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Jam formation is a problem that may occur when granular material is
discharged by gravity from a silo. The estimation of the minimum outlet size,
which guarantees that the time to the next jamming event is long enough, can
be crucial in the industry. The time is modeled by an exponential distribution
with two unknown parameters, and this goal translates to precise estimation
of a nonlinear transformation of the parameters. We obtain c-optimum ex-
perimental designs with that purpose, applying the graphic Elfving method.
Because the optimal experimental designs depend on the nominal values of
the parameters, we conduct a sensitivity analysis on our dataset. Finally, a
simulation study checks the performance of the approximations, first with
the Fisher Information matrix, then with the linearization of the function to
be estimated. The results are useful for experimenting in a laboratory and then
translating the results to a real scenario. From the application we develop a
general methodology for estimating a one-dimensional transformation of the
parameters of a nonlinear model.

1. Introduction. Silos and hoppers are usual containers in industry for storing a large
variety of solids and liquids. In this work we focus on silos for granular bulk solids. Their
main use is as a buffer between one transport activity or chemical process and another in many
economic activities as power generation, steel making, quarrying plastics, food processing,
mining, farming and agricultural industries; see, for example, Nedderman (1992). Therefore,
materials stored are quite variable, and the structural form of the silo depends greatly on
several properties of the material, as size, shape, weight, cohesion, homogeneity, etc. Parti-
cle sizes range from fine powders of micron size to agricultural grains, pellets, minerals or
crushed rocks.

Silos require careful structural construction to avoid failures. Many codes and standards
have been published to help engineers in the construction process, but they have limitations;
see Carson and Craig (2015). One of the main goals is to ensure reliable, steady and com-
plete discharge of solid from the vessel; see Rotter (2001). Flow obstructions in the discharge
under gravity are common problems in the operation of a silo because of the formation of a
cylindrical pipe (rathole) around or a stable arch-shaped obstruction over the silo outlet open-
ing (see Chapter 2 in Carson (2008)), causing a blockage or jam. However, if the bulk solid
properties are well known, reliable criteria for silo construction are established in the stan-
dards and obstruction problems are almost or completely eliminated with a right dimension
of the outlet size called critical size; see Schulze (2008), Jenike (1961).

Silo failures carry important economic costs to the industry because of shutdown periods
in production plants, damage or waste of the stored material or even the replacement of the
silo. Reliable flow by standard silo construction is not always possible for several reasons.
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First, regarding the lack of knowledge of critical properties in the nature of the stored ma-
terial, as biomass particles or granular materials, see Miccio, Barletta and Poletto (2013),
Artoni, Santomaso and Canu (2009). Second, the bulk solid nature can be modified by the
storage period, moisture, temperature, aeration, silo degradation, climate conditions, etc; see,
for instance, Mitra et al. (2017), Samuelsson et al. (2012), Chen and Roberts (2018) and
references therein. Finally, silo outlet size can be smaller than the critical size because of im-
properly sized equipment, conservative estimations provided by theoretical models, etc; see
Bell (2005), Fitzpatrick, Barringer and Iqbal (2004). Under these situations, industry man-
agers need information about the silo performance to minimize the chance of failures.

Direct experimentation can be very costly, risky and difficult to replicate because we are
dealing with several tons of stored material, and waste of material or silo damage are too
expensive for the companies. So that computational simulation based on physical models
of the dynamics of the stored material and statistical experimental designs are the two main
solutions to deal with this problem; see Golsham et al. (2020), Li et al. (2004), Saleh, Golshan
and Zarghami (2018). Schulze (2008) remarks that the study of flow problems is similar when
silos are studied on a smaller scale so that experimental design techniques are a practical way
to provide information about silo reliability to industry managers. Indeed, the difficulties of
modeling with granular materials make the statistical techniques to process experimental data
as a relevant solution to deal with scale–up issues of granular bulk solids in industry; see Bell
(2005).

As stated before, it is widely accepted that jam problems are closely related to the outlet
size φ. Hence, the goal of this paper is to propose optimal experimental designs that provide
precise estimation of the minimum outlet size necessary to guarantee that the expected time
between two blockage events will exceed a fixed time of interest. This is valuable information
to precisely schedule expert interventions for blockage interruption as silo cleaning, the use
of vibrator systems of air cannons, etc.

