
Citation: Chocarro, L.; Blanco, E.;

Fernández-Rubio, L.; Arasanz, H.;

Bocanegra, A.; Echaide, M.; Garnica,

M.; Ramos, P.; Piñeiro-Hermida, S.;

Vera, R.; et al. Cutting-Edge CAR

Engineering: Beyond T Cells.

Biomedicines 2022, 10, 3035.

https://doi.org/10.3390/

biomedicines10123035

Academic Editor: Satoshi Wada

Received: 29 October 2022

Accepted: 18 November 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Review

Cutting-Edge CAR Engineering: Beyond T Cells
Luisa Chocarro 1,†, Ester Blanco 1,2,† , Leticia Fernández-Rubio 1 , Hugo Arasanz 1,3, Ana Bocanegra 1 ,
Miriam Echaide 1, Maider Garnica 1, Pablo Ramos 1, Sergio Piñeiro-Hermida 1, Ruth Vera 3, Grazyna Kochan 1,*
and David Escors 1,*

1 Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA),
Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA),
Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain

2 Division of Gene Therapy and Regulation of Gene Expression, Instituto de Investigación Sanitaria de
Navarra (IdISNA), Cima Universidad de Navarra, 31008 Pamplona, Spain

3 Medical Oncology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA),
Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain

* Correspondence: grazyna.kochan@navarra.es (G.K.); descorsm@navarra.es (D.E.)
† These authors contributed equally to this work.

Abstract: Chimeric antigen receptor (CAR)-T adoptive cell therapy is one of the most promising
advanced therapies for the treatment of cancer, with unprecedented outcomes in haematological
malignancies. However, it still lacks efficacy in solid tumours, possibly because engineered T cells
become inactive within the immunosuppressive tumour microenvironment (TME). In the TME, cells
of the myeloid lineage (M) are among the immunosuppressive cell types with the highest tumour
infiltration rate. These cells interact with other immune cells, mediating immunosuppression and
promoting angiogenesis. Recently, the development of CAR-M cell therapies has been put forward
as a new candidate immunotherapy with good efficacy potential. This alternative CAR strategy
may increase the efficacy, survival, persistence, and safety of CAR treatments in solid tumours. This
remains a critical frontier in cancer research and opens up a new possibility for next-generation
personalised medicine to overcome TME resistance. However, the exact mechanisms of action of
CAR-M and their effect on the TME remain poorly understood. Here, we summarise the basic,
translational, and clinical results of CAR-innate immune cells and CAR-M cell immunotherapies,
from their engineering and mechanistic studies to preclinical and clinical development.

Keywords: CAR-myeloid; CAR-macrophage; CAR-monocyte; CAR-NK; immunotherapy; tumour
microenvironment

1. Introduction: Adoptive T Cell Therapy (ACT)

Immunotherapy has recently emerged as an effective cancer treatment, generating
durable and successful responses. Two main types of immunotherapies have emerged:
immune checkpoint inhibitors and adoptive cell therapies [1]. Immune checkpoint blockade
immunotherapies are the most widespread, generally consisting of the administration of
monoclonal antibodies that block co-inhibitory interactions between T cells and cancer
cells [1]. This type of immunotherapy is based on the blockade of T cell inhibitory receptors
such as programmed death-1 (PD-1) or cytotoxic T lymphocyte antigen 4 (CTLA-4) [2].
The most commonly used antibodies in clinical practice are nivolumab, pembrolizumab
and ipilimumab [3–5]. Although effective, a large number of patients show primary or
acquired resistance to treatment or even develop hyperprogressive disease with fast clinical
deterioration [6,7].

In this context, adoptive T cell therapy (APC) has emerged as a promising therapeutic
strategy to treat cancer that might overcome the clinical limitations of immune checkpoint
blockade immunotherapies [8–10]. The most effective APC strategies consist of the genetic
modification of autologous or allogeneic T cells to express tumour antigen-specific T cell
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receptors (TCRs) and chimeric antigen receptors (CARs). Gene modification is usually
carried out either with retrovirus or lentivirus vectors. These T cells exert their cytotoxic-
ity upon antigen contact independently of the major histocompatibility complex (MHC)
engagement restriction [8,11–14].

