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ABSTRACT 
 

Crop monitoring is essential for different applications such as food security 
assurance, crop management, and the design and implementation of agricultural 

policies. Remote sensing provides information about biophysical properties of plants 
and soils and their spatial variability on large areas of the territory on a periodic basis. 
The launch of Sentinel-1 synthetic aperture radar (SAR) satellites in 2014 and 2016 

made possible the acquisition of dense time series of images with good spatial 
resolution and temporal resolution even in cloud-covered areas. The main objective of 
this thesis is the evaluation of different methodologies for agricultural applications at 

the field scale using Sentinel-1 time series. First, a supervised crop classification 
methodology based on time signatures from Sentinel-1 images was proposed and 

implemented in a case study with 14 crop classes and a large dataset of agricultural 
fields. Secondly, the influence of acquisition geometry of Sentinel-1 images over wheat 
fields was assessed. The influence of the incidence angle on backscatter coefficients and 

terrain-flattened coefficients was evaluated, and an incidence angle normalization 
followed by an azimuthal anisotropy correction were applied to VV polarized time 
series. Thirdly, the backscatter attenuation produced by wheat canopy in VV 

polarization was evaluated, and a new wheat attenuation correction methodology 
named WATCOR was proposed. Finally, four different soil moisture (SM) estimation 
techniques based on Sentinel-1 time series were evaluated over wheat fields, proposing 

different methodological alternatives for their application at the field scale. Despite the 
complexity of estimating SM at the field scale solely with SAR data, acceptable 
estimations were obtained. The results of this thesis showed that the analysis and 

extraction of the information contained in SAR time series is useful for various 
agricultural applications, foreshadowing exciting future developments in this field. 

  



 

  

 

  



  

 

RESUMEN 
 

 

La monitorización de los cultivos es esencial para diferentes aplicaciones, como el 
aseguramiento de la seguridad alimentaria, la gestión de los cultivos y la 
implementación de políticas agrarias. La teledetección proporciona información acerca 
de las propiedades biofísicas de las plantas y los suelos, así como de la variabilidad 
espacial en amplias áreas del territorio de forma periódica.  El lanzamiento de los 
satélites radar de apertura sintética (SAR) Sentinel-1 en 2014 y 2016 permitió la 
adquisición de series temporales densas de imágenes con buena resolución espacial y 
temporal incluso en zonas cubiertas de nubes. El principal objetivo de esta tesis es la 
evaluación de diferentes metodologías para aplicaciones agrícolas a escala de parcela 
usando series temporales Sentinel-1. En primer lugar, se propuso una metodología de 
clasificación de cultivos supervisada basada en las firmas temporales de Sentinel-1. Se 
implementó en un caso de estudio con 14 clases de cultivos y un dataset grande de 
parcelas agrícolas. En segundo lugar, se evaluó la influencia de la geometría de 
adquisición de las imágenes Sentinel-1 sobre parcelas de trigo. Se evaluó la influencia 
del ángulo de incidencia en la retrodispersión y los coeficientes de terrain-flattening, y 
se aplicó una normalización del ángulo de incidencia seguida de una corrección de la 
anisotropía azimutal en las series temporales de polarización VV. En tercer lugar, se 
evaluó la atenuación de la retrodispersión producida por las cubiertas de trigo en 
polarización VV, y un nuevo método de corrección del efecto de la atenuación llamado 
WATCOR fue propuesto. Finalmente, cuatro técnicas para estimar la humedad del suelo 
basadas en series temporales de Sentinel-1 en cultivo de trigo fueron evaluadas, 
proponiendo diferentes alternativas metodológicas para su aplicación a escala de 
parcela. A pesar de la complejidad de la estimación de la humedad del suelo a escala de 
parcela únicamente con datos SAR, se obtuvieron estimaciones aceptables. Los 
resultados de esta tesis demostraron que el análisis y la extracción de información 
contenida en series temporales SAR es útil para diferentes aplicaciones, augurando 
interesantes desarrollos futuros en este campo. 

 

 

  



 

  

 

  



  

 

EXECUTIVE SUMMARY 
 

Crop monitoring is important for several applications, such as food security 
assurance, crop management, and the design and implementation of agricultural 

policies. Remote sensing enables the acquisition of land cover information on a periodic 
basis, providing information on the biophysical properties of plants and soil, as well as 
their spatial variability. Radar sensors are active sensors that provide information on 

the geometric and dielectric characteristics of the surface, offering complementary 
information to optical sensors. One of their main advantages is that cloud cover does 
not affect the acquisition of images. The launch of the Sentinel-1 synthetic aperture 

radar (SAR) satellites in 2014 and 2016 made it possible to obtain dense time series of 
images with good spatial and temporal resolution free of charge. These time series 

provide an excellent opportunity for monitoring dynamic processes, such as vegetation 
growth or soil moisture changes at the agricultural field scale. 

The broad objective of this thesis is to evaluate different methodologies for high 
spatial resolution agricultural applications based on Sentinel-1 time series. This has 

been achieved through several specific objectives: 1) the proposal and evaluation of a 
crop classification scheme based on the information contained in the time signatures of 
different crops. 2) The evaluation of the influence of acquisition geometry in wheat 

backscatter time series and its correction. 3) The characterization of the backscattering 
behavior of wheat in VV polarization and the proposal and evaluation of a new method 
that corrects its attenuation effect based on backscatter time series. 4) The evaluation 

of different multitemporal methods to estimate soil moisture in wheat fields. 

First, a supervised crop classification methodology based on time signatures 
extracted from Sentinel-1 imagery was implemented in a case study with 14 crop 
classes and a large dataset of agricultural fields. The methodology was tested at the 

regional and provincial level, and the influence of field size in the classification accuracy 
was also evaluated. The results obtained varied depending on the input variables used. 

When considering the two polarizations (VV and VH) and their ratio (VH/VV) overall 
accuracies above 70% were achieved. Crops that showed particular time signatures 
achieved better results, such as barley, rice, corn and wheat. Field size had an influence 

on the accuracy of the results, with larger fields (>1 ha) achieving better scores than 
smaller fields (<0.5 ha). When considering the classification at the regional (sub-
provincial) level, the obtained results improved. However, regions with a greater 

diversity of crops, different agricultural management practices, and higher number of 
fallow fields, obtained worse results. Due to its simplicity, the methodology could be 
easily implemented for Common Agricultural Policy (PAC) monitoring procedures.  



 

 

Then, the influence of Sentinel-1 image acquisition geometry on the backscatter 
time series of wheat fields was evaluated. For this purpose, a dataset containing 

~40,000 wheat fields for two agricultural years was used. The influence of the incidence 
angle on backscatter coefficients (σ0) and terrain-flattened backscatter coefficients (γ0) 
was evaluated. The terrain-flattening algorithm reduced the dependence of backscatter 

on the incidence angle, especially in VH polarization. Yet, in VV polarization some 
incidence angle influence remained. Interestingly, backscatter dependence on image 
geometry varied throughout the agricultural year, due to the phenological development 

of wheat plants, For reducing this influence, an incidence angle normalization technique 
was applied, followed by an azimuthal anisotropy correction. In summary, γ0 allowed 
an acceptable combination of different relative orbits, although for applications 

requiring a complete independence of acquisition geometry, further corrections might 
be necessary in order to remove the orbital differences, especially in periods of bare 
soil or in winter. 

Subsequently, it was observed that wheat canopy attenuated backscatter in VV 

polarization, defining a characteristic temporal pattern. For evaluating this attenuation 
a large dataset of wheat fields was analyzed, consisting of ~80000 wheat fields for four 
agricultural years. Sentinel-1 backscatter time series were obtained for these fields, 

proving that the attenuation pattern was consistent. A new wheat attenuation 
correction methodology (WATCOR) was proposed with the aim to correct this 

attenuation. The hypothesis of this method is that in the absence of attenuation, 
backscatter would follow a stable long-term trend with short-term variations caused 
by changes in soil moisture. The method was based on standard time series analysis 

techniques: Savitzky-Golay smoothing, changing point detection and lower envelope 
fitting, with no the need of external data (i.e., other vegetation descriptors like NDVI, 
etc.). The performance of WATCOR was assessed by measuring the correlation between 

backscatter and soil moisture measurements on six experimental wheat fields. The 
Water Cloud Model (WCM) vegetation correction was also applied as a reference 
method. The results showed that after applying WATCOR wheat attenuation was 

successfully removed and the highest correlation values were obtained between 
backscatter and soil moisture, improving significantly the correlations obtained with 
other options.  

Finally, four different methodologies were evaluated for estimating soil moisture 

over wheat fields based on Sentinel-1 time series. Three change detection methods 
were selected: Short Term Change Detection (STCD), TU Wien Change Detection 
(TUWCD) and Multitemporal Bayesian Change Detection (MTBCD), and a Machine 

Learning technique: Suport Vector Regression (SVR). Different methodological issues 
were evaluated for the implementation of these techniques at the agricultural field 



  

 

scale, including the calibration of some required parameters and the selection of the 
optimal methodological alternatives. Eight experimental wheat fields with available soil 

moisture measurements were used for validating the methods using different 
performance metrics. In particular, the use of canopy backscatter observations or 
vegetation corrected (WATCOR) backscatter values was compared. Furthermore, the 

influence of different factors such as the satellite pass, the type of management (rainfed 
or irrigated), the month of the year or the soil moisture content was also analyzed. The 
results were rather variable, with some experimental fields achieving successful 

performance metrics and some others rather poor ones. In general, it was observed that 
both TUWCD and MTBCD methods obtained better results when run with vegetation 
corrected backscatter time series. On the other hand, STCD and SVR produced similar 

results with and without vegetation correction. Both the month and the soil moisture 
content had an influence on the accuracy of the different methodologies. In most cases 
soil moisture was overestimated for dry conditions, and, to a lesser extent, it was 

underestimated for wet conditions.  

The results obtained from this doctoral thesis demonstrate the usefulness of dense 
Sentinel-1 backscatter time series for agricultural applications at the field scale, 
especially in such an important crop as wheat. Therefore, it is expected that this work 

will encourage further research and in the longer term the operational use of these 
techniques by different stakeholders in the agricultural sector. 
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1.1. General introduction 

The continuous increase in food demand associated with the human population 

growth, along with the scarcity of fertile agricultural land and water resources and the 
impacts of climate change are the main challenges that the agricultural sector has to 
face to guarantee future food security (FAO, 2018; Orynbaikyzy et al., 2019). This thesis 

focuses in wheat, as it is one of the most important staple food in the world, with more 
than 200 million ha cultivated and 780 million tons produced per year (FAO, 2021).  

In this context, the monitoring of crops and agricultural activities is essential 
(Atzberger, 2013), because as the saying goes ‘’if you can’t measure it, you can’t manage 

it’. Conventional land monitoring methods are based in fieldwork, being expensive and 
time-consuming (Chuvieco, 2019). Remote sensing techniques derive information from 
the radiation reflected or emitted by earth surfaces measured from sensors in distant 

platforms, such as unmanned aerial vehicles (UAV), aircrafts or satellites (Mulla, 2013). 
At present, they represent an efficient and effective alternative for land monitoring, 

providing information about the biophysical characteristics of plants and soil, and their 
spatial variability with a given periodicity.   

Landsat 1, the first satellite for natural resource monitoring, was launched in 1972, 
initiating the space remote sensing era. In the following years, the first agricultural 

remote sensing works based on optical imagery were carried out (Jewell, 1989; Misra 
and Wheeler, 1978; Rouse et al., 1974; Wheeler and Misra, 1980). Generally, optical 
sensors capture the energy from the sun that is reflected by land surfaces in the 

wavelengths of the visible, near infrared (NIR) and short-wave infrared (SWIR), and can 
be used to estimate different parameters such as the leaf area index (LAI), biomass, 
chlorophyll content or vegetation water content (VWC) (LIU et al., 2019). Despite the 

popularity of optical imagery for agricultural applications, it is affected by weather 
conditions. Hence, monitoring in the optical domain cannot be implemented in many 
parts of the world in an operational way due to persistent cloud cover (Whitcraft et al., 

2015) that limits the number of available observations during the agricultural season. 

Synthetic Aperture Radars (SAR) are active sensors that operate in the microwave 
region of the electromagnetic spectrum (cm wavelengths). They emit microwave pulses 
towards the Earth surface and then measure the echoes that return back to the sensor 

after interacting with the land surface elements. Depending on the characteristics of the 
observed surface and the configuration of the sensor, the pulse undergoes different 

scattering and reflection processes (Ulaby et al., 1982). The ratio between the power of 
the echo received back by the sensor and the power of the pulse initially emitted 
represents the backscatter coefficient. The main sensor configuration parameters that 

govern the backscatter response are the frequency or wavelength used, the incidence 
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angle and the polarization emitted and received by the sensor. Observation frequency 
determines the size of the scattering elements that contribute to backscatter (McNairn 

and Brisco, 2004). For instance, in densely vegetated targets, shorter wavelengths (X-
band, λ= 2.5-4 cm) interact with small surface elements, like leaves and fruits; medium 
wavelengths (C-band, λ= 4-8 cm) are more sensitive to small branches or stems; while 

longer wavelengths (L-band, λ= 15-30 cm) interact with larger branches and trunks. 
The longer the wavelength the higher the capacity of the radar pulse to traverse the 
vegetation canopy and reach the soil, providing information related to soil moisture and 

soil surface roughness. The incidence angle is the angle between the direction of 
propagation of the radar pulse and the ground normal. It also influences the capability 
of the pulse to penetrate the vegetation canopy. This capability is higher with smaller 

incidence angles. The polarization is the orientation of the electric field of the pulse 
emitted and received by the sensor. In most Earth observation radar systems, 
polarization can be either vertical (V) or horizontal (H). Therefore, a sensor can receive 

and emit the pulse in the same orientation (co-polarization: VV or HH) or in different 
orientations (cross-polarization: VH or HV).  Co-polarized backscatter is normally more 
sensitive to the soil response and double-bounce effects, while cross-polarized 

backscatter provides information about volume scattering, usually related to 
vegetation density or biomass. 

One of the main advantages of SAR sensors is that they can operate in cloud covered 

conditions and backscatter observations are not affected by atmospheric components 
that absorb or reflect the radiation at visible or infrared frequencies. In addition, they 
can operate independently of sunlight conditions. Furthermore, SAR sensors offer 

suitable spatial resolution for agricultural monitoring at field scale (<30 m) and thus, 
they can be an alternative to optical imagery for agricultural applications. The 
information provided by these sensors is related to the geometric characteristic of the 

surfaces (shape, size and orientation of scatterers) and their dielectrical properties (soil 
moisture content and salinity). In this manner, they provide complementary 
information to optical sensors. 

The first operational SAR satellites were launched in the decade of the nineties: ERS-

1, ERS-2 and RADARSAT-1 (C-band), and JERS (L-band). In the 2000s, more satellite 
missions were launched: Envisat/ASAR and RADARSAT-2 (C-band), ALOS/PALSAR (L-
band) and Cosmo-SkyMed and TerraSAR-X (X-band). During the last decade (2010) 

more satellites were launched: Risat-1, RCM, Sentinel-1A and Sentinel-1B (C-band), 
ALOS-2/PALSAR and SAOCOM-1a,b (L-band), NovaSAR-1 (S-band) and TanDEM-X, 
KOMPSAT-5, PAZ, ICEYE and Capella (X-band). For the 2020’s decade many new SAR 

sensors will be launched to add-on and strengthen existing constellations (e.g., 
Sentinel-1 and ALOS/PALSAR), but also new innovative missions are scheduled for 
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launch, such as NISAR (dual frequency L- and S-band), Biomass (P-band), EOS SAR (dual 
frequency X- and S-band) or StriX-1 (X-band).  

With the beginning of the Sentinel-1 mission in 2014, worldwide routine C-band 

observations became freely available (Berger et al., 2012). The Sentinel-1 mission is 
composed of two twin satellites (Sentinel-1A and Sentinel-1B) with a nominal temporal 
resolution of 6 days and a spatial resolution of 10-20m. Although Sentinel-1B mission 

ended prematurely on December 2021, due to a technical issue, Sentinel-1C is 
scheduled for launch in the first half of 2023 to ensure data continuity. Sentinel-1 is part 
of the Copernicus Programme, the European Union’s Earth Observation programme. 

This program has been a turning point in the field of Earth observation, with routine 
observations potentially useful for many applications due to its excellent compromise 
between spatial resolution and revisit time. Specifically, the use of dense time series 

from satellite imagery allows monitoring the dynamic processes like vegetation growth 
or changes in soil moisture over time at field scale. 

The combination of multiple orbits with different acquisition geometries (incidence 
and azimuth angles) that observe a specific  zone could reduce the revisit time to less 

than two days in many European regions (Weiß et al., 2021). However, an assessment 
of the consistency of backscatter observations obtained with different geometries is 
necessary when combining data from different orbits (Gauthier et al., 1998). Indeed, 

backscatter depends on the incidence angle (Ulaby et al., 1982), although the magnitude 
of these variations also depends on the characteristics and scattering mechanisms of 

the observed surface (Ardila et al., 2010). Surfaces where specular scattering dominates 
are more sensitive to variations in the incidence angle (Skriver et al., 1999a), whereas 
rough surfaces and vegetated areas have a lower backscatter-incidence angle 

dependence due to the predominance of volume scattering. The azimuth angle is the 
angle between the radar beam projected on the surface and a reference direction that 
is usually the North (Schaufler et al., 2018). In areas with predefined directional 

structures where surface scattering dominates (i.e., tillage  rows), the azimuthal effects 
might also be more noticeable. Furthermore, in areas where topography is rough, the 
incidence and azimuth angles have a stronger effect in backscatter. Regarding 

agricultural surfaces, the scattering mechanisms governing backscatter change during 
the growing cycle of crops and therefore, the influence of incidence and azimuth angles 
in backscatter might also change during the year,  

C-band backscatter is sensitive to the phenological cycle of different crops (Mattia 

et al., 2003; Skriver et al., 1999b; Veloso et al., 2017). Therefore, dense time series have 
a high potential for tracking phenological changes, with different authors proving their 
utility for crop monitoring and for the identification of different phenological stages 

(Mercier et al., 2020; Nasrallah et al., 2019; Schlund and Erasmi, 2020; Song and Wang, 
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2019).  The knowledge of the start and end of the phenological stages is important for 
farmers and decision makers, as it influences different agricultural practices such as 

irrigation, fertilization or pesticides application, and might also provide useful 
information for making yield predictions (Nasrallah et al., 2019). Furthermore, data on 
crop phenology and development might provide interesting information for crop 

classification (Bargiel, 2017), which is an important agricultural application of remote 
sensing, both at a local and global scale (Kussul et al., 2016). Crop maps and the 
information extracted from them are extremely valuable for the design, 

implementation and monitoring of agricultural policies, but also for forecasting yields 
and assuring food security (Schmedtmann et al., 2015; Van Tricht et al., 2018). In the 
case of SAR data, it is crucial to understand the temporal variations of backscatter in 

different crops before the development of operational monitoring methodologies 
(Veloso et al., 2017). With the use of time series, temporal models for individual crops 
can be built and later used in classification procedures (Whelen and Siqueira, 2017). 

The concept of these temporal models is that crops have physical differences during 
their growing season due to their phenological development, and consequently, lead to 
different backscatter time series. These models called temporal signatures represent 

the typical backscatter response of a crop over time, being representative of each 
specific crop. 

Another important variable that is essential in agriculture is soil moisture (SM). It is 

crucial for crop growth because it determines the amount of water available for plants, 
but also influences other aspects of the agricultural activity, such the occurrence of 
plagues and diseases (Vereecken et al., 2010) or agricultural trafficability (Carranza et 

al., 2019). Microwave sensors are sensitive to the dielectrical properties of surfaces, and 
therefore, they are suitable for SM estimation. However, SAR observations, are also 
affected by other variables like surface roughness (Verhoest et al., 2008) or the 

characteristics of vegetation (Bindlish and Barros, 2001), and thus, the estimation of 
the actual SM content of a particular field using SAR data is complex. There are several 
models that have been developed over the years for SM estimation in bare soils 

(Baghdadi et al., 2016; Chen et al., 2015; Dubois et al., 1995; Fung, 1994; Oh, 2004; Oh 
et al., 1992; Shi et al., 1997). Their inversion allows calculating SM from backscatter 
observations if the other variables included in the model are known (typically surface 

roughness parameters).  In the case of agricultural canopies, it is necessary to couple a 
model that simulates vegetation backscatter (Attema and Ulaby, 1978; Brown et al., 
1994; Ulaby et al., 1990). These models require a large number of crop variables or a 

specific parameterization for each crop and location. Therefore, the estimation of SM 
from SAR observations is typically an ill-posed problem with too many unknown 

variables. To circumvent this, methods based on the combination of images acquired 
with different frequencies or incidence angles were developed (Jagdhuber et al., 2013; 
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Notarnicola and Posa, 2007) or also based on multi-polarization or polarimetric data. 
Nevertheless, the operational application of these alternatives at the field scale is 

limited due to the unavailability of the required input data in a routine basis. Machine 
learning algorithms have been also applied in this domain (Baghdadi et al., 2012; Liu et 
al., 2021; Pasolli et al., 2011), although they require field data for the training phase and 

might not be easily generalizable and applicable to other sites. However, dense SAR 
backscatter time series along with change detection techniques might provide a viable 
path for developing operational SAR based SM estimation methods (Balenzano et al., 

2013; Wagner et al., 1999). The hypothesis of these techniques is that if time series are 
dense enough, the differences between consecutive backscatter observation are caused 
only by SM variations, because the other variables affecting backscatter change at a 

slower rate. 

This introduction evidences that Sentinel-1 backscatter time series constitute an 
excellent data source with potential applications for agriculture, which need to be 
explored in detail through research. This is the rationale of this PhD thesis.  

1.2. Objectives 

As mentioned, the launch of the Sentinel-1 mission opened a great opportunity for 
developing agricultural applications at the field scale using C-band backscatter imagery.  

The general objective of this thesis is to propose, analyze and assess different data-
driven methodologies for agricultural applications at the field scale based on Sentinel-
1 SAR backscatter time series. The first considers different crops, while the second part 

focuses specifically on winter wheat. This general aim was achieved by the compliance 
of the following specific objectives: 

• The proposal and evaluation of a crop classification scheme based on the 
information contained in the bckscatter temporal signatures of each crop, in a 
case study with a large number of classes and high heterogeneity of agro-

climatic conditions and field sizes. 

• The evaluation of the influence of acquisition geometry on wheat backscatter 
time series, and the proposal of a strategy for its correction. 

• The characterization of the backscattering behavior of wheat in VV 
polarization, and the development of a new methodology to correct the 

attenuation effect of wheat with no need of external information. 

• The implementation and assessment of different methodologies for the 
estimation of SM in wheat fields, based on Sentinel-1 time series.  
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1.3. Structure of the thesis 

The thesis has been written as a compendium of research papers that were published 
or submitted for publication in international scientific journals. Consequently, since 
each work was intended to be read independently, there might be some overlap 
between them, particularly in the introduction and materials and methods sections.  

1) The first chapter consists of a general introduction and state of the art where 
the objectives and justification of the thesis is presented.  
 

2) The second chapter describes the imagery, the study area, the ground 
measurements and methodology used in the thesis. 

The following chapters are the published (or submitted) scientific papers that are based 
on the particular objectives described in the previous section. 

3) The third chapter proposes and evaluates a supervised crop classification 
algorithm based on backscatter temporal signatures, in a case study with a 
large number of classes, agro-climatic conditions and field sizes. Specifically, 
the separability and temporal evolution of crops is analyzed, and the influence 
on the different crop growing conditions and field sizes on the classification 
results are evaluated. 
 

4) The fourth chapter evaluates the influence of acquisition geometry (incidence 
and azimuth angles) in Sentinel-1 backscatter time series over wheat canopies, 
proposing a strategy for its correction.  
 
 

5) The fifth chapter describes the backscatter behavior of wheat at VV-
polarization during its growing cycle, proposing a new methodology for wheat 
attenuation correction (WATCOR) based on the time series information itself, 
Then, the method is compared with other vegetation correction methodologies 
by measuring the correlation between the corrected backscatter and SM 
ground measurements in some experimental wheat fields. 
 

6) The sixth chapter evaluates different SM estimation techniques in wheat fields 
based on Sentinel-1 time series, comparing the results obtained with the 
different techniques, and also evaluating the eventual benefits of vegetation 
correction with WATCOR before the SM estimation techniques are applied. 
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2.1. Satellite images 

Sentinel-1 image time series were the base of this thesis. Yet, additional images 
obtained with other sensors were also used in chapters 4, 5 and 6. 

2.1.1. Sentinel-1  

Sentinel-1 satellites carry a SAR sensor that operates at C-band (5.4 GHz). All images 
used in this thesis were acquired in the Interferometric Wide (IW) swath mode and 

downloaded as Level-1 Ground Range Detected (GRD) products. The IW mode is the 
main acquisition mode over land. It uses a dual-polarization configuration VV-VH, and 
covers a 250 km swath at 5 m by 20 m spatial resolution. The Level-1 GRD products are 

focused SAR data that were multi-looked (5x1) and projected to ground range using the 
Earth ellipsoid model WGS84, obtaining a spatial resolution of ~20m, although 
products are distributed with a 10m pixel size.  The images belonged to three relative 

orbits, that covered the study region (the province of Navarre, Spain): 103ASC, 8DESC 
and 81DESC. The acquisition times for each orbit were 18:03 UTC, 6:08 UTC and 6:17 
UTC respectively. 

All the images were processed using an automated pipeline in SNAP Graph 

Processing Toolbox, obtaining terrain-flattened γ0 backscatter coefficient values in dB 
units and a pixel size of 20 m. A simpler pipeline was also applied in chapter 4, 

producing σ0 backscatter values, for comparison with γ0. The details about the pipelines 
can be found in each chapter. The main characteristics regarding acquisition time and 

number of images are shown in Table 2.1.  

 Table 2.1. Sentinel-1 images used in each Chapter. 

Paper 
Backscatter 

coefficient 

Polarization 

channels 
Period 

Number 

of images 

Temporal 

resolution 

Arias et al. (2020) 
Chapter 3 

γ0 
VH, VV, 
VH/VV 

01/09/2015 – 31/08/2016 110 12 days 

Arias et al. (2022a) 
Chapter 4 

σ0, γ0 VH, VV 01/09/2016-31/08/2018 341 6 days 

Arias et al. (2022b) 
Chapter 5 

γ0 VV, VH/VV 01/09/2015 – 31/08/2020 732 6 days, 12 days 

Arias et al. (2022c) 
Chapter 6 

γ0 
VV, VH, 
VH/VV 

01/09/2015 – 31/08/2021 911 6 days, 12 days 

 

2.1.2. Sentinel-2  

Sentinel-2 mission also belongs to the Copernicus Programme and it comprises two 
identical (Sentinel-2A and Sentinel-2B) polar-orbiting satellites that acquire 
multispectral imagery. The revisit time of each satellite is 10 days (5 days combining A 
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and B) and the spatial resolution varies between 10 m, 20 m and 60 m depending on 
the spectral band. In this thesis, Sentinel-2 Level-2A Bottom of Atmosphere (BOA) 
products were used. Scenes were processed using Google Earth Engine that was used 
to discard cloud-contaminated scenes, resample images, calculate different spectral 
indices and obtain statistics for agricultural fields and regions of interest (Table 2.2.). 

Table 2.2. Sentinel-2 images used in each Chapter. 

Paper Bands 
Vegetation 

index 
Period 

Number 

of images 

Arias et al. (2022a) 
Chapter 4 

B5, B6 
Red-edge NDVI 

(reNDVI) 
01/09/2017-31/08/2018 14 

Arias et al. (2022b) 
Chapter 5 

B4, B8, B11 NDVI, NDWI 01/09/2017 – 31/08/2020 89 

Arias et al. (2022c) 
Chapter 6 

B4, B8 NDVI 01/09/2017 – 31/08/2021 120 

 

2.1.3. ESA CCI Soil Moisture Product  

In 2012, the European Space Agency (ESA) launched a global satellite-observed soil 
moisture dataset belonging to the Climate Change Initiative (CCI) program. This 
product called ESA CCI SM combines different single-sensor active and passive 

microwave soil moisture products, resulting in products: a merged active, a merged 
passive and a combination of active and passive microwave product (Dorigo et al., 
2017). The product, with daily temporal resolution, presents a spatial resolution of 

0.250. In this thesis, the combined product was used as ancillary information for one of 
the soil moisture estimation techniques in chapter 6. Soil moisture time series from 

1978 until 2019 were downloaded from the following website: https://esa-
soilmoisture-cci.org. In total, 15036 observations were obtained. 

2.2. Study sites 

In this thesis, two main study sites were considered. The first study site was the 
largest, and it comprised all the agricultural lands of the province of Navarre (this was 
used in chapters 3, 4, 5 and 6). Navarre is located in the northern central part of Spain, 
and it covers an area of 10391 km², out of which 1/3 is agricultural land. Due to its 
climatic and landscape diversity, Navarre is divided in seven agricultural regions 
(Figure 2.1). The second study site was much smaller and consisted of eight 
experimental fields cultivated with wheat, where ground soil moisture measurements 
were recorded (chapters 5 and 6). Figure 2.1. shows the location of the study sites.   



Chapter 2 

38  

 

 

Figure 2.1. Location of the province of Navarre (left), the agricultural regions of Navarre (centre), and the 
experimental wheat fields (right). 

