
ORIGINAL PAPER

Using publish/subscribe for message routing in mobile environments

Ugaitz Amozarrain1 • Mikel Larrea2

Accepted: 30 December 2022
� The Author(s) 2023

Abstract
Publish/subscribe is a mature communication paradigm to route and deliver events from publishers to interested sub-

scribers. Initially conceived for large scale systems, e.g., the Internet, it has been used more recently in new scenarios, e.g.,

wireless sensor networks and the Internet of Things (IoT), where mobility and dynamicity are the norm. The loose-coupling

and asynchronicity of publish/subscribe makes it an interesting choice for IoT scenarios, i.e., each node in an IoT network

can choose a different role depending on its location, capabilities, etc. This paper presents MFT-PubSub, a fully mobile and

fault tolerant content-based publish/subscribe protocol. Our proposal is a purely reactive solution for mobility in a

publish/subscribe system without any kind of limits on the mobility patterns of the nodes. A wireless ad hoc network is

created without the need of any previous connections or knowledge on the nodes. Handling the mobility, be it physical or

logical, of both clients and brokers. We prove the validity of our solution by experimentation, and compare it with AODV,

a routing protocol for mobile ad hoc networking. The simulations show an improvement on message delivery rate over

previously used protocols.

Keywords Fault tolerance � Mobile ad hoc networks � Publish/subscribe systems � Wireless sensor networks

1 Introduction

The publish/subscribe paradigm provides a anonymous,

loosely coupled communication between event producers

and interested subscribers [1]. This paradigm has been

initially used for large scale systems. e.g., the Internet

[2–4]. Recently, it has been used in other scenarios, e.g.,

wireless sensor networks [5–7] and the Internet of Things

[8–10]. In this regard, several systems can be mentioned as

relevant in the field, e.g., SIENA [2], JEDI [11], REBECA

[12] and REDS [13] for both publish/subscribe in general

and for their client mobility support in particular.

The main idea behind the publish/subscribe paradigm is

to separate the devices that generate content from those

that consume it. The content generated can range from a

temperature reading of a sensor to an access notification on

a web page, or even the distribution of a live television

broadcast through the internet. In a publish/subscribe sys-

tem the processes that generate and send content to the

network are called the publishers, and those that consume

the events are called subscribers. The decoupling is com-

plete between both such processes. A publisher does not

need to know which is the subscriber that is receiving the

information it is sending to, nor do both of them need to be

communicating at the same time in order for the message

exchange to happen.

In this paper we propose an approach that not only

supports client mobility, but also handles broker mobility

in a wireless ad hoc network. In this approach the amount

of devices connected to the network, and the connections

between them are able to change. Whenever a broker

moves physically a change is made in the network topol-

ogy. Due to the wireless nature of the network the broker

might lose connections or be able to connect to new

devices. The protocol we propose tries to minimize these

changes in topology to help with stability. We can also

simplify a fault in one of the brokers as a loss of

& Mikel Larrea

mikel.larrea@ehu.eus

Ugaitz Amozarrain

ugaitz.amozarrain@unavarra.es

1 Department of Statistics, Computer Science and

Mathematics, Public University of Navarre, Pamplona, Spain

2 Computer Architecture and Technology Department,

University of the Basque Country UPV/EHU, Leioa, Spain

123

Wireless Networks
https://doi.org/10.1007/s11276-023-03233-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-4711-7110
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-023-03233-8&domain=pdf
https://doi.org/10.1007/s11276-023-03233-8

connectivity, making it easier to the protocol to also be

fault tolerant.

The rest of the paper is organized as follows. Section 2

introduces the related work on publish/subscribe and the

mobility and fault tolerance in these systems. Section 3

presents the model and definitions. Section 4 addresses the

creation of the network overlay to route events between

brokers. Section 5 presents a protocol to handle broker

migration in publish/subscribe systems. Section 6 presents

performance results of our approach and compares it to

AODV. Finally, Sect. 7 concludes the paper.

2 Related work

Most of the research done in publish/subscribe systems is

centered on improving current solutions, be it the reliability

of delivering an event [14], improving the performance or

increasing the fault tolerance [15]. Some work tries to

improve on a typical tree structure for event delivery. In

[16] authors propose the creation of a tree for each topic a

subscriber can subscribe to with the publisher being the

root of the tree for optimal message delivery. In some cases

a communication tree might be too weak against node

failure and the authors of [17] propose using gossiping so

that the system can keep working while the tree is being

repaired due to a node failure.

Another topic is the support for mobility. Though there

are various protocols for publish/subscribe middleware,

few of them support mobility [18]. In [19], authors mention

some possible solutions for mobility support in pub-

lish/subscribe. Strategies are suggested to extend existing

solutions, both in centralized and decentralized networks.

In the case of a mobile network, nodes will need to adapt to

disconnections, partitions of the network or the merging of

those partitions, and the storage of undelivered events. In

[20], Huang and Garcia-Molina study the tree construction

problem in wireless ad hoc publish/subscribe systems.

They define the optimality of a publish/subscribe tree by

developing a metric to evaluate its efficiency, and propose

a greedy algorithm that builds the publish/subscribe tree in

a fully distributed fashion. Several works also address the

different factors that affect the performance of a system

with mobile nodes [21, 22], mostly based on mobile clients.

A proposal to create self-configurable and adaptive peer-to-

peer architecture for implementing content-based pub-

lish/subscribe communications on top of structured overlay

networks has also been made [23, 24].

Another possible solution to support mobility is the use

of information-centric networks [25–27]. Since this kind of

network supports mobility natively, authors propose

exploiting this property instead of using traditional TCP/IP

communications.

Internet of Things (IoT) and Wireless Sensor Networks

(WSN) also constitute an area that is still pushing research

towards new topics [28, 29]. A number of recent contri-

butions have also been made in the area [30–33]. Most of

the approaches support mobility through the inclusion of

gateway nodes and the separation of the publish/subscribe

system from the WSN. The gateway nodes receive mes-

sages from any number of sensors and act as a publisher to

the publish/subscribe system. This allows for the sensors to

be mobile devices that send events to the gateway they are

connected to, but does not fully compose a mobile pub-

lish/subscribe system.

