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Abstract
After [Uniqueness of unconditional basis of infinite direct sums of quasi-Banach
spaces, Positivity 26 (2022), Paper no. 35] was published, we realized that Theo-
rem 4.2 therein, when combined with work of Casazza and Kalton (Israel J. Math.
103:141–175, 1998) , solves the long-standing problem whether there exists a quasi-
Banach space with a unique unconditional basis whose Banach envelope does not have
a unique unconditional basis. Here we give examples to prove that the answer is posi-
tive.We also use auxiliary results in the aforementioned paper to give a negative answer
to the question of Bourgain et al. (MemAmMath Soc 54:iv+111, 1985)*Problem 1.11
whether the infinite direct sum �1(X) of a Banach space X has a unique unconditional
basis whenever X does.
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Roughly speaking, the Banach envelope ̂X of a quasi-Banach space X is the Banach
space “closest” to X . It is not surprising then that ̂X and X share many important
structural features such as having the same dual space. If X is a normalized uncondi-
tional basis of X thenX is a semi-normalized unconditional basis of ̂X (see [2, Section
10]) so it is natural to wonder if the property of having a unique unconditional basis
(up to equivalence and permutation) will be transferred to the Banach envelope. This
problem is far from trivial since in all known spaces so far, the pattern shows that ̂X
has a unique unconditional basis whenever X does. Take, for instance, the classical
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p-Banach spaces �p, Hp(T), �p(�1) or �1(�p) for 0 < p < 1, which have a unique
unconditional basis (see [4, 10, 14]) and whose Banach envelope �1 also does [13].

Dealing only with quasi-Banach spaces whose Banach envelope is isomorphic to
�1 is too restrictive. To obtain a better insight into the underlying pattern, wemust look
at quasi-Banach spaces with a more complicated Banach envelope. If we focus on the
mixed-norm matrix spaces �p(�q), 0 < p, q ≤ ∞ (where �∞ means c0) we realize
that the p-Banach spaces �p(�2), �p(c0), and c0(�p) for 0 < p < 1, have a unique
unconditional basis (see [5, 12]); since the Banach envelopes of those spaces, namely
�1(�2), �1(c0) and c0(�1) respectively, also do (see [6]), these examples reinforce the
above-mentioned pattern.

Bourgain et al. proved that c0(�2) has a unique unconditional basis but that, in
contrast, the spaces �2(c0) and �2(�1) do not. We observe that while neither �2(c0) nor
c0(�2) are the Banach envelope of a non-locally convex natural quasi-Banach space
with a basis [11], there are non-locally convex spaces such as �2(�p) for 0 < p <

1 whose Banach envelope is �2(�1). However, no technique specific to non-locally
convex spaces has been shown to be effective to determine whether these spaces have
a unique unconditional basis.

Classical Banach spaces seem not to provide examples that disprove the con-
jecture that uniqueness of unconditional basis passes to Banach envelopes, but the
non-classical Tsirelson space T can be used because Casazza and Kalton [8] proved
that that c0(T ) does not have a unique unconditional basis even though T does (see
[7, Theorem 5.1]) . The original Tsirelson’s space T ∗ has also a unique unconditional
basis. This can be deduced from the following result in combination with the fact that
T is the dual space of T ∗ (see [9]).

Lemma 1 Let X be a Banach space with an unconditional basis. Suppose that X∗ has
a unique unconditional basis. Then X has a unique unconditional basis too.

Applying Lemma 1with X = c0(T ) gives that its dual space �1(T ∗) does not have a
unique unconditional basis in spite of the fact that T ∗ does. Notice the tight connection
of this example to [6, Problem 11.1], where the question of whether the uniqueness
of unconditional basis passes to infinite �1-sums is raised. In addition, combining our
remarkwith [1, Theorem4.2]we solve in the negative the above-mentioned conjecture:

Theorem 2 For each 0 < p < 1 there exists a p-Banach space X with a unique
unconditional basis whose Banach envelope ̂X does not have a unique unconditional
basis.

Indeed, the p-Banach space �p(T ∗), 0 < p < 1, has a unique unconditional basis
(see [1, Example 7.12(ii)]), and its Banach envelope is �1(T ∗).

For the sake of completeness we close this informative note by proving Lemma 1.

Proof of Lemma 1 Since X∗ has a basis, it is separable. Therefore, since the property
of having a separable dual is inherited by subspaces, X contains no isomorphic copy of
�1. Then, by [3, Corollary 3.3.3], any unconditional basis of X is shrinking. LetX and
Y be normalized unconditional bases of X . The basic sequences X ∗ and Y∗ of their
biorthogonal functionals are semi-normalized unconditional bases of X∗. Hence, by
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assumption, they are permutatively equivalent. By the reflexivity principle for basic
sequences in Banach spaces (see [3, Corollary 3.2.4]), X and Y are equivalent up to
a permutation.
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