 

2.2.1. Agricultural regions of Navarre 

The province of Navarre, with a relatively small area (10391 km2), is characterized 
by a variety of landscapes and climatological conditions. The Northern area, mainly 
covered by grasslands and woodlands, is mountainous and presents a humid climate. 
On the contrary, the Southern area is formed by the plains of the Ebro river basin and 
presents a drier climate. The proportion of arable land is higher in the Southern part, 
where both irrigated and rainfed agriculture are present. The area between these two 
zones is a transition zone with mixed characteristics. Due to this diversity, Navarre is 
divided into seven agricultural regions for administrative and management purposes.  

The agricultural fields used in this thesis were extracted from a large geo-database 
containing information about the declarations and inspections for the EU Common 
Agricultural Policy (CAP) in Navarre. This database was provided by the Agriculture 
Department of the Government of Navarre as an anonymized version. The dataset 
consisted of GIS polygons representing the field boundaries of the crops stated by 
farmers in their CAP declarations, and the field boundaries of the parcels inspected by 
the Government technicians (Table 2.3). The database is divided in agricultural years. 
Each agricultural year starts the 1st September of the previous year and finishes the 31st 
August of the agricultural year. 
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Table 2.3. Characteristics about the CAP databases used  

Paper Type of  CAP data 
Agricultur

al Regions 
Crops 

Agricultural 

years  

Number of 

fields 

Arias et al. (2020) 
Chapter 3 

Inspections and 
declarations 

1-7 14 classes 2016 121093 

Arias et al. (2022a) 
Chapter 4 

Declarations 1- 7 Wheat 2017, 2018 39124 

Arias et al. (2022b) 
Chapter 5 

Declarations 1- 7 Wheat 2016-2019 81434 

Arias et al. (2022c) 
Chapter 6 

Declarations 3, 5, 6 Wheat 2016-2019 43595 

 

2.2.2. Experimental wheat fields 

The winter wheat experimental fields were located in regions 3, 5 and 6 (Figure 2.1). 
The study period covered four agricultural campaigns: 2018, 2019, 2020 and 2021. In 
each agricultural campaign, two fields were monitored: one rainfed and the other 
irrigated. Detailed information about their size, soil texture, sowing and harvesting 
dates can be found in chapter 5 (Section 5.4.1) and chapter 6 (Section 6.2.1). 

Ground soil moisture measurements were acquired for training and validating 
remote sensing estimates. On each field, from three to five capacitance SM probes were 
installed in winter and removed before harvest. Sentek-multi probes were used (Figure 
2.2.), which record the volumetric SM every 30 minutes at 6 different depths, from the 
surface to 60 cm deep. 
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Figure 2.2. Sentek-multi soil moisture probes in field 5 (left) and field 7 (right). 
 

2.3. Methodology 

Table 2.4 shows an overview of the methodology, variables and performance 
metrics used in this thesis. Detailed information is explained in the materials and 
methods section of each chapter. 

Table 2.4. Summary of the methodology used in each Chapter. 

Chapter Target variable 
Input 

variables 
Technique Performance metrics 

3 Crop class 
γ0VH, γ0VV, 
γ0VH/γ0VV 

Backscatter time series 
comparison with crop 
temporal signatures 

JM Distance, OA, PA, UA, 
F1-score 

4 
Backscatter dependence 
on acquisition geometry 

σ0VH, σ0VV γ0VH, 
γ0VV, θloc, 
reNDVI 

Terrain flattening, incidence 
angle normalization, 
azimuthal anisotropy 

correction 

Slope (dB/o),  Absolute 
differences between 
orbit passes (dB), R 

5 
γ0VV wheat backscatter 

time series without 
attenuation effect 

γ0VV, NDVI, 
NDWI, 

γ0VH/γ0VV 

Wheat attenuation 
correction (WATCOR) 
based on time series 

analysis 

Visual analysis, R 

6 Soil moisture 

γ0VV, γ0VV 
(WATCOR), 

NDVI, ESA CCI 
Soil Moisture 

Product 

Short Term Change 
Detection, TU Wien Change 

Detection, Multitemporal 
Bayesian change detection, 
Support Vector Regression 

RMSE (m3/m3), 
BIAS(m3/m3),  R, 
ubRMSE(m3/m3) 
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Abstract 

Crop classification provides relevant information for crop management, food security 
assurance and agricultural policy design. The availability of Sentinel-1 image time 

series, with a very short revisit time and high spatial resolution, has great potential for 
crop classification in regions with pervasive cloud cover. Dense image time series 
enable the implementation of supervised crop classification schemes based on the 

comparison of the time series of the element to classify with the temporal signatures of 
the considered crops. The main objective of this study is to investigate the performance 
of a supervised crop classification approach based on crop temporal signatures 

obtained from Sentinel-1 time series in a challenging case study with a large number of 
crops and a high heterogeneity in terms of agro-climatic conditions and field sizes. The 
case study considered a large dataset on the Spanish province of Navarre in the 

framework of the verification of Common Agricultural Policy (CAP) subsidies. Navarre 
presents a large agro-climatic diversity with persistent cloud cover areas, and 

therefore, the technique was implemented both at the provincial and regional scale. In 
total, 14 crop classes were considered, including different winter crops, summer crops, 
permanent crops and fallow. Classification results varied depending on the set of input 

features considered, obtaining Overall Accuracies higher than 70% when the three (VH, 
VV and VH/VV) channels were used as the input. Crops exhibiting singularities in their 
temporal signatures were more easily identified, with barley, rice, corn and wheat 

achieving F1-scores above 75%. The size of fields severely affected classification 
performance, with ~14% better classification performance for larger fields (>1ha) in 
comparison to smaller fields (<0.5 ha). Results improved when agro-climatic diversity 

was taken into account through regional stratification. It was observed that regions 
with a higher diversity of crop types, management techniques and a larger proportion 
of fallow fields obtained lower accuracies. The approach is simple and can be easily 

implemented operationally to aid CAP inspection procedures or for other purposes. 

Keywords: crop classification; Sentinel-1; SAR; time series; Common Agricultural 
Policy. 
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3.1. Introduction 

Crop classification is one of the most important agricultural applications of remote 

sensing (Atzberger, 2013). Knowing what crops are present in the fields is very useful 
both at a local and global scale (Kussul et al., 2016). For instance, this information is 
valuable for the design and implementation of agricultural policies (Schmedtmann and 

Campagnolo, 2015), as well as for crop management and food security assurance (Van 
Tricht et al., 2018). Crop classification is also a pre-requisite for implementing other 
remote-sensing-based applications at the field scale (e.g., biomass and yield estimation, 

anomaly detection, etc.). Satellite Earth observations provide information about 
biophysical properties of the Earth’s surface and their spatial variability with a given 
revisit time. This constitutes a very rich information source that can be used for 

identifying the crop types being cultivated and also, for monitoring them along their 
growing cycle (McNairn et al., 2002).  

European farmers benefit from the Common Agricultural Policy (CAP) support of 

the European Union, which started back in 1962. CAP establishes different financing 
instruments including area-based payments and cross-compliance requirements 

(Regulation (EU) No 1306/2013). Competent authorities might check whether farmers’ 
declarations are correct (i.e., they are actually growing the crops they declare on each 
field and follow cross-compliance requirements). Traditionally, this has been done 

through field inspections on a sample of fields, constituting an expensive, inefficient and 
incomplete check system. On June 2018, the European Commission drafted the new 
modification of the CAP (Regulation (EU) 2018/746) regarding applications, payment 

claims and checks to be fully implemented in 2020. These modifications recommend 
the establishment of procedures to check and track all eligibility criteria using 
Copernicus Sentinels data or similar data. Therefore, several initiatives and research 

efforts are being conducted at present to fulfill this aim, including EU-funded projects 
like Sen2-Agri (Defourny et al., 2019), RECAP (Sitokonstantinou et al., 2018) or 
SEN4CAP (Koetz et al., 2019). 

Indeed, the Copernicus program has been a game changer in this field of research, 
with frequent observations potentially useful for crop classification (both in the 
microwave (Sentinel-1, S1) and optical (Sentinel-2, S2) domain), which are acquired 

systematically over the world and freely distributed (Berger et al., 2012). Their 
excellent compromise between spatial and spectral resolution, and above all, their 

enhanced revisit time, through the use of constellations of twin satellites (S1A – S1B 
and S2A – S2B), make them a unique solution for monitoring dynamic processes like 
vegetation growth at the scale of agricultural fields. 
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Until the Sentinels were launched, typical approaches for crop classification were 
mostly based on the evaluation of the spectral signature of crops obtained from 

multispectral imagery on key moments of the phenological cycle and their statistical 
(di)similarity (Chuvieco and Huete, 2009). However, early studies (Misra and Wheeler, 
1978) already recalled that this approach might have limitations after observing that 

different fields of the same crop might have different spectral responses due to slight 
differences in the agricultural management calendar from field to field. In addition, 
different crops might expose a similar spectral response on a given date, so an 

examination of the multi-temporal evolution of the spectral response of a field was 
hypothesized as a potentially relevant information for crop recognition (Misra and 
Wheeler, 1978). Yet the unavailability of multi-temporal datasets with the sufficient 

revisit time (i.e., 16 days for Landsat) precluded the further development of this type of 
method until sensors like MODIS became available (Lobell and Asner, 2004; Wardlow 
et al., 2007). With the availability of S2 data, similar approaches but with a higher 

spatial resolution have been developed (Immitzer et al., 2016; Petitjean et al., 2012; 
Sitokonstantinou et al., 2018).  

In large parts of the world, remote sensing in the optical domain has been difficult 

to implement operationally due to persistent cloud cover limiting the number of viable 
observations along the agricultural season (Whitcraft et al., 2015). Synthetic Aperture 

Radar (SAR) sensors can be an interesting alternative for those regions since they can 
operate in cloud-covered and poorly illuminated conditions. In addition, SAR data 
provide complementary information to optical sensors, reflecting geometric and 

dielectric properties of vegetation and soil, which have been proven relevant for crop 
classification (McNairn et al., 2009b; Steele-Dunne et al., 2017). The first SAR-based 
crop classification experiences used a few single polarization scenes and generally 

achieved limited results (McNairn et al., 2002), but soon after, several studies 
demonstrated that adding dimensionality through multi-frequency, multi-polarization 
or multi-temporal SAR observations increased the accuracy of crop maps (Hoekman 

and Vissers, 2003; Skriver et al., 2011). Observation frequency determines the size of 
the scattering elements that contribute to backscatter (McNairn and Brisco, 2004), with 
short wavelengths (X-band) interacting with smaller canopy constituents (e.g., leaves 

and fruits) than medium (C-band, e.g., small branches and stems) or longer wavelengths 
(L-band, e.g., larger branches and trunks). The latter might also be more sensitive to soil 
surface roughness and moisture conditions below the canopy. Regarding polarization, 

quad-polarized data provided polarimetric features which are potentially interesting 
for classification and other agricultural applications (Lee et al., 2001; McNairn and 
Brisco, 2004); however, dual-polarized configurations might be more efficient for 

multi-temporal large-area mapping and still provide interesting information for crop 
monitoring (Veloso et al., 2017) and classification (Larrañaga and Álvarez-Mozos, 2016; 
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Skriver, 2012). On the other hand, multi-temporal observations of single or dual-
polarized backscatter have demonstrated a clear benefit on the accuracy of the 

resulting classifications (Skriver, 2012), since morphological differences in some 
particular stages of the phenological development might be key for differentiating pairs 
of crops that are otherwise quite similar the rest of the year (Steele-Dunne et al., 2017). 

Given the actual availability of SAR constellation missions with an extremely short 
revisit time and high spatial resolutions, classification methods that explicitly exploit 
time series information have recently been developed with promising results. In effect, 

supervised classification schemes were developed based solely on time series 
information, where training data were used to obtain model time series for each class 
(i.e., temporal signatures) that were later compared with the elements to classify using 

some type of error metric. This way, Whelen and Siqueira (Whelen and Siqueira, 2017) 
classified alfalfa, corn and wheat fields over a 10 km x 23 km area using L-band UAVSAR 
observations, and obtained accuracy values higher than 75% when HV backscatter, 

entropy or alpha time series were used. Later, using C-band Sentinel-1 data, this 
approach was refined with a case study over a portion of central North Dakota 
considering four crops (corn, soybean, wheat and grass/pasture) and obtaining an 

accuracy of 85% (Whelen and Siqueira, 2018). In a similar fashion, Xu et al. (Xu et al., 
2019) classified two corn-dominated sites using Sentinel-1 time series, and obtained 

accuracies ~90%. In these studies, the error metrics used to compare the temporal 
signatures with the time series of the elements to classify differed, but only slight 
differences were observed in the obtained accuracies (Xu et al., 2019). The performance 

of this classification approach was comparable to results obtained with machine 
learning algorithms. Yet, the simplicity and robustness of the approach makes it 
transparent, portable from season to season and resilient to crop growth anomalies. 

However, further studies were recommended to explore the performance of this 
approach on regions with a higher crop diversity (Whelen and Siqueira, 2018) and 
more heterogeneous conditions.  

Indeed, the number of crop classes considered strongly impacts the accuracy of the 
results obtained (Skriver, 2012). Typically, published crop classification studies based 
on SAR data considered six different crop classes or less (McNairn et al., 2009b; Whelen 

and Siqueira, 2017; Xu et al., 2019), although some studies had a higher number—but 
this was normally below ten (Hütt et al., 2016; Larrañaga and Álvarez-Mozos, 2016) or 
fifteen (Bargiel, 2017; Skriver, 2012). Furthermore, some studies did not solely address 

crop classification, as they considered both crop categories and other land covers such 
as forests, water surfaces or urban (Hütt et al., 2016). Regarding the number of fields 
used for training and validation, the published studies differ greatly, although in many 

cases, they were below 100 (Whelen and Siqueira, 2017; Xu et al., 2019) or 1,000 
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(Bargiel, 2017; Skriver, 2012). Few published works considered near-operational 
applications with 10,000–100,000 fields or more and these used optical imagery 

(Defourny et al., 2019; Schmedtmann and Campagnolo, 2015). In addition, the 
heterogeneity in terms of agro-climatic conditions of the area of interest and field sizes 
might impact the performance of the approach, as it has mostly been applied to rather 

homogeneous areas with large fields (Whelen and Siqueira, 2017, 2018; Xu et al., 2019).  

Therefore, the main objective of this study is to investigate the performance of a 
supervised crop classification approach based on crop temporal signatures obtained 

from Sentinel-1 time series on a challenging case study with a large number of classes 
and a high heterogeneity in terms of agro-climatic conditions and field sizes. Hence, the 
temporal signatures of all crop categories were interpreted and the confusion with 

other classes was evaluated. The study is framed on a real case study of crop 
identification for the aid of CAP inspections focused on the Spanish province of Navarre, 
a region of strong agro-climatic and geographic diversity with pervasive cloud cover. 

The region was stratified into different agro-climatic regions and different classification 
models were trained to evaluate the benefits of stratification. Thus, a specific objective 
of this study was to test whether the differences in crop growing conditions by 

agricultural region had any influence on the crop classification accuracy. Furthermore, 
the relation between field size and classification results was investigated. Special 

attention was also paid to the analysis of results obtained with classification models 
based on different sets of input data, comparing VH and VV polarizations, but also, the 
VH/VV ratio and implementing an ensemble approach that jointly considered VH, VV 

and VH/VV temporal signatures. 

3.2. Materials and Methods 

3.2.1. Study area 

The study area covers the agricultural areas of the province of Navarre (Northern 
Spain). This province has an extension of 10,391 km2 and it is characterized by its 
landscape and climate diversity. The Northern area is mountainous, wet and forests and 

grasslands are predominant, while the Southern area is dryer and constituted mainly 
by extensive plains of the Ebro basin, where the proportion of arable land is higher with 
both irrigated and rainfed agriculture. Between these two areas, there is a transition 

zone with mixed characteristics. Due to this diversity, Navarre is stratified in seven 
agricultural regions with distinct agro-climatic conditions (BON, 1998) (Table 3.1). 
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Table 3.1. Characteristics of the agricultural regions of Navarre. *Climate classes: O (Oceanic), S (Subalpine), 
TOM (Transition Oceanic-Mediterranean), M (Mediterranean), CM (Continental-Mediterranean). 

Region 

Climate Land cover (%) 
Area 

(km2) 
Elevation 

(m asl) Class 

Annual 

Precip. 

(mm) 

Average 

Temp. 

(oC) 

Rainfed 

crops 

Irrigated 

crops 

Forests 

and 

shrubs 

Non 

productive 

Region 1 O* 1700 13.8 16% 0% 81% 3% 1903 7 - 1443 

Region 2 S* 1500 8.7 14% 0% 84% 2% 2312 225 - 2428 

Region 3 TOM* 900 12.5 47% 1% 43% 9% 778 327 - 1254 

Region 4 TOM* 930 12.0 41% 2% 54% 3% 1542 324 - 1456 

Region 5 M* 655 12.7 44% 7% 47% 2% 1302 304 - 1260 

Region 6 M* 350 14.0 41% 30% 25% 4% 1226 259 – 652 

Region 7 CM* 385 13.5 31% 33% 29% 6% 1329 226 -744 

Different types of crops are grown in each region. Grasslands prevail in northern 
regions (1 and 2). Winter cereals are found throughout the whole province, whilst other 

winter crops, such as legumes and rapeseed, are common only in central regions (3 and 
4). The diversity of crops in southern regions (6 and 7) is larger, where alfalfa, corn, 
asparagus, horticultural crops and permanent crops are also widespread. Corn, the 

most common summer crop, is mainly grown under irrigation systems, except in Region 
1, where the high amount of precipitation allows rainfed cultivation. Other summer 
crops cultivated in Navarre are sunflower, found in every region, and rice, only grown 

in southern regions. It is important to mention that the proportion of fallow fields varies 
strongly depending on the region, being particularly high in Southern Navarre, 

especially in region 7. 
 

3.2.2. Sentinel-1 data 

The SAR data used in this study were Sentinel-1 C-band Interferometric Wide (IW) 

swath mode images downloaded as level-1 Ground Range Detected (GRD) products. All 
available Sentinel-1 images covering the study area from September 1, 2015 to 
December 30, 2016 were acquired (Figure 3.1). The images belonged to three relative 

orbits: one ascending node and two descending nodes (103ASC, 8DESC and 81DESC). 
Yet only the 103ASC relative orbit covered the entire area of Navarre, whereas the 
descending nodes excluded a small area of the province from the image, specifically the 

Western part in 8DESC and the Eastern part in 81DESC (Figure 3.2).  
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Figure 3.1. Acquisition dates of the Sentinel-1 observations used 

 
Figure 3.2. Location of the province of Navarre and its seven agricultural regions (in white, R1-R7) in 

Northern Spain superposed to optical images from Google. The rectangles represent the footprints of the 
different relative orbits of Sentinel-1 imagery covering Navarre. 

The images were processed using SNAP Sentinel-1 Toolbox following these steps: 

(1) thermal noise removal; (2) slice assembly; (3) apply orbit file operator; (4) 
calibration to β0; (5) speckle filtering; (6) terrain-flattening; (7) range-doppler terrain 

correction and (8) subset to the extent of Navarre. The speckle reduction was 
performed using a 3x3 window Gamma-MAP filter. The SRTM 1sec HGT DEM was used 

for terrain-flattening and terrain correction. After these corrections, terrain-flattened 
γ0 backscatter coefficient values were obtained. The results of this process were 110 
images with three channels each: two backscatter coefficients (VH and VV) and their 
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ratio (VH/VV) in dB units. The pixel size of the final products was set to 20 m. All the 
images corresponding to the three relative orbits were stacked according to their time. 

 
3.2.3. Ground truth and data extraction 

Ground truth information for training and validation was extracted from a 

geographical database containing field boundary polygons for EU Common Agricultural 
Policy (CAP) declarations (335,094 polygons) and inspections (21,850 polygons) for 
the agricultural year 2016. This database was provided by the Agriculture Department 

of the Government of Navarre (information not publicly available). Field inspections 
were carried out from June to August 2016, as part of the verifications of CAP subsidy 
declarations. 

The geographical database was refined as follows. A 5 m inside buffer was applied 

to the agricultural field boundaries in order to avoid mixed pixels that could contain 
information from different crops. Fields smaller than 0.5 ha were masked out in the 

declarations dataset. In the inspections dataset, the mask was less restrictive, leaving 
out fields that contained less than 6 pixels. Then, field statistics were computed, 
obtaining the median, mean, minimum, maximum and standard deviation backscatters 

values for the S-1 channels. For each field, a temporal signature with the information of 
the three relative orbits was obtained. Fields not covered in one of the descending 
orbits had missing values for those specific dates. Finally, the crops were grouped into 

14 classes: alfalfa, asparagus, barley, corn, fallow, grasslands, legumes, oats, other crops, 
permanent crops, rapeseed, rice, sunflower and wheat. 

At most, 10% of farmer’s declarations are expected to be wrong due to errors, fraud, 
etc. (Navarre, 2019). These wrongly declared fields could affect the training phase by 

introducing erroneous information in the learning process of supervised classification 
algorithms. In order to minimize the impact of wrongly declared parcels in the 
declarations dataset, the 10% of fields whose median backscatter temporal signature 

differed the most with the median signature of its declared class in each region was 
discarded. The median was chosen to further reduce the effect of speckle inside the 
field. The comparison between the temporal signature of the crop and that of each field 

was based on the R2 metric. The final number of fields in Navarre is shown in Table 3.2 
and Figure 3.3 (see Supplementary Materials for the number of fields per region: Table 
S1). 
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Table 3.2. Ground truth data. Number of agricultural fields and their area in the declarations and inspections 
datasets for the whole province of Navarre. 

Crop 
Declarations Inspections 

Nº of 

fields 

Area 

(ha) 

Area 

(%) 

Mean field 

area (ha) 

Nº of 

fields 

Area 

(ha) 

Area 

(%) 

Mean field 

area (ha) 

Alfalfa 1747 3066 1.1% 1.76 397 482 1.9% 1.21 

Asparagus 430 860 0.3% 2.00 61 84 0.3% 1.38 

Barley 21711 52427 19.1% 2.41 2705 5048 20.3% 1.87 

Corn 3814 10693 3.9% 2.80 589 1682 6.8% 2.86 

Fallow 11889 23346 8.5% 1.96 3089 4785 19.2% 1.55 

Grasslands 25607 81230 29.6% 3.17 512 823 3.3% 1.61 

Legumes 3776 11544 4.2% 3.06 637 1211 4.9% 1.90 

Oats 2969 7336 2.7% 2.47 268 478 1.9% 1.79 

Other crops 3025 10094 3.7% 3.34 838 1921 7.7% 2.29 

Permanent crops 8329 13342 4.9% 1.60 2010 2190 8.8% 1.09 

Rapeseed 1250 3319 1.2% 2.66 226 544 2.2% 2.41 

Rice 637 1415 0.5% 2.22 72 125 0.5% 1.73 

Sunflower 799 2382 0.9% 2.98 102 311 1.2% 3.05 

Wheat 20722 53502 19.5% 2.58 2882 5216 20.9% 1.81 

Total 106705 274556 100.0% 2.57 14388 24900 100.0% 1.73 

 
 Figure 3.3. Distribution of ground truth datasets in Navarre: declarations dataset (left) with 

106,705 fields, and inspections dataset (right) with 14,388 fields. 
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3.2.4. Separability analysis 

As a preliminary step, a feature importance analysis was conducted comparing the 

statistical features calculated for the different polarizations. For this analysis, the 
Jeffries–Matusita (JM) distance was evaluated (Richards and Jia, 1999), which provides 
a measure of separability between pairs of classes and has been identified as a good 

indicator of crop separability (Van Niel et al., 2005). The JM distance between a pair of 
probability distributions is given by the following: 

-#�. = 01 234 (5|6�) − 84 95|6.: ;� <5=             (3.1) 

where JMij is the JM distance between a pair of classes ωi and ωj, x is the feature 

observed (field backscatter statistics) and p (x|ωi) and p (x|ωj) are the conditional 
probability functions for x given ωi and ωj, respectively. JM distance values range 
between 0 and 2, with higher values indicating higher separabilities between pairs of 

crops. 

The JM distances were calculated per date for each pair of crops, for the different 

polarizations and for the different statistical features. A mean JM distance value was 
calculated for the whole period of study, averaging the distances obtained for each date. 
This mean JM-distance was used to compare the importance of the different 

polarizations and statistical features calculated. Two statistical features obtained the 
highest separabilities: the mean and the median. The median was chosen for the 
classification because of its higher robustness to outliers.  

3.2.5. Classification 

A supervised classification algorithm based on the temporal signatures of crops was 
applied. The algorithm is similar in concept to the one used in Whelen and Siqueira 

(Whelen and Siqueira, 2017, 2018), and Xu et al. (Xu et al., 2019b). However, there are 
some significant differences in the way similarity is measured (see below). The basic 
concept behind this classification algorithm is that crops exhibit physical differences 

during the growing season due to their phenological development, which leads to 
different backscatter time series. Thus, the characteristic time series of each crop, as 

observed by Sentinel-1, is referred to as its temporal signature. This concept of 
temporal signature somehow mimics the idea of the spectral signature of a crop, i.e., the 
typical reflectance response of a crop with respect to wavelength. Therefore, we could 

define the temporal signature as the typical backscatter response of a crop with respect 
to time. The basic hypothesis is that these temporal signatures are representative of 
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each crop and can be used to identify whether an unknown field belongs to one class or 
another. In the training phase, the temporal signatures of each crop class were obtained 

following a three-fold cross-validation scheme using the declarations dataset, where 
2/3 of the ground truth samples were used for training and the remaining 1/3 for 
validation, in three successive random folds. Backscatter time series were formed by 

adding the information obtained at the three relative orbits used. After this training 
phase, each field was classified by comparing its temporal signature one by one with 
the different crop temporal signatures. In fact, each field was assigned to the class 

providing the best fit between its temporal signature and the crop temporal signature. 
To quantify the best fit, two variants were explored, the first variant assumed the best 
fit as the one with the lowest root mean squared error (RMSE), and the second as the 

one with the highest determination coefficient (R2). This differed from related studies, 
Whelen and Siqueira (Whelen and Siqueira, 2017, 2018) used a normalized error 
metric, and Xu et al. (Xu et al., 2019b) used a spectral similarity measure. Here, an error 

metric (RMSE) and a correlation metric (R2) were evaluated, as they provide a 
complementary way to quantitatively compare two curves. Since the crops can have 
different calendars, the duration of the curves to be compared was adjusted to each 

crop type (Table 3.3). In addition, each crop could be characterized by three different 
temporal signatures depending on the channel used: VH, VV and VH/VV. Thus, three 

different classification schemes were applied by considering these channels 
individually. One additional scheme was explored by considering the similarity to the 
three polarizations conjointly and named as the ensemble scheme (Ens). Therefore, in 

total, 8 variants were explored (4 input features x 2 goodness-of-fit measures). 

Table 3.3. Period of duration of the curves to compare based on crop types. 

Crops Period of comparison 

Barley, legumes, oats, rapeseed and wheat September-2015 to July-2016 

Corn, rice and sunflower April-2016 to December-2016 

Rest of crops September-2015 to December-2016 

In order to test whether the differences in crop growing conditions by agricultural 

region had any influence on the crop classification accuracy, the supervised 
classification algorithm was fitted at different spatial extents: first, for the whole 
province of Navarre and next, stratified for each of the seven agricultural regions. In the 

first case, the temporal signatures were obtained for the whole province, whereas in 
the second, specific temporal signatures per region were obtained. 

For each classification scheme, the accuracy was assessed through a confusion 

matrix whereby the Overall Accuracy (OA) was calculated, as well as each crop’s 
Producer’s Accuracy (PA), User’s Accuracy (UA) and F1-score (the harmonic mean 
between PA and UA). In fact, a two-level accuracy assessment was implemented. The 
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first level corresponded to the 3-fold cross-validation and used the 1/3 ground truth 
data set left out for validation on each of the 3-folds. Additionally, a more rigorous 

second level validation was performed based on the field inspections dataset available, 
called external validation. This second dataset was obtained through field visits, so its 
reliability is believed to be higher. However, the sampling did not follow the standard 

recommendations for accuracy evaluation (Olofsson et al., 2014), and had a higher 
proportion of fallow, permanent crops and other crop classes (Table 2), categories that 
can be more difficult to classify than others such as grasslands with a much lower 

number of samples. This might negatively impact the OA values obtained. In addition, 
the size of fields was smaller compared to the declarations dataset (Table 2). Therefore, 
the results should be interpreted bearing this point in mind. The accuracy metrics for 

these two validation levels were reported in the results. Due to the small size of several 
fields in the external validation dataset, accuracy results were also reported and 
analyzed by field size considering three size groups: (1) < 0.5 ha; (2) 0.5 ha—1 ha; (3) 

≥ 1 ha.  

3.3. Results 

3.3.1. Separability analysis 

Table 3.4 shows the results for the statistical features importance analysis, where 
the mean JM distances for all pairs of crops was calculated. The standard deviation time 
series obtained the lowest values, while the mean and median achieved the highest JM 

distances, and were very similar. As indicated in Section 2.4., the median time series 
was selected for computing the temporal signatures of each crop class due to its higher 
robustness to outliers. 

Table 3.4. Mean JM distances for all the pairs of crops for each statistical feature and polarization. The JM 
distances reported correspond to the average values for the whole period of study. 