Chimeric antibody T cell receptor (TCR) molecules were first designed and described
by Gross, Alaks and Eshhar in 1989 [15]. These molecules target tumour antigens through
a single-chain immunoglobulin variable domain that recognises them, conferring antigen
specificity and at the same time activating lymphocytes. CARs are structured with a hinge
and transmembrane region to anchor the CAR to the T cell membrane and contain intra-
cellular domains to transfer activation signals to the T cell (Figure 1). First generation
CARs contained CD3ζ or CD3γ signalling domains alone, but they were not clinically ef-
fective [16]. The 2nd and 3rd generation CARs contain at least one costimulatory signalling
domain along with CD3ζ. T cells expressing these constructs have demonstrated higher
efficacy in treated patients. Some of these additional domains frequently used in these
constructs are the costimulatory signalling domains of CD28 and 4-1BB [17]. In fact, in 2003,
anti-CD19 2nd generation CAR-T cells provided the first preclinical evidence for antitumor
activity against chronic lymphocytic leukemia (CLL) cells, co-stimulated by CD80 and
IL-15 [18,19]. Later, 3rd generation CAR-T cells demonstrated better capacities to boost
anti-tumour activities by introducing both CD28 and 4-1BB signalling domains [20,21].
Interestingly, a 4th generation of novel CAR-T cells is currently under development, such
as armoured CARs and TRUCKs and CAR-T cells with a transgenic payload [22]. Some of
these CARs consist of two or three costimulatory or pro-inflammatory signalling domains
plus an inducible transgenic cytokine secretion module to activate and confer anti-tumour
activity to T cells while immunomodulating the tumour microenvironment [23–25]. Other
CAR-T cell strategies are exploring their combination with other therapies, such as the com-
bination of two or more CARs with diverse antigen specificities (pooled CAR-T cells) [26],
the combination of two or more CARs expressing different tumour antigen specificities
within the same lymphocyte (multi-CAR-T cells) [27–29], or a single CAR targeting several
antigens simultaneously through different antigen-binding domains (tandem CAR-T cells
or TanCARs) [30–33].
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CAR-T cell therapies are demonstrating elevated success rates for the treatment of
haematological neoplasms [34]. Thus, the only CAR-T cell therapies approved for clinical
practice by regulatory agencies are anti-CD19 CAR-T cells for CD19+ B-cell lymphoprolif-
erative malignancies (tisagenlecleucel (Kymriah™), Axicabtagene ciloleucel (Yescarta™),
Brexucabtagene autoleucel (Tecartus™), Lisocabtagene maraleucel (Breyanzi™), and anti-
BCMA CAR-T cells for multiple myelomas (Idecabtagene vicleucel (Abecma®)) [35]. Up to
date, 1120 clinical trials are evaluating CAR-T cell biologicals as treatment interventions
(483 phase 1, 261 phase 1/2, 93 phase 2, 7 phase 2/3, 12 phase 3, 2 phase 4, and 262 not
applicable) (Clinicaltrial.gov, accessed on 18 October 2022). Among them, many clinical
trials for solid tumours are being developed with low efficacy and modest results.

To summarise, CAR-T cells effectively enhance and improve T cell effector functions,
proliferation activity, anti-tumour efficacy, cytokine secretion and persistence, among other
T cell functions [17,36]. Nevertheless, many challenges limit the clinical application of
CAR-T cell therapies, especially for solid tumours, due to their acute and severe associated
toxicities, wider tumour-antigen heterogeneity, antigen escape, insufficient CAR-T cell
persistence and expansion, lack of classical T-attractive chemokines and limited tumour
infiltration [37,38]. The use of αβ autologous T cells from a patient’s own pool poses many
limitations and hinders the standardisation of protocols such as distinguishing normal cells
from malignant cells. The starting cellular products are limited due to the lymphopenia of
the patients [39]. In addition, optimal T cell protocols for adequate activation of these cells
are associated with the risk of cytokine release storm (CRS) as a result of an overactivation
of infused T cells [40]. CAR-T cell therapies have demonstrated to be efficient for the
treatment of hematopoietic diseases, but not for solid tumours. This is thought to occur by
T cell inhibition within the tumour microenvironment (TME), where the infiltrating T cells
face a suppressive environment characterised by low nutrient concentrations, hypoxia and
inhibitory cytokines. Moreover, tumour cells often down-regulate MHC expression, which
is necessary for the recognition of short peptide antigens by TCR-based engineering [41].
Furthermore, CAR-T has a limited ability to penetrate within the tumour tissue [42]. CAR-T
cell trafficking is ineffective because of the immunosuppressive microenvironment and the
dense fibrotic matrix present in solid tumours. Finally, antigen escape and solid tumour
antigens are two of the most limiting factors. Indeed, recent studies have described the
resistance mechanism after CAR-T cell therapy caused by the selection of cancer cells with
down-regulated target antigens [43,44]. An additional danger is that a large proportion of
tumour-associated antigens are also expressed in normal tissues at varying levels. This can
pose a significant threat to CAR-T cell therapies.

To overcome these barriers, novel cutting-edge CAR strategies are being developed,
such as the genetic engineering of other key immune cell types such as macrophages,
monocytes and other myeloid populations to kill tumours [37]. In the TME, myeloid cells
(M) are the innate immune cells with the highest tumour infiltration rate, interacting with
other immune cells, mediating immunosuppression, and promoting angiogenesis. Thus,
the development of CAR-M adoptive cell therapies could be a good way of delivering cells
with anti-tumour potential within the TME.