The elapsed time between two jams is the starting point of this study. For analysing the exit
time distribution of a particle in a silo, a deterministic theoretical model based on the kine-
matic theory is developed, and experimental studies are conducted to calibrate the model; see
Nedderman (1992), Able, Othen and Nedderman (1996), Golsham et al. (2020). This model
depends on geometrical characteristics of the silo, density of the stored material in different
silo zones and some kinematic constants, and the exit time decreases exponentially when the
diameter of the outlet grows. However, unlike for the exit time, theoretical models for the
time between jams do not exist, so ad hoc models that fit experimental data are proposed in-
stead; see To (2005), Janda et al. (2008). As expected, this function exponentially decreases
as the diameter of the outlet grows, and also, several constants related to the characteristics of
the silo and the granular bulk solid appear in the mathematical formulation. The exponential
model chosen in this work agreed well with experimental data in To (2005) and also with
the model proposed in Janda et al. (2008) whereas “avalanche” (amount of material dropped
between jamming events) is observed.

For each silo geometry or bulk material, model constants change and must be estimated.
An experimental design, in this context, consists of repeating ni times a silo discharge fixing
an outlet size φi , i = 1, . . . , r for r different outlet sizes. An optimal experimental design
will provide specific values ni and φi to obtain the estimates optimizing a criterion fixed be-
forehand (classical references on optimal experimental designs are, for instance, Atkinson,
Donev and Tobias (2007) and Fedorov (1972)). Optimal experimental designs are fundamen-
tal in this context because they can drastically lower the cost of experimentation by reducing
the total number n = ∑r

i=1 ni of runs needed to guarantee a desired precision in parameter
estimation. D-optimality is a popular criterion that can be useful when the target is the en-
tire unknown parameter vector of a model. Amo-Salas, Delgado-Márquez and López-Fidalgo
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(2016) and Amo-Salas et al. (2016) obtained D-optimal experimental designs to estimate the
parameters in several models for the time elapsed between jams. In particular, in Amo-Salas
et al. (2016) the D-optimal design to estimate the parameters of the model considered in this
work was obtained.

When the target is estimating a linear combination of the unknown parameters of the
model, a c-optimal design will provide the maximum likelihood estimator (MLE) of this
combination with the minimal variance. Elfving (1952) showed an elegant graphical method
to determine c-optimal experimental designs of a linear model on a compact experimental
domain, based on the construction of a convex hull. This method is not easy to use for more
than two parameters, but López-Fidalgo and Rodríguez-Díaz (2004) provided an iterative
procedure based on the graphical Elfving technique that successfully computes c-optimal
experimental designs for more than two parameters.

The minimum outlet size which guarantees a minimum expected time between two block-
ages can be evaluated as a function of the model parameters. Because the model considers an
exponential probability distribution, a local c-optimal design can be determined by using the
Fisher Information Matrix (FIM) for nonlinear models. Then, a first-order linear approxima-
tion of the function of the parameters around some nominal values of the parameters will be
used.

Section 2 explains in detail the motivating problem of the paper, while Section 3 illustrates
the mathematical method adopted to solve it and provides the general results obtained. Sec-
tion 4 presents some numerical examples as well as a sensitivity analysis, and the results are
demonstrated on real data. We also provide insights into the two approximations by means of
a simulation study. Section 5 concludes the paper with a discussion.

All computations have been done with Python 3.7. The dataset is real data coming from
the Granular Means Group at the University of Navarre. The dataset and code are given in
the Supplementary Material (López-Fidalgo, May and Moler (2023)).

2. Outline of the problem. Consider the situation, discussed in the Introduction, of solid
material stored in a silo and its discharge due to the force of gravity through an outlet at the
bottom of the container. Consider, in particular, the problem of the formation of blockages.

The time T when a first jam happens, or between two jamming events, is a random vari-
able that depends on the diameter φ of the outlet at the bottom of the silo. To estimate the
probability distribution of T , an experimenter may collect n observations t1, . . . , tn of the
times between two jams for r ≤ n experimental conditions φ1, . . . , φr chosen according to an
experimental design. Experiments can be replicated for a particular diameter.

Due to the difficulties of direct experimentation with real silos, collecting data in a smaller
scale experiment in a laboratory may be needed to obtain the desired information. Then, the
choice of the possible diameters of the outlet to perform the experiments is of critical impor-
tance for the physicists. Zuriguel et al. (2005) made a thoughtful study of how the laboratory
experiment can be used to replicate the real potential experiment in a similar phenomenol-
ogy. In particular, they proved how the spheres in a 3D silo can be emulated by spheres in
a 2D one. Additionally, they proved empirically that the experiment with regular and identi-
cal spheres replicates well enough with other irregular and nonuniform shapes such as rice,
lentils or stones. In particular, the increase in variability introduced by nonregular shapes in
those cases is negligible. Figure 1 shows the 3D and 2D silos that they used in the laboratory
to do the experiments. In this paper we refer to the experimental study presented in Janda et al.
(2008) and further studied in Amo-Salas et al. (2016) and in Amo-Salas, Delgado-Márquez
and López-Fidalgo (2016).