2.1 Mobile clients

Most of the research carried out to support the mobility of

nodes in a publish/subscribe system has been done with

regard to supporting mobile clients, be they publishers or

subscribers.

The first system to support client mobility was called

JEDI [11], named for Java Event-Based Distributed

Infrastructure. In JEDI a node must notify of its intention to

migrate to the broker to which it is connected, before the

migration happens. This is done by the use of explicit

moveOut and moveIn messages, which a subscriber sends

in order to start and finalize the migration process.

SIENA [2, 30] was a system developed at the same time

as JEDI that also allowed for client mobility. It also uses

explicit moveOut and moveIn messages and it uses flood-

ing, that has been found to be excessive [34].

Another framework that added support for client

mobility is the REBECA [12, 35] publish/subscribe system.

In this case the moving node does not need to send an

explicit moveOut message, a broker will detect when one

of its connected subscribers has disconnected. The broker

will then create a virtual counterpart of the roaming sub-

scriber that will be merged with the real one once the

migration finishes.

Mobile XSiena [36] is a publish/subscribe platform which

seeks to extend the XSiena [37] content-based publish/sub-

scribe system in order to support user mobility. The key

mobility-related features of Mobile XSiena are mobile

device integration, seamless networking, reconnection sup-

port, location-based matching, and persistent events. This

was later integrated into the Phoenix framework [38–40].

MQTT is a commonly used protocol that also has received

improvements in order to support client mobility. Though

MQTT offers the support for subscriber mobility by allowing

a subscriber to be connected to a subset of brokers, creating

backups in case of a link failure, it does not allow for network

reconfiguration in the case of a new connection, the sub-

scriber will have to issue the subscriptions again. In [41]

authors extend the protocol to support publisher mobility, by

Wireless Networks

123

detecting a disconnection in the publisher node, and storing

undelivered messages while the system is reconfigured. This

approach guarantees the delivery order of the messages to be

the same as that of the creation.

PSVR [42] is a routing algorithm for a publish/sub-

scribe system in a WSN. Siegemund et. al. mention the cost

of maintaining a communication overlay in a dynamic

environment, that is often really high or is omitted [43, 44],

where systems usually recreate the overlay completely. The

proposed algorithm is designed for systems with highly

dynamic subscribers and publishers.

2.2 Mobile brokers

The scenario of mobility inside the event notification ser-

vice is the most difficult to handle [45]. In this case the

algorithms need to be able to handle the migration of not

only clients but also reconfiguration on the subscription

delivery path. There are few solutions that support full

mobility on publish/subscribe systems.

In [24] an extension to SIENA is introduced where a

self-organizing algorithm executed by brokers will try to

optimize message delivery. Mechanisms are introduced to

allow the reconfiguration caused by changes in topology,

mostly to minimize the notification cost, but it could also

be a first step towards supporting mobile nodes. Though the

complexity of the algorithm, together with the need for a

human administrator in case of a broker failure during the

topology change procedure, makes it unsuitable for a

highly mobile environment where a broker might start the

topology change, but be disconnected by the time it

finishes.

EMMA [46] is an extension to MQTT that not only

handles client and broker migration in a transparent way, it

also uses its migration mechanism in order to optimize

QoS. It uses a controller node that is constantly monitoring

the network and is informed of any change in device

connectivity. The controller will then try to optimize event

delivery and issue migrations to both clients and brokers to

load balance the system. The requirement of a device that

needs to know the connectivity of each node in the system

prevent this solution to be used in a fully mobile envi-

ronment where it might sometimes be unreachable.

2.3 Proposed solution

In this paper, we propose a protocol where any node, at any

time, can migrate in the network without the need to notify

neighboring nodes or a single central controller. In a truly

mobile environment nodes might not know they need to

migrate before a connection is lost. Using our protocol,

nodes (publishers, subscribers or brokers) will be able to

join or leave the publish/subscribe service at any time.

Unlike existing solutions, in our protocol, if the network

is partitioned, the service will not have to wait for con-

nections to restore. Any partition will work as an inde-

pendent service, and after some time if connections recover

the partitions will merge and any messages that were not

delivered yet will be reach their destination.

3 Model and definitions

In a publish/subscribe system we might find two different

components. Clients will produce and consume events

while the notification service handles the subscriptions

issued by the clients and assures the correct delivery of

events to the interested clients.

We can further divide the clients into two subsets:

subscribers that will register their interests and consume

events, and publishers that will produce those events. We

will use s 2 S to refer to a subscriber belonging to the set of

subscribers S and p 2 P to refer to a publisher that belongs

to the set of publishers P. Any clients in the system may

behave as a subscriber, publisher or even both at the same

time. We will also use the nomenclature f 2 F when

referring to a filter that belongs to the set of filters F.

The notification service is composed of a set of brokers

which we will call B and refer to individually as b 2 B. The

brokers will be connected at the logical level by an acyclic

graph or a spanning tree. The brokers are responsible for

storing the subscriptions issued by the subscribers and

routing the published events to the matching subscribers.

At any moment a broker will have a set of neighboring

brokers in the graph, that it can communicate with. We will

refer to this set as Ni for broker bi. A broker will also be

able to communicate with clients that are connected to it.

For this reason we will refer to the set of interfaces, be it

other brokers or clients, that a broker bi can communicate

with at any moment as Ii.

All communications are by point-to-point message

passing over FIFO channels. Since participants are mobile,

the set of channels linking them, as well as the neighbor set

evolves. There is no need to have previous knowledge of

the sets, i.e., initially each participant knows only itself and

the amount of participants on each set might change as

time passes.

3.1 Simple routing

The Simple Routing [47] protocol assumes a static system

where brokers are connected in an acyclic graph, and cli-

ents are permanently bound to a single broker. This routing

strategy is based on the propagation of subscription (SUB)

and unsubscription (UNS) messages to all of the brokers in

the system. Every broker bi maintains a routing table Ri

Wireless Networks

123

that is based on the received SUB and UNS messages and

models the subscriptions in the system. The routing

tables enable brokers to filter incoming events received as

PUB messages, and forward them only towards those

subscribers with matching subscriptions.

