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Abstract: Overlap and grouping functions are important aggregation operators, especially in infor-
mation fusion, classification and decision-making problems. However, when we do more in-depth
application research (for example, non-commutative fuzzy reasoning, complex multi-attribute de-
cision making and image processing), we find overlap functions as well as grouping functions are
required to be commutative (or symmetric), which limit their wide applications. For the above
reasons, this paper expands the original notions of overlap functions and grouping functions, and
the new concepts of pseudo overlap functions and pseudo grouping functions are proposed on the
basis of removing the commutativity of the original functions. Some examples and construction
methods of pseudo overlap functions and pseudo grouping functions are presented, and the residu-
ated implication (co-implication) operators derived from them are investigated. Not only that, some
applications of pseudo overlap (grouping) functions in multi-attribute (group) decision-making,
fuzzy mathematical morphology and image processing are discussed. Experimental results show
that, in many application fields, pseudo overlap functions and pseudo grouping functions have
greater flexibility and practicability.

Keywords: fuzzy logic; information fusion; pseudo overlap function; pseudo t-norm; fuzzy implication
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1. Introduction

The aggregation function (or aggregation operator) is an important concept in decision
theory, information fusion and fuzzy inference systems etc. (see [1,2]). The process of
combining several (numerical) values into a single representative one is called aggregation,
and the function performing this process is called aggregation function. As a special
aggregation operator, the concept of overlap functions (OF for short) is proposed in [3]
by scholars such as H. Bustince. Since then, OFs as well as associated grouping functions
have become a new hot direction, with rich research achievements (see [4–10]), and have
been applied in many fields, such as multi-attribute (group) decision-making, rule-based
classification and image processing etc. (see [11–13]).

In recent years, in order to expand the application scope of OFs and grouping functions,
many scholars have put forward some more general concepts, such as~r-(quasi-)overlap
functions [14] etc. However, all of them keep the requirement of commutativity (symmetry).
This paper mainly removes the commutativity of OFs as well as grouping functions, thus
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studies more general aggregation functions, that is, pseudo overlap functions as well as
pseudo grouping functions.

It is necessary to emphasize the motivation for studying pseudo overlap (grouping)
functions. Our main starting points include the following aspects:

(1) For aggregation functions, the commutativity is not always necessary, for example,
a copula is a kind of aggregation function which is closely related to overlap function,
but a copula could be non-commutative (see [15]). So, it is natural to investigate non-
commutative overlap (grouping) functions;

(2) From the perspective of fuzzy logic theory, overlap functions are closely related to
t-norms and fuzzy reasoning. The notion of t-norm is generalized to the non-commutative
case, that is, pseudo t-norm, which plays an important role in non-commutative fuzzy logic
(see [16–18]). Therefore, and in the same way, it becomes natural to study pseudo overlap
(grouping) functions;

(3) The overlap functions can be applied to multi-attribute (group) decision problems,
but when multiple attributes (or multiple decision makers) have different importance,
overlap functions may display some limitations due to the commutativity. Then, it is
necessary to extend overlap function to non-commutative case. In fact, I. A. Da Silva et
al. constructed a kind of weighted average operators based on n-dimensional overlap
functions (see Theorem 3.1 in [13]), which are non-commutative overlap functions when a
weak condition is attached;

(4) In the theory of mathematical morphology, t-norms and fuzzy implication operators
are the basic tools (see [19–23]). Similar to fuzzy morphology based on t-norms, we can
construct a new mathematical morphology based on overlap functions. More generally,
since the theory of mathematical morphology endowing non-commutative operators has
wider applicability (see [24,25]), the establishment of corresponding fuzzy erosion and
dilation operators considering pseudo overlap (grouping) functions can expand the existing
fuzzy mathematical morphology theory;

(5) Moreover, grouping functions can be applied to image segmentation [11,12], but for
image processing, the target object and background are usually unequal. In order to express
such inequality (or asymmetry), we naturally select non-commutative operators, that is,
pseudo grouping functions. We have reason to believe that we can obtain a better effect
when we use pseudo grouping functions to edge extraction and threshold segmentation
of images.

Based on the above considerations, we will study the basic properties and some appli-
cations of pseudo overlap (grouping) functions in detail. This paper is organized as follows.
In Section 2, we review some preliminary concepts (pseudo t-norm, pseudo t-conorm,
copula, overlap function, grouping function, fuzzy implication and residuated lattice). In
Section 3, we give the notion of (n-dimension) pseudo overlap functions as well as some
concrete examples, provide some construction methods, illustrate the relevant conclusions
of residuated implications induced by pseudo overlap functions, and analyze the rela-
tionship between overlap functions and residuated lattices. In Section 4, we investigate
pseudo grouping functions and co-implications derived from them. Section 5 presents
some applications of pseudo overlap (grouping) functions in multi-attribute group deci-
sion making (MAGDM for short), fuzzy mathematical morphology and image processing.
Finally, conclusions are declared in Section 6.

2. Preliminaries

In this part we state a few basic notions as well as results.

Definition 1 ([16,26]). A bivariate operator T on [0, 1] is known as a pseudo t-norm when and
only when:

(pt1) T meets associativity;
(pt2) T is increasing concerning both arguments, i.e., T(x, z) ≤ T(y, z) as well as T(z, x) ≤ T(z, y)
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when taking random x, y, z ∈ [0, 1], x ≤ y;
(pt3) T has unit element 1, that is, T(c, 1) = c = T(1, c), when taking random c ∈ [0, 1].

Definition 2 ([16]). The bivariate operator S on [0, 1] is known as a pseudo t-conorm when and
only when:

(ps1) S meets associativity;
(ps2) S is increasing about both arguments, i.e., S(x, z) ≤ S(y, z) as well as S(z, x) ≤ S(z, y)
when taking random x, y, z ∈ [0, 1], x ≤ y;
(ps3) S has unit element 0, i.e., S(x, 0) = x = S(0, x), when taking random x ∈ [0, 1].

Definition 3 ([27]). The binary operation C on [0, 1] is known as a copula when C meets conditions
as below, for arbitrary k, k′, l, l′ ∈ [0, 1] satisfying k ≤ k′ as well as l ≤ l′:

(C1) C(k, l) + C(k′, l′) ≥ C(k, l′) + C(k′, l);
(C2) C(k, 0) = C(0, k) = 0;
(C3) C(l, 1) = C(1, l) = l.