A two-dimensional silo is reproduced in laboratory, consisting of two vertical glass plates
between which spherical beads are poured. The beads flow constantly through an aperture at
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FIG. 1. 2D (left) and 3D (right) silos in the laboratory.

the bottom of the silo, due to gravity, until an arch is formed at this outlet. An arch is indeed a
structure where particles are mutually stable, and hence it generates a jam. If one of the parti-
cles that form an arch is removed, the arch collapses, and the flow restarts until the formation
of a new jam. In this experimental setup the avalanche size, that is, the number of balls fallen
between two jamming events, can be directly measured. As a matter of fact, they just weigh
the set of balls which is equivalent and much easier. The physicists have proved that, for
a given orifice diameter, the flow rate is constant, and then the time between two jamming
events is proportional to the avalanche size. Moreover, Janda et al. (2008) notice that the same
distribution of the avalanche size is found in the discharge of a three-dimensional silo (other
studies can be seen in the references contained therein). An exponential distribution for T

shows good agreement with experimental data, as shown in To (2005) (see also Section 4.3).
An experimental design ξ can be defined as a discrete probability distribution on a domain

X = [a, b],

ξ =
{
φ1 · · · φr

p1 · · · pr

}

with r ≤ n. The experimenter takes n ·pi observations at each φi , i = 1, . . . , r . In the practice,
if the proportions {pi} are not multiples of 1/n, they must be approximated. The extremes of
the experimental domain X = [a, b] have to satisfy d < a < b < φC , where d is the diameter
of the granular material and φC is the critical size which is a practical limit above which
jamming is practically impossible. For some models this is a parameter to be estimated (see
Amo-Salas et al. (2016) and Amo-Salas, Delgado-Márquez and López-Fidalgo (2016)).

Optimal experimental designs maximize some appropriate criterion function related to the
covariance matrix of an estimator, chosen on the base of the particular aim of the experiment.
As previously specified, the focus of the present work is the estimate of the minimum outlet
diameter necessary to guarantee a minimum expected time, T0, between two jamming events,

(1) E[T |φ] = η(φ; θ) ≥ T0.

If η(·, ·) is a suitable expectation model invertible, equation (1) implies

(2) φ ≥ g(θ;T0)
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for some inverse function g(θ;T0). Hence, our statistical goal is to obtain a proper optimal
design ξ∗ to minimize the variance of the MLE of this function of the parameter vector θ . This
will provide a better precision of the resulting estimate, compared to any other nonoptimal
design based on n = ∑r

i=1 ni experiments. An optimal design is then crucial to save cost of
experimentation.

To find an optimal design, the standard methods for linear models are here adapted: the
covariance matrix of the estimators is approximated by the inverse of the FIM; then, the
function of the parameters to be estimated is linearized. In this paper we evaluate the impact
of these two approximations via simulations; see Section 5 (Conclusion).

REMARK 2.1. An alternative goal could be the estimation of the minimal diameter such
that, for given values of α and T1, P(T > T1) ≥ 1−α. However, for an exponential probabil-
ity distribution model, this is equivalent to consider (4) with T0 = −T1/ log(1 − α) because

1 − α ≤ P(T > T1) = exp
(−T1/η(φ; θ)

)
and then

η(φ; θ) ≥ −T1

log(1 − α)
.

For instance, for α = 0.05, T0 = 19.5T1. In this particular case the threshold for the proba-
bility is about 20 times the one for the expectation. Thus, both approaches are equivalent in
terms of estimation and designing.

3. Methodology. Assume, as in Janda et al. (2008), that the expected value of T , given
φ, is

(3) η(φ; θ) = 1

C
exp

(
Lφ2) − 1, φ ∈ X = [a, b],

where θT = (C,L). This is also the model considered in equation (3) of Amo-Salas et al.
(2016). The time between jams and, therefore, the mean η is increasing with respect to φ. It
has to be positive, so L > 0 and 0 < C < exp(Lφ2) for any φ.

Our main goal is the efficient estimation of the minimal diameter φ ∈ X for which (1)
holds. If the the expectation model is given by (3), this means

(4) φ ≥ g(θ;T0) =
√

log(C(T0 + 1))

L
.