The routing table Ri at every broker bi contains, for

every subscription in the system, a routing entry (f, z)

where f 2 F and z 2 Ii, to indicate that the publication of

an event e matching f must either be forwarded towards

broker z (if z 2 B) or delivered to subscriber z (if z 2 S).

3.2 Phoenix

The Phoenix [40] protocol handles subscriber mobility in

content-based publish/subscribe systems. In order to do so,

the routing table at brokers also stores the identity of the

subscriber that issued each subscription. This way, when a

subscriber migrates, the broker to which it was connected

can be notified of the change. There are two extra types of

messages used by Phoenix, one for notifying the migration

of a subscriber(MIG), and another for replaying queued

events to a migrated subscriber(REP). Whenever the sub-

scriber re-connects to the system, possibly to another bro-

ker, it will issue a MIG message, whose propagation allows

routing tables to be updated and published messages for the

subscriber to be delivered.

4 Creating the network overlay

In order for the devices on the network to communicate

efficiently we must create a logical overlay over a wireless

ad hoc network. We need a way to create an acyclic graph

(a spanning tree) in order to correctly route the messages.

We also need a mechanism that detects when a change in

the topology has occurred so a new link will be created

when an old one disappears. The algorithm that creates this

graph must also support the formation of several partitions

in the network, each one working independently until they

can merge together again. Lowering the changes made to

the graph caused by physical changes on the network will

also help to reduce the migrations needed to synchronize

the publish/subscribe system.

We can use any algorithm that gives us these properties.

In our case, we have chosen a leader election algorithm that

has a heartbeat mechanism in order to keep the leader

stable [48]. Once a leader has been elected, this node will

keep sending messages so that all the other nodes will have

this one as their leader. When a node receives one of this

messages it will know the path to the leader [49], and it will

broadcast it so the message spreads to all nodes within

communication range. With this we create the overlay we

need for constructing the publish/subscribe system.

Using this algorithm, in the event that the network is

partitioned, each of the partitions will choose a leader. And

eventually when the network becomes connected again

both partitions will merge choosing a single leader and

maintaining a single graph. Furthermore, with this heart-

beat message, when a node first receives the message of a

new round it will store the sender as the next hop to the

leader. This next hop might be modified by any physical

change in the location of a node or by a failure since the

heartbeat message will arrive via another node. With this

we can detect when the topology has changed and notify

the publish/subscribe system so that it can migrate

accordingly.

5 The MFT-PubSub protocol

In this section we will describe the Mobile Fault Tolerant

publish/subscribe (MFT-PubSub) protocol, and the changes

made to Phoenix. Since the brokers are moving any change

Wireless Networks

123

in the topology can happen at any time. These changes can

range from a simple client migration to the migration of

multiple brokers at the same time. Due to the changing

nature of the communication tree brokers might not have

been notified of a change further down on the connection

tree.

In order to take this into account we add a timestamp to

any message sent by a subscriber. Previously on Phoenix a

timestamp was also used so that a subscriber could request

all the messages it lost during migration, and these mes-

sages were stored on a single broker. But, in our case the

subscribers are not the only ones that are migrating, brokers

will also migrate. As a broker migrates it has no knowledge

of the last received message by a subscriber. Furthermore

since the broker network is also changing, we cannot

designate a single broker as the one responsible for storing

the events. In order to solve this we need a mechanism that

tells us if a message has been delivered. With this, if an

error occurs, the broker will store the message as unde-

livered. When a broker receives a migration message, from

a subscriber or another broker, it will send all messages

stored for the subscribers that migrate. This is why we

decided to repurpose the timestamp concept. This new

timestamp will consist of a sequence number that increases

each time a subscriber sends a message. We will also

include a hop count to the messages, this way any broker

will know on how many hops it can reach a subscriber.

This is referred to as (t, h) in the algorithms. With these

two values we have useful information when a migration

occurs in order to find how the topology is changing. Any

broker with a higher sequence number will be deemed to

have the latest information and correct path on that sub-

scriber, if the timestamps are equal the one that reports

being the closest will have a higher probability of being

correct.

If we want to include this information we have to

modify the previously defined SUB, UNS and MIG mes-

sages. The changes can be seen on Algorithm 1. When a

broker bi receives one of these messages it will first check

if the message contains new information by comparing the

timestamps. Then it will store the new value and before

propagating the message to the rest of the network it will

increase the hop count of the message by one. Algorithm 2

shows how the event replay works.

We also have to take into account the possibility of a

subscriber migrating from one partition of the network to

another, and since both partitions function individually the

subscriber will have different subscriptions in each of

them. We added a new message called FILTERS to fix this

issue. We can see how this message is sent on lines 23–27

on Algorithm 1. Whenever a subscribers sends a MIG

message the broker it migrates to will answer with a FIL-

TERS message. This message contains all the subscriptions

of that subscriber that the broker has in its routing table.

Using this information the subscriber may decide that the

subscriptions are outdated and issue SUB or UNS messages

to fix and update the routing tables of the brokers on that

partition.

Wireless Networks

123

Table 1 shows the messages used in order to support

broker mobility without forcing migrations. The main

message for this protocol is called BMIG and it is used for

notifying the migration of a broker. We also add two helper

messages to fix the routing tables in case of a migration;

BQUERY and BSUB, for asking about the subscriptions a

broker has of an specific subscriber and for sending the

subscriptions issued by a single subscriber that a broker has

in its routing table respectively.

When a broker bi migrates from bo to bn, it calculates

two sets of subscribers, C for its children and O for the rest,

based on their next hop. It updates its routing table for the

subscribers in O with bn as their new next hop. After

sending a BMIG message to bn, it sends any queued mes-

sage for subscribers in O through bn. The code that

describes this behavior can be seen on Algorithm 3.