Definition 4 ([28]). An algebra L = (L,∧,∨,⊗,→, , 0, 1) is known as a residuated lattice
when meets the requirements as below:

(L1) (L,∧,∨, 0, 1) is a lattice with 0 as the lower bound and 1 as the upper bound;
(L2) (L,⊗, 1) is a monoid with 1 as neutral element;
(L3) x⊗ y ≤ z iff x ≤ y→ z⇔ y ≤ x z, when taking arbitrary x, y, z ∈ L.

Definition 5 ([4]). A bivariate mapping I on [0, 1] is known as a fuzzy implication when taking
random u, v, w ∈ [0, 1], I meets:

(I1) monotonic decreasing concerning the first element: I(v, w) ≤ I(u, w) when u ≤ v;
(I2) monotonic increasing concerning the second element: I(u, v) ≤ I(u, w) when v ≤ w;
(I3) three boundary conditions: I (0, 0) = 1, I (1, 1) = 1, I (1, 0) = 0.

Next, we give some properties of fuzzy implication:

Definition 6 ([4]). A fuzzy implication I on [0, 1] satisfies:

(NP) Neutral property, i.e., I(1, e) = e, ∀ 0 ≤ e ≤ 1.
(EP) Exchange property, i.e., I(x, I(y, z)) = I(y, I(x, z)), ∀x, y, z ∈ [0, 1].
(IP) Identity property, i.e., I(x, x) = 1, ∀x ∈ [0, 1].
(LOP) Left ordering property, i.e., x ≤ y⇒ I(x, y) = 1, ∀x, y ∈ [0, 1].
(ROP) Right ordering property, i.e., I(s, t) = 1⇒ s ≤ t, ∀s, t ∈ [0, 1].
(OP) Ordering property, i.e., I(s, t) = 1⇔ s ≤ t, ∀s, t ∈ [0, 1].
(CB) Consequent boundary, i.e., t ≤ I(s, t), ∀s, t ∈ [0, 1].
(SIB) Sub-iterative boolean property, i.e., I(s, I(s, t)) ≥ I(s, t), ∀s, t ∈ [0, 1].
(IB) Iterative Boolean property, i.e., I(s, I(s, t)) = I(s, t), ∀s, t ∈ [0, 1].
(SBC) Strong boundary condition for 0, i.e., i 6= 0⇒ I(i, 0) = 0, ∀i ∈ [0, 1].
(LBC) Left boundary condition, i.e., I(0, a) = 1, ∀a ∈ [0, 1].
(RBC) Right boundary condition, i.e., I(b, 1) = 1, ∀b ∈ [0, 1].
(EP1) Exchange property for 1, i.e., I(l, I(m, n)) = 1⇒ I(m, I(l, n)) = 1, ∀l, m, n ∈ [0, 1].
(PEP) Pseudo exchange property, i.e., I(p, r) ≥ q⇔ I(q, r) ≥ p, ∀p, q, r ∈ [0, 1].

Definition 7 ([3,4]). A bivariate function O on [0, 1] is said to be an overlap function (OF for
short) when O meets statements as below:

(O1) It meets commutativity;
(O2) Its value is 0 iff xy = 0;
(O3) Its value is 1 iff x = y = 1;
(O4) It meets monotonic increasing property;
(O5) It meets continuity.
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Definition 8 ([5]). A binary operation G on [0, 1] is said to be a grouping function when G meets
statements as follows:

(G1) It meets commutativity;
(G2) Its value is 0 when and only when values of x and y are 0;
(G3) Its value is 1 when and only when at least one of x and y is 1;
(G4) It meets monotonic increasing property;
(G5) It meets continuity.

Theorem 1 ([3]). An operator O: [0, 1]2 → [0, 1] meets (O1) ∼ (O5) when and only when there
exist bivariate operations h, g on [0, 1] with

O(x, y) =
h(x, y)

h(x, y) + g(x, y)
,

where

(1) h and g satisfy symmetry;
(2) h satisfies monotonic increasing property and g satisfies monotone decreasing property;
(3) the value of h is 0 when and only when at least one of x and y has a value of 0;
(4) the value of g is 0 when and only when values of x and y are 1;
(5) h as well as g satisfy continuity.

Definition 9 ([29–31]). A binary operation C: [0, 1]2 → [0, 1] is said to be a co-implication if
it satisfies:

(C1’) decreasing about its first element;
(C2’) increasing about its second variable;
(C3’) C(0, 0) = 0;
(C4’) C(a, b) = 0 when a = 1 as well as b = 1;
(C5’) C(c, d) = 1 when c = 0 as well as d = 1.

Definition 10 ([4]). An n-dimension mapping A on [0, 1] is known as an aggregation operation
when requirements as below are satisfied:

(A1) A is monotonically increasing concerning all elements: for every i ∈ {1, 2, . . . , n}, A(a1, . . . ,
an) ≤ A(a1, . . . , ai−1, y, ai+1, . . . , an) when ai ≤ y;
(A2) A meets requirements: (i) A(a1, . . . , an) = 0 when ai = 0 (i = 1, . . . , n) and (ii) A(a1, . . . , an)
= 1 when ai = 1 (i = 1, . . . , n).

3. Pseudo Overlap Functions and Their Residuated Implications

In this section, we consider existing outcomes of residuated implication to introduce the
concept of pseudo overlap functions and residuated implication derived from them. Then, we
elaborate the relationship between pseudo overlap functions and continuous pseudo t-norms
and copulas, and expand the dimension to explain the definition of multidimensional pseudo
overlap functions. After that, we also illustrate the general construction method of pseudo
overlap functions, and finally provide some examples to explain in detail.

Definition 11. A bivariate mapping O: [0, 1]2 → [0, 1] is called a pseudo overlap function (briefly
POF) when it meets statements as follows:

(O1’) The value of O is 0 iff at least one of the two variables has a value of 0;
(O2’) The value of O is 1 iff values of two variables are 1;
(O3’) O meets monotonic increment;
(O4’) O meets continuity.