Polarization Max Min Mean Median St 

VH 0.20 0.23 0.29 0.29 0.08 

VV 0.17 0.23 0.29 0.29 0.06 

VH/VV 0.18 0.18 0.32 0.31 0.03 

The separability values between each pair of crops for the median time series are 
represented in Figure 3.4. Although the values are, in general, low (< 1), it must be 
pointed out that this is an average value for the whole period of study, so they should 

be used for comparison between crop pairs and polarizations. There were pairs of crops 
that obtained similar values (in most cases low) for the three polarizations. In VH 
polarization, rapeseed and rice had relatively high separabilities with most of the crops. 

In VV, alfalfa was the crop with the highest values, followed by oats and barley. In the 
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case of VH/VV, the highest separabilities were achieved when comparing winter versus 
summer crops. 

Figure 3.4. Mean JM Distance per crop pair for the median backscatter time series of the different 
polarizations during the whole period of study. 

The temporal evolution of crop separability provides interesting information on 

the time periods that contribute the most to crop identification (Figure 3.5). Monthly 
boxplots of JM distances for all crops show that in general the period between March 
and August provided the highest separabilities for the three polarizations (Figure 3.5a-

c). When evaluating the separability between winter crops (barley, legumes, oats, 
rapeseed and wheat), both VH and VV polarizations had rather high values in spring 
months, while VH/VV distances were considerably lower (Figure 3.5d-f). In the case of 

summer crops (corn, rice and sunflower) separabilities were lower than for winter 
crops, yet they increased between May and August for VH and VV polarizations, and 
between July and November for VH/VV (Figure 3.5g-i). Permanent crops had in general 

low separability values throughout the whole period, taking slightly higher values in 
winter months for VH and VV polarizations, and in spring for VH/VV (Figure 3.5j-l). 
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Figure 3.5. Monthly boxplots of JM distance for the three polarizations (VH, VV and VH/VV), reflecting the 
separability between all crops (a, b, c), winter crops (d, e, f), summer crops (g, h, i), and permanent crops (j, 

k, l). 

3.3.2. Temporal signatures of crops 

Figures 3.6–3.8 represent the temporal signatures of the studied crops for the three 
backscatter channels (VH, VV and VH/VV) from September 2015, 1st (day 0) to 
December 2016, 30th (day 487). Generally, the signature of each crop in the different 

regions was similar, so a general description is provided and the regions where the 
response differed are pointed out (see Supplementary Materials for detailed temporal 
signatures per region: Figure S1). For each polarization, the temporal curves of the 

three relative orbits had similar backscatter values and the trend was the same 
throughout the whole period of study. In the following sections, the temporal signatures 
are commented on by crop type. 
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a) Winter crops (barley, legumes, oats, rapeseed and wheat) 

Winter cereals (barley, oats and wheat) are normally sown between October and 

November, with the exception of Region 7, where short cycle varieties of barley and 
wheat are also sown in January and February. Harvest takes place normally during June 
and July, starting earlier in the most southern regions. VH/VV signatures of winter 

cereals responded positively to the growth of vegetation along the season until the 
ripening stage (Figure 3.6), which occurred in May (~250 day) for barley and in June 
(~275 day) for wheat and oats. Then, during senescence, VH/VV values decreased until 

the crop was harvested. It is possible to identify in the signature of barley that harvest 
occurred earlier than in wheat or oats (Figure 3.6).  

VH and VV temporal signatures were very similar for the three cereal crops during 

autumn and winter, with no clear trends and a strong variability between successive 
dates. In April (~200 day), a consistent decrease in backscatter was initiated in both 
polarizations, being sharper in VV. After ~250 days, backscatter values increased again. 

In this phase, barley increased more than wheat and oats. During senescence, VH values 
in the three cereal crops and VV in barley decreased steadily until the harvest was 
finalized. The temporal signatures of cereals showed the same trends in all agricultural 

regions, except for Region 7, where VH and VV backscatter signatures were noisier 
(Supplementary Materials: Figure S1). 

The legume crops cultivated in Navarre are mostly beans and peas. These crops, 
which are intended for fodder in the majority of the region, are grown from October to 
July. In this case too, VH/VV responded positively to crop growth (Figure 3.6). 

Regarding VH, an increase in backscatter values was detected from the end of autumn 
due to the development of the crop. The onward increase of backscatter finished in June 
(~275 day), and was followed by a decrease due to crop senescence. In the case of VV, 

there was not a clear trend until March (~200 day), when backscatter started growing 
smoothly until June. VH backscatter values grew slowly in winter and early spring. 
There was a stronger increase from April (~215 day) to June (~275 day). After this 

peak, the values dropped, matching the senescence period. The temporal signatures of 
legumes were shorter in Region 7 (see Supplementary Materials: Figure S1). In this 
region, the increase of the curves came later—at the end of March—and the slope of the 

decreasing curves was steeper. 

Rapeseed is mostly grown in the central area of Navarre. Its agricultural calendar is 
similar to that of winter cereals, with sowing in September and harvest in July. VH/VV 

signatures followed the growth of the crop along the cycle, reaching their highest peak 
in May (~250 day) (Figure 3.6). VH backscatter values of rapeseed increased since the 
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beginning of the cycle, but there was a steeper increase between the end of April (~240 
day) and the peak at the end of May, coinciding with the inflorescence emergence. After 

this peak, VH backscatter dropped significantly until mid-July, when the crop was finally 
harvested. In the case of the VV signature, no clear trend was apparent until mid-April 
(~230 day), when the values first decayed and then suddenly increased, depicting a 

peak similar to the VH curve. 

b) Summer crops (corn, rice and sunflower) 

These three crops are usually sown in April, so the variability of the time series 

before this date was high in all cases (see the interquartile ranges in Figure 3.7). 
Harvesting of sunflower occurs around September before cereal is sown, as it is a 
common crop for cereal rotations. Rice and corn harvest dates can range from October 

to December.  

Looking at VH/VV time series (Figure 3.7), the temporal signature responded 
positively to the growth of corn and rice, but for sunflower, it was not so evident, 
particularly in descending orbit curves. For this crop, backscatter values increased both 

in VH and VV from the beginning of June until August. In this case, VH/VV did not 
adequately resemble crop growth. In corn, there was an increase in VH backscatter from 
plant emergence until July. After that moment, there were no clear trends. Corn VV 

series did not show any clear trend during the growing cycle. Rice is flooded before 
sowing, and this caused an evident effect in VH and VV time series. There was an 

increase in backscatter at the beginning of April, coinciding with soil tillage, followed 
by a strong decrease due to the specular reflection caused by standing water in the 
fields. Once the crop started to grow, backscatter also increased steadily until August 

(~336 day). After that point, VH backscatter continued increasing until the end of the 
period of study, whereas VV remained steady till November (~400 day), when it started 
to grow. It is remarkable that the VH/VV time series of corn were all similar throughout 

the different regions, except for the northern regions, which were shorter than the rest 
(see Supplementary Materials: Figure S1).  
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Figure 3.6. Median temporal signatures of the main winter crops (barley, oats, wheat, legumes and 
rapeseed) for VH, VV and VH/VV. The three relative orbits are represented in different colors (see the 

legend). The interquartile range is represented for all the different time series as a colored shadow. The 
horizontal axes represent the period of study, from September 1, 2015 (day 0) to December 30, 2016 (day 

487). 
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Figure 3.7. Median temporal signatures of main summer crops (corn, rice and sunflower) for VH, VV and 
VH/VV in Navarre. The three relative orbits are represented in different colors (see the legend). The 

interquartile range is represented for all the different time series as a colored shadow. The horizontal axes 
represent the period of study, from September 1, 2015 (day 0) to December 30, 2016 (day 487). 

 

c) Rest of crops (alfalfa, asparagus, grasslands, permanent crops, other crops and fallow) 

Alfalfa is a crop that can be sown in different periods of the year (September or 

spring months), whose management normally includes irrigation and several cuts 
throughout the cycle. These cutting events complicate the interpretation of the crop 

signature since different fields might be cut on different dates, resulting in a poorly 
informative average curve. Yet, VH and VV temporal signatures showed different peaks 
during the period of study, but the values remained relatively constant. A small increase 

in VH/VV was observed from January to May. 
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Asparagus follows a cycle of two years. This crop is planted between February and 
April of the first year, and harvested between March and May of the second year. VH 

and VV temporal signatures showed many backscatter peaks along the period of study. 
It is possible to detect an increase of VH from May to November, the period of vegetative 
growth (Figure 3.8). VH/VV also augmented in this period, although it increased very 

smoothly. 

Backscatter signatures of grasslands were heterogeneous and did not follow any 
defined pattern (Figure 3.8). In this case also (as in alfalfa), the influence of individual 
cuttings complicated the interpretation of the temporal signature. 

 

Figure 3.8. Median temporal signatures of alfalfa, asparagus and grasslands for VH, VV and VH/VV in 
Navarre. The three relative orbits are represented in different colors (see the legend). The interquartile 

range is represented for all the different time series as a colored shadow. The horizontal axes represent the 
period of study, from September 1, 2015 (day 0) to December 30, 2016 (day 487). 
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Permanent crops is another heterogeneous group including different woody crops: 

vineyards, olive trees, almond trees and different types of fruit trees. In VH and VV 

curves, there were backscatter peaks that were smoothed during spring and summer. 
VH/VV slightly increased from mid-spring until mid-autumn. 

The great variability of crops included in the “other crops” class was clearly visible 
in the dispersion of the class’ temporal signature (Figure 3.9). This class included 

herbaceous and horticultural crops with both summer and winter cycles. There were 
no clear trends and the interquartile range was large throughout the period of study. 

Fallow temporal signatures also had high interquartile ranges. For all the three 
polarizations, there were no clear trends, with different peaks along the period of study. 

 

Figure 3.9. Median temporal signatures of permanent crops, other crops and fallow for VH, VV and VH/VV 
in Navarre. The three relative orbits are represented in different colors (see the legend). The interquartile 

range is represented for all the different time series as a colored shadow. The horizontal axes represent the 
period of study, from September 1, 2015 (day 0) to December 30, 2016 (day 487). 
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3.3.3. Classification results 

a) General results 

Overall Accuracy (OA) results showed differences among regions, polarization 
channels used as input, best fit metric and type of validation (cross-validation or 
external validation) (Figure 3.10). The best classification results were achieved in 

Region 3 in cross-validation, using Ens as the input and R2 as the best fit metric, with 
OA higher than 85%. On the other hand, using only VH/VV as input and R2 resulted in 
the poorest results, with an OA of around 50% in specific regions. In Figure 3.11, the 

classification map obtained with the best configuration (Ens scheme using R2 as the best 
fit metric) is represented. 

External validation provided systematically lower OA values than cross-validation, 
with the exception of Region 3, where the results were very similar. Although the 

accuracies were lower in the external validation, it can be observed that the results 
followed a similar distribution to the cross-validation output (Figure 3.10). In the 

following sections, the cross-validation results will be analyzed (See Supplementary 
Materials for the detailed external validation results). 

 

Figure 3.10. Overall Accuracy of cross-validation classification (left) and external validation classification 
(right). 
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b) Input features and goodness-of-fit metrics 

OA results showed that classifications based on single polarization channels did not 

reach satisfactory results (Figure 3.10). VH and VV channels achieved similar accuracies 
in each region individually (at best 80% OA), while classifications using the VH/VV ratio 
as the input obtained lower values (at best, 75% OA). On the other hand, considering all 

the available input features (Ens in Figure 3.10) yielded the best results for all the 
regions, reaching 87% of OA in Region 3.   

Regarding the goodness-of-fit metric used for classification, R2 obtained the best 
results for VH, VV and Ens, while RMSE was the best for VH/VV. Although R2 achieved 

the best global results for the most favorable schemes (Ens), there were differences 
among crop classes. As it is shown in Table 3.5, legumes, oats, rapeseed and rice 
achieved an improvement of the F1-score between 6% and 18% when RMSE was 

considered. On the other hand, alfalfa, fallow, grasslands and permanent crops obtained 
better results when R2 was used. Asparagus, barley, corn, sunflowers, other crops and 
wheat did not present large differences between one metric and the other. 

 
Figure 3.11. Classification map for the Ens scheme (using R2 as best fit metric) for the different regions 

(left), with a detailed view of an area belonging to Regions 3 and 5 (right). 
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Table 3.5. F1-score of crops for Ens cross-classification scheme in Navarre using R2 and RMSE fit metrics. 

Crop class F1-score R2 F1-score RMSE 

Alfalfa 48% 31% 
Asparagus 25% 22% 

Barley 87% 86% 
Corn 78% 75% 

Fallow 70% 62% 
Grasslands 80% 71% 
Legumes 47% 54% 

Oats 42% 60% 
Other crops 12% 14% 

Permanent crops 68% 58% 
Rapeseed 74% 85% 

Rice 85% 91% 
Sunflower 55% 53% 

Wheat 76% 80% 

 

c) Results per region 

Regarding the classification results for the different regions, the OA values varied 

strongly. Focusing on the Ens approach with R2 as the goodness-of-fit metric (Figure 
3.10), Region 3 obtained the highest accuracies (OA = 87%). The accuracies in Region 2 
were also good (i.e., 84%). Region 4 and 5 also had good OA results—around 80%. In 

Region 1 and Region 6, the OA results yielded 78% and 74%, respectively, whereas the 
worst OA results were achieved in Region 7 (64%). 

Table 3.6 shows the increment in crop accuracy (PA, UA and F1-sore) when the 
regional results were compared to Navarre’s results. The regional accuracies were 

extracted from a confusion matrix built by adding the individual confusion matrices of 
each region (Supplementary Materials: Table S2). This matrix allowed for an easy 
comparison of whether the stratification of the province in agricultural regions 

improved the general classification results. PA, UA and F1-score results were higher for 
the stratified case, with the exception of PA- and F1-score of fallow, which decreased by 

2% and 1%, respectively, UA of grasslands decreased by 3% and PA of rapeseed 
decreased by 1%. In total, OA increased from 72% to 77%. 
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Table 3.6. Increment (Δ) in crop accuracy (PA, UA and F1-sore) when the stratified regional results are 
compared to Navarre’s results for Ens and R2. 

Crop 
Producer’s Accuracy (PA) User’s Accuracy (UA) F1-score 

Navarre Regions ΔPA Navarre Regions ΔUA Navarre Regions 
ΔF1-

score 

Alfalfa 74% 76% 2% 35% 49% 14% 48% 60% 12% 

Asparagus 60% 71% 11% 16% 25% 9% 25% 36% 11% 

Barley 90% 91% 1% 85% 88% 3% 87% 90% 2% 

Corn 75% 84% 9% 81% 85% 4% 78% 85% 7% 

Fallow 58% 57% -2% 88% 90% 2% 70% 70% -1% 

Grasslands 71% 78% 7% 92% 89% -3% 80% 83% 3% 

Legumes 70% 75% 6% 35% 48% 13% 47% 59% 12% 

Oats 71% 82% 11% 30% 36% 6% 42% 50% 8% 

Other crops 13% 19% 5% 12% 25% 13% 12% 21% 9% 

Permanent crops 65% 72% 7% 72% 72% 1% 68% 72% 4% 

Rapeseed 99% 97% -1% 59% 70% 11% 74% 82% 8% 

Rice 99% 99% 0% 74% 85% 10% 85% 91% 6% 

Sunflower 87% 89% 1% 41% 47% 6% 55% 61% 6% 

Wheat 69% 80% 11% 84% 85% 1% 76% 82% 7% 

d) Results per crop 

In the following section, the results per crop are provided, reporting the Ens and R2 

classification scheme for Navarre (Table 3.7) (for the rest of schemes, see the 
Supplementary Materials: Table S2 and Figure S2). Interesting results related to 

polarization channels and fit metrics are also reported. 

Winter crops (barley, legumes, oats, rapeseed and wheat) 

Barley is the crop that achieved the best classification results, with F1-score of 87% 

and balanced PA and UA results (Table 3.6). The F1-score of wheat was 71%, with 
higher UA than PA (84%–69%, respectively) (Table3. 6). On the other hand, oats 
obtained poorer classification results, with F1-score of 42%. Although PA was relatively 

high (70%), UA was low (30%), due to many wheat fields being incorrectly assigned to 
oats (Table 3.7). In general, the results obtained per region were similar 
(Supplementary Materials: Table S2 and Figure S2). Region 2 and Region 3 achieved the 

highest PA, UA and F1-score for the three cereal crops compared with other regions. In 
Region 1, although most barley fields were correctly classified, the F1-score was worse 
due to the incorrect assignment of grasslands fields to the barley class. The lowest 

classification accuracies of winter cereals occurred in Region 7, where other crops were 
also misclassified as barley and wheat, and many fallow fields were incorrectly 
classified as winter cereals.  
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Table 3.7. Confusion matrix of Ens and R2 classification in Navarre. Values are given as a percentage of the 
total number of fields classified. 
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Alfalfa 1.21 0.00 0.05 0.05 0.35 1.09 0.04 0.00 0.11 0.45 0.00 0.00 0.01 0.06 3.42 

Asparagus 0.00 0.24 0.00 0.21 0.08 0.04 0.00 0.00 0.16 0.78 0.00 0.00 0.00 0.00 1.52 

Barley 0.01 0.01 18.25 0.07 0.76 0.37 0.15 0.18 0.24 0.01 0.00 0.00 0.01 1.45 21.50 

Corn 0.00 0.06 0.00 2.68 0.07 0.04 0.02 0.00 0.30 0.11 0.00 0.00 0.01 0.01 3.30 

Fallow 0.05 0.00 0.01 0.01 6.49 0.39 0.08 0.01 0.06 0.24 0.00 0.00 0.00 0.04 7.39 

Grasslands 0.04 0.01 0.02 0.08 0.53 17.09 0.10 0.01 0.14 0.46 0.00 0.00 0.01 0.02 18.52 

Legumes 0.22 0.00 0.74 0.05 0.94 1.24 2.47 0.06 0.30 0.14 0.02 0.00 0.02 0.79 6.98 

Oats 0.03 0.01 0.14 0.11 0.09 0.59 0.14 1.97 0.13 0.10 0.00 0.00 0.01 3.26 6.59 

Other crops 0.03 0.02 0.16 0.03 0.61 1.38 0.04 0.02 0.38 0.30 0.00 0.00 0.01 0.34 3.32 

Perm. crops 0.01 0.03 0.01 0.08 0.69 1.02 0.03 0.00 0.16 5.08 0.00 0.00 0.01 0.00 7.11 

Rapeseed 0.01 0.00 0.13 0.00 0.10 0.07 0.31 0.00 0.17 0.01 1.16 0.00 0.00 0.01 1.97 

Rice 0.00 0.00 0.00 0.03 0.03 0.02 0.01 0.00 0.09 0.00 0.00 0.59 0.00 0.01 0.80 

Sunflower 0.00 0.00 0.00 0.11 0.24 0.25 0.01 0.00 0.30 0.04 0.00 0.00 0.66 0.00 1.61 

Wheat 0.03 0.00 0.83 0.07 0.15 0.41 0.12 0.53 0.30 0.08 0.00 0.00 0.01 13.45 15.99 

Total (%) 1.63 0.40 20.35 3.58 11.13 24.00 3.54 2.78 2.83 7.81 1.17 0.60 0.75 19.42 100.00 

 

Legumes obtained an F1-score of 47%, with a higher accuracy in PA than in UA (70% 
and 35% respectively) (Table 3.6). Incorrectly classified legumes fields were assigned 

mainly to the rapeseed class (Table 3.7), and in a lower proportion, to winter cereals, 
grasslands and fallow. On the other hand, some grasslands, winter cereals (barley and 
wheat), fallow and other crops fields were wrongly assigned to legumes causing low UA 

values (Table 3.6 and Table 3.7). In the case of the different regions, the values of PA 
were also higher than UA for legumes (Supplementary Materials: Table S2 and Figure 
S2). The low values of UA were mainly due to incorrectly classified grasslands and in 

some regions (6 and 7), fallow fields. The exception was Region 3, where both PA and 
UA scores were high, achieving an F1-score of 89%.   
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Rapeseed fields reached high PA (99%), while UA was not as good (59%), leading to 
an F1-score of 74% (Table 3.6). The fields wrongly assigned to rapeseed belonged 

principally to legumes, other crops, barley and fallow classes (Table 3.7). Per region, UA 
values were higher than in Navarre (Supplementary Materials: Table S2 and Figure S2), 
reaching high values of F1-score, especially in Region 3 (97%). The exception was 

Region 6 (UA = 20%), due to the lower number of rapeseed fields and the incorrect 
assignment as barley, legumes and fallow fields. 

Summer crops (corn, rice and sunflower) 

The accuracy values of summer crops in Navarre were variable (Table 3.6). Rice 

fields were mostly correctly classified, reaching a PA of 99%, UA of 74%, and an F1-
score of 84% (Table 3.6). Corn had an F1-score of 78%, with balanced PA and UA values 
(75% and 81%, respectively), and some confusion with asparagus and other crops 

fields. Wrongly assigned fields to corn were mainly the other crops class. Sunflower was 
the summer crop with the worst results (F1-score of 55%, PA of 87% and UA of 41%), 

with confusion with other crops and fallow fields, causing these low UA values (Table 
7). 

Rice, which is only present in Regions 6 and 7, achieved slightly higher accuracies 
when the classification per regions was considered, with F1-scores of 90% and 93% for 

Regions 6 and 7, respectively (Supplementary Materials: Figure S2). In the case of corn, 
the classification was highly accurate in Regions 3 and 5 (F1-scores of 96% and 93%). 
In Regions 6 and 7, where the majority of corn fields were found, the F1-scores were 

also good (around 83%). Yet, in Regions 1 and 2, the UA was much lower, mostly due to 
confusion with grasslands. In Region 4, UA values were not high (43%) due to the small 
number of corn fields. Sunflower repeated the patterns of Navarre in the different 

regions, with lower UA values compared to PA values, except in Region 3, where again, 
both PA and UA were high (100% and 91%) (Supplementary Materials: Table S2 and 
Figure S2). 

Rest of crops (alfalfa, asparagus, grasslands, permanent crops, other crops and fallow) 

The classification of alfalfa fields achieved an F1-score of 48%, with higher PA (74%) 
than UA (35%) (Table 3.6). PA’s errors were mostly due to being wrongly assigned to 
legumes, while UA values were impacted by confusion with grasslands, permanent 

crops and fallow (Table 3.7). In Regions 6 and 7, where alfalfa is most frequent, the 
results were similar (Supplementary Materials: Table S2 and Figure S2). 

Asparagus was one of the crops with the poorest classification results, with an F1-

score = 25%, PA = 60% and UA = 16%. Many fields belonging to the class permanent 
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crops were classified as asparagus and, in a smaller proportion, corn and other crops 
(Table 3.7). These incorrect assignments were even higher than the actual number of 

asparagus fields, which explained the low UA. Similar results were obtained per region 
(Supplementary Materials: Table S2 and Figure S2). 

Grasslands was the largest class in the declarations dataset. The classification had 
higher UA values (92%) than PA (71%), achieving an F1-score of 80% (Table 3.6). 

Although PA was not low, wrongly classified grassland fields impacted the UA of many 
different crops due to their higher proportion (Table 3.7). The main errors in PA were 
due to the confusion with other crops, legumes, alfalfa and permanent crops. Per region, 

similar results were obtained, except for Regions 6 and 7, where results were worse 
(F1-scores below 70%) (Supplementary Materials: Table S2 and Figure S2). 

The class permanent crops obtained intermediate accuracies (PA = 65%, UA = 72% 
and F1-score = 68%). The main error in UA was related to incorrectly classified 

grasslands and fallow fields, while PA was affected by the confusion with asparagus 
class. Similar results were achieved per region (Supplementary Materials: Table S2 and 
Figure S2), with the exception being Region 3, where UA dropped to 29%.  

Other crops was the class that was worst classified, with F1-score = 12%, PA = 13% 

and UA = 12% (Table 3.6). In all the regions, the results were also poor, and confusion 
occurred with many different classes, i.e., grasslands in northern regions, and 

permanent crops and fallow in southern regions.  

Finally, fallow classification achieved better UA than PA (88% and 58%, 
respectively) and had an F1-score of 70%. The wrongly classified fallow fields were 
assigned to many different crop classes, but particularly to legumes, barley, other crops 

and grasslands. In contrast, in Region 1, the classification results were poor (F1-score = 
2%), while in the rest of the regions, results were similar to those of the whole province. 

e) Influence of field size 

In most of the classification schemes and regions, the OA values obtained were 
higher for large fields in comparison with small ones. In some cases, the difference 
between small (< 0.5 ha) and large fields (> 1 ha) was higher than 14% (Table 3.8). 
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Table 3.8. Overall Accuracy for the stratified external validation dataset by field area of Ens and R2 
classification. 

Field size (ha) 

 <0.5 0.5-1 >1 

Navarre 51% 58% 65% 

Region 1 56% 66% 64% 

Region 2 57% 70% 75% 

Region 3 75% 83% 87% 

Region 4 60% 65% 74% 

Region 5 60% 69% 72% 

Region 6 62% 71% 68% 

Region 7 45% 51% 60% 

Regarding the results per crop, it can also be observed that, in most cases, F1-
score values were higher for large- and medium-sized fields, in contrast to smaller fields 
(Figure 3.12). This was particularly true for fallow and rice classes, where the 

accuracies were considerably higher for large fields than for small ones.  
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Figure 3.12. Classification map for the Ens scheme (using R2 as best fit metric) for the different regions 

(left), with a detailed view of an area belonging to Regions 3 and 5 (right). 
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3.4. Discussion 

3.4.1. Crop classification results with regard to its temporal signatures 

This study implemented a supervised classification technique based on the 
temporal signature of crops to a CAP inspection case study on a region with strong agro-
climatic diversity. The results obtained varied significantly from crop to crop, with the 

crops that exhibited any singularities in their time series being the best classified. 
Cereals, and in particular, wheat and barley, are the most common crops in the region, 
and showed quite a distinctive temporal signature with a strong decay in backscatter in 

the stem elongation phase, where surface scattering from the soil was progressively 
attenuated by growing cereal stems (Brown et al., 2003). This decay was particularly 

strong in VV, due to the vertical arrangement of stems through the so-called differential 
attenuation mechanism (Larranaga et al., 2013; Mattia et al., 2003). This characteristic 
decay was followed by an increase in backscatter due to the structural changes 

experienced by the canopy during the heading stage (Loosvelt et al., 2012; Mattia et al., 
2003; Skriver et al., 1999; Veloso et al., 2017). At this moment, a strong and well-defined 
peak occurred in VH and VV barley time series, probably due to the bending of barley 

spikes at this phase (Larranaga et al., 2013; Skriver et al., 1999), which did not occur in 
wheat and oats that maintained a vertical geometry. From ripening to senescence and 
harvest, cereal canopies dried-out and a greater penetration (Liu et al., 2013) and a 

higher influence of the soil surface (Mattia et al., 2003) was observed. The unique 
backscatter pattern of barley allowed a successful identification with F1-scores of 
~85%. Wheat was also adequately identified (F1-score of ~76%), although was 

sometimes confused with oats, which was the cereal crop with the poorest results (F1-
score of ~50%). 

The architecture of legumes and rapeseed canopies is completely different from 
cereals, with heterogeneous shrub-like structures that produce volume backscatter 

(Skriver et al., 1999). This is the reason why VH and VV time series were so different 
from cereals, although the period of cultivation was the same. Unlike cereals, rapeseed 

and legumes’ curves in VH started increasing right after the germination of the crop, 
due to the volume scattering produced by plants (Cable et al., 2014; Fieuzal et al., 2013; 
Larranaga et al., 2013; Yang et al., 2014). This behavior changed suddenly for rapeseed 

at the period of pod formation after flowering, producing a strong peak in VH (and to a 
lesser extent in VV). In VV, just before this peak, a small backscatter decrease was 
observed coinciding with the start of flowering, as also reported by Wiseman et al. 

(Wiseman et al., 2014) and Veloso et al. (Veloso et al., 2017). Ripening and senescence 
produced a strong decrease in VH backscatter (and to a lesser extent in VV) due to 
canopy drying and a reduction of the volume scattering component. This decrease 
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occurred for both rapeseed and legumes, although it was much greater for the former. 
Accordingly, classification results were successful for rapeseed (F1-score of ~75%) but 

worse for legumes (F1-score of ~50%), whose temporal signature was confounded 
with other crop classes. 

Summer crops also achieved good classification results. Corn, with an F1-score of 
~75%, was characterized by a rather insensitive VV curve, and on the contrary, a clear 

increase in VH due to volume scattering during the vegetative growth phase (250–300 
days) until the plants reached their maximum height (Bériaux et al., 2015), after which, 
it remained rather constant. Rice achieved an F1-score of ~85%, mainly due to its 

characteristic time signature due to flooding at the time of sowing, which lead to very 
low backscatter due to specular reflection (Hoang et al., 2016). After rice emergence, 
VV increased rapidly due to double-bounce scattering, followed by a subsequent 

increase in VH polarization caused by volume scattering from the rice canopy that went 
on until the end of the season. Sunflower was the summer crop with the poorest F1-
score (~60%), but this was not expected due to its rather unique temporal signatures 

exhibiting both VH and VV sensitivity to crop growth in the stem elongation phase 
where most vegetative growth occurred (250–400 days). The structure of sunflower, 
with broad leaves and thick stems with large open spaces between plants, caused both 

volume and double-bounce backscatter (Macelloni et al., 2001a). Sunflower fields were 
mostly correctly classified (PA > 85%), but a significant number of grasslands, fallow 

and other crops fields were incorrectly assigned to sunflower, leading to low UA values.  