A BMIG message has three parameters; two lists of

subscribers with their timestamps, separating what the

sending broker believes are children nodes Cj, and the rest

Oj, and a hop count for the message. Upon reception of this

message from another broker bj, a broker bi first goes

through the Cj set in order to find inconsistencies, as shown

in lines 75–89 on Algorithm 4. If bi has a newer timestamp

or a lower hop count to the subscriber than what is shown

on Cj bi will send a message containing the subscriptions of

that subscriber with the correct timemstamp and hop count

to bj (lines 132–138 of Algorithm 5). On the other hand if

the timestamp is lower it will ask bj to send updated

information on the subscriber. At the same time a new list

Wireless Networks

123

of children subscribers is created with the corrected

information. The same procedure is followed for all sub-

scribers in Oj on lines 90–96, in this case hop counts are

ignored and bi will only check the timestamps. To finish

checking for inconsistencies on bj’s routing table on lines

97–101 the first broker that receives a BMIG message will

check if both sets Cj and Oj contain all the subscribers bi
knows. For any subscriber that is not in the combination of

both sets, bi will send a message back to bj with its

subscriptions.

Once all inconsistencies have been fixed, in lines 103–

108, bi updates its routing table to show the change in

topology for the subscribers that are children of bj and

previous next hops for those subscribers are stored. The

corrected children list will be forwarded to those stored

brokers. Finally any queued messages will be forwarded to

the updated subscribers.

Once a broker bi receives a BSUB message it will check

if it has a newer timestamp for the subscriber than what bi
itself has, if it is older bi will ignore the message. Then bi
will first remove all entries for that subscriber from its

routing table and add the ones that came with the message

updating the subscriber’s timestamp as shown on lines

117–123 of Algorithm 5. This message will be forwarded

as if it were a SUB message issued by any subscriber.

Finally any queued message will be sent to the subscriber.

When a broker receives a BQUERY message, with a

timestamp older than what it has, it will directly answer

back with the subscriptions of the subscriber the message is

asking for, lines 129–131 of Algorithm 5.

Figure 1 contains two examples of possible migrations.

If we were to take a look into the messages needed to co

mplete the migration shown in Fig. 1a we would only see

two messages. A BMIG message that is sent by b3 and

needs to be routed to b1 through b2. Whereas, the migration

that takes place in Fig. 1b is more complicated. In this case

we need to notify b3 that b6 has migrated before it so it can

update its routing table during its migration.

6 Performance evaluation

This section presents the performance evaluation of the

MFT-PubSub protocol presented in the previous sec-

tion. Results have been obtained by simulation, using the

OMNeT?? [50] tool with the Castalia [51] simulation

framework. Table 2 presents the different simulated sce-

narios. The area has been calculated for a node density of

0,005 nodes per square meter, which is adequate for

wireless sensor networks, i.e., giving an area of 200 square

meters per node. We also define a role (publisher, sub-

scriber or broker) for each node. We are interested in

seeing how the protocol behaves in different scenarios, not

in fully stress testing it. For this reason we have chosen to

use only 2 publishers for all scenarios whereas the number

of subscribers and brokers increases. The protocol does not

Table 1 New Message

descriptions
Message Payload Client/Broker Meaning

FILTERS f : f 2 F b 2 B Send active subscriptions

BMIG fCb;Obg 2 Sb b 2 B Notify the migration of b

BQUERY s 2 S b 2 B Ask for the subscriptions of s

BSUB f : f 2 F b 2 B Send active subscriptions

Fig. 1 a shows a straightforward migration of one broker whereas

b has two migrating nodes. Numbers in links refer to the order of

events

Wireless Networks

123

store any information on the publishers, a publisher simply

sends a message and the brokers are in charge of correctly

delivering it. By increasing the subscribers and brokers we

increase the amount of nodes the protocol has to take into

account. Subscribers will also subscribe to 2 filters and

publishers will randomly choose to send messages match-

ing one or the other.

The duration of the simulations is set at 700 seconds,

with a publication rate by publishers of 1 message every

second. This message generation rate is enough to test if

the protocol works without overloading the communication

buffers of the low power devices of the simulation. The

messages have a constant data payload of 100 bytes. At the

end there is a 200 second period where no new messages

are sent so that messages that are still in buffers have time,

and the opportunity, to be delivered. The mobility of nodes

follows a random waypoint model [52], with speeds of 2-4-

6-8-10 meters per second. Using this mobility model nodes

will choose a random point in the simulation area and move

towards it at a constant speed. Once the point is reached the

process will be repeated. For the radio module we choose

to use one that is already configured in the Castalia

framework, the CC2420 chip, with a transmission power of

0dbm and an additive collision model. With respect to the

MAC layer, we have used the Carrier-Sense Multiple

Access (CSMA) configuration that comes with the Castalia

installation. All possible combinations of size and speed

are repeated 10 times with a different random seed for the

mobility pattern and the results are averaged. The combi-

nation of node density and movement speed for the simu-

lations means that all iterations have large amount of

migrations and moments where the network is partitioned.

The total number of migrations range from 10 in the

smallest ones to over 600 in the largest simulations. The

low transmission and reception power, and speed of the

radio module chosen for the simulation means that in the

larger scenarios the amount of message collision increases,

causing over 600 migrations due to nodes trying to find

better connections.

Due to the difficulty of finding an algorithm that allows

for full broker mobility in a publish/subscribe system we

had to choose a more general communication protocol for

ad hoc networks. We compare our protocol with Ad hoc

On-Demand Distance Vector (AODV) [53]. AODV uses a

reactive approach to route creation to compensate for the

dynamic nature of the network, where routes are created

only whenever a node wants to send a message. In order to

better compare both of them we also use the same roles that

can be seen in Table 2. With AODV publishers are

informed of the subscriber identifiers via a configuration

file and all nodes work as brokers.

6.1 Delivery rate

One of the metrics that is able to tell us how well our

protocol works is the delivery rate of messages. We con-

sider the delivery rate as the number of messages a sub-

scriber receives with respect to the ones that were

originally sent to it. In MFT-PubSub messages that are not

yet delivered are stored on the brokers waiting to be sent as

soon as it receives new information about the subscriber.