Obviously, every overlap function is a pseudo overlap function. Now, we will provide
some examples of POFs.
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Example 1. (1) The operation O: [0, 1]2 → [0, 1] defined, when taking arbitrary a, b ∈ [0, 1], as

O(a, b) = apbq, p, q > 0 (1)

is a POF. When p = q, O is an OF.
(2) An operation O: [0, 1]2 → [0, 1] defined, when taking random x, y ∈ [0, 1], as

O(x, y) = min{xp, yq}, p, q > 0 (2)

is a POF. When p = q, O is an OF.
(3) A mapping O: [0, 1]2 → [0, 1] defined, when taking random x, y ∈ [0, 1], as

O(x, y) =



5xy+17
22 , i f (x, y) ∈ A1

90xy
56 , i f (x, y) ∈ A2

9x
8 , i f (x, y) ∈ A3

2y−2
11 + 105x

88 , i f (x, y) ∈ A4
9y
7 , i f (x, y) ∈ A5

7x−7
44 + 205y

154 , i f (x, y) ∈ A6

(3)

is a pseudo overlap function, where A1 = {(x, y)|0.8 ≤ x ≤ 1, 0.7 ≤ y ≤ 1, (x, y) 6=
(0.8, 0.7)}, A2 = {(x, y)|0 ≤ x ≤ 0.8, 0 ≤ y ≤ 0.7}, A3 = {(x, y)|0 ≤ x < 0.8, 0.7 <
y ≤ 1, y ≤ 1− 3x

8 }, A4 = {(x, y)|0 ≤ x < 0.8, 0.7 < y ≤ 1, y > 1− 3x
8 }, A5 = {(x, y)|0.8 <

x ≤ 1, 0 ≤ y < 0.7, y ≤ 7
2 (1− x)}, A6 = {(x, y)|0.8 < x ≤ 1, 0 ≤ y < 0.7, y > 7

2 (1− x)},
specific interval distribution is as follows (see Figure 1).

Figure 1. Diagram of (3) in Example 1.

Lemma 1 ([16]). Given a pseudo t-norm T on [0, 1] meeting continuity, then it meets commutativ-
ity, i.e., it is a t-norm.

Theorem 2. Let O: [0, 1]2 → [0, 1] be a POF. Then

(1) if O is commutative, then it is an overlap function.
(2) if O is pseudo t-norm, then it is a positive continuous t-norm (where, “positive” means x 6= 0
and y 6= 0⇒ O(x, y) > 0).
(3) if O is pseudo t-norm, then it is a copula if and only if it satisfies Lipschitz property with
constant 1 (that is, ∀x1, x2, y1, y2 ∈ [0, 1], |O(x1, y1)−O(x2, y2)| ≤ |x1 − x2|+ |y1 − y2|).

Proof. (1) It follows from Definitions 7 and 11;
(2) If O is pseudo t-norm, since O is a pseudo overlap function, by Definition 11 (O4’), O is
continuous. Using Lemma 1, we know that O is commutative. By (1), O meets (O1) ∼ (O5).
Thus, O is a t-norm satisfying continuity and has no nontrivial zero factors;
(3) Suppose that O is a pseudo overlap function and pseudo t-norm. By (2) we know that O
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is a positive continuous t-norms. Applying Theorem 1 in [15], we can get that O is a copula
if and only if it satisfies Lipschitz property with constant 1.

According to the proof of Theorem 2 in [15], we get that every positive copula is a
pseudo overlap function. Therefore, we obtain the diagram in Figure 2 with the relationship
between some concepts.

Figure 2. Intersection of the main classes of aggregation functions considered in this paper.

The following example shows that there are some POFs and pseudo t-norms which
are not copulas.

Example 2. The operation O: [0, 1]2 → [0, 1] defined, when taking arbitrary x, y ∈ [0, 1], as

O(x, y) =



0.5xy i f (x, y) ∈ [0, 0.5]2,
x · 2−4(1−y) i f (x, y) ∈ [0, 0.5]× (0.5, 1],
y · 2−4(1−x) i f (x, y) ∈ (0.5, 1]× [0, 0.5],
24x+4y−7 i f (x, y) ∈ (0.5, 1]2and x + y < 1.5,
x + y− 1 i f (x, y) ∈ (0.5, 1]2and x + y ≥ 1.5.

(4)

Then, O meets (O1’) ∼ (O4’) as well as being a t-norm, but it is not a copula (see [32,33]).

Definition 12. The n-dimension (n ≥ 2) mapping O on [0, 1] is known as an n-ary pseudo overlap
function when properties as below are established:

(O1n) O (x1, . . . , xn) = 0 when and only when there is at least a certain xi (i = 1, . . . , n) with a
value of 0;
(O2n) The value of O is 1 when and only when the values of its all elements are 1;
(O3n) O meets monotonic increment;
(O4n) O is continuous.

Example 3. (1) An operation O: [0, 1]n → [0, 1] formulated, when taking arbitrary x1, x2, . . . , xn ∈
[0, 1], as

O(x1, . . . , xn) =
n−1

∏
i=1

xi · x2
n (5)

is an n-dimension pseudo overlap function.
(2) The operator O: [0, 1]n → [0, 1] given, when taking arbitrary x1, x2, . . . , xn ∈ [0, 1], as

O(x1, . . . , xn) = min{x1, x2, . . . , xn−1,
√

xn} (6)

is an n-dimension pseudo overlap function.

Next, we provide some construction methods and theorems of POFs.

Theorem 3. The operation O: [0, 1]2 → [0, 1] is a POF when and only when there exist bivariate
operators f, g on [0, 1] with
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O(x, y) =
f (x, y)

f (x, y) + g(x, y)
,

where

(1) f meets monotonic increment and g meets monotonic decreasing property;
(2) f (x, y) = 0 when and only when x = 0 or y = 0;
(3) g(x, y) = 0 when and only when x = y = 1;
(4) f as well as g meeting continuity.

Proof. (⇐) By (2), we get: xy = 0 iff f (x, y) = 0 ⇔ O(x, y) = 0, i.e., the mapping O
satisfies (O1’).
By (3), we get: xy = 1⇔ g(x, y) = 0⇔ O(x, y) = 1, i.e., the mapping O satisfies (O2’).
By (1), assume that x1 ≤ x2, then for any y ∈ [0, 1], f (x1, y)g(x2, y) ≤ f (x2, y)g(x1, y). Then
we consider f (x1, y) f (x2, y) as the common factor, we get f (x1, y)( f (x2, y) + g(x2, y)) ≤
f (x2, y)(g(x1, y) + f (x1, y)), i.e., O(x1, y) ≤ O(x2, y). Since an analogous calculation holds
for the other variable, O is non-decreasing, that is, the mapping O satisfies (O3’).
By (4), we know that O is continuous, i.e., the mapping O satisfies (O4’).
(⇒) Consider that O meets (O1’) ∼ (O4’), and assume f (x, y) = O(x, y) and g(x, y) =

1−O(x, y). Then the function O(x, y) = f (x,y)
f (x,y)+g(x,y) is well-defined. Besides, it is obvious

that requirements (1) ∼ (4) hold.