Asparagus, although having a biannual cycle, had a backscatter behavior similar to 
summer crops, with an increase in VH in summer (250–400 days) coinciding with the 
period of vegetative growth. Bargiel et al. (Bargiel et al., 2010) observed an increase in 

VV backscatter at X-band for this crop during summer, but our data at C-band showed 
a rather constant VV response. Classification results for asparagus were poor (F1-score 
of ~25%), mainly due to the incorrect assignment of corn and grasslands fields to 

asparagus (UA ~20%).  

Some categories have a large variability in terms of management or species 
compositions. For instance, grasslands, alfalfa and fallow are classes where agricultural 
practices can vary significantly. Grasslands can range from an intensified management 

(in terms of soil preparation, sowing, fertilizing and mowing) to extensive rangelands 
that behave more like permanent covers and are only grazed in summer season. Fallow 
fields can also vary significantly depending on the management applied to spontaneous 

vegetation, i.e., it might be left to grow or it might be removed either chemically or 
mechanically. Alfalfa is a forage crop that is mowed several times throughout the 
season. However, the exact mowing dates might vary significantly from field to field, so 

the mean temporal signature might not be informative for this crop, showing a high 
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variability during the season (the same applies for grasslands and fallow). Surprisingly, 
classification results were not as poor as expected given the rather unspecific temporal 

signatures of these crops. The three categories achieved quite good PA values (~70% 
for alfalfa and grasslands and ~60% for fallow), and UA values were high for grasslands 
and fallow but low for alfalfa. In fact, a significant amount of grasslands and fallow fields 

were incorrectly assigned to alfalfa causing its UA to fall. Altogether, such high 
variability categories should be better addressed by designing field-specific strategies 
(not based on median class signatures), such as those based on the multitemporal 

interferometric coherence (Tamm et al., 2016). 

Permanent crops was another heterogeneous class including vineyards, olives and 
other fruit trees, yet its classification was not too bad (F1-score ~70%). In this case, soil 
backscatter was predominant due to the open spaces between trees. Thus, during the 

period of study, the backscatter values presented peaks without a clear increasing or 
decreasing pattern, probably responding to soil moisture dynamics. Li et al. (Li et al., 
2019) also found a stable VH signal throughout the year in almond and walnut trees. 

During spring and summer, backscatter variations in VH and VV were smoothed, 
probably due to slower soil moisture dynamics at this time of the year, and also, because 
the growth of leaves during this period attenuated soil backscatter.  

However, the worst results were obtained by the other crops class, a very 

heterogeneous category composed of a range of different minor crops, with both 
summer and winter cycles. Again, in this case, temporal signatures did not show any 

clear pattern, and in turn, its variability was very large, particularly in summer months. 
As a result, F1-scores dropped down to ~10%, and other crops fields were confounded 
both with summer (i.e., corn and sunflower) and winter crops (i.e., wheat and legumes). 

A redefinition of this class (e.g., splitting it into two more specific categories), could lead 
to an improved classification of this class but also, to higher UA values for other classes 
that were mistaken with it. 

3.4.2. General results 

Previous research recommended multi-temporal optical data as the primary source 
for crop classification (McNairn et al., 2009a), reporting overall accuracies ~12% 
higher when optical data were used instead of SAR data. Indeed, crop classification 

approaches based on optical data provided typically accuracies above 75%, as long as 
imagery acquired in key phenological stages were available (Belgiu and Csillik, 2018; 

Defourny et al., 2019; Immitzer et al., 2016; Schmedtmann et al., 2015). Yet, optical and 
SAR data provide complementary information that when combined might result in 
enhanced classification results (Orynbaikyzy et al., 2019). However, when cloud 

conditions limit the viability of optical data, SAR observations still provide useful 
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information (Van Tricht et al., 2018; Whelen and Siqueira, 2017). The classification 
results obtained here were considered successful given the number of crop classes 

considered, the large number of fields classified and the agro-climatic diversity of the 
territory. 

In this study, the configuration using the three S-1 features as the input (Ens) 
obtained the best results. For most crops, VH/VV responded positively to crop growth 

from emergence to senescence. Previous studies already identified VH/VV as a notable 
indicator of crop development correlated with fresh biomass (Veloso et al., 2017) and 
plant height (Canisius et al., 2018). Yet, this information was very similar for crops of 

the same season and did not enable their separation. Therefore, VH/VV might 
differentiate when a field is vegetated or not, and even the start and end of the growing 
season, but crops with different morphological structures might produce very similar 

VH/VV temporal signatures. On the contrary, VH and VV polarizations provided diverse 
time series depending on different backscattering mechanisms and phenological events 
of the crops, and thus were more useful for crop classification. In each phenological 

stage, the structural characteristics of vegetation elements (size, shape, density, 
orientation) can vary (Li et al., 2019), but also, their water content and dielectric 
properties (Liu et al., 2013a), in particular, in the senescence phase (Veloso et al., 2017; 

Whelen and Siqueira, 2017). VH and VV were useful to identify cereal heading (Moran 
et al., 2012) and rapeseed pod filling. Regarding backscattering mechanisms, VH was 

sensitive to volume scattering (e.g., in legumes, rapeseed, corn and sunflower) (Li et al., 
2019; Whelen and Siqueira, 2017), and can be used as a vegetative growth indicator for 
these crops (Baronti et al., 1993). On the other hand, VV polarization was sensitive to 

surface scattering and its attenuation by cereals in the stem elongation phase (Mattia 
et al., 2003; McNairn et al., 2009b), and also, to double-bounce effects on sunflower 
(Macelloni et al., 2001) and rice (Nguyen and Wagner, 2017). Rice flooding was also 

easily detected in both VH and VV (Nguyen and Wagner, 2017). During the rest of the 
year, the main drivers of backscatter dynamics were meteorological events, soil 
preparation practices and harvesting procedures (Whelen and Siqueira, 2017). 

3.4.3. Influence of field size 

Classification results were clearly influenced by the size of the fields, with fields >1 
ha showing an OA improvement of ~14% when compared to small fields (<0.5 ha). 
Similar results were already reported in the recent literature (Defourny et al., 2019), 

showing that the operational applicability of crop-type mapping based on imagery with 
a spatial resolution of ~20 m in regions with very fragmented landscapes requires 

further advances to address the small field issue.  
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3.4.4. Regional stratification 

In general, our results improved when the classification algorithm was trained and 

applied separately to the different agricultural regions, with increments of ~5% in the 
OA and stronger improvements (10%) in the F1-score for particular crops such as 
alfalfa, legumes and asparagus. In our case, small and homogenous regions with a rather 

reduced crop legend and a small proportion of “difficult” categories (other crops, fallow, 
etc.) obtained the best results (i.e., Region 3). In turn, regions with a larger crop 
diversity, a higher proportion of fallow fields and more variability in crop management 

techniques obtained poorer results. In particular, southern regions (Region 6 and 
Region 7), due to their dryer climate, had a mix of rainfed and irrigated agriculture 
leading to a larger crop variety (including a higher proportion of other crops and fallow 

fields), more variable temporal signatures and poorer classification results. This 
occurred for categories such as winter cereals or legumes, where both long and short 
cycle varieties coexisted, some of them were intended for forage and some for human 

consumption. Corn was another category that improved after regional stratification, 
due to its diversity, with a shorter cycle rainfed corn for fodder production in Region 1 

and a longer cycle irrigated corn for grain production in the rest of the province. 
Altogether, the results of this study showed that in geographic areas with great agro-
climatic diversity, crop temporal signatures might change significantly; therefore, 

operational classification approaches should be applied to stratified regions with less 
variability. 

3.4.5. Methodological aspects 

Some other methodological details were found to have an influence on the results 

obtained. First, the use of either R2 or RMSE as the metric for finding the best matching 
category did not provide consistent results in all cases. In general, the best classification 
strategies were those using R2. However, we found that RMSE provided the best results 

when VH/VV was the only input feature used, whereas R2 was better for VH, VV and 
Ens. The different shape of their temporal signatures (with smoother dynamics for 

VH/VV) could be behind these differences. Analyzing the results per crop, it was found 
that oats, rapeseed, legumes and rice obtained significantly better results with RMSE 
(6%–18% improvement in F1-score), when the Ens configuration was used. In contrast, 

alfalfa, permanent crops, grasslands and fallow had higher F1-scores with R2, and for 
some cases, differences were minor (e.g., asparagus, barley, corn, sunflower or wheat). 
R2 might be more insensitive to class variability, with fields with slightly delayed 

phenology still having high R2 values, as long as they show a similar trend. Furthermore, 
RMSE might be more sensitive to the actual backscatter values and to abrupt changes 
in the time series due to particular phenological events or soil moisture variations. 
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3.4.6. Future research 

In this study, the duration of the time series was adjusted to the seasonality of the 

crops to be compared (winter, summer and permanent crops). This aspect was crucial 
due to the negative influence of the periods without vegetation cover on the variability 
of the time series. During autumn and winter months, differences in soil preparation 

dates and techniques (particularly important in furrowed crops such as asparagus), and 
soil moisture dynamics responding to wetting and drying events (Veloso et al., 2017) 
are the main backscatter drivers because vegetation is still short. Furthermore, in the 

case of summer crops, during this period, spontaneous vegetation might show false 
dynamics that confound crop recognition. After harvest, some fields might exhibit 
regrowth of natural vegetation, while some others might be quickly tilled and prepared 

for the next rotation, so this period also introduces uncertainty into the classification. 
Future improvements of this classification approach might try to further adjust the 
duration of the growth season, attending to the periods were largest differences were 

observed between crop classes. Also, more attention should be paid in the future to the 
establishment of the crop legend to classify, since mixed classes such as legumes, other 

crops or grasslands have shown to be too heterogeneous, resulting not only in their 
poor identification but also, in the confusion with other categories, affecting the overall 
results of the classification. Finally, further research is required to compare the results 

obtained using radar backscatter data versus optical reflectance on crop classification 
strategies like this based on image time series data.  Furthermore, a comparison with 
state-of-the-art machine learning classification algorithms (e.g., Random Forests or 

Support Vector Machines) will provide interesting information for the selection of the 
best classification approach in each case study. 

3.5. Conclusions 

This paper presented a supervised crop classification technique based on the 

temporal signatures extracted from Sentinel-1 (VH, VV and VH/VV) time series, and 
applied it to a large dataset, framed in the CAP inspection process in a region with high 

agro-climatic diversity.  

The results showed that crops whose temporal signatures depicted singularities 
along the growing season achieved accurate classification results (F1-score ~75%), e.g., 
winter cereals or rice. VH and VV temporal signatures proved to be sensitive to various 

phenological events where the structural characteristics or the water content of the 
canopy varied. In contrast, VH/VV were sensitive to vegetation growth, allowing the 
determination of whether a field was vegetated or not but providing poor information 

for crop identification. The combination of VH, VV and VH/VV time series as input 
features provided accurate results (OA > 70%). 
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A detailed analysis of the results indicated that field size strongly influenced the 
results with large fields (> 1 ha) achieving ~14% higher accuracy than small ones (< 0.5 

ha) for the same class. Agro-climatic diversity was also crucial, with results improving 
when classifications were stratified for local agricultural regions, in particular, for 
legumes, alfalfa or asparagus. Also, crop diversity, variability in terms of management 

techniques and a high proportion of fallow fields negatively affected the obtained 
results per region. The definition of the crop legend should avoid heterogeneous crop 
classes (e.g., other crops or legumes) that were found to be difficult to identify, and 

affected the UA of some classes with good PA. Whenever possible, these classes should 
be divided into more homogeneous ones. 

Altogether, the obtained results suggest that similar approaches based on Sentinel-
1 time series could be implemented operationally in regions with frequent cloud cover, 

in the framework of CAP inspection, or with any other purposes like crop acreage 
estimation or ensuring food security. Further studies comparing these results with 
those obtained using optical image time series, or state-of-the-art machine learning 

classification algorithms might confirm this conclusion. 
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Abstract 

Dense time series of Sentinel-1 imagery are an invaluable information source for 
agricultural applications. Multiple orbits can observe a specific area and their 

combination could improve the temporal resolution of the time series. However, the 
orbits have different acquisition geometries regarding incidence and azimuth angles 
that need to be considered. Furthermore, crops are dynamic canopies and the influence 

of incidence and azimuth angles might change during the agricultural season due to 
different phenological stages. The main objective of this letter is to evaluate the 
influence of different acquisition geometries in Sentinel-1 backscatter time series over 

wheat canopies, and to propose a strategy for their correction. A large dataset of wheat 
parcels (~40,000) was used and 344 Sentinel-1 images from three relative orbits were 
processed during two agricultural seasons. The first analysis was a monthly evaluation 

of the influence of incidence angle on backscatter (σ0) and terrain flattened backscatter 
(γ0). It showed that terrain flattening significantly reduced the backscatter dependence 

on incidence angle, being negligible in VH polarization but not completely in VV 
polarization. Incidence angle influence in VV backscatter changed in time due to wheat 
growth dynamics. To further reduce it, an incidence angle normalization technique 

followed by an azimuthal anisotropy correction were applied. In conclusion, γ 0  enabled 
a reasonable combination of different relative orbits, that may be sufficient for many 
applications. However, for detailed analyses, the correction techniques might be 

implemented to further reduce orbit differences, especially in bare soil periods or 
winter months. 
 

Keywords: azimuthal anisotropy, incidence angle, normalization, SAR, Sentinel-1, 
wheat 
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4.1. Introduction 

Synthetic aperture radar (SAR) imagery has proven to be useful for agricultural 

applications (Liu et al., 2019), such as crop classification, yield forecasting or soil 
moisture estimation (Steele-Dunne et al., 2017). The launch of the Sentinel-1 mission in 
2014 made freely available an unprecedented collection of worldwide systematically 

collected C-band observations (Berger et al., 2012). Currently, the mission consists of 
two twin satellites that allow a nominal temporal resolution of 6 days. Yet, there can be 
multiple orbits with different acquisition geometries (incidence and azimuth angles) 

observing a specific area, whose combination can reduce the revisit time to less than 
two days in many parts of Europe (Weiß et al., 2021). These denser time series could 
be interesting for several different applications. However, the combination of time 

series acquired with different orbits might not be so straightforward, due to the 
sensitivity of backscatter to image geometry, mainly incidence and azimuth angle 
variations (Bartalis et al., 2006; Gauthier et al., 1998; Rizzoli and Bräutigam, 2014; 

Ulaby et al., 1982).  

In effect, observed backscatter values vary depending on the incidence angle (Ulaby 

et al., 1982). However, the magnitude of these variations depend on target 
characteristics and scattering mechanisms (Ardila et al., 2010). Smooth targets 
dominated by the specular component of surface scattering were found to be 

particularly sensitive to incidence angle variations (Skriver et al., 1999b). Conversely, 
very rough soils or vegetation covers, where volume scattering predominates, have a 
lower incidence angle dependence. Similarly, azimuthal effects are more prominent in 

surface scattering situations with predefined directional structures. Certainly, both 
incidence and azimuth angle effects increase in areas with moderate to strong 
topography. 

Different methods exist to normalize the incidence angle influence on backscatter. 

One of the most common techniques is the cosine correction (Ulaby et al., 1982), based 
on Lambert’s law for optics, that was also modified to account for the dynamics of maize 

(Feng et al., 2021). Other methods are based on regression analysis (Phung et al., 2020; 
Wagner et al., 1999), statistical techniques (Mladenova et al., 2013; Ye et al., 2015), on 
the backscatter and incidence angle product (Kaplan et al., 2021), on radiative-transfer 

models (Ardila et al., 2010) or on empirical relationships with NDVI (Fieuzal et al., 
2013). Regarding the correction of azimuthal effects, Schaufer et al. (2018) found that 

azimuthal anisotropy was mainly caused by the orientation of topographic slopes and 
proposed a matching method for its correction. However, some studies identified a 
different azimuthal behavior for different land covers (Bartalis et al. 2006), and 

eventually a reduced influence of azimuthal angles for wheat when compared to 
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incidence angle variations (Weiß et al., 2021). On the other hand, Small (2011) 
proposed a radiometric terrain correction method that ‘flattens’ backscatter values and 

potentially enables the combined use of multi-track and multi-sensor backscatter time 
series.  

The case of agricultural land-covers is peculiar, since most crops are dynamic 
targets, and thus scattering mechanisms change during the agricultural season. This 

might change the influence of incidence and azimuth angle in backscatter. Wheat is one 
of the main crops cultivated worldwide, with more than 200 million ha cultivated per 
year (FAOSTAT, 2021), and it has been extensively investigated using remote sensing 

data, in particular SAR data (Liu et al., 2019). Despite its global importance, the effect of 
incidence and azimuth angle variations in backscatter time series, and the dynamics of 
these effects during the growing season of wheat have not been sufficiently studied. 

Therefore, the objective of this letter is to evaluate the influence of incidence and 
azimuth angles on Sentinel-1 backscatter time series acquired over wheat fields with 
different orbits, and to propose a strategy for their correction. 

4.2. Study area 

4.2.1. Study area 

The study area corresponds to the agricultural areas of the province of Navarre 

(Northern Spain) (N42º40’4.8” and W1º38’52.8”). This province is relatively small 
(10,391 km2), but the diversity of landscape and climate conditions creates regions with 
marked differences in terms of cropping patterns and agricultural management 

strategies, and as a result the province can be divided into seven agricultural regions 
(Arias et al., 2020). 

 

4.2.2. Sentinel-1 images 

All available Sentinel-1A and B ground range detected (GRD) images covering 
Navarre from 1 September 2016 to 31 August 2018 were used for the analysis. These 

corresponded to one ascending node (103ASC) and two descending nodes (8DESC and 
81DESC). In total, 344 images were used. The median incidence angle for 103ASC was 
410, for 8DESC was 430 and for 81DESC was 340. 

Scenes were processed using an automated pipeline in SNAP Graph Processing 
Toolbox that followed this process: 1) thermal noise removal; 2) slice assembly; 3) 
apply orbit file; 4) calibration; 5) speckle filtering (3x3 Gamma-MAP); 6) range-doppler 

terrain correction and 7) subset to the extent of Navarre. This process produced σ0 
backscatter values in dB units. A second processing chain was implemented including 
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the terrain flattening algorithm (Small, 2011) and resulting in ϒ0 backscatter 
coefficients (in dB units too). For the terrain flattening and terrain correction steps the 

SRTM 1sec HGT DEM was used. The resulting images had an output pixel size of 20 m. 
As an additional output, the local incidence angle map was generated for each scene, 
and used for subsequent analyses. For conciseness, the local incidence angle will be 

referred to as incidence angle in the article. 
 

4.2.3. Wheat parcels dataset 

Wheat is cultivated as a winter crop in Navarre. It is typically sown in the months of 

October or November and harvested at the end of June or in the first week of July. All 
wheat parcels for agricultural years 2017 and 2018 were extracted from the EU 
Common Agricultural Policy (CAP) declarations database provided, as an anonymized 

version, by the Agricultural Department of the Government of Navarre. A 5 m inner 
buffer was applied to the vector file and parcels smaller than 0.5 ha were discarded. The 

median backscatter time series per parcel were calculated for each orbit. With the aim 
to exclude parcels that might be wrongly declared as wheat, 10% of parcels most 
dissimilar to the typical (median) wheat time series were masked out (Arias et al., 

2020). The final number of wheat parcels used was 18750 for 2017 and 20374 for 2018. 
 
4.2.4. Incidence angle influence on backscatter 

As a preliminary analysis, the dependency of σ0 and γ0 on the incidence angle (θloc)  
was evaluated by means of the slope of the linear regressions  σ0=f(θloc) and γ0=f(θloc) 
fitted for each month. For this, the two descending orbits (8DESC and 81DESC) were 

taken into account, covering the complete growth cycle of wheat in Navarre. There, the 
season starts in September and ends in August the year after. Therefore, this monthly 
evaluation comprised both periods of bare and vegetated soils. 

Results (Figure 4.1) showed clear differences between the slope values obtained for 

σ0 and γ0 backscatter, with typical slope values in VV polarization of −0.25 dB/⁰ for σ0 

that decreased to −0.10 dB/⁰ for γ0. For VH polarization slope values (in absolute terms) 
were smaller but differences between σ0 and γ0 backscatter were similar, with slope 

values of -0.18 dB/⁰ for σ0 and -0.03 dB/⁰ for γ0. Therefore, the influence of the 
incidence angle in backscatter significantly decreased when the terrain flattening 
process was applied. Yet, some residual influence seemed to be present. 
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Figure 4.1. Monthly slope for wheat parcels. The slope accounts for the linear relationship between 
backscatter and incidence angle. (a) Slope for VH polarization. (b) Slope for VV polarization. 

There were clear differences between VH and VV polarizations (Fig. 1). The slope 

values were much smaller for VH. The mean slope value of -0.03 dB/⁰ for γ 0, indicated 
an almost negligible influence of the incidence angle in γ 0 for this polarization. In VV, 

the obtained slope values were larger, illustrating that the influence of the incidence 
angle on backscatter remained after terrain flattening. Slope values were slightly larger 
for the 81DESC orbit that had lower incidence angles. For VV polarization, slope values 

varied during the year. The largest values were achieved in periods of smooth bare soils 
(e.g., November after sowing or August after harvest) (~-0.23 dB/⁰ for σ0 and ~-0.10 
dB/⁰ for γ0) that decreased steadily with wheat growth reaching a minimum in May and 

June (~-0.16 dB/⁰ for σ0 and ~-0.04 dB/⁰ for γ 0). In these months, wheat canopy was at 
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its maximum (BBCH growth stages 5-8) and the incidence angle influence was 
negligible.  

This preliminary analysis recommends applying the terrain flattening algorithm 
whenever incidence angle variations are significant. Yet, some influence remains, so, for 
detailed analyses an incidence angle normalization might be applied to remove 

eventual biases in VV backscatter. Furthermore, this normalization should take into 
account the dynamic nature of crops and the variations in γ 0=f(θloc) relationship during 
the year. 
 

4.3. Methodology 

4.3.1. Backscatter sample selection 

The objective of this analysis is to normalize γ 0 VV backscatter time series obtained 
in different orbits, so that they can be used in further analyses as a single time series. 
To evaluate the success of the normalization, a backscatter sample selection is done, 

selecting for each parcel acquisitions of different orbits obtained in a small time-frame. 
Ideally, in case simultaneous acquisitions were available, eventual biases between 
acquisitions would fade after a successful normalization. Longer time-frames enhance 

the probability of backscatter variations between orbits due to other ‘disturbing’ 
factors (e.g., precipitation). Orbits 8DESC and 103ASC overpassed the study area the 
same days at 6:00 and 18:00, respectively; and orbit 81DESC 24 hours before 8DESC, 

and thus 36 hours before 103ASC. Since significant changes in wheat conditions are not 
expected in 36 hours, backscatter values in this time-frame are considered comparable 
unless a strong weather event or agricultural practice (e.g., tillage or harvest) occurred 

in between. Thus, to mask out these eventual disturbing factors, for each parcel, dates 
with a γ0 backscatter difference between orbit pairs larger than 3 dB were excluded 
from the analysis. This excluded only ~15% of the data. To summarize, for each wheat 

parcel a sample of backscatter triplets (in orbits 8DESC, 81DESC and 103ASC) acquired 
during the two agricultural seasons was extracted and this formed the basis for all 
subsequent analyses.  

 

4.3.2. Incidence angle normalization 

The goal of normalization techniques is to remove the contribution of the incidence 

angle to the total backscatter. Mladenova et al. (2013) proposed a technique based on a 
histogram matching procedure that can account for the nonlinear nature of backscatter 
– incidence angle relationship. In this study, this technique was applied individually for 

the different periods explained below. The large dataset used in this study allowed 
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calculating the statistics needed for the histogram normalization at the agricultural 
region scale, as follows: 

                                      	�(ABC) =  	̅��
� + 	F��
� (GHIGJH)
GK H                                                  (4.1) 

where γ0 is radar backscatter in [dB]; ‘–‘ and ‘˄’ indicate mean and standard deviation 

for each 1º incidence angle bin; and ref  refers to reference angle. The reference angle 

was selected as the median incidence angle of the three orbits. As a result, the 40° 

reference angle was chosen. 

Considering the different backscatter dependence on incidence angle (Fig. 1), two 

periods were considered: May-June and the rest of the year.  
 

4.3.3. Azimuthal anisotropy correction 

After incidence angle normalization, backscatter time series acquired in ASC and 

DESC orbits were subsequently processed to correct their eventual differences due to 
their different observation directions (azimuthal anisotropy) following Schaufler et al. 
(2018) . If no azimuthal anisotropy existed, the orbits’ means should be the same: 

	̅�(40�)��NOPQ =   	̅�(40�)RS�PQ = 	̅�(40�)R�S�PQ                                (4.2) 

To achieve this, the azimuthal correction method (Schaufler et al., 2018) computes first 

a reference backscatter value as the mean of all backscatter data from the three orbits: 

	��
� = 	̅�(40�)                                                              (4.3) 

Then, the difference between this reference value and the mean of each orbit is the 

correction factor dorbit necessary to compensate azimuthal effects: 

<��T�� = 	��
� − 	̅�(40�)��T��                                                        (4.4) 

The azimuthal anisotropy is finally corrected by adding dorbit  to each normalized 

backscatter value: 

	�(40�)��_���� = 	�(40�)��T�� + <��T��                                              (4.5) 

All the normalized backscatter data from section 3.2. were processed with this 
algorithm. The two periods were also separated for the anisotropy correction.  
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4.3.4. Evaluation of results 

A successful correction of incidence angle and azimuthal anisotropy contributions 

would produce the same parcel scale backscatter values acquired in different orbits 
within the established 36 hour time-frames. Therefore, the absolute backscatter 

difference (|∆|) from the three orbits was used as an evaluation criteria. The |∆| 

between orbits were computed pairwise (8DESC-103ASC, 8DESC-81DESC and 81DESC-

103ASC) for each parcel. These |∆| values were grouped per month to illustrate the 

performance of the correction methods throughout the year.  

Additionally, the performance of the corrections was evaluated using the correlation 

between backscatter and Red-edge NDVI (reNDVI) (Gitelson and Merzlyak, 1994). The 
rationale of this comparison is that if the applied corrections successfully reduced 
angular effects, then the correlation with reNDVI should improve. For this, a ~270 km2 

pilot zone was selected (N42º42’53.6’’ and W1º16’12.7’’), containing 855 wheat parcels 
with different topographic orientations and slopes. Sentinel-2 scenes were searched, 
but cloud affection is typically persistent during wheat growing cycle in Navarre. 

Therefore, the correlation was assessed for a complete agricultural campaign (2018), 
but also focusing only on its final part, i.e. April-July, where the availability of cloud-free 
scenes improves. This period includes crop maturity, senescence and harvest. In total, 

14 cloud-free Sentinel-2 Level-2A scenes were obtained. The median reNDVI time 
series for each parcel were obtained and interpolated for Sentinel-1 acquisition dates. 
The Pearson correlation coefficient R was computed between the interpolated reNDVI 

time series and all the backscatter time series (σ0, γ0, γ0(40º) and γ0(40º)az_corr).  

 

4.4. Results and discussion 

Figure 4.2 represents the |∆| values for all wheat fields during the season and for the 
four different processing alternatives considered: σ0, γ0, γ0(40º) and γ0(40º)az_corr. σ0 

backscatter had the highest |∆| values, with a median of 1.25 dB that represented the 
significant influence of incidence angle variations in backscatter. γ0 presented a median 

|∆| of 0.80 dB, with October and June being the months with the lowest values (~0.67 

dB). The significant reduction of |∆| (~0.45 dB) for γ0 (Fig. 2), illustrated the 

effectiveness of terrain flattening for compensating incidence angle variations in 
backscatter data, in accordance with Fig. 4.1.  
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Figure 4.2. Boxplots of absolute backscatter differences for the three orbits during the year and considering 

different processing alternatives. 

|∆| decreased slightly further after incidence angle normalization (γ0(40º)), with a 

reduction of 0.15 dB compared to 0, and also after azimuthal anisotropy correction 

(γ0(40º)az_corr), where |∆| achieved an additional reduction of 0.02 dB. Both corrections 

were effective but the reduction was much lower than the initial reduction achieved 
after terrain flattening. The intensity of the incidence angle normalization differed 

between months, and was highest for months with no vegetation, i.e., July, August; and 

winter months (BBCH growth stages 1-2), where the reductions of |∆| were >0.16 dB. 

For May and June γ0(40º) had almost no effect in |∆|, due to the reduced effect of the 
incidence angle in backscatter during these months (Fig. 1). Conversely, γ0(40º)az_corr 

was most effective in May, compensating the undercorrection of γ0 and γ0(40º). In 

summary, the median |∆| for all the months was 0.65 dB for γ0(40º), and 0.63 dB for 

γ0(40º)az_corr. 

When evaluating |∆| values per month, it was possible to observe that the period 

after harvest (July and August) achieved the highest |∆| reductions after both 

corrections (>0.21 dB). In September, October and November, corrections had a smaller 
effect (~0.10 dB). During these months sowing occurs, leading to a higher soil 

roughness variability between different parcels that might mask potential 
improvements for individual parcels. Tilled or newly sown soils have a more 
Lambertian behavior, leading to a lower influence of incidence angle (Ulaby et al., 

1982). December, January and February were the months that presented the highest 

|∆| in the original data and achieved a good reduction of differences after incidence 

angle normalization (~0.20 dB). In March and April no significant improvements were 
detected (<0.14 dB). This could be explained by the dynamics of VV backscatter during 
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wheat growth cycle. Once wheat initiates the stem elongation stage, an attenuation of 
VV backscatter occurs (Mattia et al., 2003), leading to lower differences between 

subsequent acquisitions. May and June were the months with the lowest influence of 

incidence angle. While the anisotropy corrections achieved a certain decrease of |∆| in 
May (0.13 dB), there was little improvement in June (0.02 dB).  