Eventually all messages will be delivered, but in the case of

our simulations we consider that any message not yet

delivered at the end on the simulation as undelivered.

In Fig. 2 we can see a comparison between our protocol

and AODV. MFT-PubSub seems to have better resilience

to speed, even improving the delivery rate as the speed

goes up. Both protocols are strongly affected by the net-

work size, the bigger the network, the harder it is to cor-

rectly deliver a message.

In addition, if we look at Fig. 3 we can see how many

messages are actually delivered. The behavior we see in

Fig. 2a, where we see an improvement of delivery rate for

higher speeds can be further analyzed with Fig. 3b. Here

we can see a slight increase in the total number of messages

delivered related to the speed, but as the speed reaches

6 m/s it starts to drop. This behavior can be explained by

the way our algorithm buffers the messages. Whenever a

broker cannot find the path to a subscriber it will store it

and wait for new information on that subscriber, as the

speed goes there are more opportunities for a subscriber to

pass by a broker that has a message for it. If we compare

the delivery rate differences in Fig. 2 with the amount of

messages delivered in Fig. 3a, we might think that the

difference in delivered messages is not as big as the

delivery rate might suggest. This difference is due to how a

publish/subscribe system works, in order to deliver a

message to a subscriber that subscriber has to first sub-

scribe to some content. In these simulations we only take

into account the messages that are routed to a subscriber as

having to be delivered to that subscriber. If a broker

receives a PUB message but does not know a subscriber on

the other side of the network is interested on it, the message

will not be considered a loss.

Table 2 Simulation Configurations

Configuration #pubs #susbs #brokers Area

C2 2 2 2 35x35 m2

C4 2 4 4 45x45 m2

C8 2 8 8 60x60 m2

C16 2 16 16 80x80 m2

C32 2 32 32 110x110 m2

Wireless Networks

123

6.2 End-to-end delay

Another metric is the time it takes a message to reach its

destination, we call this the end-to-end delay. In Fig. 4 we

can see how network size affects the end-to-end delay.

Even though MFT-PubSub uses buffering of messages to

be delivered at a later date, it still keeps up with AODV,

that tries to deliver a message as soon as possible, even

obtaining better results on bigger networks where AODV

struggles to keep routing tables updated.

6.3 Number of messages exchanged

Finally, an interesting metric is the total number of mes-

sages exchanged in the network. This gives us insight into

how efficiently a protocol is able to route messages, and

how much overhead the protocol creates. In Fig. 5 we have

this data as the average number of messages sent by each

node, be it to find a route, delivery of a publication or any

other kind of message. For the smallest configuration

AODV has better performance than our protocol, since

MFT-PubSub has to maintain a communication tree. But,

whereas the number of messages needed as the network

size gets bigger barely changes in our algorithm, AODV

has a huge increase in the number of messages it needs to

find the correct routes.

Fig. 2 Message delivery rate comparison of both algorithms depending on the size of the simulation

Fig. 3 Average number of messages correctly delivered. In a we show the results for a node speed of 8 m/s on different configurations. And, in

b we show the results of all speeds for the C16 configuration

Fig. 4 Comparison of end-to-end delay, in seconds, for data messages

for a node speed of 8 m/s. Note the logarithmic scale on the y axis

Wireless Networks

123

In the case of MFT-PubSub we also observed that there

is a big difference between the publishers/subscribers and

brokers in the number of messages. The former only need

to send a few messages in total to keep connected to the

spanning tree and the brokers do most of the work.

7 Conclusion

In this paper we have presented an approach to introduce

full mobility support (i.e., not only clients but also brokers)

for a publish/subscribe system. It is based on a spanning

tree created via a leader election algorithm that works

in situations where it is not known a priori how many nodes

there are. This algorithm also gives us a mechanism to

detect the movement of nodes as a migration.

Our protocol, named MFT-PubSub, uses a mechanism to

reduce the number of messages for any migration and only

exchanges information when explicitly asked.

We have simulated MFT-PubSub on Castalia and

compared it to AODV, to analyze the performance with

respect to mobility support and number of devices sup-

ported. We improve on the message delivery rate of

AODV, though the performance is significantly reduced for

networks up to 66 nodes. We have also shown that the

number of messages exchanged increases linearly with the

number of nodes in the system and is an order of magnitude

lower than AODV for simulations of more than 10 nodes.

MFT-PubSub allows for any node in the network to

behave as any role of a publish/subscribe system; be it

publisher, subscriber or broker. In the future we want to

further test this approach and use it as a solution for mul-

ticast communication in mobile environments.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature. Research supported by grant

TIN2016-79897-P funded by MCIN/AEI/10.13039/501100011033

and by the European Union, and by the Department of Education,

Universities and Research of the Basque Government, grant IT-1437-

22 (ADIAN).

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Data availability The datasets generated during and/or analysed dur-

ing the current study are available in the following GitHub repository,

https://github.com/ugaitz/MFTPubSubData.

References

1. Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M.

(2003). The many faces of publish/subscribe. ACM Computing
Surveys, 35(2), 114–131.

2. Carzaniga, A., Rosenblum, D. S., & Wolf, A. L. (2001). Design

and evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems (TOCS), 19(3), 332–383.

https://doi.org/10.1145/380749.380767.

3. Castro, M., Druschel, P., Kermarrec, A., & Rowstron, A. I. T.

(2002). Scribe: a large-scale and decentralized application-level

multicast infrastructure. IEEE Journal on Selected Areas in
Communications, 20(8), 1489–1499. https://doi.org/10.1109/

JSAC.2002.803069

4. Rosenblum, D. S. & Wolf, A. L. (1997). A design framework for

internet-scale event observation and notification. In Software
engineering-ESEC/FSE ’97, 6th European software engineering
conference held jointly with the 5th ACM SIGSOFT symposium
on foundations of software engineering, (Vol. 1301,

pp. 344–360). Springer. https://doi.org/10.1007/3-540-63531-9_

24

5. Beckmann, K. & Thoss, M. (2012). A wireless sensor network
protocol for the OMG data distribution service (pp. 45–50).

http://ieeexplore.ieee.org/document/6273603/.