Proposition 1. Let ϕ1, ϕ2, ϕ3: [0, 1] → [0, 1] be continuous and monotonically increasing op-
erations satisfying ϕi(x) = 0 when and only when x = 0, ϕi(x) = 1 when and only when
x = 1(i = 1, 2, 3), and let O be a 2-dimension pseudo overlap function. Then the operation
Oϕ1,ϕ2,ϕ3 is defined as:

Oϕ1,ϕ2,ϕ3(x, y) = ϕ1(O(ϕ2(x), ϕ3(y)))

also meets (O1’) ∼ (O4’).

Proof. Obviously, Oϕ1,ϕ2,ϕ3 meets (O3’) and (O4’). We just need to reveal that two bound-
ary conditions are true. Suppose first that Oϕ1,ϕ2,ϕ3(x, y) = 0. According to the proper-
ties that are met by ϕ1, it is obvious that this can be established when and only when
O(ϕ2(x), ϕ3(y)) = 0. However, because O is a POF, when and only when ϕ2(x) = 0
or ϕ3(y) = 0 when and only when xy = 0. Analogously, another condition (O2’) can
be proven.

Proposition 2. Given POFs O1, . . . , On, let M: [0, 1]n → [0, 1] be a continuous aggregate opera-
tion meeting M(x1, . . . , xn) = 0 only if xi = 0 for some i = 1, . . . , n and M(x1, . . . , xn) = 1 only
if xi = 1 for a certain i = 1, . . . , n. Then operator O(x, y) = M(O1(x, y), . . . , On(x, y)) fits (O1’)
∼ (O4’).

Proof. Clearly, the operator meets (O3’) and (O4’). (O1’) and (O2’) are proven as below.
We can discover that, when M(O1(x, y), . . . , On(x, y)) = 0, for a certain i ∈ {1, . . . , n} it
is clear that Oi(x, y) = 0. Because Oi is a POF, it means x = 0 or y = 0. On the contrary,
if x = 0 or y = 0 then Oi(x, y) = 0 when taking arbitrary i ∈ {1, . . . , n}, as well as thus
O(x, y) = M(0, . . . , 0) = 0. Analogously, another (O2’) can be proven.

Corollary 1. Given an n-ary aggregation operation M on [0, 1] satisfying continuity and min
≤ M ≤ max. Let O1, . . . , On be POFs, then operation O(x, y) = M(O1(x, y), . . . , On(x, y))
meets (O1’) ∼ (O4’).

Proof. From min(x1, . . . , xn) ≤ M(x1, . . . , xn), we get that M(x1, . . . , xn) = 0 implies
min(x1, . . . , xn) = 0, i.e., xj = 0 for a certain j = 1, . . . , n. Thus, it satisfies the condi-
tion required in Proposition 2. Another condition is verified similarly making use of the
non-equality M ≤max.
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Proposition 3. Given a POF O, as well as T being a positive continuous pseudo t-norm. Further,
(1) the mapping OT: [0, 1]2 → [0, 1] formulated by OT(x, y) = O(x, y)T(x, y) meets (O1’) ∼ (O4’);
(2) for arbitrary pseudo t-norm T1: [0, 1]2 → [0, 1] with continuity and no nontrivial zero factors, the map-
ping OTT1 : [0, 1]2 → [0, 1] given by OTT1(x, y) = T1(O(x, y), T(x, y)) is a pseudo overlap function.

Proof. (1) Evidently, OT is continuous and monotonous. Then OT(c, d) = 0 iff
O(c, d)T(c, d) = 0 iff cd = 0, OT(c, d) = 1 iff O(c, d) = 1 and T(c, d) = 1 iff cd = 1
are established, so OT is a POF;
(2) It is clear that OTT1 is continuous and monotonous. Then OTT1(c, d) = 0⇔ T1(O(c, d),
T(c, d)) = 0 iff O(c, d) = 0 ∨ T(c, d) = 0⇔ cd = 0, OTT1(c, d) = 1⇔ T1(O(c, d), T(c, d)) =
1 ⇔ O(c, d) = 1 ∧ T(c, d) = 1 ⇔ cd = 1 are established, so OTT1 is a pseudo overlap
function.

Theorem 4. Given POFs O1, O2, . . . , On: [0, 1]2 → [0, 1], w1, w2, . . . , wn on [0, 1] satisfying
n
∑

i=1
wi = 1, then operation O formulated by O(x, y) =

n
∑

i=1
wiOi(x, y) meets (O1’) ∼ (O4’).

Proof. Evidently, O is continuous and monotonous. Due to O(x, y) = 0⇔
n
∑

i=1
wiOi(x, y) =

0 ⇔ ∀i = 1, 2, . . . , n, wiOi(x, y) = 0, and
n
∑

i=1
wi = 1, so ∃k ∈ {1, 2, . . . , n}, s.t. wk 6= 0, i.e.,

Ok(x, y) = 0 ⇔ xy = 0. Additionally, due to O(x, y) = 1 iff
n
∑

i=1
wiOi(x, y) = 1 =

n
∑

i=1
wi,

so
n
∑

i=1
wiOi(x, y) −

n
∑

i=1
wi = 0, i.e.,

n
∑

i=1
wi[Oi(x, y)− 1] = 0. Because wi[Oi(x, y) − 1] ≤ 0,

wi[Oi(x, y)− 1] = 0. Similarly, due to
n
∑

i=1
wi = 1 6= 0, so ∃k ∈ {1, 2, . . . , n}, s.t. wk 6= 0, then

Ok(x, y)− 1 = 0⇔ Ok(x, y) = 1⇔ xy = 1. Therefore, O is a POF.

Theorem 5. Given a POF O on [0, 1], as well as T1, T2: [0, 1]2 → [0, 1] are pseudo t-norms without
divisors of zero and satisfy continuity, then the mapping O given by O(u, v) = O(T1(u, v), T2(u, v))
is a pseudo overlap function.