Our aim is then to obtain an optimal design to minimize the variance of the maximum-
likelihood estimator of the bound g(θ;T0), given in (4), based on n uncorrelated observations

(5) ti = η(φi; θ) + εi, i = 1, . . . , n,

of T . These observations follow an exponential distribution; therefore, they have nonconstant
variance,

Var(εi) = η(φi; θ)2.

When the inferential goal of an experiment is an efficient estimation of θ , an optimal
design maximizes a suitable functional of the FIM. Let us denote the FIM of a model by
M(ξ, θ). Note that M(ξ, θ) depends on the value of the unknown parameters, except in the
case of linear models; to overcome this problem, an optimal design can be computed on some
nominal values of θ derived from guesses or previous knowledge of the possible likely values
of the parameters.



ESTIMATING AN APPROPRIATE OUTLET SIZE 611

When the target is to estimate a linear combination cT θ of the unknown parameters of
the model for some vector c, a c-optimal design will provide the maximum likelihood esti-
mator with the minimal variance for this combination. A c-optimal design ξ∗

c minimizes the
asymptotic variance of cT θ̂ ,

(6) ξ∗
c = arg min

ξ
cT M−1(ξ ; θ)c.

The target of this paper is the precise estimation of a nonlinear function of the unknown
parameters. Additionally, the model herein considered is nonlinear and heteroscedastic. To
solve this problem, we apply two linear approximations, and we follow the Elfving procedure
to determine a c-optimal design, as detailed in the next subsections.

3.1. Double approximation. Let L(θ; t, φ) be the log-likelihood function of T . The FIM
is defined by

M(ξ, θ) =
∫
X

I (φ, θ) dξ(φ),

where

I (φ, θ) = −ET

[
∂2

∂θ2L(θ; t, φ)

]
is a 2 × 2 matrix representing the FIM at one point φ. For an exponential distribution model
with mean η(φ, θ), we have

L(θ; t, φ) = log
(

1

η(φ, θ)
exp− t

η(φ, θ)

)
.

Then, for model (5),

I (φ, θ) = 1

η2(φ, θ)
∇η(φ, θ)∇η(φ, θ)T ,

and, for a design ξ ,

(7) M(ξ, θ) =
∫
X

1

η2(φ, θ)
∇η(φ, θ)∇η(φ, θ)T dξ(φ),

where the transpose is indicated with the superscript T and ∇ stands for the gradient.
Equation (7) is also the FIM of the following linear model:

(8) ti = θT f (φi; θ t ) + εi,

where

(9) f (φ; θ) = 1

η(φ, θ)
∇η(φ, θ)

is evaluated in a the true value θ t of the parameter vector. In this way we have approximated
model (5) in a neighborhood of the true value.

The MLE estimator of g(θ;T0) is g(θ̂;T0), so we approximate the nonlinear function
g(·;T0) using Taylor expansion around the true value θ t , that is, g(θ̂;T0) ≈ g(θ t ;T0) +
∇g(θ t ;T0)(θ̂ − θ t ). The variance of g(θ̂;T0) can then be approximated by

∇g(θ t ;T0)
T M(ξ, θ t )

−1∇g(θ t ;T0)

and a c-optimal design for model (5) is a design satisfying (6) with c = c(θ), given by

(10) c(θ) = ∇g(θ;T0).

Notice that two procedures of approximation have been used and that the c-optimum de-
sign, satisfying (6), depends on the unknown parameters both through the vector c(θ) and
the FIM, M(ξ, θ). Hence, we choose an initial guess θ0 for the true value θt , and the design
obtained will be locally optimum.
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3.2. Graphical Elfving procedure. A convenient way to compute c-optimal experimental
designs, especially in two dimensions, is the graphical Elfving procedure (first proposed by
Elfving (1952)). This procedure allows us to estimate a linear transformation cT θ of the
unknown parameters of a linear homoscedastic model t = θT f (φ) + ε, like the model (8),
where f (φ) = (f1(φ), f2(φ))T .

To apply the Elfving’s graphical method, the first step is to obtain and to plot in the Carte-
sian plane the Elfving locus, that is, the convex hull of the union of the curve defined by the
regressors f (φ) = (f1(φ), f2(φ)) and its reflection through the origin. Figure 2 shows the
case considered in this paper. The boundary of the Elfving locus in this case will be denoted
by A1A2A3A4. Then, the second step is to plot the line defined by the vector c through the
origin until the boundary A1A2A3A4 is reached. The c-optimal design is then defined by the
crossing point. The extremes of the segment of the boundary of the Elfving locus crossed
by the line defined by c are the support points. The crossing point is then a convex combi-
nation of the extreme points giving the design weights for each point. For more details on
the Elfving method in the continuous case here considered, see Section 1.1 of Rivas-López,
López-Fidalgo and del Campo (2014).