6. Cam, H., Sahingoz, O. K., & Sonmez, A. C. (2011). Wireless
sensor networks based on publish/subscribe messaging para-
digms (pp. 233–242).

7. Tekin, Y. & Sahingoz, O. K. (2016). A publish/subscribe mes-

saging system for wireless sensor networks. In Sixth international
conference on digital information and communication technology
and its applications, DICTAP (pp. 171–176). https://doi.org/10.

1109/DICTAP.2016.7544022

8. Akkermans, S. et al. (2016). Towards efficient publish-subscribe

middleware in the IoT with IPv6 multicast. In 2016 IEEE inter-
national conference on communications, ICC 2016, Kuala

Lumpur, Malaysia (pp. 1–6). https://doi.org/10.1109/ICC.2016.

7511254.

9. Hakiri, A., Berthou, P., Gokhale, A. S., & Abdellatif, S. (2015).

Publish/subscribe-enabled software defined networking for effi-

cient and scalable IoT communications. IEEE Communications

Fig. 5 Comparison of the average number of messages sent by each

node in order to correctly route messages for a node speed of 8 m/s.

Note the logarithmic scale on the y axis

Wireless Networks

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/ugaitz/MFTPubSubData
https://doi.org/10.1145/380749.380767
https://doi.org/10.1109/JSAC.2002.803069
https://doi.org/10.1109/JSAC.2002.803069
https://doi.org/10.1007/3-540-63531-9_24
https://doi.org/10.1007/3-540-63531-9_24
http://ieeexplore.ieee.org/document/6273603/
https://doi.org/10.1109/DICTAP.2016.7544022
https://doi.org/10.1109/DICTAP.2016.7544022
https://doi.org/10.1109/ICC.2016.7511254
https://doi.org/10.1109/ICC.2016.7511254

Magazine, 53(9), 48–54. https://doi.org/10.1109/MCOM.2015.

7263372.

10. Happ, D., Karowski, N., Menzel, T., Handziski, V., & Wolisz, A.

(2017). Meeting IoT platform requirements with open pub/sub

solutions. Annales des Télécommunications, 72(1–2), 41–52.

https://doi.org/10.1007/s12243-016-0537-4

11. Cugola, G., Di Nitto, E., & Fuggetta, A. (2001). The JEDI event-

based infrastructure and its application to the development of the

OPSS WFMS. IEEE Transactions on Software Engineering,
27(9), 827–850.

12. Mühl, G., Ulbrich, A., Herrmann, K., & Weis, T. (2004). Dis-

seminating information to mobile clients using publish-subscribe.

IEEE Internet Computing, 8(3), 46–53. https://doi.org/10.1109/

MIC.2004.1297273.

13. Cugola, G., Murphy, A. L., & Picco, G. P. (2006). Content-based

publish-subscribe in a mobile environment. In P. Bellavista & A.

Corradi (Eds.) The handbook of mobile middleware (pp.

257–285). Auerbach Publications/CRC. https://doi.org/10.1201/

9781420013153.ch11.

14. Esposito, C., Platania, M., & Beraldi, R. (2014). Reliable and

timely event notification for publish/subscribe services over the

internet. IEEE/ACM Transactions on Networking, 22(1),

230–243. https://doi.org/10.1109/TNET.2013.2245144.

15. Zhao, Y., & Wu, J. (2013). Building a reliable and high-perfor-

mance content-based publish/subscribe system. Journal of Par-
allel and Distributed Computing, 73(4), 371–382. https://doi.org/

10.1016/j.jpdc.2012.12.014

16. de Araujo, J. P., Arantes, L., Duarte, E. P., Rodrigues, L. A., &

Sens, P. (2019). VCube-PS: a causal broadcast topic-based pub-

lish/subscribe system. Journal of Parallel and Distributed Com-
puting, 125, 18–30. https://doi.org/10.1016/j.jpdc.2018.10.011.

17. Salehi, P., Doblander, C., & Jacobsen, H.-A. (2016). Highly-

available content-based publish/subscribe via gossiping. In Pro-
ceedings ofthe 10th ACM international conference ondistributed
and event-based systems, DEBS (pp. 93–104). New York: ACM

https://doi.org/10.1145/2933267.2933303.

18. Sheltami, T. R., Al-Roubaiey, A. A., & Mahmoud, A. S. H.

(2016). A survey on developing publish/subscribe middleware

over wireless sensor/actuator networks. Wireless Networks, 22(6),

2049–2070.

19. Huang, Y., & Garcia-Molina, H. (2004). Publish/subscribe in a

mobile environment. Wireless Networks, 10(6), 643–652. https://

doi.org/10.1023/B:WINE.0000044025.64654.65.

20. Huang, Y., & Garcia-Molina, H. (2003). Publish/subscribe tree

construction in wireless Ad-Hoc networks. In Mobile data man-
agement, 4th international conference, MDM 2003 (pp.

122–140). Melbourne, Australia. https://doi.org/10.1007/3-540-

36389-0_9 .

21. Burcea, I., Jacobsen, H., de Lara, E., Muthusamy, V., & Petrovic,

M. (2004). Disconnected operation in publish/subscribe middle-

ware. In 5th IEEE international conference on mobile data
management (MDM 2004) (p. 39). Berkeley. https://doi.org/10.

1109/MDM.2004.1263041.

22. Muthusamy, V., Petrovic, M., & Jacobsen, H. (2005). Effects of

routing computations in content-based routing networks with

mobile data sources. In Proceedings of the 11th annual interna-
tional conference on mobile computing and networking, MOBI-
COM 2005 (pp. 103–116). Cologne, Germany https://doi.org/10.

1145/1080829.1080840.

23. Baldoni, R., Marchetti, C., Virgillito, A., & Vitenberg, R. (2005).

Content-based publish-subscribe over structured overlay net-

works. In 25th international conference on distributedcomputing
systems (ICDCS 2005) (pp. 437–446). Columbus. https://doi.org/

10.1109/ICDCS.2005.19.