2. Myeloid Cells Sustaining the Tumour Microenvironment

Many studies have highlighted the critical contribution of myeloid cells to the establish-
ment of an immunosuppressive microenvironment that promotes tumour development and
hinders therapy efficacy. Myeloid cells constitute the major component of the TME and play
a dominant role in suppressing anti-tumour immunity. The most studied tumour-associated
myeloid cells (TAMCs) include tumour-associated macrophages (TAMs), dendritic cells
(TADCs), neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs). As key
players in tumour development, myeloid cells perform a variety of functions in the TME,
varying from immune suppression to immune stimulation. Despite the many studies that
characterise myeloid cell populations within the TME, their ontogeny and development
are still ambiguous, especially for MDSC. This is caused by the phenotypic plasticity of
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myeloid cells and their unique properties of differentiation. In fact, myeloid phenotypes
switch with diverse stimuli. This property can be interestingly rendered as an ideal ed-
itable tool for anticancer therapy. TAMs and TANs can acquire anti-tumour activity by
differentiating into M1 macrophages and N1 neutrophils. On the other hand, they can
become immunosuppressive and tumour-promoting subsets such as M2 macrophages
and N2 neutrophils, respectively. This differentiation polarity depends on the factors and
cytokines present within TME and produced by a variety of tumour cell types [45,46].

Macrophages are a major component of the TME, and they are thought to dominate the
immune landscape within tumours. Macrophages are known as “big eaters”, specialised
cell types in the phagocytosis of dead cells and pathogens. Their phenotype is quite plastic
and depends on the surrounding cytokines, with M2 being the major phenotype of TAMs.
In contrast, M1-like TAMs are involved in activating proinflammatory immune responses as
they have a high capacity for antigen presentation. TAMs play a vital role in the occurrence,
development, invasion, angiogenesis and metastasis of many malignant tumours [45,47].
Hence, TAMs are strongly associated with poor prognosis. Moreover, TAMs possess
significant anti-inflammatory properties and mainly release immunosuppressive factors
and cytokines such as IL-10, TGF-β, CCL17, CCL18 and CCL22 [47–49].

Antigen-presenting cells (APCs), such as dendritic cells (DC), operate as a connection
between the adaptive and innate immune systems. As professional antigen-presenting
cells, DCs are specialised in the processing of foreign antigens and their subsequent pre-
sentation to T cells. Within the TME, TADCs acquire immunosuppressive properties and
are characterised by an immature differentiation state coupled with high antigen uptake
capacities and inadequate antigen presentation [50]. TADCs can also act by inhibiting
tumour-reactive T cells and inducing regulatory T cells (Treg) [51–53].

In contrast to the well-known capability of inflammatory neutrophils to eliminate
pathogens, activate the immune system, and induce tissue damage in infections, TANs
function within the TME as immunosuppressive cells. Several studies suggest that TANs
are involved in tumour progression by promoting the angiogenic switch and stimulating
tumour cell motility, migration and invasion. Thus, TANs contribute to the establishment
of a strongly immunosuppressive microenvironment [54,55].

A major subject of research in immunosuppressive myeloid cells in cancer is the study
of MDSC differentiation and function. MDSCs are considered a heterogeneous and pheno-
typically immature population of myeloid cells that differentiate through a myelopoiesis
imbalance, which is enhanced in pathological conditions. MDSCs are classified into two ma-
jor groups both in humans and mice, namely monocytic MDSCs (M-MDSCs) and gran-
ulocytic/polymorphonuclear MDSCs (G-MDSC /PMN-MDSCs). These MDSC subsets
phenotypically resemble monocytes and neutrophils, respectively [56]. MDSCs are major
promoters of progression and metastasis. These cell types are especially proficient at ex-
erting diverse T cell inhibitory functions. MDSCs are some of the populations that have
predictive and prognostic value for patients undergoing cancer treatments [57–59].

All these properties indicate that there is a strong interplay between tumour and
myeloid cells which is relevant for the establishment of an immunosuppressive TME and
promoting cancer development. As these myeloid cells possess particularly good capacities
to infiltrate the tumour, these TAMCs constitute attractive targets for reprogramming.

3. Modulation of Myeloid Cells as a Therapeutic Strategy

The following section describes ongoing strategies for modulating myeloid cells in
preclinical and clinical settings. Several strategies to target TAMCs have been developed
taking into consideration their properties, such as their differentiation plasticity and im-
munosuppressive functions. The most promising strategies to modulate myeloid cells
are listed in Supplementary Table S1 and are categorised by: (1) reprogramming myeloid
cells to acquire proinflammatory properties; (2) enhancing the diversity of myeloid cell
composition within the TME; (3) functional blockade of immune-suppressive myeloid cells;
(4) myeloid cell vaccines; and (5) immunometabolic strategies.
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3.1. Reprogramming of Myeloid Cells to Acquire Proinflammatory Properties