Proof. One easily verifies that O is continuous and monotonous. Then O(u, v) = 0
iff O(T1(u, v), T2(u, v)) = 0 iff T1(u, v)T2(u, v) = 0 ⇔ uv = 0, and O(u, v) = 1 iff
O(T1(u, v), T2(u, v)) = 1⇔ T1(u, v)T2(u, v) = 1 iff T1(u, v) = T2(u, v) = 1⇔ uv = 1.

In the existing literature, some scholars have shown that fuzzy conjunctions can induce
residual implication, such as t-norms, t-conorms and overlap functions etc. Additionally,
some conjunctions can also induce two residuated implications by removing commutativity,
such as pseudo t-norms and pseudo t-conorms. Moreover, since the function can still induce
fuzzy implication without commutativity, we can define two residuated implications which
satisfy the residual property induced by pseudo overlap function, namely residuated
implication R(1)

O , R(2)
O .

Definition 13. Let O be a POF on [0, 1]. Two bivariate mappings R(1)
O and R(2)

O on [0, 1] are called
left (right) residuated implications, when taking any x, y ∈ [0, 1]:

R(1)
O (x, y) = sup{z ∈ [0, 1]|O(z, x) ≤ y}, (7)

R(2)
O (x, y) = sup{z ∈ [0, 1]|O(x, z) ≤ y}. (8)

Obviously, R(1)
O = R(2)

O if the considered pseudo overlap function is commutative.

Binary functions R(1)
O and R(2)

O are called residuals associated with pseudo overlap function
O on the first and second variables, respectively.
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Theorem 6. Let O be a POF on [0, 1]; statements as follows are equivalent:

(1) O is infinitely ∨-distributive in its first variable;
(2) O(x, y) ≤ z when and only when x ≤ R(1)

O (y, z) when taking arbitrary x, y, z ∈ [0, 1]; (RP1)

(3) O(R(1)
O (x, y), x) ≤ y for any x, y ∈ [0, 1];

(4) R(1)
O (x, y) = max{z ∈ [0, 1]|O(z, x) ≤ y} when taking any x, y ∈ [0, 1].

Moreover, conditions as below are equivalent:

(1′) O is infinitely ∨-distributive in its second variable;
(2′) O(x, y) ≤ z iff y ≤ R(2)

O (x, z) for arbitrary 0 < x, y, z < 1; (RP2)

(3′) O(x, R(2)
O (x, y)) ≤ y when taking any x, y ∈ [0, 1];

(4′) R(2)
O (x, y) = max{z ∈ [0, 1]|O(x, z) ≤ y} when taking any x, y ∈ [0, 1].

Proof. By Theorem 4.1 in [34] (or Theorem 3.1 in [35]), we get that the conditions (1)∼ (4) are
equivalent. By Theorem 4.2 in [34], we get that the conditions (1’) ∼ (4’) are equivalent.

Proposition 4. Given two pseudo overlap functions O1, O2, let R(1)
O1 , R(2)

O1 be the residuated

implications induced by O1 and R(1)
O2 , R(2)

O2 be the residuated implications induced by O2. Then,

(1) O1 ≤ O2 if and only if R(1)
O2 ≤ R(1)

O1 , if and only if R(2)
O2 ≤ R(2)

O1 .

(2) O1 = O2 if and only if R(1)
O2 = R(1)

O1 , if and only if R(2)
O2 = R(2)

O1 .

Proof. (1) By the definition of residuated implication, R(1)
O1 = sup{z|O1(z, x) ≤ y}, R(2)

O1 =

sup{z|O1(x, z) ≤ y}, R(1)
O2 = sup{z|O2(z, x) ≤ y}, R(2)

O2 = sup{z|O2(x, z) ≤ y}. We hold
that O1 ≤ O2
⇔ (∀x, y, z ∈ [0, 1], O1(z, x) ≤ y when O2(z, x) ≤ y)
⇔ (∀x, y ∈ [0, 1], {z ∈ [0, 1]|O2(z, x) ≤ y} ⊆ {z ∈ [0, 1]|O1(z, x) ≤ y})
⇔ (∀x, y ∈ [0, 1], sup{z ∈ [0, 1]|O2(z, x) ≤ y} ≤ sup{z ∈ [0, 1]|O1(z, x) ≤ y})
⇔ (R(1)

O2 ≤ R(1)
O1 ).

Similarly, we have O1 ≤ O2 ⇔ R(2)
O2 ≤ R(2)

O1 .
(2) It follows from (1).

In the following table, we provide some examples of pseudo overlap functions and
their residuated implications (see Table 1).

In Table 1, 1© is min{max{1− x, y−(1−α)(x−1)
αx2+1−α

}, y
αx2 },

2© is min{max{1− x, α−1+
√

(1−α)2+4αx[(1−α)(1−x)+y]
2αx },

√
y

αx},

3© is x+αx−αx2

3(αx−αx2)
+ 3
√√

γ + δ+ 3
√
−√γ + δ, where γ = ( y

2(αx−αx2)
− (x+αx−αx2)3

27(αx−αx2)3 )
2− (x+αx−αx2)6

729(αx−αx2)6

and δ = (x+αx−αx2)3

27(αx−αx2)3 −
y

2(αx−αx2)
,

4© is x+αx+
√

α2x4−2α2x3+α2x2−2αx3+2αx2+4αxy−4αy+x2−αx2

2(αx−αx2)
.

In the following, some properties that pseudo overlap functions and residuated impli-
cations R(1)

O , R(2)
O satisfy are presented.

Proposition 5. Let O: [0, 1]2 → [0, 1] be a POF. Then statements as below hold:

(1) R(1)
O , R(2)

O satisfy (NP) if and only if 1 is the neutral element of O;

(2) R(2)
O satisfies (EP) if and only if O is associative, i.e., O(r, O(s, t)) = O(s, O(r, t)), for arbitrary

r, s, t ∈ [0, 1];
(3) R(2)

O satisfies (IP) when and only when O satisfies O(x, 1) ≤ x, for arbitrary x ∈ [0, 1];

(4) R(2)
O satisfies (LOP) when and only when O satisfies O(x, 1) ≤ x, for arbitrary x ∈ [0, 1];

(5) R(2)
O satisfies (ROP) when and only when O satisfies O(m, 1) ≥ m, for arbitrary m ∈ [0, 1];
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(6) R(2)
O satisfies (OP) when and only when O satisfies O(x, 1) = x, ∀x ∈ [0, 1];

(7) R(2)
O satisfies (CB) if O(p, q) ≤ min{p, q};

(8) R(1)
O satisfies (SIB) if and only if R(1)

O satisfies (CB), R(2)
O satisfies (SIB) if and only if R(2)

O
satisfies (CB);
(9) R(1)

O , R(2)
O satisfies (IB) if O(x, y) = min{x, y};

(10) R(1)
O , R(2)

O satisfies (SBC), (LBC) and (RBC);

(11) R(1)
O , R(2)

O satisfies (CB) if O has unit element 1.