The information matrix at a point φ for model (3) is

(11) I (φ, θ) = e2φ2L

C(eφ2L − C)2

⎛
⎝ 1

C
−φ2

−φ2 Cφ4

⎞
⎠ .

Hence,

f (φ, θ) = (
f1(φ), f2(φ)

)T = G(φ, θ)
(
1/C,−φ2)T

,

with

(12) G(φ, θ) = eφ2L

eφ2L − C
.

Finally, the parametric equations, defining the curve f ([a, b]), are

(13)

⎧⎪⎪⎨
⎪⎪⎩

x(φ) = G(φ, θ)/C,

y(φ) = −G(φ, θ)φ2,

φ ∈ [a, b].
For the second step, let c(θ), as defined in (10), be the gradient of g(θ;T0), that is,

(14) c(θ) = 1

2
√

L

(
1

C
√

log(C(T0 + 1))
,−

√
log(C(T0 + 1))

L

)T

;

hence, c will be given by (14) evaluated at some nominal values (C0,L0). Depending on the
value of T0, c will have a different angle, and the line defined by c will cross the convex hull
in A1A2, A2A3 or A3A4 (see Figure 2).

The next propositions provide some general results to obtain c-optimal designs for esti-
mating the bound (4). The proofs are detailed in Section 1 of the Supplementary Material
(López-Fidalgo, May and Moler (2023)).

PROPOSITION 3.1. Consider the curve (13) and its reflection through the origin. Let
A1, A2, A3, A4 be the outermost points: A1 = (−x(b),−y(b)), A2 = (x(a), y(a)), A3 =
(x(b), y(b)), A4 = (−x(a),−y(a)). Then, for any value of (C0,L0) such that 0 < C0 <

exp(L0φ
2) and L0 > 0, the boundary of the convex hull of these curves is given by the polyg-

onal A1A2A3A4.
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The next proposition gives the c-optimal experimental designs obtained by the crossing
point between the line defined by c and the boundary of the convex hull, according to the
Elfving method; this depends on the fixed value of T0 and on the choice of (C0,L0). There
are actually three possible cases, but it is always a two-point design in the extremes a and b.

Denote by (xi, yi), i = 1, . . . ,4, the coordinates of the extremes Ai of the convex hull (2)
and by φi , the corresponding values of φ in curve (13) or in its symmetric; see Figure 2. Then,
the following result can be proved.

PROPOSITION 3.2. When the crossing point P0 is in AiAi+1, i = 1,2,3, the c-optimal
design is

(15)
{

φi φi+1
1 − pi pi

}
, with pi =

√
(Kx0 − yi)2 + (x0 − xi)2

(xi+1 − xi)2 + (yi+1 − yi)2 ,

where (x0, y0) are the coordinates of P0 given by

x0 = yi − yi+1−yi

xi+1−xi
xi

K − yi+1−yi

xi+1−xi

and y0 = Kx0,

and

K = ∂g(θ;T0)/∂L|θ1=C0,θ2=L0

∂g(θ;T0)/∂C|θ1=C0,θ2=L0

.

4. Application. The theoretical results and techniques provided in previous sections are
now applied to particular cases. Because the choice of the nominal values is crucial in the
method considered, we conduct a sensitivity analysis. Finally, we show an application to a
real dataset provided by the Granular Media Laboratory of the University of Navarra (Gella,
Zuriguel and Maza (2018)).

4.1. Illustrative examples. To illustrate the method and the theoretical results, the exper-
imental case in Janda et al. (2008) is considered, and the estimates obtained in Amo-Salas
et al. (2016) from data are used as nominal values of the parameters.

EXAMPLE 1. Let φ ∈ X = [1.53,5.63], C0 = 0.671741 and L0 = 0.373098. Figure 2
represents the parametric curve (13), its reflection and the Elfving locus A1A2A3A4 obtained
in this case. It is worth observing that the vertexes of the convex hull in Figure 2 are not
tangential points of the curve but outermost points of the curve.

The crossing point P0 is in a different side of A1A2A3A4, depending on whether T0 is
either in the interval (0.49, 2.57], in (2.57, 203603.03] or in (203603.03,∞) (see Lemma 1.2
of the Supplementary Material (López-Fidalgo, May and Moler (2023)) for details). Figure 2
illustrates the three cases T0 = 2, T0 = 200 and T0 = 300,000; P0 falls, respectively, in A1A2,
A2A3 and A3A4. Observe that the vectors from the origin to P0 are divided into two parts. In
each case the standard deviation of g(θ̂;T0) is equal to the ratio of the dashed vector to the
whole vector.