One approach to reprogram myeloid cells to stimulate anti-cancer activity is to elevate
the expression of pattern recognition receptors expressed by APCs. Toll-like receptor 9
(TLR9) agonists are the most extensively studied in human therapy. In fact, preclinical
studies on TLR9 agonists demonstrate that these increase antigen-specific T cells in multi-
ple tumour types, including breast cancer, colorectal and non-small-cell lung carcinoma
(NSCLC) [60–63]. Ongoing clinical studies are examining the use of TLR9 agonists in
combination with local radiation and immunotherapy (NCT03410901) for the treatment of
refractory lymphomas or conventional chemotherapy (paclitaxel and carboplatin) for the
treatment of NSCLC [64]. Among the different inhibitors used to polarise immunosuppres-
sive myeloid cells, a phosphatidylinositol-3-kinase γ (PI3Kγ) inhibitor has been used in
preclinical murine studies in cancer models. PI3Kγ inhibitors promoted TAM polarisation
to a M1 phenotype [65,66]. Additionally, combining eganelisib (PI3Kγ inhibitor) with
both anti-CTLA4 and anti-PD-1 therapy results in cure rates of 30%, whereas dual check-
point inhibition alone did not result in complete responses. These results led to a phase
I trial (MARIO-1), which involved eganelisib as monotherapy and in combination with
nivolumab (anti-PD-1) for the treatment of advanced solid tumours (NCT02637531).

3.2. Targeting the Myeloid Cell Composition within the TME through Enhanced Differentiation,
Proliferation and Recruitment

Tumour-derived factors modulate the recruitment, expansion and differentiation of
immunosuppressive myeloid to fuel tumour progression. One of the most straightforward
strategies for myeloid cell targeting in cancer treatments is the blockade of myeloid chemoat-
tractants. This strategy has been studied in several preclinical animal models and clinical
trials, but with unfavourable results. The signalling axis of chemokine (C-C motif) ligand 2
(CCL2)–C-C chemokine receptor type 2 (CCR2) suppresses tumour metastasis through
reduced angiogenesis in preclinical models. Inhibition of the CCL2–CCR2 axis reduced the
recruitment of immunosuppressive myeloid cells [67,68]. A human monoclonal anti-CCL2
antibody, Carlumab (CNTO 888), had negative clinical results (NCT00992186). In addi-
tion, CSF1R inhibitors have been developed without demonstrating meaningful clinical
activity in the management of advanced solid tumours (NCT02265536, NCT01346358 and
NCT01444404). Interestingly, diverse studies targeting STAT3 have since been developed,
including using small-molecule inhibitors (and oligonucleotides (danvatirsen and STAT3
DECOY) [69,70]. Nonetheless, the majority of trials have performed poorly (NCT02753127,
NCT02993731 and NCT01839604).

3.3. Functional Blockade of Immune-Suppressive Myeloid Cells

Strategies relying on blocking immune escape mechanisms are in development with
successful outcomes. SSIRPα and Siglec-10 suppress inflammatory responses in myeloid
cells by binding to their respective ligands and maintaining the myeloid immunosuppres-
sive profile in TME. Preclinical studies have shown that blocking CD47/ SIRPα signalling
results not only in augmented phagocytosis but also in a decrease in myeloid-driven im-
munosuppression through M1 macrophage polarisation. Similar results were obtained with
anti-CD47/Siglec-10 therapies, resulting in improved phagocytic abilities in macrophages.
Antagonist-CD47 has been directly applied to human therapy, and the most promising clin-
ical data is focused on the treatment of relapsed/refractory B cell non-Hodgkin lymphoma
(NHL) (NCT02953509). However, antagonist-CD47 has been tested in solid tumours but
without satisfactory results (NCT02216409, NCT30811285 and NCT03013218).

3.4. Myeloid Cells Vaccines

Cancer vaccines were first developed with limited success until genetic engineering
was used to increase the potency of these therapeutic vaccines (Figure 2). Autologous can-
cer vaccines have been applied to activate DC by combining the use of GM-CSF cell-based
vaccines (GVAX) or TEGVAX enhancing antitumoural effects). Moreover, the discovery
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of tumour-associated antigens (TAAs) allowed the development of specific targeting, in-
cluding, among others, TAAs overexpressed by cancer cells (GD2, MUC18). certain tissue
types (CEA, PSA, Tyrosinase, Gp100, Muc1, and GM2), and antigens unique to germ cells
(MAGE, NY-ESO-1, SSX, BAGE, and GAGE) (PMID: 21048000). Interestingly, combinatorial
immunotherapeutic regimens in patients with solid tumours using DC immunisation with
personalised TAA panels showed TAA immunisation-induced-specific CD4+ and CD8+

T cells with favourable overall survival (NCT02709616, NCT02808364 and NCT02808416).
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3.5. Immunometabolic Strategies

Various experimental results indicate that metabolism is an important regulator of
immune cell phenotype and function [71,72]. Indeed, metabolic pathways such as gly-
colysis, oxidative phosphorylation and β-oxidation of fatty acids were up-regulated in
myeloid suppressor cells. In fact, the adenosine monophosphate-activated protein kinase
(AMPK) pathway is one of the main energy sensors involved in immunosuppressive
myeloid metabolism. Metformin activates AMPK, and in vitro studies showed that met-
formin increases the expression of M1-related cytokines and attenuates M2-related cytokine
expression. In addition, metformin decreased the MDSC and M2 macrophage fractions
by downregulating the mevalonate pathway [73,74]. Furthermore, several studies have
described that metformin modulates ICI immunotherapies in cancer [75–78].