24. Baldoni, R., Beraldi, R., Querzoni, L., & Virgillito, A. (2007).

Efficient publish/subscribe through a self-organizing broker

overlay and its application to SIENA. The Computer Journal,
50(4), 444–459. https://doi.org/10.1093/comjnl/bxm002.

25. Detti, A., Tassetto, D., Melazzi, N. B., & Fedi, F. (2015).

Exploiting content centric networking to develop topic-based,

publish-subscribe MANET systems. Ad hoc Networks, 24,
115–133.

26. Ventrella, A. V., Piro, G., & Grieco, L. A. (2017). Publish-sub-

scribe in mobile information centric networks: Modeling and

performance evaluation. Computer Networks, 127, 317–339.

https://doi.org/10.1016/j.comnet.2017.08.022

27. Xylomenos, G., Vasilakos, X., Tsilopoulos, C., Siris, V. A., &

Polyzos, G. C. (2012). Caching and mobility support in a publish-

subscribe internet architecture. IEEE Communications Magazine,
50(7), 52–58. https://doi.org/10.1109/MCOM.2012.6231279.

28. Li, S., Da Xu, L., & Zhao, S. (2015). The internet of things: A

survey. Information Systems Frontiers, 17(2), 243–259.

29. Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The internet of

things—A survey of topics and trends. Information Systems
Frontiers, 17(2), 261–274.

30. Caporuscio, M., Carzaniga, A., & Wolf, A. L. (2003). Design and

evaluation of a support service for mobile, wireless pub-

lish/subscribe applications. IEEE Transactions on Software
Engineering, 29(12), 1059–1071. https://doi.org/10.1109/TSE.

2003.1265521.

31. Gündogan, C., Kietzmann, P., Schmidt, T. C., & Wählisch, M.

(2018). HoPP: Robust and resilient publish-subscribe for an

information-centric internet of things. In 43rd IEEE conferenceon
local computer networks, LCN 2018 (pp. 331–334). Chicago, IL,

USA https://doi.org/10.1109/LCN.2018.8638030.

32. Dominguez, A. M., Robles, T., Alcarria, R., & Cedeño, E. (2013).

A Hot-topic based distribution and notification of events in Pub/

Sub mobile brokers. Network Protocols & Algorithms, 5(1),

90–110. https://doi.org/10.5296/npa.v5i1.3326.

33. Hunkeler, U., Truong, H. L., & Stanford-Clark, A. J. (2008).

MQTT-S - A publish/subscribe protocol for wireless sensor net-

works. In Proceedings of the third international conference on
communication system software and middleware (COMSWARE
2008) (pp. 791–798). Bangalore. https://doi.org/10.1109/

COMSWA.2008.4554519.

34. Tarkoma, S. (2006). Efficient content-based routing, mobility-
aware topologies, and temporal subspace matching. Ph.D. thesis,

University of Helsinki, Finland.

35. Fiege, L., Gärtner, F. C., Kasten, O., & Zeidler, A. (2003).

Supporting mobility in content-based publish/subscribe middle-

ware. In Middleware 2003, ACM/IFIP/USENIX international
middleware conference (pp. 103–122). Rio de Janeiro, Brazil.

https://doi.org/10.1007/3-540-44892-6.

36. Salvador, Z., Alzua, A., Larrea, M., & Lafuente, A. (2010).

Mobile XSiena: Towards mobile publish/subscribe. In Proceed-
ings of the fourth ACM international conference on distributed
event-based systems, DEBS 2010 (pp. 91–92). Cambridge, United

Kingdom. https://doi.org/10.1145/1827418.1827434.

37. Jerzak, Z. (2009). XSiena: The content-based publish/subscribe
system. Ph.D. thesis, Dresden University of Technology. http://

nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24628.

38. Salvador, Z. (2012). Client mobility support and communication
efficiency in distributed publish/subscribe. Ph.D. thesis, Univer-

sity of the Basque Country UPV/EHU, Spain.

39. Salvador, Z., Lafuente, A., & Larrea, M. (2012). Design and

evaluation of a publish/subscribe framework for ubiquitous sys-

tems. In Mobile and ubiquitous systems: Computing, networking,
and services - 9th international conference, MobiQuitous 2012.
Lecture notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering (Vol. 120,

pp. 50–63). Beijing, China. https://doi.org/10.1007/978-3-642-

40238-8_5.

Wireless Networks

123

https://doi.org/10.1109/MCOM.2015.7263372
https://doi.org/10.1109/MCOM.2015.7263372
https://doi.org/10.1007/s12243-016-0537-4
https://doi.org/10.1109/MIC.2004.1297273
https://doi.org/10.1109/MIC.2004.1297273
https://doi.org/10.1201/9781420013153.ch11
https://doi.org/10.1201/9781420013153.ch11
https://doi.org/10.1109/TNET.2013.2245144
https://doi.org/10.1016/j.jpdc.2012.12.014
https://doi.org/10.1016/j.jpdc.2012.12.014
https://doi.org/10.1016/j.jpdc.2018.10.011
https://doi.org/10.1145/2933267.2933303
https://doi.org/10.1023/B:WINE.0000044025.64654.65
https://doi.org/10.1023/B:WINE.0000044025.64654.65
https://doi.org/10.1007/3-540-36389-0_9
https://doi.org/10.1007/3-540-36389-0_9
https://doi.org/10.1109/MDM.2004.1263041
https://doi.org/10.1109/MDM.2004.1263041
https://doi.org/10.1145/1080829.1080840
https://doi.org/10.1145/1080829.1080840
https://doi.org/10.1109/ICDCS.2005.19
https://doi.org/10.1109/ICDCS.2005.19
https://doi.org/10.1093/comjnl/bxm002
https://doi.org/10.1016/j.comnet.2017.08.022
https://doi.org/10.1109/MCOM.2012.6231279
https://doi.org/10.1109/TSE.2003.1265521
https://doi.org/10.1109/TSE.2003.1265521
https://doi.org/10.1109/LCN.2018.8638030
https://doi.org/10.5296/npa.v5i1.3326
https://doi.org/10.1109/COMSWA.2008.4554519
https://doi.org/10.1109/COMSWA.2008.4554519
https://doi.org/10.1007/3-540-44892-6
https://doi.org/10.1145/1827418.1827434
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24628
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24628
https://doi.org/10.1007/978-3-642-40238-8_5
https://doi.org/10.1007/978-3-642-40238-8_5

40. Salvador, Z., Larrea, M., & Lafuente, A. (2012). Phoenix: A

protocol for seamless client mobility in publish/subscribe. In 11th
IEEE international symposium on network computing and
applications, NCA 2012 (pp. 111–120). Cambridge. https://doi.

org/10.1109/NCA.2012.37.