According to Proposition 3.2, the optimal design in each case is{
1.53 5.63

0.9789 0.0211

}
T0=2

;
{

1.53 5.63
0.5526 0.4474

}
T0=200

;
{

1.53 5.63
0.0240 0.9760

}
T0=300,000

.

Note that the closer is the crossing point to a vertex, the more unbalanced is the optimal
design.
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FIG. 2. Graphical representation for the framework in Example 1.

EXAMPLE 2. As shown in the proof of Proposition 3.1 (point 5), there are two possible
cases for A1A2A3A4, that is, when the point A2 is a maximum of the curve and when it is
not. The first one has been illustrated in Example 1, and the second one is illustrated in this
example. If L0 = 0.373098 and φ ∈ [1.53,5.63], a value of C0 in the interval (1.2784,2.395)

must be chosen, say C0 = 2.3. Assume T0 = 2.
Figure 3 represents the convex hull and c in this example, when A2 is not a maximum.

Now, Proposition 3.2 holds, and then

ξ∗
c =

{
1.53 5.63

0.2706 0.7294

}
.

It is interesting to stress that this design puts more weight in the right extreme, and, therefore,
longer experimentation times are required, although the limit T0 is much smaller than in the
previous example.

4.2. Sensitivity analysis. Assume that T0 is a given value; the efficiency reduces as the
true parameters (C∗,L∗) are far from the nominal values (C0,L0) chosen as a guess. The the-
oretical details of how the sensitivity analysis is actually performed can be found in Section 2
of the Supplementary Material (López-Fidalgo, May and Moler (2023)).

FIG. 3. Graphical representation for the framework in Example 2.
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FIG. 4. Efficiency values in each point of the grid for T0 = 2.

EXAMPLE 3. Consider the framework of Example 1, where T0 can take values 2, 200
or 300,000. The first one is too small to have a practical interest, while the last one needs
a diameter longer than those ones in the design space. Thus, they are extreme cases but
interesting to be considered in this study.

Examine a grid of points (C∗,L∗) appropriate to detect sensitive changes in the efficien-
cies. In Figures 4, 5 and 6 the efficiencies for the three cases considered are shown. In all
the three cases, C∗ varies in the interval (C0 − 0.3,C0 + 0.3), while L∗ varies in the interval
(L0 − 0.15,L0 + 0.15) in cases 1 and 2 and in the interval (L0 − 0.05,L0 + 0.05) in case 3.

Because the value of T0 is fixed, the crossing point can be in a different segment AiAi+1
for (C0,L0) and the point of the grid (C∗,L∗). For instance, in Figures 4 and 5 the largest
reduction of the efficiency happens for large values of C∗, combined with small values of L∗.
In Figure 6 a smaller interval is chosen to vary L∗ because dramatic changes of the efficiency
are observed for further values of L∗. Now, the efficiency decreases when L∗ grows and C∗
decreases (top left on Figure 6) and when L∗ decreases and C∗ grows (bottom right on the
table). This is because the cross points of the gradient with the convex hull are far away from
the cross point of (C0,L0) or even in another segment.

In the three cases we could say that, when both L∗ and C∗ grow or decrease, the efficiency
is more stable; instead, changes of C∗ and L∗ in opposite directions make the efficiency to
reduce faster.

FIG. 5. Efficiency values in each point of the grid for T0 = 200.
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FIG. 6. Efficiency values in each point of the grid for T0 = 300,000.

4.3. Real-data application. As stated in the Introduction, time between jams has been
first studied experimentally, and then, a statistical model was proposed to fit the data. The
basis of the experimentation in this topic was established in the seminal paper by To (2005).
The experimentation procedure requires a warm-up period after each jam to reach a steady
flow of the particles. This introduces a nuisance parameter in the fitting model. In Janda
et al. (2008) the experimentation procedure was modified fitting the description in Section 2.
The warming-up period is avoided by introducing a large amount of balls in the silo at the
beginning of the experimentation, and the device is refilled from time to time to maintain the
pressure at the bottom of the hopper. When a jam happens, the time since the previous jam is
recorded. Moreover, the jam is broken with a controlled jet of pressurized air to avoid relevant
changes in the internal relationships among particles which makes realistic the assumption of
independence between time observations.