New strategies need to be developed by understanding the properties of myeloid cells
in the tumour.

4. New Era of CAR-Engineered Cell Therapies for Innate Immune Cells

In the light of these shortcomings, the substitution of T cells with innate immune
cells has emerged as new CAR therapies. These cell types include natural killer (NK) cells,
macrophages, dendritic cells, mucosa-associated invariant T (MAIT) cells and innate-like
T cells such as γδ T cells and NK T cells. Innate immune cells overcome some of the
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barriers faced by adoptive immunotherapies, such as antigen-specificity (ADCC) and safety
concerns. Indeed, innate cells can kill target cells in a CAR-restricted and unrestricted
manner through natural cytotoxicity receptors and antibody-dependent cellular cytotox-
icity (ADCC) mechanisms [79]. Moreover, the risk of cytokine release storms (CRS) is
lessened [80]. Another advantage is the possibility to use them in allogeneic strategies,
whereas CAR-T cells have so far succeeded only as autologous products and face major
challenges as allogeneic products. Moreover, innate immune cells such as macrophages
and NK have the ability to traffic more efficiently to tumour sites. Finally, CAR expression
by innate immune cells reprograms these cells to acquire anti-tumour profiles.

Therefore, the trending topic of innate immune cells for CAR engineering is NK cells
and macrophages, which could be an alternative to T cells. In recent years, CAR engineering
of natural killer (NK) cells has become attractive due to the NK’s biological features. NK
cells have an innate ability to lyse tumour cells, mediated by perforin and granzyme, with-
out any priming [81–83]. NK cells also present immunomodulatory functions by releasing
cytokines such as IFN-gamma [84]. In fact, NK genetically engineered to express a CAR
molecule maintain their intrinsic capacity to recognise tumour cells through their native
receptors. In addition, NK cells do not rely on the T cell receptor (TCR) for cytotoxic killing.
Moreover, it has been suggested that CAR-NK cells can eliminate immunosuppressive
myeloid cells in the TME [85,86]. Additional properties of CAR-NK cells could make
them better and potentially safer than T cells. Allogeneic CAR-NK cells should not cause
graft-versus-host disease (GVHD), and they can be safely administered without the need
for full HLA matching [87]. The risk of toxicity to normal tissues is relatively low due to the
limited lifespan of CAR-NK cells in the circulation. In addition, cytokine release syndrome
(CRS) and neurotoxicity have not been associated with CAR-NK immunotherapy [88,89].
Furthermore, the expansion of CAR-NK is easier due to several sources for obtaining NK
cells. NK can be obtained from immortalised human cell lines, donor peripheral blood,
archived samples of umbilical cord blood or differentiation of pluripotent cells [57,90,91].
However, the origin of NK sources limits their maturation stage and viability, which is
reflected in the diverse anti-tumour effectiveness of the produced CAR-NK cells. In ad-
dition, CAR-NK preparations are shorter in production time than CAR-T [92]. Moreover,
NK recognises and kills tumour cells through native receptors independent of the CAR
engineering, making it less likely that the disease will escape through down-regulation of
the CAR antigens, as shown with CAR-T cell therapy [92,93].

New Era of CAR-Engineered Cell Therapies for Innate Immune Cells

To date, NK cells have been the most commonly utilised innate immune cell for CAR
therapy. The first preclinical applications of CAR-NK cells appeared 17 years ago. Imai
C. et al. conducted a study using primary leukemia cells from patients with B-lineage
ALL. They developed a novel method that allows specific expansion of NK cells lacking
T cell receptors (CD56+CD3− cells) and their highly efficient transduction with chimeric
receptors (PMC1895123). CD19 is the major target for haematological malignancies [94–96].
In contrast, a wide range of tumour antigens have been targeted in solid cancers. Antigens
such as EGFR, ErbB2/HER, GD2, Glypican-3 and c-MET have been targeted by CAR-
NK for treatment of glioblastoma, breast, ovarian, neuroblastoma, melanoma and liver
cancer [91,94,97–99]. The main construct used to design CAR-NK is based on the CD19
antigen. The core component of CAR-NK consists of an initial signalling domain (mostly
CD3) and a costimulatory domain to form an intracellular signalling motif (mainly CD28,
CD137 or 4-1BB). In addition, NK cells used their costimulatory molecules (namely NKG2D
and CD244 or 2B4) to increase their cytotoxic capability and cytokine production [100].
Moreover, to improve the cytotoxicity and intratumoural infiltration of CAR-NK, many
therapeutics have been tested preclinically in combination with CAR-NK [101,102].