Table 1. Examples of pseudo overlap functions and their residuated implications.

Pseudo Overlap Function Residuated Implications

(1) O(x, y) = min{xp, yq}, p, q > 0 R(1)
O (x, y) =

{
1, xq ≤ y
p
√

y, xq > y
, R(2)

O (x, y) =

{
1, xp ≤ y

q
√

y, xp > y

(2) O(x, y) = 2xpyq

1+xpyq , p, q > 0

R(1)
O (x, y) =

{
1, y ≥ (2− y)xq

p
√

y
(2−y)xq , otherwise

,

R(2)
O (x, y) =

{
1, y ≥ (2− y)xp

q
√

y
(2−y)xp , otherwise

(3) O(x, y) = xpyq, p, q > 0 R(1)
O (x, y) =

{
1, xq ≤ y

p
√

y
xq , xq > y

, R(2)
O (x, y) =

{
1, xp ≤ y

q
√

y
xp , xp > y

(4)
O(x, y) =

{
(α+β)xy
αx+βy , αx + βy 6= 0

0, αx + βy = 0

α, β > 0

R(1)
O (x, y) =

{
1, (α + β)x− αy ≤ βxy

βxy
(α+β)x−αy , otherwise

,

R(2)
O (x, y) =

{
1, (α + β)x− βy ≤ αxy

αxy
(α+β)x−βy , otherwise

(5) O(x, y) = max{min{x, y
2}, x + y− 1}

R(1)
O (x, y) =


1, y ≥ x
y− x + 1, x

2 ≤ y < x
y, y < x

2

,

R(2)
O (x, y) =

{
1, y ≥ x
min{2y, y− x + 1}, y < x

(6) O(x, y) = min{x, y}max{x2, y} R(1)
O (x, y) =


1, x ≤ y
x, x2 ≤ y < x
y
x , y < x2

, R(2)
O (x, y) =


1, y ≥ x
y
x , x2 ≤ y < x
min{ y

x2 ,
√

y}, y < x2

(7) O(x, y) =

{ xy
γx+(1−γ)y , γx + (1− γ)y 6= 0

0, γx + (1− γ)y = 0
0 < γ < 1

R(1)
O (x, y) =

{
1, x ≤ γy + (1− γ)xy
(1−γ)xy

x−γy , otherwise
,

R(2)
O (x, y) =

{
1, x ≤ (1− γ)y + γxy

γxy
x−(1−γ)y , otherwise

(8) O(x, y) = αxy2 + (1− α)max{0, x + y− 1},
0 < α < 1

R(1)
O (x, y) =

{
1, αx2 + (1− α)x ≤ y
1©, otherwise

, R(2)
O (x, y) =

{
1, x ≤ y
2©, x > y

(9) O(x, y) = x2y + αx2y(1− x)(1− y),
α ∈ [−1, 1]

R(1)
O (x, y) =

{
1, x ≤ y
3©, x > y

, R(2)
O (x, y) =

{
1, x2 ≤ y
4©, x2 > y

Proof. (1) (⇒) Suppose for arbitrary x ∈ [0, 1], R(1)
O (1, x) = sup{z|O(z, 1) ≤ x} = x, so for

a random x ∈ [0, 1], one has O(x, 1) ≤ x. If we take some x0 in [0, 1], one has O(x0, 1) < x0,
then taking z = O(x0, 1). According to RP1, z < x0 ≤ R(1)

O (1, z), which is contradiction. Sim-

ilarly, R(2)
O (1, x) = sup{z|O(1, z) ≤ x} = x ⇒ O(1, x) ≤ x. According to RP2, O(1, x) = x

when taking each x ∈ [0, 1]. So O has unit element 1.
(⇐) Suppose O(x, 1) = x as well as O(1, x) = x, for arbitrary x ∈ [0, 1]. So R(1)

O (1, x) =
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sup{z|O(z, 1) ≤ x} = sup{z|z ≤ x} = x, R(2)
O (1, x) = sup{z|O(1, z) ≤ x} = sup{z|z ≤

x} = x;
(2) For all r, s, t ∈ [0, 1], suppose O(r, O(s, t)) = O(s, O(r, t)) = a. According to RP2,
O(r, O(s, t)) = a and O(s, O(r, t)) = a⇔ O(s, t) = R(2)

O (r, a) and O(r, t)) = R(2)
O (s, a)⇔ t =

R(2)
O (s, R(2)

O (r, a)) and t = R(2)
O (r, R(2)

O (s, a)), i.e., R(2)
O (r, R(2)

O (s, a)) = R(2)
O (s, R(2)

O (r, a));

(3) When taking random x ∈ [0, 1], R(2)
O (x, x) = sup{z|O(x, z) ≤ x} = 1⇔ O(x, 1) ≤ x;

(4) (⇒) For an arbitrary x ∈ [0, 1], due to x ≤ x, R(2)
O (x, x) = sup{z|O(x, z) ≤ x} = 1 ⇒

O(x, 1) ≤ x.
(⇐) If we take random x, y ∈ [0, 1], then because O(x, z) ≤ O(x, 1) ≤ x ≤ y when taking
each z ∈ [0, 1], R(2)

O (x, y) = sup{z|O(x, z) ≤ y} = 1;

(5) (⇒) For any m ∈ [0, 1], R(2)
O (m, O(m, 1)) = sup{z ∈ [0, 1]|O(m, z) ≤ O(m, 1)} = 1, so

m ≤ O(m, 1).
(⇐) Assume O(m, 1) ≥ m, for arbitrary m ∈ [0, 1]. R(2)

O (m, n) = sup{z ∈ [0, 1]|O(m, z) ≤
n} = 1⇒ O(m, 1) ≤ n⇒ m ≤ O(m, 1) ≤ n, i.e., m ≤ n;
(6) Obviously, it can be obtained from the above two certificates;
(7) For arbitrary p, q ∈ [0, 1], O(p, q) ≤ min{p, q} ⇒ O(p, q) ≤ q⇒ q ∈ {z ∈ [0, 1]|O(p, z) ≤
q} ⇒ q ≤ sup{z ∈ [0, 1]|O(p, z) ≤ q} = R(2)