Exploring the influence of terrain slope and orientation on the mean |∆| of each 
wheat parcel (Figure 4.3) it can be observed that terrain flattening successfully reduced 

the majority of the radiometric effect of topography. Yet a residual dependence 
remained, which could be further reduced with the incidence angle and azimuth 

anisotropy corrections. 

Figure 4.3. Dependence of mean absolute backscatter difference of wheat parcels on terrain slope (upper 
row) and orientation (lower row); for the different backscatter outputs investigated: (a, e) σ0, (b, f) γ0, (c, g) 

γ0(40º), (d, h) γ0(40º)az_corr. 

The correlation results for reNDVI and backscatter (Table 4.1) showed a negative 

correlation that responded to the typical backscatter pattern of wheat at VV 
polarization (Mattia et al., 2003). Correlation values for the full campaign were rather 
low, but when focusing on the period between maturity and harvest it improved as a 

consequence of the rising backscatter values at this period (Brown et al., 2003; Veloso 
et al., 2017) and the rapid decrease of reNDVI at crop ripening and senescence (Fig. 4.4). 
The improvements in correlation were minor for the full campaign (from 0.40 to 0.42), 
but more significant from maturity to harvest (from 0.59 to 0.69). These results 
demonstrate that the corrections applied (in particular γ0 and γ0(40º)) enhance the 

correlation with optical vegetation indices, and hence provide a better description of 
wheat growth. Yet, further studies in areas with a higher availability of optical data 
should be performed to confirm these results. 
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Table 4.1. Pearson correlation coefficient of reNDVI and backscatter for the pilot zone 

Backscatter correction Full campaign Maturity to harvest 

σ0 -0.396 -0.587 

γ0 -0.417 -0.662 

γ0(40º) -0.419 -0.686 

γ0(40º)az_corr -0.419 -0.686 
 

The backscatter time series (Fig. 4.4) showed that the corrections were successful 

as they not only improved the matching of the three orbits but also reduced backscatter 
variability (error bars), since their eventual differences due to angular effects also 

decreased. 

Taking into account that Sentinel-1 radiometric accuracy is 1 dB (Berger et al., 
2012), for some applications terrain flattened backscatter (γ0) computed for different 

orbits might be comparable without further processing given the relatively low 
influence of acquisition geometry in the values observed here. However, for 
quantitative analyses requiring more detail (e.g. soil moisture retrieval) or when 

different orbits need to be combined to enhance the temporal resolution, a closer match 
between these orbits might be achieved by implementing incidence angle 
normalization and azimuthal anisotropy correction techniques (Bauer-Marschallinger 

et al., 2021). Our results, validate the correction methods applied (Mladenova et al., 
2013; Schaufler et al., 2018; Small, 2011) and recommend their implementation in 

image processing pipelines and software. Coinciding with our results, recently 
(d’Andrimont et al., 2021), the importance of terrain flattening and incidence and 
azimuth angle corrections for operational applications of Sentinel-1 data was stressed 

out, in particular for crops with prolonged bare soil phases. 

Although a general idea is that agricultural lands occupy flat terrains, in many parts 
of the world, farmers cultivate areas that have significant slopes, making these 

corrections necessary even when working with a single orbit, as our results confirm. In 
particular, it is shown that for wheat the incidence angle influence on backscatter 
changes during the season due to its phenological development. Similar studies in other 

crops are recommended to confirm this finding. 
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Figure 4.4. Median time series of reNDVI and backscatter for wheat parcels in the pilot zone. The error bars 
represent the interquartile range (IQR): (a) reNDVI (b) σ0, (c) γ0, (d) γ0(40º), (e) γ0(40º)az_corr. Colors in b, 

c, d and e represent the different orbits. 
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4.5. Conclusion 

In this study, the influence of acquisition geometry (incidence and azimuth angles) 

on backscatter (σ0) and terrain flattened backscatter (γ0) was evaluated for wheat 
parcels. The analysis revealed that terrain flattening markedly reduced the influence of 
incidence angle in VH and VV polarizations, being almost negligible for VH polarization. 

In VV polarization, the influence of the incidence angle slightly remained, although it 
varied along the growing season, being the least when the crop canopy was fully grown. 
It was thus demonstrated that the incidence angle influence on backscatter varied due 

to the phenological development of the crop. 

The analysis of backscatter differences between the three relative orbits studied, 
showed that terrain flattening could achieve a significant reduction of angle variations 

in backscatter data. Yet, incidence angle normalization could further reduce backscatter 
differences, particularly in winter months and bare soil periods. The correlation with 
reNDVI also improved after terrain flattening and normalization, revealing a better 

description of wheat growth. The azimuth anisotropy correction had a lower effect that 
was mainly relevant in May. The differences between ascending and descending passes 

might be partly due to the acquisition geometry (incidence and azimuth angles) and 
partly due to the time of the day (eventually dew, frost, soil moisture, etc.), but this has 
not been sufficiently studied yet.  

For applications where different orbits have to be combined, the need to further 
correct terrain-flattened backscatter values will depend on the level of precision 
required. Furthermore, for quantitative studies aiming at retrieving a bio-geophysical 

variable of interest (e.g., soil moisture), adding these corrections might provide 
enhanced results. 
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Abstract 

Wheat is one of the most important crops worldwide, and thus the use of remote 
sensing data for wheat monitoring has attracted much interest. Synthetic Aperture 

Radar (SAR) observations show that, at C-band and VV polarization, wheat canopy 
attenuates the surface scattering component from the underlying soil during a 
significant part of its growth cycle. This behavior needs to be accounted for or corrected 

before soil moisture retrieval is attempted. The objective of this paper is to develop a 
new method for wheat attenuation correction (WATCOR) applicable to Sentinel-1 VV 
time series and based solely on the information contained in the time series itself. The 

hypothesis of WATCOR is that without attenuation, VV backscatter would follow a 
stable long-term trend during the agricultural season, with short-term variations 
caused by soil moisture dynamics. The method relies on time series smoothing and 

changing point detection, and its implementation follows a series of simple steps. The 
performance of the method was compared by evaluating the correlation between 

backscatter and soil moisture content in six wheat fields with available soil moisture 
data. The Water Cloud Model (WCM) was also applied as a benchmark. The results 
showed that WATCOR successfully removed the attenuation in the time series, and 

achieved the highest correlation with soil moisture, improving markedly the 
correlation of the original backscatter. WATCOR can be easily implemented, as it does 
not require parameterization or any external data, only an approximate indication of 

the period where attenuation is likely to occur. 
 
Keywords: wheat, attenuation, SAR, time series, soil moisture, Sentinel-1  
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5.1. Introduction 

Wheat is one of the most important crops at the global scale, being the main food 

grain source for humans (FAO, 2021). The monitoring of major crops like wheat is 
essential for important applications such as food security assurance (Van Tricht et al., 
2018) or biomass and yield forecasting (Steele-Dunne et al., 2017). Soil moisture (SM) 

is one of the key variables subject to be monitored. The occurrence of plagues and 
diseases can be affected by SM, and it plays a key role in the development of crops as it 
determines the availability of water for plants (Vereecken et al., 2010). At a global scale, 

SM is a key variable of the climate system and it is involved in a number of feedbacks 
affecting weather events (Seneviratne et al., 2010). 

In-situ probes can measure SM at the point scale, but generalizing point 

measurements to spatial areas is not straightforward due to its high spatial variability 
(Ochsner et al., 2013). Therefore, remote sensing has received great interest, as a source 
of spatial information over large areas of the territory with a given periodicity. 

Microwave sensors are the most suitable for SM estimation, because at this wavelengths 
the soil response is determined partly by its dielectric properties that mainly depend 

on surface SM (Kornelsen and Coulibaly, 2013). Operational global SM products at 
coarse resolution (25-50 km) have been developed in the last years, mainly based on 
radiometers (Brocca et al., 2011; Chan et al., 2016; Kerr et al., 2012) or scatterometers 

(Naeimi et al., 2009). SAR sensors offer a finer spatial resolution (10-20 m), suitable for 
SM estimation at the agricultural field or irrigation sector scale. Nevertheless, these 
sensors are more severely affected by other variables such as soil surface roughness 

(Verhoest et al., 2008) or vegetation characteristics (Bindlish and Barros, 2001), and 
thus, SM retrieval at the field scale is still a challenging task (Peng et al., 2021; Wagner 
et al., 2007). 

SAR based SM retrieval is a subject that has been studied for more than forty years 
(Macdonald and Waite, 1971). Different models have been developed for bare soils over 
the years. The Integral Equation Model (IEM) (Fung, 1994) and the Advanced Integral 

Equation Model (AIEM) (Chen et al., 2015; Fung and Chen, 2004) are physical-based 
models widely used  (Kong et al., 2018; Shi et al., 1997). Semi-empirical models were 
also developed, such as Oh (Oh et al., 1992), Dubois (Dubois et al., 1995) or Shi (Shi et 

al., 1997). The inversion of these models allows estimating a variable (e.g. SM) from 
backscatter observations, knowing the rest of the variables of the model (e.g., surface 

roughness). Machine learning techniques have also been used for SM estimation, for 
instance artificial neural networks (ANN) (Hachani et al., 2019) or support vector 
machines (SVM) (Ahmad et al., 2010; Pasolli et al., 2015a). In some studies, machine 

learning approaches were trained using synthetic datasets generated with models, such 
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as IEM (Hajj et al., 2017), while in other cases training was performed with real remote 
sensing observations and in situ data (Greifeneder et al., 2021). 

The backscatter response from vegetation canopies is complex, as it is influenced by 
sensor configuration (e.g., frequency, wavelength and incidence angle), the physical 
structure and the dielectric properties of plant elements and the characteristics of the 

underlying soil. Therefore, SM estimation under vegetated surfaces requires the 
coupling of vegetation and soil backscatter models (Zhang et al., 2021) in order to 
separate both contributions. Different models that simulate the backscatter from 

canopies have been developed. Full electromagnetic scattering models, like the 
Michigan Microwave Canopy Scattering model (MIMICS) (Brown et al., 1994; Ulaby et 
al., 1990), might be difficult to use in an operational setting due to the large number of 

parameters required. Therefore, approximate solutions like the semi-empirical Water 
Cloud Model (WCM) (Attema and Ulaby, 1978) have gained interest and popularity due 
to its relatively simplicity (Graham and Harris, 2003; Kornelsen and Coulibaly, 2013). 

The WCM represents the vegetation canopy as a medium composed of identical water 
particles that can be represented by bulk descriptors related to its density (e.g., 
Vegetation Water Content or LAI). For empirically fitting WCM coefficients, backscatter 

observations, SM measurements and vegetation descriptors are required. Different 
studies investigated alternative vegetation descriptors that might be obtained from in-

situ data or from remote sensing observations (Bindlish and Barros, 2001; Hajj et al., 
2017). The first ones are costly and time consuming, while remote sensing based 
descriptors might be more easily obtained. The latter include optical vegetation indices 

(e.g., NDVI.) (Bao et al., 2018; Zhuo et al., 2019) or features obtained from multi-pol SAR 
observations (crosspol ratio, etc.) (Dabrowska-Zielinska et al., 2018; Li and Wang, 
2018). SAR features might be particularly interesting for areas where weather 

conditions preclude the use of optical data (Li and Wang, 2018). WCM simulates both 
the vegetation contribution to backscatter (volume scattering) and its effect in 
attenuating the soil contribution. It usually requires a specific parameterization for 

each vegetation type, vegetation descriptor  and study site (Álvarez-Mozos et al., 2006), 
which needs additional in situ-measurements for validation purposes.  

Wheat canopy has a particular behavior in VV polarization, with a characteristic 

scattering dynamics during the different phenological stages (Stiles et al., 2000), and a 
dominant scattering mechanism consisting of soil backscatter attenuated by the canopy 
(Brown et al., 2003; Mattia et al., 2003; Skriver et al., 1999b). At early stages backscatter 

mainly reflects the response of soil, since the crop development is still poor 
(Harfenmeister et al., 2019; Larranaga et al., 2013). Then, this soil backscatter 
component is attenuated gradually during the stem elongation phase due to the vertical 

structure of wheat plants, reaching its minimum values by the heading stage (Mattia et 
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al., 2003), when backscatter starts to increase. Then, during crop maturity and 
senescence, wheat plants dry out and the attenuation capacity of wheat canopy 

gradually diminishes leading to an increase in backscatter (Liu et al., 2013b) until the 
crop is finally harvested. Ouaadi et al (Ouaadi et al., 2021) proposed that the attenuation 
produced by wheat was the main cause of the scattered relationship between SM and 

backscatter, while Weiβ et al (Weiß et al., 2021) found that the uncertainty in SM 
estimation increased from stem elongation until heading, coinciding with the period of 
attenuation. 

An approach for attenuation correction that would not require external data or 

local-site parameterization would be of wide interest from the applications point of 
view. Detailed backscatter time series observed over wheat fields by ongoing missions 

with a systematic observation planning, like Sentinel-1, might be an invaluable 
information source for characterizing the attenuation behavior of wheat. This would 
allow designing and implementing data-driven approaches based on the backscatter 

time series itself. Therefore, the objectives of this paper are: 

- To describe the backscattering behavior of wheat for C-band VV polarization 
using a large dataset of Sentinel-1 observations. 

- To propose a new method for wheat attenuation correction (WATCOR) in VV 
polarization based solely on the backscatter time series itself. 

- To evaluate the proposed approach and compare it with the state-of-the-art 
WCM using a dataset comprising in-situ SM measurements over several wheat 
fields. 

The remaining of the article is structured in three separate sections, section 5.2 
describes the general backscatter behavior of wheat, section 5.3 proposes the new 
method WATCOR and section 5.4 evaluates and compares it with the WCM. Finally some 

conclusions are drawn 

5.2. General wheat behavior at C-band VV backscatter 

This section analyzes a large wheat backscatter dataset collected during four 

agricultural campaigns (2016, 2017, 2018 and 2019) in Navarre (Spain). The objective 
is to describe the general backscatter behavior of this crop in VV polarization.  
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5.2.1. Methodology 

a) Study area 

The study area comprises the agricultural lands of the province of Navarre in 
Northern Spain (Figure 5.1). In spite of its relatively small extension (10,391 km2), 
Navarre is characterized by its diversity regarding climate and landscape. The Northern 

area corresponds with the western side of the Pyrenees mountain range, and has a 
humid climate with a predominance of forests and prairies. In contrast, the Southern 
area, with a drier climate and a higher proportion of arable land, is formed by the plains 

of the Ebro basin. The transition zone between these two areas has mixed 
characteristics. This diversity leads to a stratification of Navarre in seven agricultural 
regions for administrative and management purposes. The detailed characteristics of 

the agricultural regions are described in Arias et al. (Arias et al., 2020). Table 5.1 
presents some basic features of the wheat fields therein. 

 

Figure 5.1. Location of the province of Navarre and its seven agricultural regions 
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Table 5.1. Characteristics of wheat fields on each agricultural region 

Agricultural 

region 

Wheat area 

cultivated (ha) 

Average size of 

fields (ha) 

Average slope 

of fields (%) 

Type of 

management 

R1 583 1.03 12 Rainfed 
R2 8126 1.83 11 Rainfed 
R3 11620 1.73 11 Rainfed 
R4 16990 1.39 11 Rainfed 
R5 14941 1.47 9 Rainfed/Irrigated 
R6 10348 1.55 5 Rainfed/Irrigated 
R7 7695 1.73 6 Rainfed/Irrigated 

 

b) SAR imagery 

Sentinel-1 C-band SAR imagery was the base for this study. Images were acquired in 
the Interferometric Wide (IW) swath mode with dual-pol (VH-VV) configuration, and 

they were downloaded as level-1 Ground Range Detected (GRD) products. Sentinel-1 
overpasses the study area in one ascending orbit (103ASC) and two descending orbits 

(8DESC and 81DESC). All available Sentinel-1A and B scenes in these three orbits 
covering the study area from 1 September 2015 to 31 August 2019 were used in this 
study, making a total of 563 scenes. The revisit time was variable during the years of 

study and the different orbits used. In 2016, S1B was not yet available so the revisit 
time was 12 days in all orbits, and then it shortened to 6 days for the rest of the study, 
except for orbit ASC103 where S1A was unavailable from April 2018 to the end of 2019. 

The images were processed with an automated pipeline in SNAP Graph Processing 
Toolbox following these steps: 1) thermal noise removal; 2) slice assembly; 3) apply 
orbit file; 4) calibration; 5) speckle filtering (3x3 Gamma-Map); 6) terrain flattening; 7) 

range-doppler terrain correction and 8) subset to the extent of Navarre. After the 
process, 0 backscatter coefficients in dB units were obtained. The pixel size of the 
output products was set to 20 m. The SRTM 1sec HGT DEM was used for terrain 

flattening and terrain correction. 

c) Data extraction 

The Agriculture Department of the Government of Navarre provided an anonymized 
version of the Land Parcel Information System (LPIS or SIGPAC in Spanish) with the 

crops declared for each parcel in the 2016, 2017, 2018 and 2019. This dataset consisted 
of a GIS polygon vector file and its corresponding attribute table with the crops stated 

by farmers in their EU Common Agricultural Policy (CAP) declarations. From this 
dataset, wheat parcels were extracted for each year and preprocessed as follows: (1) 
parcels smaller than 0.5 ha were discarded, (2) a 5 m inner buffer was applied to the 
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parcel boundaries, (3) the median backscatter was computed for each parcel in each 
acquisition date leading to a backscatter time series for each parcel and year, and (4) 

the 10% of parcels most dissimilar to the characteristic wheat time series were 
discarded each year, since some CAP declarations might be erroneous (Arias et al., 
2020). The final number of wheat parcels used in this study was 21845 for 2016, 18750 

for 2017, 20374 for 2018 and 20465 for 2019. 

d) Analysis of backscatter trend 

For each agricultural region, year and satellite pass, the median VV backscatter time 
series of all wheat parcels were computed. Additionally, the median time series at the 

province level (Navarre) were also calculated. Each agricultural year started the 1st 
September of the previous year and ended the 31st August of the corresponding year.  

Before analyzing the backscatter behavior of wheat, the similarity between years 
was evaluated by comparing the autocorrelation function (ACF) of the median time 

series. The ACF measures how fast or slowly data in the time series vary (Broersen, 
2006), and it is useful for identifying underlying trends in the time series. The 
correlation length (lcor) was also calculated and used as a parameter that summarizes 

the information conveyed in the ACF. lcor is the lag distance (days in our case) where 
autocorrelation in the time series is lost, this is commonly defined as the lag where the 
ACF falls below 1/e (Ulaby et al., 1982). Finally, in order to evaluate the long-term 

backscatter trend, a moving average of 36 days was computed for the median time 
series. This process enables omitting rapid backscatter variations due to meteorological 

events or eventual agricultural practices, so that only the general backscatter trend 
caused by wheat canopy remains in the time series. 

5.2.2. Autocorrelation results 

Figure 5.2 showed that the ACFs obtained for the different years were similar, 

particularly during the first 50 lagged days. Autocorrelation values steadily decreased 
to a value of zero around day 100. Additionally, the ACF between the different orbit 
nodes was also quite similar, although orbit 103ASC had a slightly steeper decay. 

When computing the ACFs for each agricultural region (Supplementary Materials 1), 

it can be observed that regions 6 and 7 presented a steeper decay than the rest, meaning 
that backscatter variations in wheat parcels of these regions might be more abrupt than 

in the other regions. The correlation length (Table 5.2) enables comparing these ACFs 
quantitatively. Although there was some variability in lcorr between the different years 

studied, values did not deviate drastically from the mean (~30 days). The differences 
observed could be attributed as a first instance to the climatic conditions, with 2018 
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being the wettest year in the series for regions 4, 6 and 7 and showing lower lcorr values 
than the remaining years. In addition, Sentinel-1 revisit time was not consistent during 

the whole study period. It concurred that time series with lower temporal resolution 
(i.e., longer revisit time) had lower lcorr. Agricultural regions 6 and 7 showed lower lcorr 
values, probably due to the larger amount of irrigated wheat parcels in these regions 

that might result in a more dynamic SM variation (Supplementary Materials 1). The 
remaining regions had a very similar autocorrelation behavior to that observed at the 
provincial level. Altogether, this analysis demonstrates that wheat backscatter time 

series have a certain degree of autocorrelation that is similar every year, suggesting that 
wheat canopy creates an annual systematic trend in VV backscatter. 

Figure 5.2. Autocorrelation function (ACF) plots of median wheat time series in Navarre for the three 
different orbits: (a) 8DESC, (b) 81DESC and (c) 103ASC 

Table 5.2. Correlation length of median wheat time series ACF 

Orbit node 
Campaign  

2016 (days) 

Campaign 

2017 (days) 

Campaign 

2018 (days) 

Campaign 

2019 (days) 
Mean (days) 

8DESC 25 28 34 37 31 

81DESC 28 33 36 41 35 

103ASC 22 29 27 27 26 
 

5.2.3. Long-term wheat backscatter trend analysis 

Figure 5.3 showed that backscatter slightly increased from September to November 
due to soil preparation and sowing. Also, November is normally a wet month, so the 
backscatter rise might respond to higher soil moisture. During December and January, 

backscatter values remain rather high (~-9.5dB). However, there was a clear decrease 
in backscatter from February to April, which reached its minimum value (~15dB) at the 
end of April. During this period, the vertical orientation of wheat canopy at the stem 

elongation stage (BBCH21-55) (Lanchashire et al., 1991) produces an attenuation of 
backscatter (Mattia et al., 2003). Then, backscatter increased from April to June due to 
changes in the structure of plants, as a consequence of the successive phenological 

development, from flowering to ripening (BBCH55-99). Finally, after harvest, a 
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stabilization in backscatter values was found in July and August (~12dB), when 
backscatter depends only on the bare soil response. Although September is bare soil 

month, it presents higher backscatter values compared to August due to the increase of 
soil roughness caused by soil preparation. 

Figure 5.3. Smoothed Sentinel-1 VV time series for the different agricultural campaigns and orbits: (a) 
8DESC. (b) 81DESC. (c) 103ASC. Curves represent the median of all wheat parcels in Navarre. Main 

phenological stages (BBCH scale) are indicated. 

The smoothed time series of the different agricultural regions (Supplementary 

Materials 2) exhibited the same behavior with differences in their backscatter 
amplitude. For instance, the decrease in backscatter during attenuation reached ~6dB 

in northern regions, while in southern regions it was lower (~4dB). The duration of the 
attenuation period also varied, being longer in southern regions. 

In summary, the analysis of the smoothed backscatter time series confirmed the 

existence of a seasonal trend caused by wheat canopy in VV backscatter, rather 
independent from SM variations and explained by wheat growth and phenology. 

Backscatter attenuation caused by the growth of vertical stems started approximately 
in February and lasted until the end of April, when the maximum attenuation was 
observed. Then, backscatter increased due to phenological development and later also 

due to the greater penetration when cereals are drying out during ripening and 
senescence, until harvest took place at the end of June. For individual fields, both the 
start and end of attenuation might be identified as changing points in their backscatter 

time series. The specific start and end points of attenuation for each parcel might vary 
due to the particular management and site conditions of the parcel.  

5.3. A new method for correcting wheat attenuation in VV backscatter time 

series 

The previous section demonstrated that wheat canopy produces a particular 

backscatter pattern in VV polarization during the agricultural year. This section 
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proposes a simple methodology for correcting wheat attenuation in VV backscatter 
time series (WATCOR), by using only information contained in the VV backscatter time 

series itself.  

The initial hypothesis is that if no attenuation existed, VV backscatter would follow 
a rather stable long-term trend with backscatter variations mainly caused by surface 

roughness or moisture variations, as it occurs in the initial (Sep-Jan) and final  (Jun-
Aug) bare soil periods. 

The method follows a series of steps (Figure 5.4). First, the period where attenuation 

occurs is identified. Then, a low frequency trend is interpolated for this period by 
assuming a linear transition from the start of the attenuation period to its end. Finally, 
the high frequency backscatter variations are finally added to the low frequency trend. 

These high frequency variations in the attenuation period are extracted by fitting and 
subtracting a lower envelope curve to the real backscatter time series. In the following 
subsections, these processes are explained in detail.  

 

Figure 5.4. Diagram indicating the main steps of WATCOR 
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5.3.1. Low frequency backscatter trend extraction 

The low frequency trend underlying VV backscatter time series was extracted by 

applying a Savitzky-Golay smoothing filter (Liu et al., 2013a). This filter considers that 
high frequency variations are noisy, and obtains a smoothed trend by computing a 
polynomial least-squares fit of order p inside a moving window of width w that crosses 

the signal (Savitzky and Golay, 1964). The Savitzky-Golay filter requires a signal with 
constant frequency. Therefore, to comply with the missing scenes that seldom occur in 
Sentinel-1 time series, a daily linear interpolation was performed first. Then, the 

parameters of the filter were determined through visual interpretation. High values of 
w and low values of p produce smoother trends. The effects of varying these two 
parameters are displayed in Supplementary Materials 3. A polynomial order of one 

(p=1) with a window size of 45 days (w=45) yielded the best results, obtaining a smooth 
signal that preserved the attenuation trend and omitted high frequency backscatter 
dynamics. 

5.3.2. Identification of the attenuation trend 

The period when wheat attenuated VV backscatter was identified by applying a 
change point detection technique in the smoothed backscatter series. Change points are 

points in the time series where unexpected and structural changes occur, changing the 
data properties such as the mean or the variance (Militino et al., 2020; Sharma et al., 
2016). Both the start and end of the attenuation period are changing points in the 

smoothed trend. Although the Savitzky-Golay smoothing minimized the number of 
changing points detected outside the attenuation period, some additional change points 
might be found, depending on other factors, such as the climatic conditions of the year. 

To avoid this, the change point search was constrained in time to periods where the 
start and end of attenuation are likely to happen. In our case, based on local knowledge, 
and the very high number of wheat parcels analyzed, the search was constrained to a 2-

month period: 

• Beginning of attenuation: from 15/Jan to 15/Mar. 

• End of attenuation: from 15/May to 15/Jul. 
These dates should be adjusted to the particular agricultural calendar and conditions of 
each site.  

Once the search periods were set, a change point analysis algorithm (Matteson and 
James, 2014) was applied, based on the statistical moments of the time series. The 

algorithm performed a nonparametric estimation of the number of change points and 
their position based on a divisive hierarchical clustering, without any additional 
assumption on their distribution. The algorithm parameters where set to k=1 (number 
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of change points to estimate) and min.size=2 (minimum number of observations 
between change points). 

5.3.3. Restitution of the smoothed trend 

The smoothed backscatter trend was restituted to remove wheat attenuation. To 
achieve this, a linear trend was assumed between the start and end of the attenuation 
period (Figure 5.4b). Ideally, this restituted trend would follow the backscatter 

dynamics in case no attenuation existed.   

5.3.4. Lower envelope determination 

During the attenuation period, the lower envelope of the original backscatter time 
series represents the backscatter bottom line, with values above it that could 

correspond to soil wetting events. To extract this lower envelope, the iterative 
methodology of Chen et al. (Chen et al., 2004) was adapted to obtain a curve that fitted 

as good as possible the local minima in the backscatter time series. To automate the 
methodology six steps were followed (Figure 5.5): 

1) Select the set of local minimum points in the backscatter time series (%, 	�), 
through its first derivative. These points were flagged for later use as a 

reference (%, 	�)��
 . 

2) Smooth the time series using the Savitzky-Golay filter (parameters p=1, w=45), 

leading to a smoothed curve (%, 	��� ).  
3) Initialization of an iteration (k = 1, … , 100). Remove high points in the time 

series, by selecting points that were above the smoothed curve and replacing 
their values with the ones on the smoothed curve (Eq.1). This way, a new 

backscatter time series was generated (%, 	��),  

 

 	�� = U 	�, 	� ≤ 	��I��
	��I�� , 	� > 	��I��                             (5.1) 

 

4) Smooth again the obtained backscatter time series (%, 	��) using the Savitzky-

Golay filter (parameters p=2, w=45), producing a newly smoothed backscatter 

time (%, 	��� ), which got closer to the lower envelope.  

5) Compute a fitting index (��), as the RMSE between the reference points (%, 	�)��
 and their values in (%, 	��� ). 

6) Steps 3-5 where iterated 100 times, and finally, the lower envelope was 

selected as the iteration (%, 	��� ) with the lowest �� 
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Figure 5.5. Flowchart explaining the determination of the lower envelope 

5.3.5. Addition of high frequency backscatter variations to the restituted trend 

The difference between the original backscatter time series and the lower envelope 
was calculated. This difference represented high frequency backscatter variations that 

mostly responded to soil wetting events. Therefore, it was added to the smoothed linear 
trend obtained in section C, resulting in the corrected backscatter time series, where 

wheat attenuation had been finally removed (Figure. 5.4d). 
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5.4. Case study: backscatter and soil moisture correlation 

The aim of this last section is to evaluate the effectivity of the proposed approach 

(WATCOR) with a case study. Since the correction of the vegetation effect is a pre-
requisite for many SM retrieval methods (e.g., IEM, Oh model, etc.), this evaluation was 
performed indirectly by measuring the correlation between SM measurements and VV 

backscatter time series before and after correction. With this aim, surface SM ground 
measurements obtained over wheat fields in three dedicated field campaigns were 
used. In addition, the proposed approach was compared with the well-known Water-

Cloud Model (WCM) (Attema and Ulaby, 1978), implemented in three different variants. 
The rationale was that the method that best corrected vegetation influence should 
result in higher correlation values between backscatter and SM time series. 