Nowadays, an increasing number of clinical trials have examined CAR-innate immune
cells (Figure 3, Supplementary Table S2). The first clinical trial with CAR-innate immune
preparations in solid tumours has been reported by Xu and colleagues (NCT03294954).
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Since then, several strategies have been exploited to improve CAR NK therapy traffic
to tumours (Heczey and colleagues), demonstrating the ability of NKT cells to traffic to
tumours [103]. Other clinical trials have utilised CAR-NK cells directed against tumour
antigens such as MUC1 or immune checkpoints such as PD-1 (NCT02839954). In agree-
ment with this, promising preclinical data prompted the launch of three phase I/II clinical
trials aimed at assessing the safety and efficacy of ROBO-1-directed CAR-NK cell ther-
apy in PDAC and other solid tumours depending on ROBO-1 expression on cancer cells
(NCT03941457, NCT03940820 and NCT03931720). Interestingly, new clinical trials are
combining CAR-NK therapy with PD-1/PD-L1 immunoblockade (NCT04847466). More-
over, other combination therapies with expanded and activated unmodified NK cells have
already been tested in neuroblastoma and hematopoietic neoplasm studies (NCT02573896,
NCT02481934, and NCT02280525).
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5. Preclinical and Clinical Development of CAR-Innate Immune Cell Strategies
5.1. Preclinical Development of CAR-Innate Immune Cell Strategies

Currently, the manipulation of macrophages within the TME has raised great expec-
tations for new treatments. The two main phagocytic cells are monocytes and monocyte-
derived macrophages. Considering their antigen presentation capacities and penetration
ability in the tumour microenvironment, macrophages should be prioritised for the treat-
ment of solid tumours [104,105]. Engineering macrophages to endow them with anti-cancer
properties could be a promising strategy to improve immunotherapies for solid tumours.
CAR-macrophage (M) therapies are based on CAR expression in macrophages to enable
them to specifically bind tumour-associated antigens and activate their phagocytic ac-
tivities [106]. In contrast to T cells, macrophages infiltrate more efficiently into solid
tumours [99,107]. Currently, one of the key issues in CAR-M research is improving the
CAR design for macrophages. Hence, the identification of proteins regulating phagocytosis,
macrophage infiltration and antigen presentation is key to selecting appropriate signalling
domains to be included in the CARs. Moreover, CAR-M has apparent therapeutic efficacies
under some conditions. However, the mechanisms by which CAR-M work and how they
will function in the TME are not yet clear. Hence, to apply this approach to human therapy,
we need to gain more insight on the mechanisms eliciting anti-tumour immunity by these
CAR-expressing macrophages.
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CAR constructs for myeloid cell genetic engineering possess the same structure as
conventional ones, consisting of extracellular binding-antigen, hinge, transmembrane and
intracellular signalling regions. The main difference resides in the intracellular signalling
domains used to trigger phagocytic capacities (Table 1). Macrophages express the Syk
kinase, which contains tandem SH2 domains that bind to CD3ζ inducing phagocytosis
activity [108]. However, like 1st generation CAR-T cells, CD3ζ alone is not sufficient.
Thus, other ITAM-containing signalling domains that exert similar functions as CD3ζ
to enhance canonical phagocytic and trogocytic signals in macrophages are also being
used, such as multiple epidermal growth factor-like domains protein 10 (Megf10), Mer
receptor tyrosine kinase (MerTK), and the γ subunit of Fc receptor (FcRγ) [109,110]. CD28,
4-1BB, PI3K, CD86, CD147, TLR2, TLR4 and TLR6 are also being used as intracellular
signalling domains [106,109–112]. CD147 does not enhance phagocytosis but induces T cell
infiltration, decreases collagen content, and reduces tumour growth [111]. On the other
hand, the addition of anti-CD47 antibodies enhances phagocytosis [106]. Interestingly, Niu
et al. enabled macrophages to recognise CCR7+ cells and exert cytotoxic activity through
the MerTK cytosolic domain, one of the most efficient phagocytosis inducers in vitro,
suppressing tumour growth in vivo with low toxicity, prolonging survival, preventing
metastasis, inducing T cell infiltration, and inducing systemic anti-tumour immunity [109].

Table 1. CAR-T, CAR-NK and CAR-M signalling domains. Main domains applied in CAR constructions.

CAR-T CAR-NK CAR-M

CD3ζ CD3ζ CD3ζ

CD3γ CD28 CD28

CD28 4−1BB 4−1BB

4−1BB CD137 Megf10

OX40 2B4 MerTK

CD20 DAP10 PI3K

CD137 DAP12 CD86

ICOS NKG2D CD147

CD40 CD244 TLR2

CD27 Etc. TLR4

Etc. TLR6

CT-0508, the first CAR-M to be clinically developed (NCT04660929 clinical trial), re-
ported on its preclinical development through transduction of the human leukemia mono-
cytic cell line THP-1 with an anti-CD19 CD3z-based first-generation CAR [110,113]. Those
CAR-Ms demonstrated the phagocytosis capacities of mesothelin or HER2 antigen-positive
cells. For the transduction of primary human macrophages, anti-HER2 CAR-Ms were
generated via Ad5f35 transduction, a replication-incompetent chimeric adenoviral vector.
These procedures polarised M0 (uncommitted) macrophages into M1 (pro-inflammatory)
macrophages with efficient CAR expression and macrophage activation. This CAR-M
demonstrated good therapeutic capacities by reducing tumour growth and improving
survival through the modulation of the TME and the induction of systemic T cell responses
(including CD4, CD8, and IFNγ TILs) [110,113]. Moreover, CT-0508 caused abscopal effects
against HER2 tumours and protected mice from tumour recurrence.