O (p, q);
(8) When taking random x, y ∈ [0, 1], because O fits monotonic increment, we have
y ≤ R(1)

O (x, y) ⇔ y ≤ sup{z ∈ [0, 1]|O(z, x) ≤ y} ⇔ {z ∈ [0, 1]|O(z, x) ≤ y} ⊆ {z ∈
[0, 1]|O(z, x) ≤ R(1)

O (x, y)} ⇔ sup{z ∈ [0, 1]|O(z, x) ≤ y} ≤ sup{z ∈ [0, 1]|O(z, x) ≤
R(1)

O (x, y)} ⇔ R(1)
O (x, y) ≤ R(1)

O (x, R(1)
O (x, y)). Similarly, y ≤ R(2)

O (x, y) ⇔ R(2)
O (x, y) ≤

R(2)
O (x, R(2)

O (x, y));

(9) When taking random x, y ∈ [0, 1], R(1)
O (x, y) = sup{z ∈ [0, 1]|min(z, x) ≤ y} ={

1, x ≤ y
y, x > y

when O(x, y) = min{x, y}. Then, whenever x ≤ y, R(1)
O (x, R(1)

O (x, y)) =

R(1)
O (x, 1) = 1 = R(1)

O (x, y). On the other side, R(1)
O (x, R(1)

O (x, y)) = R(1)
O (x, y) when x > y.

Similarly, R(2)
O (x, R(2)

O (x, y)) = R(2)
O (x, y);

(10) When taking random x ∈ [0, 1], suppose x 6= 0, R(1)
O (x, 0) = sup{z ∈ [0, 1]|O(z, x) ≤ 0},

since O(z, x) ≥ 0, then O(z, x) = 0 ⇒ z = 0, i.e., R(1)
O (x, 0) = 0. When taking a random

x, y ∈ [0, 1], obviously, R(1)
O (0, y) = sup{z ∈ [0, 1]|O(z, 0) ≤ y} = 1, R(1)

O (x, 1) = sup{z ∈
[0, 1]|O(z, x) ≤ 1} = 1. Similarly, R(2)

O (x, 0) = 0, R(2)
O (0, y) = 1 and R(2)

O (x, 1) = 1;
(11) Suppose O has 1 as a neutral element, i.e., for any y ∈ [0, 1], O(1, y) = y = O(y, 1).
Since O is increasing, O(y, x) ≤ O(y, 1) = y and O(x, y) ≤ O(1, y) = y. According to RP1
and RP2, we have that y ≤ R(1)

O (x, y), y ≤ R(2)
O (x, y).

Remark 1. Since the two functions R(1)
O and R(2)

O are induced by the pseudo overlap function
without commutativity, the above proposition can also expand some properties, such as:

(2′) R(1)
O satisfies (EP) when and only when O satisfies O(O(x, y), z) = O(O(x, z), y);

(3′) R(1)
O satisfies (IP) when and only when O satisfies O(1, x) ≤ x, ∀x ∈ [0, 1];

(4′) R(1)
O satisfies (LOP) when and only when O satisfies O(1, x) ≤ x, ∀x ∈ [0, 1];

(5′) R(1)
O satisfies (ROP) when and only when O satisfies O(1, x) ≥ x, ∀x ∈ [0, 1];

(6′) R(1)
O satisfies (OP) when and only when O satisfies O(1, x) = x, ∀x ∈ [0, 1].

The proof is similar to the above proposition.

4. Pseudo Grouping Functions and Their Residuated Co-Implications

In this section, we show notions of pseudo grouping functions as well as discuss
residuated co-implications (the notion of co-implication was first proposed by B. De Baets
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and J. Fodor in [29]; it is also called deresiduum, see [35]). In addition, we also provide
the general construction method of pseudo grouping functions. Finally, we provide some
detailed examples.

Definition 14. The binary mapping G: [0, 1]2 → [0, 1] is known as a pseudo grouping function
(briefly PGF) when G meets the requirements as below:

(G1’) The value of G is 0 when and only when values of two elements are 0;
(G2’) The value of G is 1 when and only when at least one of x and y has a value of 1;
(G3’) G meets monotonic increment;
(G4’) G meets continuity.

Observe that a PGF can be obtained by duality from a pseudo overlap function. We
have the following basic result.

Proposition 6. Let O be a pseudo overlap function and N a continuous negation such that N(x) =
0 when and only when x = 1 and N(x) = 1 when and only when x = 0. Then operation
G(x, y) = N(O(N(x), N(y))) is a pseudo grouping function. In particular, G is a PGF when and
only when O(x, y) = 1− G(1− x, 1− y) meets (O1’) ∼ (O4’).

Proof. Continuity as well as monotonicity are straightforward. Moreover, G(x, y) = 0 iff
N(O(N(x), N(y))) = 0 iff O(N(x), N(y)) = 1 iff N(x)N(y) = 1 iff x = y = 0. Additionally,
the other property is analogous. In particular, if we consider the negation N(x) = 1− x, we
have the result as follows: G is a PGF when and only when O(x, y) = 1−G(1− x, 1− y)
fits (O1’) ∼ (O4’).

Now, we provide some examples of PGFs.

Example 4. (1) The operator G: [0, 1]2 → [0, 1] defined, when taking random x, y ∈ [0, 1], as

G(x, y) = 1− (1− x)(1− y)2 (9)

is a PGF;
(2) An operation G: [0, 1]2 → [0, 1] formulated, when taking arbitrary x, y ∈ [0, 1], as

G(x, y) = 1−min{(1− x)p, (1− y)q}, p, q > 0 (10)

is a PGF.

Definition 15. An n-dimension (n ≥ 2) operator G on [0, 1] is known as an n-dimension pseudo
grouping function when the following properties are established:

(1) G(x1, . . . , xn) = 0 when and only when all values of xi are 0 (i = 1, . . . , n);
(2) G(x1, . . . , xn) = 1 when and only when there are some i (i = 1, . . . , n) so that xi = 1;
(3) G meets monotonic increment;
(4) G meets continuity.

Then we will provide some examples of n-dimensional PGFs.