41. Luzuriaga, J. E. et al. (2015). Handling mobility in IoT applica-

tions using the MQTT protocol. In 2015 Internet Technologies
and Applications (ITA) (pp. 245–250). https://doi.org/10.1109/

ITechA.2015.7317403.

42. Siegemund, G., & Turau, V. (2018). A self-stabilizing pub-

lish/subscribe middleware for IoT applications. ACM Transac-
tions on Cyber-Physical Systems, 2(2), 1–26. https://doi.org/10.

1145/3185509.

43. Chen, C., Vitenberg, R. & Jacobsen, H.-A. (2016). Omen:

Overlay mending for topic-based publish/subscribe systems under

churn. In Proceedings of the 10th ACM international conference
on distributed and event-based systems, DEBS ’16 (ACM,

pp. 105–116). Irvine. https://doi.org/10.1145/2933267.2933305.

44. Chen, C., Jacobsen, H.-A., & Vitenberg, R. (2012). Reinforce
your overlay with shadows: Efficient dynamic maintenance of
robust low fan-out overlays for topic-based publish/subscribe
under churn. Tech. Rep., University of Toronto, University of

Oslo.

45. Huang, Y., & Garcia-Molina, H. (2001). Publish/subscribe in a

mobile enviroment. In Proceedingsof the second ACM interna-
tional workshopon data engineering for wireless and mobileac-
cess (pp. 27–34). Santa Barbara.

46. Rausch, T., Nastic, S., & Dustdar, S. (2018). Emma: Distributed

qos-aware mqtt middleware for edge computing applications. In

2018 IEEEinternational conference on cloud engineering, IC2E
2018 (pp. 191–197). IEEE, Orlando.

47. Banavar, G. et al. (1999). An efficient multicast protocol for

content-based publish-subscribe systems. In Proceedings of the
19th international conference on distributed computingsystems
(pp. 262–272). Austin: ACM.

48. Gómez-Calzado, C., Lafuente, A., Larrea, M. & Raynal, M.

(2013). Fault-tolerant leader election in mobile dynamic dis-

tributed systems. In IEEE 19th pacific rim international sympo-
sium on dependable computing, PRDC (pp. 78–87). Vancouver,

BC, Canada. https://doi.org/10.1109/PRDC.2013.17

49. Burgos, U., Amozarrain, U., Gómez-Calzado, C., & Lafuente, A.

(2017). Routing in mobile wireless sensor networks: A leader-

based approach. Sensors, 17(7), 1587.

50. Varga, A., & Hornig, R. (2008). An overview of the omnet??

simulation environment. In Proceedings of the 1st international
conference on simulation tools and techniques for communica-
tions, networks andsystems & workshops, SimuTools 2008, (p.

60). Marseille, France:ICST/ACM. https://doi.org/10.4108/ICST.

SIMUTOOLS2008.3027

51. Boulis, A. (2007). Castalia: Revealing pitfalls in designing dis-

tributed algorithms in wsn. In Proceedings of the 5th

international conference on embedded networked sensor systems,
SenSys 2007 (p. 407–408). Sydney: ACM.

52. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility

models for ad hoc network research. Wireless Communications
and Mobile Computing, 2(5), 483–502. https://doi.org/10.1002/

wcm.72

53. Perkins, C. E., & Belding-Royer, E. M. (1999). Ad-hoc on-de-

mand distance vector routing. In 2nd workshop on mobile com-
puting systemsand applications (WMCSA ’99) (pp. 90–100). New

Orleans. https://doi.org/10.1109/MCSA.1999.749281.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Ugaitz Amozarrain received the

bachelor’s degree in computer

engineering from Mondragon

University, Spain, and the Ph.D

degree in Informatics from the

University of the Basque

Country UPV/EHU. He is cur-

rently a lecturer and researcher

at the Public University of

Navarre UPNA. His research

interests include distributed

systems with emphasis on

mobility.

Mikel Larrea received the bach-

elor’s degree in computer engi-

neering from the Swiss Federal

Institute of Technology, and the

Ph.D degree in Informatics from

the University of the Basque

Country UPV/EHU. He is cur-

rently a professor at the UPV/

EHU. His research interests

include distributed algorithms

and systems, fault tolerance and

mobile and ubiquitous

computing.

Wireless Networks

123

https://doi.org/10.1109/NCA.2012.37
https://doi.org/10.1109/NCA.2012.37
https://doi.org/10.1109/ITechA.2015.7317403
https://doi.org/10.1109/ITechA.2015.7317403
https://doi.org/10.1145/3185509
https://doi.org/10.1145/3185509
https://doi.org/10.1145/2933267.2933305
https://doi.org/10.1109/PRDC.2013.17
https://doi.org/10.4108/ICST.SIMUTOOLS2008.3027
https://doi.org/10.4108/ICST.SIMUTOOLS2008.3027
https://doi.org/10.1002/wcm.72
https://doi.org/10.1002/wcm.72
https://doi.org/10.1109/MCSA.1999.749281

	Using publish/subscribe for message routing in mobile environments
	Abstract
	Introduction
	Related work
	Mobile clients
	Mobile brokers
	Proposed solution

	Model and definitions
	Simple routing
	Phoenix

	Creating the network overlay
	The MFT-PubSub protocol
	Performance evaluation
	Delivery rate
	End-to-end delay
	Number of messages exchanged

	Conclusion
	Data availability
	References