5.4.1. Methodology 

a) Study area and soil moisture measurements 

The study was conducted in six wheat fields located in the province of Navarre 

(Spain) (Figure 5.6). The main characteristics of the fields are described in table 5.3. 
From three to five capacitance SM probes (Sentek-multi) were installed on each field 
from winter until de end of June (harvest). The probes recorded the volumetric SM on 

a 30 minutes basis, at six different depths every 10cm, from the surface to 60cm deep, 
yet for this analysis only the surface layer (0-10cm) was considered. For each field, its 
SM time series was calculated as the median time series of the probes installed on it. 

Finally, from these field time series, a dataset was extracted with the SM measurements 
that coincided with Sentinel-1 acquisitions (Table 5.4.).  

 

Figure 5.6. Wheat fields location. Red dots represent the soil moisture probes 
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Table 5.3. Characteristics of the wheat fields 

Id Area (ha) 
Texture 

class 
Type 

Sowing 

date 
Harvest 

Number 

of probes 

1 1.36 Clay-loam Rainfed 25/10/2017 05/07/2018 3 

2 8.50 Loam Irrigated 25/10/2017 05/07/2018 6 

3 1.57 Clay-loam Rainfed 25/10/2018 06/07/2019 4 

4 2.80 Silt-loam Irrigated 25/10/2018 06/07/2019 5 

5 1.37 Clay Rainfed 11/12/2019 03/07/2020 4 

6 1.86 Loam Irrigated 11/12/2019 03/07/2020 5 
 

Table 5.4. Number of Sentinel-1 acquisitions per orbit, and start and end dates of SM measurements 

Id 8DESC 81DESC 103ASC Initial date Final date 

1-2 20 21 13 03/03/2018 27/06/2018 

3-4 19 20 9 14/02/2019 21/06/2019 

5-6 29 29 29 31/12/2019 28/06/2020 

 

b) Satellite imagery and data extraction 

All available Sentinel-1 scenes from 1 September 2017 to 31 August 2020 were 

acquired and processed following the process explained in Section-II. After scene 
processing, a 10 m inner buffer was applied to the field boundaries and the median 
backscatter value for each field was computed on each of the Sentinel-1 acquisitions 

during its particular agricultural year (2018 for fields 1 and 2; 2019 for fields 3 and 4; 
and 2020 for fields 5 and 6). All backscatter data were normalized to a local incidence 
angle θ=40º, following the methodology explained in (Mladenova et al., 2013). 

All available Sentinel-2 multispectral Level-2A Bottom of Atmosphere (BOA) 
reflectance images for the study period were also used, in this case obtained from 
Google Earth Engine. A subset of the study area was clipped, and scenes where the study 

fields were free of clouds were downloaded for further analysis. Two vegetation indices 
were computed: the normalized vegetation difference index (NDVI) (Rouse et al., 1974) 
and the normalized water difference index (NDWI) (Gao, 1996). As for Sentinel-1, 

median values were computed for each field, using the buffered polygon vector files, 
leading to field time series of NDVI and NDWI. Finally, a linear interpolation was applied 
to the NDVI and NDWI time series at a daily time step to derive a time series coincident 

with Sentinel-1 acquisitions. 
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c) WCM vegetation correction 

The WCM is a semi-empirical model used to correct the vegetation influence on 

backscatter data (Attema and Ulaby, 1978). The model describes vegetation as a ‘cloud’ 
composed of identical water droplets uniformly distributed within the canopy, which 
attenuates the microwave radiation, but might also contribute to the total backscatter 

(Attema and Ulaby, 1978). The WCM is expressed as follows: 

X���� = XY�Z� + [�X���\�                             (5.2) 

[� = exp (− �`ab���c)                            (5.3) 

XY�Z� = de�fghi(1 − [�)                            (5.4) 

where σ0
can is the total backscatter, σ0

veg is the vegetation contribution; σ0
soil is the soil 

contribution; τ2 is a two-way attenuation factor; θ is the incidence angle; V1 and V2 are 
vegetation descriptors; and A and B are empirical parameters that depend on the 

vegetation descriptor and the radar configuration considered. It must be noted that in 
this study the WCM was fitted to VV polarized Sentinel-1 backscatter observations (in 

linear units) after terrain flattening, so γ0 was used instead of σ0. 

In the literature, different vegetation descriptors for the WCM can be found, 
although V1 and V2 are usually considered the same (V1=V2). The most frequently used 
vegetation descriptors are: the vegetation water content (VWC) (Ayari et al., 2021), the 

leaf area  index (LAI) (El Hajj et al., 2016), the normalized vegetation difference index 
(NDVI) (Bindlish and Barros, 2001), the normalized water difference index (NDWI) 

(Chai et al., 2015) and to a lesser extent SAR descriptors, such as radar vegetation index 
(RVI) (Li and Wang, 2018) or VH/VV ratio (Dabrowska-Zielinska et al., 2018). In this 
study, two optical-based WCM variants were implemented: one based on NDVI and the 

other on NDWI (Gao, 1996).  Additionally, a third WCM variant was used based on the 
VH/VV. VH/VV values, in linear units, were smoothed with Savitzky-Golay filter (p=1, 
w=45) and used as the SAR descriptor, from here onwards referred to as VH/VV, for 

simplicity. 

Although some authors used given vegetation parameter values (Wang et al., 2020) 
in WCM, most studies determined the values of parameters A and B for each particular 
site through optimization (Álvarez-Mozos et al., 2005) in a training scheme, where  the 

soil component of backscatter (σ0
soil) is an input. Some studies obtained σ0

soil from 
physical backscattering models, such as the Integral Equation Model (IEM) (Baghdadi 
et al., 2017) or Dubois model (Xing et al., 2019). However, these models need additional 

field measurements, e.g. soil roughness. Alternatively, it can be assumed that σ0
soil 

depends on volumetric soil moisture (SM) given Attema and Ulaby., (1978): 
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X���\� = jB54(P�·Q)                            (5.5) 

 

where C and D are soil parameters depending on surface soil roughness and texture, 
respectively. In this study, only SM measurements were available and, therefore, 
equation 5 was used to obtain σ0

soil. The only inputs used were: the VV backscatter time 

series in linear units (σ0
can), the incidence angle, SM measurements and the vegetation 

descriptors considered on each variant. With this data, a non-linear overdetermined 
system with four unknown parameters (A, B, C and D) was stablished (Zhuo et al., 

2019). The system was solved using the least-squared Powell’s dog-leg algorithm 
(Powell, 1970), establishing the conditions that A and B are positive. 

To train and validate the WCM a six-fold cross-validation scheme was implemented, 

which allowed to obtain A, B, C and D parameters for all fields, and state-of-the-art 
model performance metrics: RMSE, Pearson correlation (R) and BIAS (Han et al., 2020). 
Model train and validation was done separately for each WCM variant (NDVI, NDWI and 

VH/VV), assuming similar soil texture and roughness for all fields. For each case, the 
final validation results were the mean performance metrics of the six folds. The 
parameters of the models and the validation results can be found in Supplementary 

Materials 4. 

Once the WCM parameters were obtained, σ0
soil was extracted from equation (2) for 

each case, which represented the soil backscatter contribution corrected for the 
vegetation effect. 

d) Correlation analysis 

A correlation analysis was carried out to evaluate the performance of the vegetation 
correction methodologies investigated. For this, the original VV backscatter time series 
and the time series corrected with the proposed approach and the three WCM variants 

were correlated with the ground measured SM values, using Pearson correlation 
coefficient R.  

Additionally, the correlation between short-term backscatter changes with sort-

term SM changes was explored, since some SM retrieval methods are based on change 
detection techniques (Balenzano et al., 2011b). For this, the Pearson correlation 
coefficient of the backscatter difference between subsequent Sentinel-1 observations 

(∆γ0) and their SM difference (∆SM) was evaluated. 
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5.4.2. Results and discussion 

a) Dynamics of the vegetation descriptors 

The dynamics of NDVI and NDWI were quite similar (Figure 5.7), increasing right 
after sowing. They reached a saturation plateau that extended until vegetation ripening 
(Lawrence et al., 2014). This plateau was shorter for fields 5 and 6 because they were 

sown later, and thus had a shorter cycle. On the other hand, the dynamics of VH/VV time 
series were slightly different. VH/VV started to increase later, illustrating sensitivity to 
vegetative growth until mid-April approximately (Khabbazan et al., 2019; Meroni et al., 

2021; Veloso et al., 2017). Then, there was a variable behavior at the end of the cycle. 
NDVI can be considered a proxy of biomass (Bindlish and Barros, 2001) and NDWI a 
proxy of VWC (Jackson et al., 2004). VH/VV ratio was also found to be a good proxy of 

crop biomass (Veloso et al., 2017).  

 

Figure 5.7. Vegetation indices time series used as vegetation descriptors in WCM. (a) Field 1, (b) Field 2, (c) 
Field 3, (d) Field 4, (5) Field 5and (f) Field 6. For VH/VV data from orbit 8DESC is represented, the other 

two have a very similar pattern 
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b) Corrected backscatter time series 

Figure 8 shows the time series of all fields for 8DESC orbit (the results for the other 

two orbits are in Supplementary Materials 5). Although the amount of rainfall in spring 
was high, backscatter in the original time series decreased, demonstrating once again 
the attenuation caused by wheat in this period. The corrected time series presented 

differences according to the methodology applied. Focusing on WCM corrections, the 
first variant (NDVI) lead to significantly higher backscatter values since sowing. 
Similarly, the third variant (VH/VV) also resulted in higher values right after sowing. In 

both cases, the differences with the original time series increased with wheat 
development. Before harvest, the differences decreased for NDVI, but for VH/VV they 
remained relatively high in most fields. In the second variant (NDWI) the differences 

between the original backscatter time series and the corrected ones were lower. In this 
case, backscatter remained almost the same during the initial and last stages of the 
cycle, and variations only affected the attenuation period. After WCM correction with 

any of the three variants, it was still possible to possible to distinguish a residual 
attenuation in most fields (Figure 5.8). 

The differences between the three WCM variants were based in the differences 
between the vegetation descriptors. In general, the optical corrected backscatter series 

started to increase too early in the season, even before the attenuation period started. 
Then, due to the loss of sensitivity to further vegetation growth in the plateau, the 

moment of maximum attenuation was not adequately corrected. Finally, in the ripening 
stage, vegetation indices decreased rapidly leading to a sudden drop of backscatter. 
This behavior was more marked in the WCM variant with NDVI than with NDWI, since 

the latter produced a smaller correction. The WCM based on VH/VV produced a similar 
result and was not able to completely correct wheat attenuation at the maximum 
attenuation point.  

WATCOR, compared to the WCM variants investigated, only corrected backscatter 

values during the attenuation period, and the correction effect was smoother than that 
achieved with the WCM, in particular during the beginning of the season, when sudden 
variations in vegetation descriptors (in particular NDVI) lead to rapid changes. 

Furthermore, the new method adequately corrected the backscatter values at the 
highest attenuation point, compared to WCM corrections that were unable to 
completely correct it and resulted in a residual attenuation in this period.  
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Figure 5.8. Original and corrected backscatter time series for fields 1-6 for orbit 8DESC. The backscatter 
corrections are: (a) WCM-NDVI, (b) WCM-NDWI, (c) WCM-VH/VV and (d) WATCOR. Rainfall includes 

irrigation in irrigated fields 
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c) Correlation results 

The correlation coefficients obtained between backscatter and ground measured SM 

are displayed in figure 9. Additionally, scatterplots in figure 10 show the correlation 
obtained for all the fields together. Both figure 5.9 and 5.10 represent the correlation 

between γ0 and SM and that of ∆γ0 and ∆SM. Further correlation results are given in 

Supplementary Materials 6 

Regarding the correlation between γ0 and SM, the original backscatter time series 
had the lowest results (Figure 5.9a), with a median R value of 0.14. In this case, 

individual R values obtained for the different fields and orbit passes varied strongly; 
with several fields even leading to negative correlations, while only a couple of fields 

achieved R values above 0.5. The WCM corrections based on optical data (NDVI and 
NDWI) improved the original correlation values, with a median value ~0.30, being the 
NDVI correction slightly superior to the NDWI one. 

The individual results (Supplementary Materials 6) showed evidence that in most 

cases NDVI and NDWI had similar correlations. Other studies found that variants based 
on NDWI achieved better SM estimations than the ones on NDVI (Bao et al., 2018; Wang 
et al., 2020), attributing this result to the higher sensitivity of the SWIR channel to the 

vegetation water content, and the low sensitivity of NDVI to further vegetation growth 
after an NDVI of 0.8 (Baghdadi et al., 2017). Conversely, Zhang et al. (Zhang et al., 2021) 
obtained limited results with NDWI in dense wheat parcels with a modified version of 

the WCM, attributing this result to an eventual saturation to further increases in 
vegetation water content. 

The correction based on the VH/VV ratio yielded lower R values, with a median 
value of 0.24, being only superior to the optical corrections in a few fields. The use of 

VH/VV as a vegetation descriptor in the WCM is appealing, as it could provide a means 
for correction with no need of external (optical) data. However, not many studies 
attempted this, and results were rather poor, with better results being achieved with 

NDVI at L-Band over wheat (Wang et al., 2021) and wetlands (Dabrowska-Zielinska et 
al., 2018).  

WATCOR achieved the highest correlations, with a median value R=0.47 (Figure 

5.9a). The method succeeded at increasing the correlation in most fields-orbits, with a 
couple of exceptions where it gave similar results to the original time series. Comparing 
WATCOR with the second best correction (NDVI), its performance was better in most 

cases. One of the exceptions was field 1, where correlation values were already high 
regardless of the correction applied, so differences between WCM and WATCOR were 
small. It must be admitted, that in some fields, in particular the two fields monitored in 
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2019, correlation results were low in all cases, suggesting that some external factors 
(e.g., soil stoniness or a later sowing) might be playing a role. 

 

Figure 5.9. Median correlation results, (a) correlation between backscatter and SM, (b) correlation between 
backscatter differences (∆γ0) and SM differences (∆SM) between consecutive days. Error bars represent the 

first and third quartile. 

When comparing the results obtained with the different orbits (Supplementary 
Materials 6), it can be seen that 103ASC produced poorer result in 2019, which might 

be due to the longer revisit time (due to the unavailability of Sentinel-1A in this orbit 
for that particular year), and hence a reduced sample for model fitting and correlation 
evaluation. In contrast, WATCOR achieved higher correlation values for 103ASC in 2018 

(revisit time 6 to 12 days); and 2020 (6 days). Image acquisition in descending orbits 
was at early morning hours where dew was often present, which could affect 
backscatter (Wood et al., 2002) and its correlation with SM. WATCOR specially succeed 

at improving the correlation for irrigated fields compared with rain-fed ones, although 
it is not easy to grasp why. 
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Exploring the scatterplots of Figure 5.10(a-e), it can be observed that the original 

time series (a) had many low backscatter values (<-15dB) regardless of the SM value of 

that moment. All the vegetation corrections applied were successful at reducing this 
effect. Overall, the 0-SM correlation values always increased when a vegetation 
correction was applied, which confirms the necessity for correcting backscatter 

observations before attempting to retrieve SM over wheat fields.   

Concerning the ∆γ0 and ∆SM correlation, it appeared that all the explored casuistry 
achieved similar general results. The scatterplots in figure 5.10(f-j) showed a similar 

behavior and correlation values in figure 5.9b (~0.51) showed no improvements after 
vegetation correction. Therefore, these results suggest that vegetation correction might 
not be necessary when applying SM retrieval methods based on change detection 

techniques (e.g., (Wang et al., 2020)), at least if the temporal resolution is ~6 days. 

Figure 5.10. Dependence of backscatter on volumetric soil moisture for all sub-fields: absolute values 
(upper row) and differences between consecutive values (lower row); for the different backscatter 

correction investigated (a, f) original backscatter, (b, g) WCM-NDVI, (c, h) WCM-NDWI, (d, i) WCM-VH/VV 
(d, j) WATCOR 

These results indicate that WATCOR can be useful for correcting wheat attenuation 
at C-band VV backscatter time series (e.g., Sentinel-1), before SM is retrieved with 
methods designed for bare soil conditions (Bauer-Marschallinger et al., 2019; Fung et 

al., 1992). The method proposed is based on sound time series analysis techniques like 
time series smoothing and changing point identification. Time series smoothing has 
been previously applied for a plethora of remote sensing applications that rely on 

multitemporal observations, such as crop phenology monitoring (Canisius et al., 2018; 
Schlund and Erasmi, 2020), reconstruction of missing data (Chen et al., 2004), land-
cover classification (Shao et al., 2016) or for obtaining high quality vegetation 
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descriptors for climate modelling (Yuan et al., 2011). The results obtained might change 
if the parameters of the S-G filter were different. In this study, these parameters were 

selected through visual interpretation. Yet, in future studies, it would be interesting to 
devise an objective criterion for their selection, e.g. through cal/val schemes using 
additional ground truth SM datasets.  

WATCOR assumes that the effect of wheat in VV backscatter is a smooth, low 

frequency trend, and its application requires little user intervention. It is simple, does 
not require external data and the results obtained even overpassed the WCM. 
Furthermore, unlike the WCM, WATCOR does not require any model parameterization. 

The only input required is the specification of approximate beginning and end dates of 
the attenuation period, and therefore, a previous knowledge of the study area regarding 
the phenological development of wheat. Therefore, the approach can be easily 

implemented in automatized pipelines, as a preprocessing step before SM estimation is 
attempted However, WATCOR relies on the whole backscatter time series, and in its 
present form cannot be applied in real-time. Further research is needed to improve this. 

The underlying idea of WATCOR, i.e., to extract a low-frequency trend that is later 

subtracted from the original backscatter time series, could be transferred to other types 
of crops. However, this would require specific adaptations depending on the particular 
backscatter behavior of each crop. Furthermore, additional research is recommended 

to test the applicability of WATCOR at other microwave bands, as the signal penetration 
into the vegetation canopy is different. 

5.5. Conclusion 

In this paper, the backscatter behavior of wheat for C-band VV polarization was 
analyzed as a pre-requisite for the development of a methodology for correcting the 
attenuation from vegetation. A large dataset containing EU CAP declarations from 

farmers of four agricultural campaigns in a region (Navarre) with a high diversity of 
agro-climatic conditions was used. The performance of the new correction was 
evaluated with an analysis of the correlation between backscatter and volumetric soil 

moisture. The correlation was compared to WCM corrections based on optical and 
radar vegetation descriptors.  

The results revealed that wheat time series had a typical seasonal trend, 
independent from soil moisture variations, with wheat plants mainly attenuating VV 

polarized backscatter from phenological stage BBCH21 until harvest. The behavior was 
identical for different agro-climatic regions, with only some differences in the 

amplitude of attenuation. Using standard techniques of time series smoothing and 
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changing point detection, it was possible to identify the start and end of the attenuation 
period, where the proposed method, WATCOR, was applied.  

The corrected time series showed that WATCOR could effectively remove the 

attenuation pattern, while the time series obtained with WCM still presented a certain 
degree of attenuation. After correcting the vegetation effect, correlations between 
backscatter and soil moisture improved in all cases, with WATCOR obtaining the best 

general performance. Looking at results in detail, it appeared that the temporal 
resolution of the time series affected the results, with poorer results being observed for 
ASC103 pass in 2019, where revisit time was 12 days. 

Overall, WATCOR provided good results and might be an alternative to other 

vegetation correction methods for wheat. The method does not account for the direct 
backscatter contribution of vegetation, contrary to the WCM, but the results suggest 
that this effect might be neglected in wheat, at least at C-band and VV polarization. The 

main advantage of the method proposed is that it does not require external information 
or any model parametrization. It only needs an approximate prior knowledge on the 
period where attenuation is likely to occur in a specific region or site. However, it relies 

on the whole time series of radar backscatter, making it difficult to correct the 
attenuation in real-time In the near future, the application of this method for soil 
moisture estimation techniques should be evaluated. 
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Abstract 

Soil moisture (SM) is a key variable in agriculture and its monitoring is essential. SM 
determines the amount of water available to plant, having a direct impact on the 

development of crops, on the forecasting of crop yields and on the surveillance of food 
security.  Microwave remote sensing offers a great potential for estimating SM because 
it is sensitive to the dielectrical characteristics of observed surface that depend on 

surface soil moisture. The objective of this study is the evaluation of four different 
methodologies for SM estimation over wheat at field scale based on Sentinel-1 time 
series. Three change detection methods were selected: Short Term Change Detection 

(STCD), TU Wien Change Detection (TUWCD) and Multitemporal Bayesian Change 
Detection (MTBCD), and a Machine Learning technique: Support Vector Regression 
(SVR). Different methodological issues were evaluated for the implementation of these 

techniques at field scale. Soil moisture measurements from eight experimental wheat 
fields were used for the validation of the methodologies. The use of canopy backscatter 

observation or vegetation corrected backscatter values was also evaluated. In addition, 
the influence of different factors such as the satellite pass, the type of management, the 
month of the year and the SM content was also analyzed. The results were rather 

variable, with some experimental fields achieving successful performance metrics and 
some others rather poor ones. In general, it was observed that both TUWCD and MTBCD 
methods obtained better results when run with vegetation corrected backscatter time 

series. On the other hand, STCD and SVR produced similar results with and without 
vegetation correction. Both the month and the soil moisture content had an influence 
on the accuracy of the different methodologies. In most cases soil moisture was 

overestimated for dry conditions, and, to a lesser extent, it was underestimated for wet 
conditions. 
 

Keywords: soil moisture, wheat, Sentinel-1, change detection, field scale 
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6.1. Introduction 

Soil moisture (SM) is a key variable for understanding, modeling and forecasting 

different processes occurring at the Earth surface (Brocca et al., 2018; Green et al., 
2019; Liu et al., 2020; Seneviratne et al., 2010; Wasko and Nathan, 2019). Due to its 
relevance, in 2010 it was recognized as an Essential Climate Variable (ECV) by the 

Global Climate Observing System (GCOS) of the United Nations Framework Convention 
on Climate Change (UNFCCC). Its monitoring is therefore necessary to track our 
changing climate and design proper mitigation and adaptation measures. In 

agricultural systems, SM determines the amount of water available to plants, and 
therefore, it has a direct impact on the development of crops, on the forecasting of crop 
yields and more importantly on the surveillance of food security (Burke and Lobell, 

2010). 

Remote sensing has a great potential for SM retrieval due to its capability to observe 
large areas of the territory repeatedly over time. Although optical and thermal sensors 

have potential for SM estimation (Verstraeten et al., 2006; Wang and Qu, 2007), most 
progress in the last decades has been achieved by the microwave scientific community 
(Entekhabi et al., 2015; Kerr et al., 2001; Wagner et al., 1999), due to the long-time 

known sensitivity of microwave reflectance and emittance to the dielectrical 
characteristics of observed surfaces, which mostly depend on surface SM (Ulaby et al., 
(1982-86.). 

In recent years, global SM products at coarse spatial resolution (25-50 km) have 

been developed, principally based on radiometers or scatterometers (Brocca et al., 
2011; Chan et al., 2016; Kerr et al., 2012; Naeimi et al., 2009). Synthetic aperture radar 
(SAR) sensors achieve finer spatial resolutions (10-20 m) that might be suitable to work 

at the scale of agricultural fields. This possibility is very appealing as it would enable a 
field scale SM monitoring, with direct implications for irrigation management, harvest 
forecast and disease control. However, SM estimation at this scale is still challenging 

(Peng et al., 2021), because SAR sensors are also sensitive to other terrain variables 
related to vegetation (Bindlish and Barros, 2001) or soil surface roughness (Verhoest 
et al., 2008). Therefore, the inversion of classic bare soil backscatter models, such as the 

physically based Integral Equation Model (IEM) (Fung, 1994) or the semi-empirical 
models of Oh (Oh et al., 1992), Dubois (Dubois et al., 1995) or Shi (Shi et al., 1997), is 
generally ill-posed and its operational application not guaranteed. Moreover, SM 

estimation in vegetated conditions requires the coupling of backscatter models for bare 
soil and for vegetation (Zhang et al., 2021). One of the most popular models is the semi-

empirical Water Cloud Model (WCM) (Attema and Ulaby, 1978), which requires 
external vegetation descriptors and a specific parameterization for the local conditions. 
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This case is even more complex, although recent progress is being made in the 
transferability of model parameters to the regional scale (Benninga et al., 2022).  

The launch of the Sentinel-1 satellites in 2014 and 2016 opened new possibilities 

for the estimation of SM at high spatial resolution. The unprecedent compromise 
between high spatial resolution, frequent revisit time and radiometric accuracy (Torres 
et al., 2012), along with the open data distribution policy and the operational vocation 

of the Copernicus program, fostered the development of new methods for SM 
estimation, or the adaptation of existing ones, to the characteristics of Sentinel-1 data. 
In particular, the development of retrieval methods based on change detection 

techniques that evaluate backscatter changes between consecutive observations has 
made significant progress. The main hypothesis of these methods is that if time series 
are dense enough, the backscatter differences between consecutive observations might 

only be caused by SM variations, since the other variables affecting backscatter, e.g. soil 
roughness and vegetation, could be considered constant during such a short period. 
Following this idea, different approaches have been developed, such as the Short Term 

Change Detection (STCD) approach (Balenzano et al., 2011, Balenzano et al., 2021) or 
the TU Wien Change Detection (TUWCD) model (Wagner et al., 1999, Bauer-
Marschallinger et al., 2019). On the other hand, some other methods following different 

principles have also been applied to Sentinel-1 data, such as Bayesian approaches 
(Notarnicola et al., 2006) or machine learning algorithms like random forest regression 

(Liu et al., 2021), support vector regression (SVR) (Pasolli et al., 2011) or artificial 
neural network (ANN) (Baghdadi et al., 2012). 

At present, some of these approaches are applied to routinely produce SM products 
at scales of ~1 km (Balenzano et al. 2021; Bauer-Marschallinger et al., 2019), which 

significantly improve the spatial resolution of radiometer or scatterometer based 
products (Zappa et al., 2022). However, for some agricultural applications such as 
irrigation scheduling, this spatial resolution might still be too coarse, and SM values at 

the field scale are ideally sought (Gao et al., 2018; Modanesi et al., 2022; Le Page et al., 
2020). Furthermore, field size varies significantly around the World (White and Roy, 
2015) and many agricultural areas particularly in Africa, Asia and Europe are 

smallholders (< 2 ha) (Lesiv et al., 2019), where high resolution is a necessity for remote 
sensing to be useful at all.  

Therefore, the applicability and the performance of different SM estimation 

approaches at the field scale still need to be evaluated. The objective of this work is to 
evaluate different SM estimation approaches based on Sentinel-1 data for wheat fields. 
Three change detection approaches were selected: the Short Term Change Detection 

(STCD) approach (Balenzano et al., 2011a), the TU Wien Change Detection (TUWCD) 
model Wagner et al. (1999) and a multitemporal Bayesian change detection (MBCD) 
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algorithm (Notarnicola, 2014). Additionally, a machine learning approach, SVR, was 
also evaluated because it does not require a large training dataset (Pasolli et al., 2011), 

contrary to other machine learning algorithms. The approaches are calibrated on eight 
experimental fields with available SM measurements, and some methodological 
adaptations are proposed to enhance their applicability to the particular case of wheat 

fields. Furthermore, the influence of vegetation on backscatter, and hence on SM 
retrievals, was accounted for by comparing the results obtained with the original 
Sentinel-1 time series and those obtained after applying a vegetation correction method 

(WATCOR, Arias et al. (2022)) recently proposed by the authors.  

6.2. Materials and methods 

6.2.1. Study area and soil moisture measurements 

The study focused in eight winter wheat test fields located in the province of 
Navarre (Spain). (Fig 6.1). Navarre is a small but diverse province regarding climate, 

topography and land use. Therefore, it is divided in seven agricultural regions (Arias et 
al., 2020), where conditions for crop growth are expected to be rather constant. Two 
test fields were located in region R3 (rather wet: average annual temperature of 12.5ºC 

and annual rainfall of 900 mm), four in region R5 (intermediate: average annual 
temperature of 12.7ºC and average annual rainfall of 655 mm) and two in region R6 
(dry: average annual temperature of 14ºC and average annual rainfall of 350 mm). Two 

fields were monitored per agricultural year (2017-2018: fields 1 and 2; 2018-2019: 
fields 3 and 4; 2019/2020: fields 5 and 6; 2020/2021: fields 7 and 8). Each year, field 
pairs were managed exactly the same in terms of soil preparation, sowing and 

agricultural management (fertilization and other agrichemicals), except for irrigation, 
with half of them (odd field numbers) rainfed and the other half irrigated (even field 
numbers). Table 6.1 provides additional details. 

Several capacitance SM probes (Sentek Sensor Technologies, Stepney SA 5069, 

Australia) were installed on each field in winter and they were removed just before 
harvest (Table 6.1). These probes recorded volumetric SM every 30 minutes at 6 

different depths, from the soil surface to 60 cm deep. The top-most (0-10 cm) 
measurements were used in this study. For each field, the median SM time series of all 
the probes installed on it was calculated. Then, these time series were confronted with 

Sentinel-1 acquisition dates and times, selecting only the measurements closest to each 
Sentinel-1 acquisition. The final number of measurements used, depended on the 
availability of Sentinel-1A and Sentinel-1B on each of the three orbits that over-flew the 

study area, i.e. 103ASC, 008DESC and 081DESC, at best ~30 acquisitions were available 
per orbit (Table 6.2). 
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Figure 6.1. Location of the test fields and agricultural regions of Navarre. Dots represent the location of soil 
moisture probes. 

