs unsuitable, nonetheless for

the application in crop phenotyping the model developed in

this study could be implemented with satellite platforms with

higher resolutions.
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5. Conclusion

This study demonstrates that UAV multispectral models can

provide accurate (R2 = 0.42 and RMSE = 0.18%) GNC estima-

tions across phenotypes when the sensing period happens

at anthesis. Moreover, it corroborates the central use of

red-edge bands (700 ± 10 nm) to calculate effective VIs for

GNC estimation. The application of UAV-built multispectral

models with equivalent Sentinel-2 real data effectively esti-

mated GNC over two seasons at field-level (R2 = 0.40 and

RMSE = 0.29%). RGB true colour images and the widely used

ground multispectral phenotyping sensor Greenseeker were

not effective in GNC estimation. The models here developed

show the potentialities of GNC estimation across phenotypes

with UAV multispectral data as it allows to differentiate

groups of genotypes regarding their GNC. Moreover, we also

demonstrated the potentialities of the application of these

models to accessible satellite data (Sentinel-2) for an

improved GNC monitoring at field-scale. It takes advantage

to the novel Sentinel-2 features with its red-edge bands

and high revisit time. To our knowledge, only one other

study using UAV-level data (hyperspectral in this case) to

build models and monitor GNC at field-level with equivalent

Sentinel-2 data has been published [38]. The study here pre-

sented shows two main novelties. On the one hand, it

demonstrates that multispectral UAV-mounted cameras can

produce effective GNC estimation models when having

equivalent bands in the red-edge though additional improve-

ments in this field may be reached by including hyperspec-

tral information in GNC estimation in the future. On the

other hand, it is the first paper that together reviews remote

sensing techniques at various levels to determine the most

optimal strategy for both GNC phenotyping and field-level

monitoring.
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Appendix A. Wheat lines differences in GNC

See Table A1.
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Table A1 – Average GNC in % for each genotype at the research site of Zamadueñas. The superscript letter indicates
differences among the line after post hoc test.

Genotypes N % in grain Genotypes N o in grain

Dolly 2.74a MH1341 2.31efghijk

Mimmo 2.74ab Soisson 2.28fghijkl

Galera 2.67ab MH1444 2.26fghijklm

08THES1262 2.64ab PR22R58 2.24fghijklm

Albertus 2.60abc Nemo 2.25fghijklm

Rebelde 2.56abcd MH1411 2.23ghijklm

Atomo 2.50bcde Cosmic 2.20ghijklm

Bisanzio 2.42cdef Rimbaud 2.17hijklm

Eneas 2.40defg Oregrain 2.15ijklm

Bologna 2.39defg Marcopolo 2.15ijklm

Tribat 2.37defg j Mecano 2.14ijklm

MH1307 2.36defgh Chambo 2.14ijklm

Algoritmo 2.33defgh Complice 2.14jklm

Credit 2.33defgh Soberbio 2.12klm

Ippon 2.33efghij Craklin 2.10lm

Forcalli 2.33efghij Togano 2.07m

Ingenio 2.32efghij
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Appendix B. Results and graphs of the calculated
models.

See Tables B1 and B2 and Figs. B1–B7.
Table B1 – Summary of stepwise multilinear results for the ground RGB models at anthesis It shows the equation, the
selected vegetation indices and the VIF.

Parameter Estimate p VIF

Intercept 3.38 <0.01
Hue �0.01 <0.01 5.1
v 0.01 <0.01 1.3
GA �0.6 <0.01 5.2
Model Summary
Grain N content = 3.38–0.01 � Hue + 0.01 � v � 0.60 � GA

Table B2 – Summary of stepwise multilinear results for the UAV multispectral models at grain filling. It shows the equation,
the selected vegetation indices and the VIF.

Parameter Estimate p VIF

Intercept 3.3 <0.01
OSAVI –6.1 ns 69.0
RDVI 8.1 <0.01 80.8
EVI –1.3 <0.01 2.8
Model Summary
Grain N content = 3.3–6.1 � OSAVI + 8.1 � RDVI � 1.3 � EVI
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Fig. B1 – Validation of the stepwise multilinear regression models for ground RGB data at anthesis, 30% of the data set of the

experimental plots were used for validation. The equation of the model is shown in Table B.1. The R2, p-value and root mean

square (RMSE) are shown. The red line indicates 1:1.

Fig. B2 – Validation of the stepwise multilinear regression models for ground multispectral data at anthesis, 30% of the data

set of the experimental plots were used for validation. The red line indicates 1:1.
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Fig. B3 – Validation of the stepwise multilinear regression models for UAV RGB data at anthesis, 30% of the data set of the

experimental plots were used for validation. The red line indicates 1:1.

Fig. B4 – Validation of the stepwise multilinear regression models for ground RGB data at grain filling, 30% of the data set of

the experimental plots were used for validation. The red line indicates 1:1.
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Fig. B5 – Validation of the stepwise multilinear regression models for ground multispectral data at grain filling, 30% of the

data set of the experimental plots were used for validation. The red line indicates 1:1.

Fig. B6 – Validation of the stepwise multilinear regression models for UAV RGB data at grain filling, 30% of the data set of the

experimental plots were used for validation. The red line indicates 1:1.
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Fig. B7 – Validation of the stepwise multilinear regression models for UAV multispectral data at grain filling, 30% of the data

set of the experimental plots were used for validation. The equation of the model is shown in Table B.1. The R2, p-value and

root mean square (RMSE) are shown. The red line indicates 1:1.
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Appendix C. Supplementary material

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.inpa.2022.05.004.
R E F E R E N C E S
[1] Assembly G. Transforming our world: the 2030 Agenda for
Sustainable Development. New York, United States: United
Nations; 2015.

[2] Awika JM. Major cereal grains production and use around the
world. In: Awika JM, Piironen V, Bean S, editors. Advances in
Cereal Science: Implications to Food Processing and Health
Promotion. USA: ACS Symp Ser; 2011. p. 1–13.

[3] Peña RJ. Wheat for Bread and Other Foods. Rome, Italy: Food
and Agriculture Organization of the United Nations; 2002.
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