5.2. Clinical Development of CAR-Myeloid Strategies

Three clinical trials are studying CAR-myeloid strategies (Supplementary Table S3)
(Figure 4).
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5.2.1. NCT04660929

This is an interventional first-in-human phase I open label study of adenovirally
transduced autologous anti-HER2 CAR macrophages in human growth factor receptor 2
(HER2) overexpressing solid tumours. The studied therapy is CT-0508, a CAR-engineered
macrophage developed by Carisma Therapeutics. This trial studies a U-S- FDA-regulated
drug product. The estimated study completion date is February 2023. Two groups of
patients are included, both receiving the full dose manufactured per patient. Group 1 will
undergo intra-subject dose escalation of IV administrations of up to 500 million total cells
on day 1, up to 1.5 billion total cells on day 3, and up to 3.0 billion total cells on day 5.
Group 2 will receive the full dose IV on day 1 of up to 5 billion cells. The primary outcome
measures include the safety and tolerability of CT-0508 by estimating the frequency and
severity of adverse events, the frequency and severity of Cytokine Release Syndrome (CRS)
(for 14 months) and assessing the feasibility of manufacturing CT-0508. The secondary
outcome measures include the objective response rate (ORR) according to RECIST v1.1 of
at least 1 dose of CT-0508 among subjects with HER2 overexpressing solid tumours; the
proportion of subjects with an OR (either a complete response [CR] or partial response
[PR]) in subjects who received at least 1 dose of CT-0508 and at least the 8-week tumour
evaluation as determined by the investigator using RECIST v1.1 (for 24 months); and
progression-free survival (PFS) (for 24 months) defined as the time between the date of the
first dose and the date of the first documented disease progression by the investigator using
RECIST v1.1 or death, whichever occurs first. The inclusion criteria include HER2-positive
recurrent or metastatic solid tumours for which there are no available curative treatment
options. Breast cancer and gastric/gastroesophageal junction cancers must have failed to
respond to approved HER2-targeted agents. Other HER2-positive tumour types must have
failed standard of care therapies, while prior therapy with anti-HER2 drugs is not required.
These tumours include adenocarcinoma, bile duct cancer, biliary tract cancer, bladder
cancer, breast cancer, lung cancer, ovarian cancer, colorectal cancer, stomach neoplasms,
pancreatic cancer and endometrial cancer, among others. Other inclusion criteria include
Eastern Cooperative Oncology Group (ECOG) performance status 0 or 1 and adequate
bone marrow and organ function. Exclusion criteria include HIV, active hepatitis B or
hepatitis C infection, a diagnosis of immunodeficiency or chronic exposure to systemic
corticosteroid therapy or any other form of immunosuppressive therapy, untreated or
symptomatic central nervous system (CNS) metastases or cytology-proven carcinomatous
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meningitis and a left ventricular ejection fraction (LVEF) <50% as determined by ECHO or
a multiple gated acquisition scan (MUGA).

Remarkably, the pharmaceutical company is planning to initiate a clinical trial of
CT-0508 in combination with anti-PD-1 (Pembrolizumab).

5.2.2. NCT05007379, the CARMA-2101 Study

This is an observational clinical trial developed by the Centre Oscar Lambret with
a cohort study to assess the anti-tumour activity of new CAR-M in breast cancer patients’
derived organoids (CARMA). This is a cohort study conducted in breast cancer patients
who require a surgery or a tumour biopsy as part of their care and does not study a U.S.
FDA-regulated drug product. Other biological samples will also be collected, such as
blood to analyse the host’s inflammatory status. For primary outcome measures, the
anti-tumour activity of the CAR-macrophages is compared against organoids from HER2
negative, HER2 low and HER2 positive breast cancers (for 24 months) and to non-modified
macrophages (for 24 months). As a secondary outcome measure, the anti-tumour activity
of the CAR-M is compared against organoids from early and advanced breast cancer
patients (for 24 months). The inclusion criteria include histologically confirmed breast
cancer at any stage, requiring surgery or a tumour biopsy as standard of care, any or no
systemic treatment and >18-year-old adults. 100 enrolled participants are estimated for this
prospective study. The estimated study completion date is 1 September 2023.