Table 6.1. Characteristics of the test fields. Rainfall and irrigation data comprises the period sowing-harvest. 

ID 
Area 

(ha) 
Texture class 

% 

Sand 

% 

Clay 
Type 

Rainfall + 

irrigation 

(mm) 

Sowing Harvest 

Number 

of 

probes 

1 1.36 Clay-loam 21.2 39.5 Rainfed 537 25/10/2017 05/07/2018 3 

2 8.5 Loam 31.2 26.7 Irrigated 637 25/10/2017 05/07/2018 6 

3 1.57 Clay-loam 23.4 31.7 Rainfed 331 25/10/2018 06/07/2019 4 

4 2.8 Silt-loam 20.6 26.7 Irrigated 515 25/10/2018 06/07/2019 5 

5 1.37 Clay 27.9 53.3 Rainfed 352 11/12/2019 03/07/2020 4 

6 1.86 Loam 30.8 26.9 Irrigated 438 11/12/2019 03/07/2020 5 

7 1.85 Silty clay loam 10.8 28.2 Rainfed 307 04/11/2020 15/07/2021 4 

8 3.64 Silty clay loam 9.3 34.3 Irrigated 607 04/11/2020 15/07/2021 5 
 

Table 6.2. Number SM measurements coincident with Sentinel-1 acquisitions per orbit; and start and end 
dates of SM measurements. 

ID 8DESC 81DESC 103ASC Initial date Final Date 

1-2 20 21 13 03/03/2018 27/06/2018 

3-4 19 20 9 14/02/2019 21/06/2019 

5-6 29 29 29 31/12/2019 28/06/2020 

7-8 30 31 32 27/12/2020 02/07/2021 
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Surface SM dynamics varied quite strongly in the different test fields (study years) 
(Figure 6.2). Rain-fed fields normally experienced a transition from wet conditions in 

winter to dry soils in May-June (e.g., fields 1 and 7). However, this was not always the 
case, and field 3 had already quite low moisture conditions in winter. Field 5, in turn 
recorded frequent and significant precipitations during the spring, so no clear drying 

was observed. In general, irrigation management in fields 2, 4, 6 and 8 avoided soil 
drying, however, keeping in mind that measurements were taken at the soil surface, 
quite rapid dynamics were observed, with SM increasing rapidly due to irrigation 

events and decreasing also quite rapidly afterwards. 

Figure 6.2. Daily median volumetric SM at 10 cm depth (lines) and daily rainfall and irrigation (bars) for 
the eight test fields: (a) Field 1, (b) Field 2, (c) Field 3, (d) Field 4, (e) Field 5, (f) Field 6, (g) Field 7, (h) Field 

8. Fields in the top row were rainfed and those in the bottom row irrigated. 

6.2.2. Satellite imagery and data extraction 

Figure 6.3 summarizes all the satellite imagery and data needed for implementing 

the SM estimation techniques investigated, detailing  the general and specific 
characteristics of each methodology. In the following sections, further details and 
explanations are given. 
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Figure 6.3. a) General SM flowchart and input data and b) specific input data for the SM estimation 
techniques 

a) Sentinel-1 

Sentinel-1 C-band SAR data was the base of this study, in particular the 
Interferometric Wide (IW) swath mode data with dual-pol (VH-VV) configuration, 
which is the pre-defined observation scenario over land. All available scenes from 

1/September/2015 to 31/August/2021 covering the province of Navarre were 
downloaded as level-1 Ground Range Detected (GRD) products. The images 
corresponded to one ascending orbit (103ASC) and two descending orbits (8DESC and 

81DESC). 

Images were processed with an automated pipeline implemented in SNAP Graph 
Processing Toolbox, which followed these steps: 1) thermal noise removal; 2) slice 

assembly; 3) apply orbit file; 4) calibration; 5) speckle filtering (3x3 Gamma-Map); 6) 
terrain flattening; 7) range-doppler terrain correction and 8) subset to the extent of 
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Navarre. The terrain flattening and terrain correction step employed the SRTM 1sec 
HGT DEM. As a result, γ0 backscatter coefficient images in VH and VV polarizations and 

dB units were produced, with a pixel size of 20 m. The projected local incidence angle 
was also obtained, as a secondary output for each scene. 

For the eight test fields median backscatter coefficient values were extracted for 
each Sentinel-1 acquisition, resulting in backscatter time series in VV and VH 

polarizations. Prior to this, a 10 m inner buffer was applied to field boundaries to avoid 
mixed pixels. Two further processes were applied to the backscatter time series, firstly, 
the local incidence angle was normalized to a reference angle of θ=400 by applying an 

adapted  version (Arias et al., 2022a) of the methodology proposed by Mladenova et al. 
(2013). Secondly, the influence of wheat canopy in VV backscatter was corrected for 
with the Wheat Attenuation Correction (WATCOR) method (Arias et al., 2022b), 

obtaining a new VV backscatter time series corresponding to the soil, named γ0SOIL, 
which is assumed to be free of the influence of wheat vegetation cover, as opposed to 
the original backscatter time series γ0CAN, which also includes the influence of wheat 

canopy. 

b) Sentinel-2 

Sentinel-2 multispectral imagery was used to obtain time series of the Normalized 
Vegetation Difference Index (NDVI) (Rouse et al., 1974), which was used as ancillary 

data for the Support Vector Regression (see section 1.3.4). In this case, the image 
catalogue available in Google Earth Engine (GEE) (Gorelick et al., 2017) was used, in 

particular, the level-2A surface reflectance collection produced by ESA. Images from 
1/September/2017 to 31/August/2021 were used, discarding any acquisitions where 
the test fields (Table 1) were covered by clouds, shadow or snow. The median NDVI 

time series of each field was also obtained using the buffered polygon vector files. 

c) ESA-CCI soil moisture product 

The European Space Agency (ESA) provides a coarse resolution SM product through 
its Climate Change Initiative (CCI) (Dorigo et al., 2017). This ESA-CCI SM product is a 

global product that provides daily SM estimates from 1978 until 2021 at a spatial 
resolution of 0.25°, based on active (scatterometers) and passive (radiometers) 
microwave sensors. In this study, the v06.1 level 3 combined SM product was used as 

ancillary data for the Short Term Change Detection (STCD) approach. With this aim, the 
ESA-CCI SM time series of the pixels covering the test fields were downloaded and 
processed to obtain monthly statistics, in particular, the minimum, maximum and 

percentiles P05, P15, P25, P75, P85 and P95. 
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d) Regional characterization of wheat backscatter 

For calibrating the TU Wien Change Detection Model (see section 2.3.2), a regional 

characterization of wheat backscatter was carried out. With this aim, a GIS database 
containing the field boundaries of all the EU Common Agricultural Policy (CAP) 
declarations in Navarre for years 2016, 2017, 2018 and 2019 was used, which was 

provided by the agricultural Department of the Government of Navarre. Wheat fields 
were extracted from this database and processed as follows: 1) create subsets for 
agricultural regions R3, R5 and R6; 2) mask out fields smaller than 0.5 ha; 3) apply a 5 

m inner buffer to the field boundaries; 4) compute the median VV backscatter  time 
series per field; 5) remove outliers (i.e., the 10% of fields most dissimilar to the median 
time series of all the fields in a region) (Arias et al. 2020); 6) normalize backscatter to a 

local incidence angle of θ=400 and apply WATCOR. After this process, backscatter time 
series of 13,200 wheat fields were obtained for region R3, 18,994 for region R5 and 
11,401 for region R6; with this data a regional characterization of wheat backscatter 

was obtained by computing different percentiles of backscatter time series for each 
region (R3, R5 and R6) and orbit pass (103ASC, 8DESC and 81DESC). 

6.2.3. Soil moisture estimation techniques 

a) Short Term Change Detection (STCD) 

The Short Term Change Detection (STCD) approach (Balenzano et al. (2011), is a 

change detection approach that uses dense time series (6-12 days revisit) of T co-

polarized backscatter observations (	��, 	��,…, 	l�) to obtain a SM time series. The 
hypothesis of the methodology is that SM changes occur at a shorter temporal scale 
(days) than other parameters affecting the backscatter response, (e.g. soil roughness, 

vegetation biomass or canopy structure), which vary at a longer temporal scale 

(weeks). Therefore, the ratio between two subsequent SAR observations (	�� /	�� ) in 
linear units can be expressed as a function of the dielectric constant ɛ and the local 
incidence angle i on each observation date (Eq. 6.1). 

GbHGmH ≈ opqq,b(r,s)
pqq,m(r,s)o

�
 (6.1) 

Where ���  is the Fresnel reflection coefficient at HH or VV polarization, and �aa is 

defined as follows: 

|�aa(�, i)| = o(rI�)(���bsI r9�t���bs:)
(r ���st 3uI���bs)b o                 (6.2) 
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For N observations there are N − 1 equations with N unknown Fresnel coefficients. The 
system can be solved by applying a bounded least-squares optimization (Balenzano et 

al., 2013), where the values of the boundary conditions (���� , ����) play an important 
role in the retrieval accuracy (He et al., 2017). Once that the � values are determined 
for the observations, the values of ɛ can be derived and converted into volumetric SM 

values using the empirical expression of Hallikainen et al. (1985).  

Palmisano et al. (2018) suggested sub-dividing the complete backscatter time 
series T in smaller blocks to avoid to error propagation into SM estimations. Therefore, 

a sliding window of N backscatter observations was considered, and the average value 
of the estimations was calculated (Shi et al., 2021). Different values of N (4, 5, 6, 8, 12 
and 18) were evaluated and the optimum was selected. 

Ideally, the boundary conditions (���� , ����) should correspond to the dynamic 

range of SM for the study area during the period of observation (Ouellette et al., 2017). 
Some studies constrained the problem considering fixed SM values (Balenzano et al., 
2011b), others used SM field measurements (Zhang et al., 2018), and others coarser 

scale SM values obtained from scatterometers or radiometers (Al-Khaldi et al., 2019; 
Ouellette et al., 2017).  In this study, the latter approach was followed, and thus the 
(���� , ����) boundary conditions were derived from the ESA CCI SM product (see 

section 2.2.3). With this aim, the monthly minimum and maximum ESA CCI SM values 
were initially considered (Supplementary materials 1.1.), but they showed a rather low 
dynamic range, so additional schemes were implemented enhancing the ESA CCI SM 

dynamic range. For this, the mean monthly difference between the maximum and 
minimum SM was considered, and its half was named as SMdiff (Eq. 6.3). This value was 

added or subtracted to the different ESA CCI SM monthly percentiles (Table 6.3). 

"#v�

 =  (P�wxy.wz{|}IP�w~{,wz{|}�������������������������������������������)
�               (6.3) 

Table 6.3. Calibration schemes based on α constraints derived from ESA CCI SM 

Scheme Min SM value Max SM value 

A Min Max 

B P25 - SMdiff P75 + SMdiff 

C P15 - SMdiff P85 + SMdiff 

D P05 - SMdiff P95 + SMdiff 

 

The calibration of this approach consisted in evaluating which combination of 
schemes (Table 4) and N value provided the best results. Furthermore, all these 
combinations were applied to the original backscatter time series (γ0CAN) and to the one 
obtained after applying WATCOR (γ0SOIL). Scheme D and N=4 was chosen as the best 
option with almost the same results for γ0SOIL and γ0CAN (Supplementary materials 2.1.) 
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b) TU Wien Change Detection Model (TUWCD) 

The TU Wien Change Detection Model (TUWCD) (Wagner et al. (1999) interprets 

changes in backscatter in a time series as changes in soil moisture, while other surface 
properties (geometry, roughness, vegetation, etc.) are considered as static. This model 
is used to produce a global SM product at a resolution of 1 km (Bauer-Marschallinger et 

al., 2019). Here the algorithm is applied at the field scale, using Sentinel-1 backscatter 
time series of each field (see section 2.2.1). This model defines the surface soil moisture 
content (SSM) as a relative index between 0 and 1, which is estimated from the 

backscatter value of that particular day normalized with some minimum and maximum 
backscatter boundary conditions (Eq. 6.4). 

""#(%) =  GH(�)IGw�{H
GwxyH IGw�{H        (6.4) 

where  	�(%) is the backscatter observation in dB units at time t, and 	����  and 	����  

are the minimum and maximum backscatter values in dB units corresponding to dry 

and saturated soil conditions. These values need to be extracted from long time series 
where it is likely that the pixel or polygon of interest would reach these dry and 
saturated conditions some time (Wagner et al., 1999).  

Bauer-Marschallinger et al. (2019) already mentioned that the relatively short 

length of the Sentinel-1 data record might result in an absence of the dry and saturated 
conditions required to successfully apply this algorithm. This might be particularly 
difficult in humid regions (Zribi et al., 2014) or in agricultural areas with irrigation 

systems, where completely dry conditions might never be met. Furthermore, in 
agricultural areas, more and more often managed under crop rotation schemes 
(European Comission, 2021), yearly changing vegetation covers might also influence 

backscatter dynamics (Veloso et al., 2017; Arias et al., 2020) making the selection of 	����  and 	����  very challenging. To overcome this problem, this study proposes a 

regional characterization of backscatter for wheat fields (Section 2.2.4). For each 
agricultural region, backscatter time series of thousands of wheat fields were obtained 
for four different years and their statistics (minimum, maximum and different 

percentiles) were computed and used to calibrate the algorithm, that is, to select the 
dry and wet references, evaluating different schemes (Table 6.4). 
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Table 6.4. Schemes for obtaining the dry and wet soil conditions (	���� , 	���� ) in the TUWCD model from the 
regional statistics of wheat fields time series. 

Scheme &'()*  &'+,*  Scheme &'()*  &'+,*  

1 min max 9 P0.01 max 
2 min P0.999 10 P0.01 P0.999 
3 min P0.99 11 P0.01 P0.99 
4 min P0.9 12 P0.01 P0.9 
5 P0.001 max 13 P0.1 max 
6 P0.001 P0.999 14 P0.1 P0.999 
7 P0.001 P0.99 15 P0.1 P0.99 
8 P0.001 P0.9 16 P0.1 P0.9 

 

These different calibration schemes were applied to both γ0CAN and γ0SOIL, to 
investigate the eventual benefits of correcting for the vegetation influence with 

WATCOR. Backscatter values below or above the limits were set to 0 and 1 respectively 
(Hornáček et al., 2012). Then, relative SSM values were linearly scaled to SM values 
(m3/m3) (Carranza et al., 2019): 

"#(%) = 9"#��� −  "#$�: ∗ ""#(%) + "#$�         (6.5) 

where "#���  is the saturated soil moisture content and "#$�  is the wilting point, both 

estimated from soil texture data (Saxton and Rawls (2006); Rawls et al. (1982)). The 
results of this calibration (see Supplementary materials 2.2.) showed that the optimum 

results were obtained for scheme 3. 

c) Multitemporal Bayesian Change Detection approach (MTBCD) 

The multitemporal Bayesian Change Detection approach (MTBCD) is an inversion 
procedure for SM estimation based on the Bayes’ theorem, adapted from Notarnicola, 

(2014). The objective is to infer the unknown soil dielectric constant time series 

(��, ��, … , �l) from the available Sentinel-1 backscatter time series (	��, 	��, … , 	l�). By 
applying Bayes’ theorem, it is possible to turn probabilities estimated from a training 

dataset into probabilities for the estimation of the unknown variable ɛ (Gelman et al., 
1995). 

The conditional probability density function (pdf) �(	��, 	��, … , |��), which is the 

probability of finding the vector of 	�� given specific values of ��, is estimated from a 

training set of backscatter observations and their corresponding ground measurements 

of ɛ. By using the Integral Equation Model (IEM) (Fung, 1994), the theoretical 

backscatter values 	�,����  calculated from the ground SM measurements are obtained. 

These values are compared to the Sentinel-1 backscatter values introducing a random 
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variable R. This variable accounts for the sensor noise and model errors (Notarnicola 
et al., 2008): 

	�� = !	�,����        (6.6) 

The pdf of R is assumed to follow a Gaussian distribution (Eq. 7), and its mean (μ) 
and standard deviation (σ), are determined by using the maximum likelihood principle. 
Tests were carried out to check whether this distribution represents this kind of data 

(Notarnicola et al., 2008). 

�(!) =  ��(���)b/b�b
√���       (6.7) 

Once that the pdf parameters are calculated, the Bayes’ theorem from two 

consecutive 	��, 	�� observations for obtaining the conditional density function �(�|	��, 	��) is applied: 

�(�|	��, 	��) =  �q��z�(r)�qz�|�	��, 	�����
�(GmH,GbH)      (6.8) 

where: 

- ������  is the a priori joint density function for ɛ. A uniform density function over 

the physical range of the parameter can be assumed. 

- �����(	��, 	��|�) is the posterior density function based on measured values. 

- �(	��, 	��) is a normalization factor. 

 This function can be expressed in terms of the probability density �(!)  by a 
transformation detailed in Notarnicola et al. (2006). The optimal estimator �  ̅for �, that 

has de minimum variance is the conditional mean: 

� ̅ = �(rIrw�{)�q��z�(r)� m
����H �b�( �mH����H )�( �bH����H )vr

�(GmH,GbH)       (6.9) 

where ���� is the minimum value of the uniform density function from ������ . 

This approach needs to be trained and validated. The IEM requires as input the 
values of � and the soil roughness parameters s (standard deviation of heights) and l 

(correlation length). The unavailability of soil roughness measurements in this study 
required the optimization of s and l. Due to the fact that all the backscatter values were 
terrain flattened and normalized to a common incidence angle, it was assumed that the 

incidence angle was the same for all fields. In total, 414 combinations of soil roughness 
parameters were evaluated: 
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- s: from 0.2 cm to 2 cm with a step of 0.1 cm 
- l: from 2 cm to 25 cm with a step of 1 cm. 

For each combination, the backscatter values were simulated using as input the ground 

SM measurements.  

The optimization function selected the combination of roughness parameters that 
minimized the root mean-squared error (RMSE) between the observed backscatter 
values, and the simulated γ0IEM values. The lowest RMSE was achieved with s=0.4 and 

l=3 for γ0SOIL. (Supplementary Materials 2.3.). 

A 4 fold-cross validation scheme was performed separately for each orbit pass. In 
each fold, 6 fields were used in the training phase and 2 fields were used for validation. 
Therefore, the SM was estimated in all fields. The training phase consisted in 

determining the pdf parameters that were used later for SM estimation in the validation 
fields. 

d) Support Vector Regression (SVR) 

Vapnik (1995) proposed a machine learning technique called Support Vector 

Regression (SVR) that has become very popular for empirically predicting different 
variables (Cervantes et al., 2020), and among others SM (Ahmad et al., 2010; Pasolli et 
al., 2011). This algorithm is able to handle complex and nonlinear problems (Pasolli et 

al., 2015b) even if the size of the dataset is small (Bruzzone and Melgani, 2005). SVR 
transforms nonlinear problems into linear problems in the high-dimensional space, 

using a kernel function that replaces the inner product operation in the high-
dimensional space (Chen et al., 2021). The types of kernel functions that can be adopted 
are polynomial, linear, sigmoid and Gaussian. Gaussians radial basis functions (RBF) are 

usually used due to their good performance and simplicity (Bruzzone and Melgani, 
2005). SVR results depend on the parameterization of three parameters: the RBF kernel 
parameter (Gamma), the regularization parameter (Cost) and the width of the 

insensitive tube (Epsilon). 

SM estimation with SVR consists of a first training part where the best parameters 
have to be selected for the model construction, and a validation part with an 
independent test dataset. In this study, the scheme for training and validation was the 

same as the one used in the MTBCD approach. The SVR was implemented in R using the 
library “e1071”. 

SVR training was performed separately for each set of input variables (Table 6.5). 
The numerical input variables were normalized between 0 and 1 and the categorical 

variable “month” was transformed to binary vectors using One-Hot encoding. The grid 
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search strategy with a 5-fold cross validation was used for the optimization of the model 
parameters, based on the Mean Squared Error (MSE). The ranges for the parameters 

were [10-3,103], [10-3,103] and [10-3,10] for Gamma, Cost and Epsilon, respectively. 
Then, the optimal parameters were used for training the model and the SM was 
estimated with the validation dataset. 

Table 6.5. SVR schemes based on different input variables. 

Scheme Input variables Scheme Input variables 

1 γ0CAN 12 γ0SOIL, NDVI 

2 γ0SOIL 13 γ0CAN, γ0VH, VH/VV, NDVI 

3 γ0VH 14 γ0SOIL, γ0VH, VH/VV, NDVI 

4 VH/VV 15 γ0CAN, γ0SOIL, γ0VH, VH/VV, NDVI 

5 γ0CAN, γ0VH 16 γ0CAN, month 

6 γ0CAN, VH/VV 17 γ0SOIL, month 

7 γ0SOIL, γ0VH 18 γ0CAN, NDVI, month 

8 γ0SOIL, VH/VV 19 γ0CAN, γ0VH, VH/VV, month 

9 γ0CAN, γ0VH, VH/VV 20 γ0SOIL, γ0VH, VH/VV, month 

10 γ0SOIL, γ0VH, VH/VV 21 γ0CAN, γ0SOIL, γ0VH, VH/VV, month 

11 γ0CAN, NDVI 22 γ0CAN, γ0VH, VH/VV, NDVI, month 
 

For further analysis, the best schemes for γ0CAN and γ0SOIL based solely on Sentinel-
1 were selected (Supplementary materials 2.4). Therefore, the outputs of scheme 19 
(γ0CAN, γ0VH, VH/VV and month) and scheme 20 (γ0SOIL, γ0VH, VH/VV and month) were 

chosen. 

6.2.4. Evaluation of results 

The performance of the evaluated SM retrieval techniques was assessed with 
different metrics calculated between the volumetric SM recorded by the probes 
(SMobs) and the estimated SM (SMest) (Entekhabi et al., 2010): Pearson Correlation 

(R), root-mean-square error (RMSE), BIAS and unbiased root-mean-square error 
(ubRMSE). The metrics were calculated separately for each test field and Sentinel-1 
orbit. 

6.3. Results 

In this section, the statistical results for the two schemes selected for each 

methodology (Section 2.3 and Supplementary Materials) are presented. The numerical 
results for every field and orbit pass are found in Supplementary Materials 3.  
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Figure 6.4. Scatterplots of estimated SM as a function of in situ SM measurements for the different 
methodologies for a sample plot (field 5 and orbit pass 8DESC). (a) STCD (γ0CAN); (b) STCD (γ0SOIL); c) 

TUWCD (γ0CAN); (d) TUWCD (γ0SOIL); (e) MTBCD (γ0CAN); (f) MTBCD (γ0SOIL); g) SVR (γ0CAN); (h) SVR (γ0SOIL). 
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6.3.1. Comparison between methodologies 

In figure 6.4, the scatterplots between observed and estimated SM after applying the 

four approaches to one of the test fields and one descending pass is represented, using 
as input both the γ0CAN and γ0SOIL time series. In this case, the best results are obtained 
with TUWCD and γ0SOIL. For the rest of the fields, the performance metrics are 

summarized in the boxplot of Figure 5. 
 

Figure 6.5 shows the results after computing the statistical values per orbit pass and 
field. Points not only represent the different test fields (colors), but also the Sentinel-1 

orbit pass used in each case (symbols). Boxplots summarize all the point data, showing 
the median and quartiles of the field results for each approach. 

 

Figure 6.5. Statistical results for the different SM estimation techniques. (a) RMSE; (b) BIAS; (c) ubRMSE; 
(d) Correlation. 
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Median values of the performance metrics demonstrate a positive effect of the 
vegetation correction in all techniques except for the SVR. In particular, γ0SOIL metrics 

improved those obtained with γ0CAN in the TUWCD and MTBCD approaches and to a 
lesser extent in the STCD. Different metrics provide different views on the performance 
of the techniques, regarding the RMSE best results were obtained with the TUWCD 

(0.08 m3/m3), followed by STCD (0.09 m3/m3), SVR (0.10 m3/m3) and MTBCD (0.12 
m3/m3). However, the SVR had the lowest bias, whereas STCD and MTBCD had negative 
bias and TUWCD a positive one. Looking at the unbiased ubRMSE, the TUWCD approach 

also provided the best results (0.06 m3/m3) but practically matched by the MTBCD, and 
then followed by STCD and SVR (both with 0.08 m3/m3). In turn, highest correlation 
values were obtained by the MTBCD approach (0.52), followed by SVR (0.49), TUWCD 

(0.46) and STCD (0.45). 

Looking at field results in detail, it can be observed that results varied strongly from 
cases to cases, with rather large variability ranges for all metrics: RMSE (0.05 – 0.17 
m3/m3), BIAS (-0.16 – 0.12 m3/m3), ubRMSE (0.04 – 0.15 m3/m3) and R (-0.4 – 0.9). The 

approaches with the highest variability were TUWCD and MTBCD. On the other hand, 
SVR and STCD provided more consistent results and had a lower variability. This field-
to-field variability might be related to characteristics of the fields, for instance, fields 1, 

7 and 8, all had a positive BIAS in all techniques, indicating a systematic overestimation 
of SM. Conversely, fields 3, 4, 5 and 6 had a negative BIAS (except for TUWCD). In terms 

of correlation, the case of field 3 was particular, since all the methodologies provided 
poor performance in this field. 

For a more in-depth analysis, each method with its best backscatter input option 
(γ0SOIL for STCD, TUWCD and MTBCD, and γ0CAN for SVR) was examined to evaluate the 

influence of different factors on the results. These factors were the agricultural 
management (rainfed or irrigated fields), the satellite orbit passes, the month of the 
year and the soil moisture content (low, medium, high).  

6.3.2. Comparison between agricultural management 

The results based on the agricultural management are shown in figure 6.6. RMSE 
metrics did not differ greatly in terms of management for MTBCD and SVR (~0.10 

m3/m3), although the variability was larger in rainfed fields. For STCD and TUWCD 
approaches, the RMSE was better in irrigated fields. However, the higher value of RMSE 
in rainfed TUWCD was caused by the high values achieved by fields 1 and 7, as fields 3 

and 5 had the lowest RMSE values of all cases. Regarding the ubRMSE, STCD, TUWCD 
and MTBCD achieved similar median results (~0.08 m3/m3) regardless of the 

agricultural management. Specifically, fields 1, 2, 7 and 8 had higher ubRMSE (>0.08 
m3/m3) than fields 2, 4, 6, 8 (ubRMSE ~0.05 m3/m3). SVR results differed slightly, 
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because rainfed fields presented very low variability in comparison to irrigated fields, 
although the median value was only slightly higher. In terms of correlation, the values 

were similar among methods and management practices (R=42), with the exception of 
the STCD where irrigated fields had higher values compared to rainfed fields. 

 

Figure 6.6. Statistical results for the different SM estimation techniques and agricultural management. (a) 
RMSE and ubRMSE; (b) BIAS; (c) Correlation 
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6.3.3. Comparison between orbit passes 

 

Figure 6.7. Statistical results for the different SM estimation techniques and orbit passes. (a) RMSE and 
ubRMSE; (b) BIAS; (c) Correlation. 

The performance metrics obtained for the three orbit passes (figure 6.7) did not 
show clear differences. In general, RMSE values for all methods and orbit passes were 

similar, with a median around 0.08-0.09 m3/m3. The descending orbits in TUWCD and 
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the descending orbit 81 in MTBCD presented a larger RMSE variability that was reduced 
after removing the BIAS. Thus, the ubRMSE results between the orbits were very similar 

for all methods. Correlation results did not show either any clear influence of satellite 
orbit passes. For TUWCD correlation values were slightly lower for orbit 81DESC, and 
for MTBCD 103ASC resulted in slightly higher correlations. In any case these differences 

were not significant, and performance metrics seemed to vary more strongly depending 
on the particular field than on the orbit pass. 

6.3.4. Evaluation of results by month 

To evaluate results per month, the performance metrics were computed per orbit 
pass, field and month, and the median metrics were computed per month. Correlation 
results in this case are not reliable, since a reduced number of (SMobs, SMest) pairs were 

available for each aggrupation, and only RMSE results are shown (figure 6.8). 

 

Figure 6.8. Median RMSE and ubRMSE results for the different SM estimation techniques and months. 