Let X be the random variable representing the size of an “avalanche,” that is, the number of
disks that pass through the outlet between two jams. In To (2005) the system is modelled by
a Markov Chain, and each ball that passes through the outlet is a transition. The warming-up
period requires n0 balls; after this, the system reaches the steady flow state in which each ball
can remain with probability q or generate a jam, which is an absorbing state, with probability
1 − q . Based on this model, they confirm with the experimentation a good agreement of an
exponential decay for the tail distribution G(n) = P(X ≥ n), for several outlet diameter val-
ues φ. Consistent results are obtained in Janda et al. (2008), avoiding the nuisance parameter
n0, so that X follows a Geometric distribution with success probability 1 − q . From Brown
(1990) an exponential distribution with the same mean, E[X] = q/(1 − q), can be approxi-
mated to the distribution of the time between jams when 1 − q is not large. Following Janda
et al. (2008), 1 − q = Ce−Lφ2

, and the model (3) is obtained.
Members of the University of Navarra’s research team, who also authored Janda et al.

(2008), kindly provided us with the microdata of a similar experiment to the one just de-
scribed (Gella, Zuriguel and Maza (2018)). In this case the silo is filled with spherical stain-
less steel beads with diameter 4.00 mm. The experiment is repeated for 12 different values
of φ; for each value a different number n of observations of the time T between jams are
obtained, and the average time T is calculated; see Table 1. To find the best probability distri-
bution function that fits the experimental data, the procedure in Rigby et al. (2019) is followed
here. It is based on the GAIC (the Generalized Akaike Information Criterion) for generalized
additive models, and it has been implemented by gamlss R package. For each diameter φ

considered in the experimentation, the exponential distribution results to be the best fit for
the data.
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TABLE 1
Setting for the real experiment

φ 9.3 9.7 10.5 11.2 11.8 12.4 13 13.6 14.2 14.9 15.3 15.4
ni 1510 2005 2139 2124 2164 2168 2113 2037 2085 2026 1009 1001

T j 19.04 18.38 33.37 62.11 86.85 163.43 219.51 581.13 873.55 1212.22 3109.30 4611.61

In what follows, we compare the performance of the design, used in practice to collect
these data, and the optimal design, obtained in Proposition 3.2, in terms of precise estimation.
Let λj be the parameter of the exponential distribution associated with each outlet size φj ;
applying the maximum likelihood principle to our data, the MLE λ̂j is

(16) λ̂j = 1

T j

, j = 1, . . . , r,

where r is the number of outlet sizes used in the experimentation; r = 12 in this example.
Recalling that we assume model (3), when r = 2, explicit expressions for the MLEs of C

and L can be then obtained. When r > 2, numerical optimization procedures must be applied
to maximize the likelihood function. Observe that the case r = 2 is exactly the case of a
D-optimal design; see Amo-Salas et al. (2016) and also of the c-optimal design obtained in
Proposition 3.2. In both cases the two design points are the two bounds of the design space,
but the D-optimal is balanced whereas the c-optimal weights depend on the initial conditions.

Because MLEs are asymptotically unbiased, variance is a good measure of the precision
when there is a large number of experiments. In small samples the MLE may incur some
nonnegligible bias which could be estimated via the jackknife or bootstrap and be adjusted
accordingly. To guarantee the application of the c-optimality, a large sample size of 1000
was chosen because this is the number of observations in the upper bound 15.4 of the dataset
considered.

First, we calculate the MLE when r = 12, where the entire set of experimental conditions
is required. For each diameter φj , j = 1, . . . ,12, 84 values are randomly chosen so that,
n ∼ 1000. By maximizing the ML function, we obtain C̃ = 1.1362, L̃ = 0.0329, from which
the estimate g̃ of the bound g = g(θ;T0) in (4) is calculated. We take T0 equal to the round
values of T j , j = 1, . . . ,12 that appear in Table 1 so that, the corresponding g value is close
to φj . This procedure is repeated 1000 times, and then, an estimation of the standard deviation
σ̂g̃ of g̃ is also obtained.

To do a comparative study with r = 2, according to the c-optimality, let C0 = 1.1362 and
L0 = 0.0329, and we compute from Proposition 3.2 the proportions of observations to take
in the two bounds (9.3 and 15.4). Hence, we obtain the corresponding estimate ĝ and the
exact variance σĝ of the MLE. The whole set of results are in Table 2; the proportion p9.3 of
experiments in 9.3 in the c-optimal design is also indicated.