5.2.3. NCT05138458, the IMAGINE Study

IMAGINE is a phase I/II multicentre, open-label, dose-escalation and dose cohort
expansion clinical trial evaluating MT-101 treatment in patients with CD5+ refractory or
relapsed T cell lymphoma. It is a multi-ascending dose escalation, sequential assignment,
non-randomised trial. Its estimated study completion date is October 2024. MT-101 is engi-
neered with myeloid cells derived from the patient’s blood and administered in two arms.
The first one receives the MT-101 biological (CD5 AKAT cells) (cohort 1 and 3), and the
second one receives MT-101 preceded by conditioning lymphodepleting chemotherapy
(IV administration of fludarabine and cyclosphosphamide) [114]. In the first part of the
study, cohort 1 and 2 will receive a low dose of cells, and cohorts 3 and 4 will receive
a higher dose of cells, to assess safety and tolerability. In the second part of the study,
cells with or without chemotherapy will be administered based on results of Part 1 and
the safety, tolerability, and efficacy of MT-101 will be assessed. All patient groups will
receive six doses of the drug product over 3 weeks. The primary outcome measures include
safety and tolerability based on observed adverse events (AEs), including all potential
dose limiting toxicities (for 4 weeks). Secondary outcomes include MT-101 cell kinetics
in blood, measured by the quantity of its RNA in the blood (for 4 weeks); the objective
response rate, defined as the percentage of subjects achieving the best overall response of
complete response (CR) or partial response (PR) (for 24 weeks). Other outcome measures
include duration of response (DOR), defined as the date of first assessment of PR or CR to
the date of the follow-on first documentation of progressive disease or death, whichever
occurs earlier; progression-free survival (PFS), defined as the time from the date of the first
administration of MT-101 to the date of first documentation of progressive disease or death,
whichever occurs earlier; and overall survival (OS), defined as the time from the date of
the first administration of MT-101 to the date of death (all for 48 weeks). Key inclusion
criteria include refractory or relapsed pathologically confirmed T Cell Lymphoma (TCL):
peripheral T cell Lymphoma not otherwise specified (PTCL-NOS), angioimmunoblastic
T cell Lymphoma (AITL), ALK-negative anaplastic large cell lymphoma (ALCL), ALK-
positive ALCL, or mycosis fungoides (MF) stage IIB-IV including large cell transformation;
CD5-expressing tumours by IHC or flow cytometry of tumour biopsy within 3 months of
screening or at screening, Eastern Cooperative Oncology Group performance status <2,
adequate organ function as defined in the protocol and being an adults age > or equal to 18
at the time the informed consent is signed. Key exclusion criteria include B1 and B2 disease
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(as defined in the protocol for subjects with MF), known central nervous system involve-
ment by PTCL, history of allogeneic transplant, history of intolerance to leukapheresis,
plasmapheresis, or blood donation, pregnant or nursing women, any acute illness including
fever (>100.4 ◦F or >38 ◦C), except fever related to tumour, active systemic bacterial, fungal,
or viral infection, active chronic infection, other primary malignancies, except adequately
treated malignancies or complete remission, active autoimmune disease that has required
systemic therapy in the last 2 years, history of hemophagocytic lymphohistiocytosis, history
of severe, immediate hypersensitivity reaction attributed to penicillin, any other condition
that, in the opinion of the Investigator, would make the subject unsuitable for the study or
unable to comply with the study requirements.

6. Conclusions and Key Ideas

• Adoptive T cell therapy (APC) has emerged as a promising therapeutic strategy
to treat cancer that might overcome the clinical limitations of immune checkpoint
blockade immunotherapies.

• CAR-T cell therapies are demonstrating success for the treatment of haematological
malignancies, but these therapies fail for the treatment of solid tumours. In order to
overcome these critical barriers, novel cutting-edge CAR strategies are being devel-
oped, such as the genetic engineering of other key innate immune cell types such as
NK cells, macrophages, monocytes and other myeloid populations.

• CD3ζ, CD28, 4-1BB, Megf10, MerTK, PI3K, CD86, CD147, TLR2, TLR4 and TLR6 are
being used as intracellular signalling domains for CAR-M generation, to enhance its
phagocytic capacities.

• Advanced strategies need to be developed by understanding the properties of myeloid
cells in the tumour. A clear example is multi-omics data analysis that provides insights
into myeloid cell phenotypes.

• CAR-M has been demonstrated in vitro and in vivo to suppress tumour growth in vivo
with low toxicity, prolong survival, prevent metastasis, induce T cell infiltration, and
induce systemic anti-tumour immunity.

• In the new CAR-M generation, the adaptation of cytokine receptor domains is required
to further improve the immune modulation and tumour killing capabilities of CAR-
M products.

• CAR-M therapies are being developed in three clinical trials.
• CAR-NK therapies are being developed in 41 clinical trials.
• While recent works have demonstrated the feasibility of using CAR-immune innate

cells as a therapeutic product, the mechanisms by which they function in the TME
and how this may lead to tumour rejection remain unclear. To utilise this approach,
we need to understand more about how CAR-immune innate cells function within
tumours and can be manipulated to generate.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10123035/s1, Table S1: Pre-clinical and clinical
strategies to modulate myeloid cells in solid tumours. Summary of main strategies applied in
pre-clinical and clinical trials in solid tumours (https://clinicaltrials.gov/, accessed on 1 October
2022). Table S2: Ongoing clinical trials involving CAR-NK therapies (https://clinicaltrials.gov/,
accessed on 1 October 2022). Table S3: Ongoing clinical trials involving CAR-M therapies (https:
//clinicaltrials.gov/, accessed on 1 October 2022).
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