There were clear differences depending on the month, particularly for MTBCD and 

SVR. RMSE values were lower in winter months (January and February) for all cases, 
with values lower than 0.05 m3/m3 in the TUWCD, MTBCD and SVR. In STCD, the RMSE 
was slightly higher (0.075 m3/m3). The RMSE in March was higher for all methods 

except MTBCD, and April, May and June obtained the highest values in all cases (0.08 – 
0.12 m3/m3). RMSE was exceptionally high in June in the MTBCD (0.13 m3/m3). 
Regarding ubRMSE results, TUWCD and SVR presented very low values in January and 
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February (< 0.02 m3/m3), while the other months had higher values that did not exceed 
0.05 m3/m3. MTBCD also had a very good result in January (< 0.02 m3/m3), mid-values 

in February, March and April (~0.035 m3/m3), and higher results in May and June (0.05 
– 0.06 m3/m3). Finally, STCD was the approach that had overall higher ubRMSE results, 
but the differences between months were minor, with values ranging 0.035 – 0.055 

m3/m3 

6.3.5. Evaluation of results based on soil moisture content 

With the aim of evaluating the performance of the retrieval methods depending on 

the actual soil moisture content of fields, the statistics were computed per orbit pass, 
field, and observed SM divided in three levels:  

- Dry: SM < 0.15 m3/m3 

- Intermediate: 0.15 m3/m3 <= SM < 0.30 m3/m3 

- Wet: SM >= 0.30 m3/m3 

The median RMSE results (figure 6.9) showed certainly high error values for dry 
conditions in all the techniques (0.013 – 0.18 m3/m3). Wet conditions also presented 

relatively high RMSE metrics (0.09 – 0.011 m3/m3) for all approaches except TUWCD 
that had a better performance (RMSE = 0.06 m3/m3). The intermediate moisture 
produced the best results, with values ~0.06 m3/m3 for the STCD, TUWCD and MTBCD, 

and RMSE = 0.08 m3/m3 for the SVR. All approaches presented a high positive BIAS 
(>0.12 m3/m3) for dry conditions, conversely BIAS was negative for wet conditions (-
0.05 – -0.1 m3/m3). Intermediate conditions obtained the lowest BIAS for all approaches 

(~ -0.025 m3/m3, except TUWCD with 0.04 m3/m3). Unbiased RMSE values (ubRMSE) 
were similar for the four techniques (0.03 – 0.05 m3/m3) and did not depend on the 
moisture conditions.  
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Figure 6.9. a) RMSE, ubRMSE and b) BIAS results for the different SM estimation techniques depending on 
the SM conditions. Bars represent median values. 

These results showed that, depending on the actual SM content, the approaches 
could overestimate or underestimate SM. In figure 6.10, SM time series for different test 
fields (1, 2, 5 and 6) are displayed to see the behavior of the different approaches.  

Figure 2 shows that fields 1 and 2 had a similar SM content during January and 
February, and then, SM dropped dramatically in field 1, whereas SM remained slightly 
higher in field 2 due to irrigation. In this case, although the evaluated approaches were 

sensitive to the precipitation event and subsequent soil wetting in April 2018, they did 
not predict adequately the significant drying of field 1. MTBC and STCD approaches 
estimated SM better in the irrigated Field 2. On the other hand, fields 3, 4, 5 and 6 had 

rather high SM, and although field 6 was under irrigation, it showed slightly lower SM 
values than field 5 because precipitations were abundant that season. For these fields, 
TUWCD provided the best estimations, predicting a range of SM values similar to 
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measurements and showing sensitivity to some wetting and drying events throughout 
the season. STCD and MTBC also showed some sensitivity to SM dynamics, but their SM 

estimates were severely biased (underestimated) SVR showed higher values during the 
first period of estimation in line with ground measurements, but the predictions were 
also very underestimated during spring months.  Similarly, to field 1, field 7 also had an 

extreme SM drop in March, and neither of the approaches was able to estimate the low 
SM values from March to May. Although field 8 also presented the SM drop as field 7, 
the estimations were better because SM was higher during spring months due to 

irrigation events. In this field, TUWCD had the higher BIAS because SM level was 
intermediate almost the whole period.  
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Figure 6.10. Ground SM time series and estimated SM of the different approaches with orbit 8DESC: a) 
Field 1; b) Field 2; c) Field 3; d) Field 4; e) Field 5; f) Field 6; g) Field 7 and h) Field 8. 



Evaluation of soil moisture estimation techniques based on Sentinel-1 observations 
over wheat fields  

145 

 

6.4. Discussion 

6.4.1. Calibration of methodologies 

The calibration results for the STCD approach showed that, in a situation when the 
dynamic range of SM to be estimated is unknown, the selection of the SM bounds is 
critical because the accuracy of the algorithm might decrease significantly. This was 

also pointed out by Ouellette et al. (2017). For instance, for the best N scenario, the 
correlation increased from 0.3 to 0.45 for scheme A or scheme D, respectively. In terms 
of correlation, the size of the sliding window (N value) also had major influence on the 

accuracy of results, in particular for γ0CAN. As N increased, the correlation decreased, 
this can be interpreted as a smoothing effect of N on SM estimates, blurring the short-

term SM dynamics. Other researchers stated that large N values might foster error 
propagation in the algorithm (Palmisano et al., 2018), and provide SM estimates 
affected by changing surface and vegetation conditions in the mid-term (Balenzano et 

al., 2011, Zhu et al., 2022). Balenzano et al. (2011) found that N = 3 achieved better 
results than N = 11. In our study, large N values lead to poorer results, but particularly 
with γ0CAN, demonstrating the mid-term influence of vegetation in backscatter and the 

subsequent SM retrievals. Better results were obtained with γ0SOIL. 

The lack of sufficiently long and dense backscatter time series for the test fields (due 
in part to crop rotation) made the calibration of the TUWCD more challenging. A 
regional characterization of wheat fields’ backscatter was implemented to obtain the 

required 	����  and 	����  values. This approach was highly affected by the influence of 

vegetation, as the correlation results for γ0CAN where ~0.20, while for γ0SOIL where ~0.45. 
This is explained by the backscatter behavior of wheat (Arias et al., 2022; Mattia et al., 

2003). The TUWCD algorithm assumes that the minimum backscatter value 
corresponds to dry soil, but in wheat canopies, the minimum backscatter values are 
normally produced by the attenuation of the canopy at the end of stem elongation 

phase.  

The MTBCD approach was different in terms of applicability. An optimization of the 
soil roughness parameters based on the IEM was performed due to the absence of field 

roughness measurements, and therefore, there was only a set of results for γ0CAN and 
γ0SOIL based on a cross-validation scheme. For this method, the results also showed that 
the vegetation canopy clearly affected the results, with γ0SOIL achieving better 

performance metrics than γ0CAN.  

Different input variables schemes were investigated for the SVR approach in the 
calibration phase. The obtained RMSE values for the different calibration schemes did 
not differ much, however the correlation results change significantly. SVR models 
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provided best results when considering all the backscatter input variables and, very 
importantly, when adding the month as an input variable. Although the best correlation 

was achieved by also adding the NDVI, the selected schemes were based only on radar 
features, as NDVI might not be always available. Furthermore, the results for the best 
non-NDVI schemes were almost as good. Similarly, Holtgrave et al. (2018) found that 

after applying the SVR for SM estimation in vegetated areas with S1, the accuracy of SM 
retrieval decreased only 1.05% vol with only SAR data compared to the use of SAR and 
optical data. In this case, the vegetation correction did not provide any benefits in the 

estimations. 

6.4.2. Comparison of methods 

The comparative analysis between the four methodologies and the two variants 

(γ0CAN and γ0SOIL) after calibration demonstrated clear benefits after vegetation 
correction for TUWCD and MTBCD. In STCD and SVR, the results were similar for both 
backscatter inputs. The overall performance metrics showed that there was not any 

approach that clearly outperformed the rest.  

RMSE results varied strongly from field to field, ranging from 0.05 m3/m3 to 0.16 
m3/m3. These rather high values were also encountered in a SVR study (Attarzadeh et 

al., 2018). In terms of BIAS, the TUWCD appeared to have a different behavior, as 
positive BIAS was found in most test fields, contrary to the rest of techniques were 
negative BIAS predominated. The ubRMSE results were similar for the different 

approaches, with fields 3, 4, 5 and 6 obtaining good results (~0.05 m3/m3), and fields 1, 
2, 7 and 8 showing poorer results (>0.08 m3/m3). These differences might be related to 
the overall moisture conditions of each field (figure 2), with higher ubRMSE values 

being observed for fields with more extreme (normally dryer) conditions during most 
of the season, contrary to the fields where SM did not drop below 0.15 m3/m3. The 
correlation results between approaches were also similar, being slightly higher in the 

MTBCD and worse in the STCD. In general, there were specific fields that achieved very 
good correlation values while others not. Specifically, field 3 had the poorer correlation 
results. These differences between fields might be caused by local conditions, such as 

soil texture, stoniness or organic matter content, which might affect SM dynamics and 
also vegetation growth as found in Ouaadi et al. (2020).  

The statistical results of this study are comparable to other works. RMSE values 
were higher when using the SVR at the field scale (object-based approach) when 

compared to pixel-based with 20 m of spatial resolution (Attarzadeh et al., 2018). A 
strong field variability was also observed for RMSE, ubRMSE and R when applying the 

STCD at a scale of 500 m in agricultural areas (Foucras et al., 2020). Amazirh et al. 
(2018) obtained a RMSE of 0.16 m3/m3 when using TUWCD. Even at coarser 
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resolutions, medium correlation values and intrinsic RMSE of ~0.07 m3/m3 was 
obtained after applying STCD in larger areas (Balenzano et al., 2021b) and RMSE in the 

range 0.08-0.12 m3/m3 in vegetated areas (Pulvirenti et al., 2018). Using other SM 
estimation methods, similar results were also found in wheat (Ma et al., 2020) or in 
cropland areas (Benninga et al., 2022; Qiu et al., 2019). 

The analysis of the performance of the methods based on the actual SM conditions 

showed that all approaches overestimated SM in dry conditions and underestimated it 
in wet conditions, explaining why medium-high SM fields achieved better RMSE results. 
Holtgrave et al. (2018) obtained similar results with a SVR model and Zhu et al. (2022) 

with the STCD. These authors interpreted the poor performance for wet conditions as 
a consequence of the lower sensitivity of SAR backscatter to high SM values. 
Overestimation was stronger with SVR and especially TUWCD when compared to STCD 

and MTBCD, which might be a decisive factor when choosing one approach over the 
other. The analysis per month showed better results in winter months, although these 
differences could be caused in part by the wetter SM conditions in this time of the year 

in the study area (figure 2). The SVR approach can incorporate this by adding a 
categorical variable ‘month’ as input, this resulted in improved results with this 
approach. The analysis between rainfed and irrigated fields and the use of different 

satellite passes did not show significant differences. 

SM retrieval at field-scale is challenging due to the high complexity of the SAR signal 
(Bauer-Marschallinger et al., 2019), especially in vegetated areas, and none of the 

approaches analyzed in this study provided optimal results for the conditions 
investigated (wheat fields of 1-8 ha), especially in dry conditions. Yet, the use of these 
SM products could still be useful even with biases (Entekhabi et al., 2010), as long as 

the estimations reproduce reasonably the temporal dynamics of SM (Koster et al., 
2009).  The choice of one method or another is not straightforward, as the performance 
is similar for the different approaches. The use of STCD or SVR algorithms could be 

more advantageous as they might not need any vegetation correction. However, STCD 
performance depends on the selection of SM bounds, and SVR needs calibration with 
ground SM data. A limitation of this study might be the lack of ground SM data during 

the autumn-winter period. Further studies focused on this period might complement 
the results obtained here. In addition, it would be convenient to perform similar 
analyses. 
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6.4. Conclusions 

In this study, four different SM estimation approaches based on Sentinel-1 data for 

wheat crop at field scale were evaluated. Three change detection techniques (STCD, 
TUWCD and MTBCD) and one machine learning technique (SVR) were selected. The 
approaches were tested in eight experimental fields with available SM measurements 

in Navarre (Spain). The influence of wheat canopy on backscatter and SM estimation 
was also assessed by implementing the WATCOR vegetation correction method (γ0SOIL) 
and comparing this results with the uncorrected backscatter time series (γ0CAN). 

Regarding the implementation of each approach, the following ideas can be 

outlined:  

- STCD approach provided best results when applied to rather short periods of 
time (four S-1 observations or ~1 month) and considering rather extreme 
boundary conditions. Furthermore, almost the same results were obtained for 

γ0SOIL and γ0CAN, and thus this approach might be applied in wheat fields with 
no previous vegetation correction.  

- TUWCD required a regional characterization of wheat fields backscatter to 
obtain the backscatter bounds due to the lack of long and dense backscatter 
time series for the test fields. This method provided best results when applied 

to vegetation corrected γ0SOIL time series, with RMSE and particularly 
correlation values worsening when γ0CAN was used instead. Therefore, 
vegetation correction seems to be necessary in this case. 

- MTBCD required an optimization of soil roughness parameters using the IEM, 
and best results were obtained when using γ0SOIL time series. 

- SVR models provided best results when considering all the backscatter input 

variables and, very importantly, when adding the month as an input variable. 
In this case, the vegetation correction did not provide any benefits in the 
estimations. 

The comparison between methodologies showed similar statistical metrics 

between the estimated and measured SM for the different approaches. Fields that 
presented low SM contents had a higher RMSE that was related to a SM overestimation 
effect for dry conditions (SM < 0.15 m3/m3). This overestimation was greater in TUWCD 

and SVR. To a lesser extent, all methodologies underestimated SM for wet conditions. 
The correlation values were similar for all the approaches and varied between fields. 

Overall, the performance of the evaluated approaches was comparable to similar 
studies, yet it might be emphasized that the implemented approaches were applied at 
the field scale (1-8 ha), and required only Sentinel-1 data as input.
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CONCLUSIONS 
 

 

This thesis is framed in the present context in which the agricultural sector has to 
face several challenges related to the World population growth and the impact of 

climate change in agricultural production systems. Unfortunately, these challenges are 
expected to worsen in the future, and remote sensing techniques will play an essential 
role in crop monitoring and contribute to ensure food security. Remote sensing is the 

ideal tool for large-scale crop monitoring, as it provides information over large areas of 
the territory on a regular basis. The research effort carried out in this doctoral thesis 
focused on the use of Sentinel-1 time series for the development, analysis and 

evaluation of different methodologies aimed at estimating agricultural variables of 
interest at the field scale. 

In the first study, a supervised crop classification technique based on Sentinel-1 time 
series was proposed. This technique uses VH and VV polarization and VH/VV ratio time 

series obtained over a large number of fields in an area with high agro-climatic 
variability. The analysis of the backscatter signatures of the different crops showed that 
the VH and VV channels are sensitive to various phenological stages where particular 

structural or wetness changes occur in the canopy. On the other hand, the VH/VV ratio 
is sensitive to vegetative growth in general, providing little information for crop 
identification. Crops with greater singularities in their time series were classified 

better, and the combination of VH, VV and VH/VV time series provided the best 
classification results. Field size had a notable influence on the results, with larger fields 

obtaining better accuracies. Classification results also improved when stratifying the 
territory into agricultural regions, showing that agroclimatic diversity has a negative 
effect on performance. High proportion of fallow fields and very heterogeneous classes 

also decreased the classification accuracy. When defining crop classes in future studies, 
it is recommended to avoid very diverse classes, dividing them into classes with more 
homogenous crops. Nevertheless, the results obtained suggest that it is possible to 

implement this method in an operational manner in regions with frequent cloudiness 
within the framework of CAP monitoring, as well in studies pursuing other objectives. 
In the future, the results should be compared with those obtained with optical images 

or with machine learning techniques. 

The second work addressed the influence of image acquisition geometry in the 
context of using time series acquired with different relative orbits. The first analysis 
evaluated the influence of the incidence angle in wheat time series for the backscatter 

coefficient (σ0) and for the terrain-flattened backscatter coefficient (γ0). The application 
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of terrain-flattening practically eliminated the influence of incidence angle in VH, but 
not in VV. In this polarization, although the effect of incidence angle in γ0 was much 

lower than in σ0, there was still some influence that was variable throughout wheat 
growth cycle. The influence was minimal when the crop canopy was at its maximum 
development, but stronger in periods were surface scattering was predominant. Thus, 

it is shown that the influence of incidence angle at VV polarization varies as a function 
of the phenological development of wheat. The evaluation of the backscatter differences 
between the three orbits in the study area showed that terrain-flattening is able to 

reduce the angular variations in backscatter data. Despite this, applying an incidence 
angle normalization technique to γ0 can further reduce the differences, especially in 
winter and bare soil periods. After applying these two methods, the correlation with 

reNDVI improved, showing a better description of wheat growth. The anisotropy 
correction had a minor effect, only relevant in May. Differences between ascending and 
descending passes may be due in part to acquisition geometry, but also to the time of 

the day, with possible variations due to dew, soil moisture or frost. This issues need to 
be studied in more detail. Therefore, for studies whereby several orbits have to be 
combined, the need to correct γ0 time series should be considered, as the results may 

improve in quantitative studies aimed at retrieving bio-geophysical variables. 

In the third study, the backscatter dynamics of wheat in VV polarization was 
analyzed using a large field dataset. The results showed that wheat presents a 

characteristic long-term pattern independent of soil moisture variations, in which 
plants produce an attenuation of vertical waves from the tillering stage to plant 
senescence. The attenuation effect is proportional to wheat growth and has a maximum 

around the end of April, coinciding with the heading stage. Based on these results, a new 
methodology that corrects this attenuation was proposed. It was called WATCOR and 
to be applied it only requires the VV backscatter time series itself. WATCOR 

incorporates classical time series analysis techniques: smoothing techniques, changing 
point detections, linear interpolation and envelope fitting. The effectiveness of 
WATCOR was evaluated by means of a correlation analysis between backscatter and 

soil moisture measurements in several wheat fields. Additionally, several variants of 
the WCM, based on optical and radar vegetation descriptors, were applied to correct 
the effect of vegetation, comparing the results obtained with WATCOR. The results 

showed that WATCOR effectively eliminated the attenuation trend in the time series, 
while the time series obtained with the different variants of the WCM applied still 
showed some attenuation effect. The correlations with soil moisture increased in all 

cases when the corrections were applied, with WATCOR having the best general 
performance. Therefore, the new WATCOR method showed promising results in 

correcting the attenuation effect of wheat and may be a viable alternative to other 
vegetation correction methodologies. Although it does not take into account the direct 
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contribution of vegetation on backscatter, the results showed that this effect could be 
minimal in VV polarization. WATCOR does not require external information or 

parameterizations, which is an advantage if compared to other methods (e.g., WCM). 
However, it cannot be implemented in real time, as it requires the complete time series 
of the wheat growth cycle to be applied. Future research efforts should try to improve 

this method so that it can be applied in real time. 

In the last study, four different SM estimation techniques using Sentinel-1 time 
series were evaluated. The effectiveness of WATCOR on the different approaches was 
also assessed by comparing the results obtained with the original time series and the 

WATCOR corrected ones. Three change detection methods (STCD, TUWCD and MTBCD) 
and a Machine Learning technique (SVR) were applied on eight experimental wheat 
fields in Navarre where SM measurements were available.  Each methodology had 

specific considerations in the calibration or training phase. STCD obtained better 
results when considering short time periods (4 S1 observations) and rather extreme 
SM limits. Vegetation correction was not necessary in this method. On the other hand, 

TUWCD and MTBCD obtained better results with WATCOR corrected data, thus 
demonstrating the sensitivity of these techniques to the effect of vegetation. TUWCD 
requires establishing maximum and minimum backscatter bounds that, at the field 

scale, cannot be easily obtained from long time series due to crop rotation. To 
circumvent this a regional characterization of wheat backscatter was proposed to 

estimate maximum and minimum bounds. Finally, SVR showed no improvement when 
applying WATCOR, but the addition of the variable ‘month’ increased the accuracy of 
results. Comparisons between the best combinations for each method showed similar 

performance metrics. In all approaches, an overestimation of low moisture values was 
observed, especially in TUWCD and SVR. To a lesser extent, high SM values were also 
underestimated in all techniques. Despite the complexity of estimating SM at the field 

scale solely with SAR data, acceptable estimations were obtained. However, further 
research is needed to obtain more robust methods that enable the estimation of SM at 
the field scale. 

To sum up, the results of this thesis show that the analysis and extraction of the 

information contained in SAR time series is useful for various agricultural applications, 
such as crop classification or soil moisture estimation. This can be especially interesting 
in areas with high persistence of cloud cover where using optical imagery is unfeasible. 

With all this, it is expected that the results of this work will contribute to a better 
understanding of the backscattering behavior of different crops, especially wheat. 
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CONCLUSIONES 
 

Esta tesis se enmarca en el contexto actual en el cual el sector agrícola tiene que 
hacer frente a varios retos relacionados con el incremento de la población mundial y el 
impacto del cambio climático en los sistemas de producción agrícolas. 

Desafortunadamente, se prevé que estos retos se agraven en el futuro, por lo que las 
técnicas de teledetección desempeñarán un papen fundamental en la monitorización de 
los cultivos y contribuirán a garantizar la seguridad alimentaria. La teledetección es la 

herramienta ideal para el seguimiento de los cultivos a gran escala, ya que proporciona 
información sobre grandes áreas del territorio de forma regular. El esfuerzo de 

investigación realizado en esta tesis doctoral se ha centrado en el uso de las series 
temporales de Sentinel-1 para el desarrollo, análisis y evaluación de diferentes 
metodologías orientadas a la estimación de variables agrícolas de interés a escala de 

campo. 

En el primer estudio, se propuso una técnica de clasificación supervisada de cultivos 
basada en series temporales Sentinel-1. Esta técnica utiliza series temporales en 
polarización VH y VV, y series temporales del ratio VH/VV obtenidas sobre un gran 

número de parcelas agrícolas en una zona con alta variabilidad agroclimática. El análisis 
de las firmas de retrodispersión de los diferentes cultivos mostró que los canales VH y 
VV son sensibles a varios estados fenológicos donde ocurren cambios particulares en la 

estructura o la humedad en las cubiertas agrícolas. Por otro lado, el ratio VH/VV es 
sensible al crecimiento vegetativo en general, brindando poca información para la 
identificación de cultivos. Los cultivos con mayores singularidades en sus series 

temporales se clasificaron mejor, y la combinación de series temporales VH, VV y 
VH/VV proporcionó los mejores resultados de clasificación. El tamaño de parcela tuvo 
una influencia notable en los resultados, ya que los campos más grandes obtuvieron 

mejores precisiones. Los resultados de la clasificación también mejoraron al estratificar 
el territorio en regiones agrícolas, mostrando que la diversidad agroclimática tiene un 

efecto negativo en los resultados. La alta proporción de campos en barbecho y las clases 
muy heterogéneas también redujeron la precisión de la clasificación. Al definir clases 
de cultivos en futuros estudios, se recomienda evitar clases muy diversas, dividiéndolas 

en clases con cultivos más homogéneos. No obstante, los resultados obtenidos sugieren 
que es posible implementar este método de manera operativa en regiones con 
nubosidad frecuente en el marco del seguimiento de la PAC, así como en estudios que 

persigan otros objetivos. En el futuro, los resultados deberán compararse con los 
obtenidos con imágenes ópticas o con técnicas de aprendizaje automático. 
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El segundo trabajo abordó la influencia de la geometría de adquisición de imágenes 
en el contexto del uso de series temporales adquiridas con diferentes órbitas relativas. 

El primer análisis evaluó la influencia del ángulo de incidencia en las series temporales 
de trigo para el coeficiente de retrodispersión (σ0) y para el coeficiente de 
retrodispersión después de aplicar terrain-flattening (γ0). La aplicación del terrain-

flattening prácticamente eliminó la influencia del ángulo de incidencia en VH, pero no 
en VV. En esta polarización, aunque el efecto del ángulo de incidencia en γ0 fue mucho 
menor que en σ0, seguía existiendo cierta influencia que fue variable a lo largo del ciclo 

de crecimiento del trigo. La influencia fue mínima cuando la cubierta del cultivo se 
encontraba en su máximo desarrollo, pero fue más fuerte en los periodos en los que la 
retrodispersión superficial era predominante. Así, se demuestra que la influencia del 

ángulo de incidencia en la polarización VV varía en función del desarrollo fenológico del 
trigo. La evaluación de las diferencias de retrodispersión entre las tres órbitas en la 
zona de estudio mostró que el terrain-flatteining es capaz de reducir las variaciones 

angulares de la retrodispersión. A pesar de ello, la aplicación de una técnica de 
normalización del ángulo de incidencia a γ0 puede reducir aún más las diferencias, 
especialmente en los períodos de invierno y de suelo desnudo. Tras aplicar estos dos 

métodos, la correlación con reNDVI mejoró, mostrando una mejor descripción del 
crecimiento del trigo. La corrección de la anisotropía tuvo un efecto menor, sólo 

relevante en mayo. Las diferencias entre las pasadas ascendentes y descendentes 
pueden deberse en parte a la geometría de adquisición, pero también a la hora del día, 
con posibles variaciones debidas al rocío, la humedad del suelo o las heladas. Estas 

cuestiones deben estudiarse con más detalle. Por lo tanto, para estudios en los que haya 
que combinar varias órbitas, debe considerarse la necesidad de corregir las series 
temporales γ0, ya que los resultados pueden mejorar en los estudios cuantitativos 

destinados a obtener variables biogeofísicas. 

En el tercer estudio, se analizó la dinámica de retrodispersión del trigo en 
polarización VV utilizando un gran dataset de parcelas. Los resultados mostraron que 
el trigo presenta un patrón característico a largo plazo, independiente de las 

variaciones de humedad del suelo, en el que las plantas producen una atenuación de las 
ondas verticales desde la fase de ahijado hasta la senescencia de la planta. El efecto de 
atenuación es proporcional al crecimiento del trigo y tiene un máximo alrededor de 

finales de abril, coincidiendo con la etapa de espigado. A partir de estos resultados, se 
propuso una nueva metodología que corrige esta atenuación. Se denominó WATCOR y 
para su aplicación sólo requiere la propia serie temporal de retrodispersión VV. 

WATCOR incorpora técnicas clásicas de análisis de series temporales: técnicas de 
suavizado, detección de puntos de cambio, interpolación lineal y ajuste de envolventes. 

La eficacia de WATCOR se evaluó mediante un análisis de correlación entre la 
retrodispersión y las medidas humedad del suelo en varios campos de trigo. Además, 
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se aplicaron diversas variantes del WCM, basadas en descriptores de vegetación ópticos 
y radar, para corregir el efecto de la vegetación, comparando los resultados obtenidos 

con WATCOR. Los resultados mostraron que WATCOR eliminó eficazmente la tendencia 
de atenuación en las series temporales, mientras que las series temporales obtenidas 
con las distintas variantes del WCM seguían mostrando cierto efecto de atenuación. Las 

correlaciones con la humedad del suelo aumentaron en todos los casos cuando se 
aplicaron las correcciones, siendo WATCOR el que obtuvo el mejor rendimiento 
general. Por lo tanto, el nuevo método WATCOR mostró resultados prometedores en la 

corrección del efecto de atenuación del trigo y puede ser una alternativa viable a otras 
metodologías de corrección de la vegetación. Aunque no tiene en cuenta la contribución 
directa de la vegetación en la retrodispersión, los resultados mostraron que este efecto 

podría ser mínimo en la polarización VV. WATCOR no requiere información o 
parametrizaciones externas, lo cual es una ventaja si se compara con otros métodos 
(por ejemplo, WCM). Sin embargo, no puede ser implementado en tiempo real, ya que 

para su aplicación requiere la serie temporal completa del ciclo de crecimiento del trigo. 
Los futuros esfuerzos de investigación deberían tratar de mejorar este método para que 
pueda aplicarse en tiempo real. 

En el último estudio se evaluaron cuatro técnicas diferentes de estimación de 

humedad del suelo (HS) utilizando series temporales Sentinel-1. También se evaluó la 
eficacia de WATCOR en los diferentes enfoques, comparando los resultados obtenidos 

con las series temporales originales y las corregidas con WATCOR. Se aplicaron tres 
métodos de detección de cambios (STCD, TUWCD y MTBCD) y una técnica de 
aprendizaje automático (SVR) en ocho campos de trigo experimentales de Navarra en 

los que se disponía de mediciones de HS.  Cada metodología tuvo consideraciones 
específicas en la fase de calibración o entrenamiento. El STCD obtuvo mejores 
resultados cuando se consideraron periodos de tiempo cortos (4 observaciones de S1) 

y límites de HS bastante extremos. La corrección de la vegetación no fue necesaria en 
este método. Por otro lado, TUWCD y MTBCD obtuvieron mejores resultados con datos 
corregidos por WATCOR, demostrando así la sensibilidad de estas técnicas al efecto de 

la vegetación. TUWCD requiere establecer límites máximos y mínimos de 
retrodispersión que, a escala de campo, no pueden obtenerse fácilmente a partir de 
series temporales largas debido a la rotación de cultivos. Para evitar esto, se propuso 

una caracterización regional de la retrodispersión del trigo para estimar los límites 
máximos y mínimos. Por último, el método SVR no mostró ninguna mejora al aplicar 
WATCOR, pero la adición de la variable "mes" aumentó la precisión de los resultados. 

Las comparaciones entre las mejores combinaciones de cada método mostraron 
métricas de rendimiento similares. En todos los enfoques se observó una 

sobreestimación de los valores de humedad bajos, especialmente en TUWCD y SVR. En 
menor medida, los valores altos de SM también se subestimaron en todas las técnicas. 
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A pesar de la complejidad de estimar la HS a escala de campo únicamente con datos de 
SAR, se obtuvieron estimaciones aceptables. Sin embargo, es necesario seguir 

investigando para obtener métodos más robustos que permitan estimar la HS a escala 
de campo. 

En resumen, los resultados de esta tesis demuestran que el análisis y la extracción 
de la información contenida en las series temporales SAR son útiles para diversas 

aplicaciones agrícolas, como la clasificación de cultivos o la estimación de la humedad 
del suelo. Esto puede ser especialmente interesante en zonas con alta persistencia de 
nubosidad donde el uso de imágenes ópticas es inviable. Con todo ello, se espera que 

los resultados de este trabajo contribuyan a una mejor comprensión del 
comportamiento de la retrodispersión de diferentes cultivos, especialmente el trigo. 
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