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I. REVIEW OF WAVE PROPAGATION AND QUANTIZATION IN ANISOTROPIC

MEDIA

In this supplementary note we review the basics of wave propagation and the quantization

of the electromagnetic field in anisotropic media, providing additional details to the theory

developed in the main text.

A. Derivation of the wave equation and magnetic flux density

First, we derive the wave equation and a compact expression for the magnetic flux density.

Our start point is time-harmonic Maxwell equations for plane wave modes with propagation

constant k = s k:

k× E = ωB (1)

k×H = −ωD (2)

k ·D = 0 (3)

k ·B = 0 (4)

For an electrically isotropic medium (D = ε0 εE) with anisotropic permeability (B =

µ0µ ·H), we can derive the wave equation

k× k×H = k · (k ·H)− k2H = −ω
2

c2
εµ ·H (5)

With the definition η = kc/ω, and combining both results we can rewrite the wave

equation as

s (s ·H)−H = − 1

η2
εµ ·H (6)

This allow us to write a compact expression for the magnetic flux density:

B = µ0µ ·H =
µ0η

2

ε
(H− s (s ·H)) (7)
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B. Useful property for computing the energy of a mode

Next, we derive a useful property for determining the energy of a mode. First, we use

(7) to write

H∗ · µ ·H =
1

µ0

H∗ ·B =
η2

ε
(H∗ ·H− (s ·H∗) (s ·H)) (8)

Then, we use (2) to write

D∗ ·D =
η2

c2
(s×H∗) · (s×H) =

η2

c2
(H∗ ·H− (s ·H∗) · (s ·H)) (9)

Leading to the relation:

H∗ · µ ·H =
c2

ε
D∗ ·D (10)

Finally, if we define H = hkH0, then we can compactly write D = − k
ω
s× hkH0 and

hk · µ · hk =
k2c2

ω2ε
(s× hk)2 (11)

C. Review of the quantization procedure for anisotropic dielectrics

Next, we carry out the quantization of the plane-wave modes discussed above

Hk (r, t) = Pk
1√
V

hk αk (t) eik·r (12)

Ek (r, t) = − 1

ωε0ε
k×Hk (r, t) = −Pk

1√
V

k

ωε0ε
(uk × hk) αk (t) eik·r (13)

where we have introduced pre-factors in the form of a quantization volume V , a normalization

constant Pk and a dynamical variable αk (t). The energy density is given by

Uk (t) =

∫
V

d3r
(
ε0 ε |Ek (r, t)|2 + µ0H

∗
k (r, t) · µ ·Hk (r, t)

)
(14)

=
µ0 P

2
k

2
(α∗k (t)αk (t) + αk (t)α∗k (t))

(
k2c2

ω2ε
(uk × hk)2 + hk · µ · hk

)
(15)

Using the property (11) the energy density can be compactly written as

Uk (t) = µ0 P
2
k hk · µ · hk (α∗k (t)αk (t) + αk (t)α∗k (t)) (16)

Quantization is carried out by using the substitution αk →
√
}ωk/2 âk:

Ĥk = P 2
k hk · µ · hk µ0

}ωk

2

(
â†kâk + âkâ

†
k

)
(17)
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And we choose the normalization constant such that

Pk =

√
1

µ0Ck

(18)

with

Ck = hk · µ · hk (19)

obtaining the usual expression for the Hamiltonian

Ĥk =
}ωk

2

(
â†kâk + âkâ

†
k

)
(20)

Then, the (positive frequency) field operators are given by

Ĥ
(+)
k (r) =

√
}ωk

2µ0CkV
hk âk e

ik·r (21)

and the complete operators are given by Ĥk (r) = Ĥ
(+)
k (r) + h.c..

D. Input-output relations for an anisotropic temporal boundary

Here we provide additional details for the derivation of Eq. (2) of the main text, describ-

ing the input-output relations for an anisotropic temporal boundary. First, following the

expression for the magnetic field operator we can construct the magnetic flux B̂k (r) and

the electric displacement operators as follows

B̂k (r) = µ0µ · hk

√
}ωk

2µ0CkV

(
âke

ik·r + â†ke
−ik·r

)
(22)

D̂k (r) = − k

ωk

√
}ωk

2µ0CkV
(uk × hk)

(
âke

ik·r − â†ke
−ik·r

)
(23)

Then, recalling the property (11), we can multiply (22) by hk and find that the continuity

of B̂k (r) leads to the condition

√
ωk1ε1

(
âk1 + â†−k1

)
=
√
ωk2ε2

(
âk2 + â†−k2

)
(24)

Similarly, we can multiply (23) by uk × hk and obtain the condition√
1

ωk1ε1

(
âk1 − â†−k1

)
=

√
1

ωk2ε2

(
âk2 − â†−k2

)
(25)

Finally, solving (24)-(25) leads to the input-output relations as given by Eq. (2) of the

main text.
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E. Particularization to a diagonal permeability tensor

Let us assume that we have a diagonal permeability tensor: µ = diag {µx, µy, µz}. Then,

each component of Eq. (7) can be rearranged as follows

Hi =
η2

η2 − εµi

si (s ·H) i = x, y, z (26)

Multiplying on both sides by si and summing over i we get

s ·H =
∑
i

η2

η2 − εµi

s2i (s ·H) (27)

Noting that s ·H is on both sides of the equation and it can be removed, and dividing

by η2, we obtain the dispersion relation

s2x
η2 − εµx

+
s2y

η2 − εµy

+
s2z

η2 − εµz

=
1

η2
(28)

For 2D propagation s = uxsx + uysy = uxcosφ+ uysinφ, so that we can write

s2x
η2 − εµx

+
s2y

η2 − εµy

=
1

η2

η2
(
s2x
(
η2 − εµy

)
+ s2y

(
η2 − εµx

))
=
(
η2 − εµx

) (
η2 − εµy

)

−η2ε
(
s2xµy + η2s2yµx

)
= −η2ε (µx + µy) + ε2µxµy

η2
(
µx + µy − s2xµy − s2yµx

)
= εµxµy

η2
(
µxs

2
x + µys

2
y

)
= εµxµy

s2x
µy

+
s2y
µx

=
ε

η2

and the dispersion relation reduces to

cos2φ

µy

+
sin2φ

µx

=
ε

η2
(29)
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In this manner, the effective refractive index, the wavenumber and the frequency are

given by

η =

√
εµxµy

µxcos2φ+ µysin
2φ

(30)

ωk = kc

√
µxcos2φ+ µysin

2φ

εµxµy

(31)
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