TABLE 2
Results of the comparative study between the c-optimal and the MLE with the 12 design points

φ 9.3 9.7 10.5 11.2 11.8 12.4 13 13.6 14.2 14.9 15.3 15.4
T0 19 18 33 62 87 163 220 581 874 1212 3109 4611
p9.3 0.999 0.991 0.89 0.7817 0.719 0.602 0.547 0.370 0.296 0.237 0.070 0.001
g̃ 9.35 9.3 10.1 10.9 11.3 12.1 12.4 13.4 13.8 14.2 15.1 15.4
σ̂g̃ 0.39 0.40 0.28 0.18 0.13 0.06 0.04 0.11 0.15 0.18 0.26 0.29
ĝ 9.4 9.2 10.0 11.0 11.3 12.0 12.4 13.4 13.9 14.2 15.1 15.4
σĝ 0.06 0.06 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05
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It is worth highlighting several points from the results presented in Table 2. For c-
optimality two–point designs are obtained with closed–form expressions for the MLEs.
Moreover, the variability decreases dramatically. Finally, from the sensibility study presented
in Section 4.2, the c-optimal design could benefit from better guesses for the initial values C0
and L0 reducing bias and variability.

5. Conclusions. In this paper we consider the problem of estimating the parameters of
a nonlinear model for the time elapsed between two jams in the emptying of a silo. This
may be applied to a number of phenomena, such as delivering some material on a mine
through a vertical tunnel. In most of the cases, a jam might be rather dramatic, involving
some expensive procedures to break the jam. In the case of the mine, some explosive has to
be used, including costs, risks and delays. Then, determining the diameter of the outlet, say
φ, to guarantee a period of time long enough is of great interest. This could be considered
as a specific expected time, say T0, or else a specific probability of reaching a target time
without jams. Either “expected time” (T0) or probability of “success” (reach target time jam-
free) entail the estimation of a lower bound expressed as a nonlinear function that depends
on the unknown parameters. To obtain an analytical solution of the problem, first we use the
classical Fisher information approximation for the covariance matrix of the estimates of the
parameters. Then, the nonlinear lower bound, which is the target for estimation, is linearized
in such a way its gradient will play the role of the c–vector for c–optimality. A model with
two parameters is chosen, and the Elfving graphic procedure to find the c-optimal design is
used.

Propositions 3.1 and 3.2 establish, respectively, the main characteristics of the convex hull,
depending on the parameter values, and then an explicit expression for the c-optimal design
can be provided in all cases. Actually, the latter indicates that the c-vector may intersect the
convex hull in three possible sides of the convex hull, depending on three intervals where
T0 can lie. The vertices produce one–point c-optimal experimental designs; otherwise, two
points are needed. Thus, the optimal experiment involves only two outlet diameters which is
very convenient in the laboratory.

The vertices of the convex hull are critical points in the sensitivity analysis because they
indicate a change in the type of design. For this analysis a uniform grid with values for
the parameters around the nominal values was considered to detect sensitive changes in the
efficiency. In particular, a dramatic loss of efficiency happens when the parameter values
considered in the grid produce an edge change for the crossing point of the c-vector. A smaller
decrease is observed for changes in the crossing point without changing the edge of the
convex hull. Both facts imply a very important change in weights of the c-optimal design in
Proposition 3.2. Also, for very large values of T0 the sensitivity of the design with respect
to the selection of the nominal values is large. For instance, a small change in one of the
parameters produces a dramatic decrease in the efficiency, so sensitivity analysis requires a
reduced scale on this parameter. This analysis and interpretation is important for a safe choice
of the nominal values of the parameters.

Finally, a simulation study was conducted to verify the adequacy of the approximations (8)
and (3.1) (cf. Section 3.1). The a priori approximated variances and covariances of the esti-
mates are compared with the empirical variances and covariances of the estimates obtained by
simulation. Given the original nonlinear model the MLEs are obtained by simulating a large
number n of observations allocated in the c-optimal design. A value of T0 is chosen jointly
with some nominal values from the literature. Results are generally very close. Nevertheless,
the approximation procedure produces slightly higher variances of the lower bound for the
silo outlet size than the simulated one. When T0 is close to its lower bound, the convergence
is slower, and n must be enlarged. Details are provided in Section 3 of the Supplementary
Material (López-Fidalgo, May and Moler (2023)).
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SUPPLEMENTARY MATERIAL

Suplementary material (DOI: 10.1214/22-AOAS1644SUPP; .pdf). A .zip folder includes
a .pdf file divided into three sections: Section 1 provides the proofs of the theoretical results
in Section 3; Section 2 gives details for the sensitivity analysis and, finally, in Section 3
a simulation study to check the goodness of the approximations is presented. In addition,
Python 3.7. code is provided in two separate files to replicate the computations. The file
dataset.txt includes the real dataset used in the paper. There are two columns, first column
provides the observed times between jams and the second displays the different diameters.
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