Example 5. (1) The operator G: [0, 1]n → [0, 1] formulated, when taking random x1, x2, . . . , xn ∈
[0, 1], as

G(x, y) = 1−
n−1

∏
i=1

(1− xi) · (1− xn)
2 (11)

is an n-dimensional PGF.
(2) An operation G: [0, 1]n → [0, 1] formulated, when taking random x1, x2, . . . , xn ∈ [0, 1], as

G(x, y) = 1−min{1− x1, 1− x2, . . . , 1− xn−1,
√

1− xn} (12)
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is an n-dimensional PGF.

Proposition 7. Let G1, G2 be two operations satisfying (G1’)∼ (G4’). Then, max(G1, G2)(x, y) =
max(G1(x, y), G2(x, y)) as well as min(G1, G2)(x, y) = min(G1(x, y), G2(x, y)) meet (G1’) ∼
(G4’).

Proposition 8. Let ϕ1, ϕ2, ϕ3: [0, 1]→ [0, 1] be monotonous mappings satisfying continuity and
ϕi(x) = 0 ⇔ x = 0, ϕi(x) = 1 ⇔ x = 1 (i = 1, 2, 3). Let G: [0, 1]2 → [0, 1] be a PGF. Then
mapping Gϕ1,ϕ2,ϕ3 , defined as

Gϕ1,ϕ2,ϕ3(x, y) = ϕ1(G(ϕ2(x), ϕ3(y))),

also meets (G1’) ∼ (G4’).

Proposition 9. Let G1, . . . , Gn be PGFs as well as F on [0, 1] be an aggregate operator satisfying
continuity, F(x1, . . . , xn) = 0 only if xi = 0 for a few i = 1, . . . , n as well as F(x1, . . . , xn) = 1
only if xi = 1 for a few i = 1, . . . , n. Then operation G(c, d) = F(G1(c, d), . . . , Gn(c, d)) meets
(G1’) ∼ (G4’).

Proposition 10. Given a continuous aggregate operation F: [0, 1]n → [0, 1], and it meets
min(i1, . . . , in) ≤ F(i1, . . . , in) ≤ max(i1, . . . , in). Let G1, . . . , Gn be PGFs, then operation
G(c, d) = F(G1(c, d), . . . , Gn(c, d)) meets (G1’) ∼ (G4’).

Corollary 2. Given two pseudo grouping functions G1, G2, then function G defined as G(x, y) =
αG1(x, y) + (1− α)G2(x, y) is also a pseudo grouping function, where α ∈ [0, 1].

Proposition 11. Let G be a pseudo grouping function, and S a continuous pseudo t-conorm without
divisors of zero. Then

(1) The bivariate mapping GS on [0, 1] formulated as GS(e, f ) = G(e, f )S(e, f ) is a PGF;
(2) When taking arbitrary positive pseudo t-conorm S’ on [0, 1] satisfying continuity, the bivariate
mapping GSS′ on [0, 1] formulated as GSS′(e, f ) = S′(G(e, f ), S(e, f )) is a PGF.

Theorem 7. Let G1, G2, . . . , Gn: [0, 1]2 → [0, 1] be pseudo grouping functions, and w1, w2, . . . ,

wn ∈ [0, 1] satisfy
n
∑ wi = 1; then the mapping G given by G(x, y) =

n
∑ wiGi(x, y) is a PGF.

Theorem 8. Given a pseudo grouping function G on [0, 1], and S1, S2: [0, 1]2 → [0, 1] are
continuous pseudo t-conorms, as well as (∀x, y ∈ [0, 1], i = 1, 2) Si(x, y) = 1 implying x = 1 or
y = 1. Then the function G, formulated as G(x, y) = G(S1(x, y), S2(x, y)), meets (G1’) ∼ (G4’).

The proofs of the Theorem 7 and Theorem 8 are consistent with those of Theorem 4
and Theorem 5, respectively, which are related to the pseudo overlap function. Similarly,
we obtain the residuated co-implications induced from PGFs.

Definition 16. Given a PGF G on [0, 1]. The following R(1)
G and R(2)

G : [0, 1]2 → [0, 1] are called
two residuated implications, when taking random x, y ∈ [0, 1]:

R(1)
G (x, y) = in f {z ∈ [0, 1]|G(z, x) ≥ y}, (13)

R(2)
G (x, y) = in f {z ∈ [0, 1]|G(x, z) ≥ y}. (14)

Obviously, R(1)
G = R(2)

G when the pseudo grouping function G is commutative. The

functions R(1)
G and R(2)

G are called residuated co-implications associated with the pseudo
grouping function G on the first and second variables, respectively.
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Theorem 9. Let G be a PGF on [0, 1], statements as follows are equivalent:

(1) G is infinitely ∧-distributive in its first variable;
(2) G(x, y) ≥ z when and only when x ≥ R(1)

G (y, z) for arbitrary x, y, z ∈ [0, 1];

(3) G(R(1)
G (x, y), x) ≥ y for any x, y ∈ [0, 1];

(4) R(1)
G (x, y) = min{z ∈ [0, 1]|G(z, x) ≥ y} when taking any x, y ∈ [0, 1].

Similarly, the following statements are equivalent:

(1′) G is infinitely ∧-distributive in its second variable;
(2′) G(x, y) ≥ z iff y ≥ R(2)

G (x, z) when taking arbitrary x, y, z ∈ [0, 1];

(3′) G(x, R(2)
G (x, y)) ≥ y for arbitrary x, y ∈ [0, 1];

(4′) R(2)
G (x, y) = min{z ∈ [0, 1]|G(x, z) ≥ y} for any x, y ∈ [0, 1].

Proof. By Theorem 4.3 in [34] (or Theorem 3.4 in [35]), we get that the conditions (1) ∼ (4) are
equivalent. In the same way, we get that the conditions (1’) ∼ (4’) are equivalent.

Proposition 12. Let G1, G2 be two PGFs, R(1)
G1 , R(2)

G1 be residuated co-implications induced by G1

and R(1)
G2 , R(2)

G2 are residuated co-implications induced by G2. Then

(1) G1 ≤ G2 if and only if R(1)
G2 ≤ R(1)

G1 , G1 ≤ G2 if and only if R(2)
G2 ≤ R(2)

G1 .

(2) G1 = G2 if and only if R(1)
G2 = R(1)

G1 if and only if R(2)
G2 = R(2)

G1 .

The concrete examples of pseudo grouping functions and residuated co-implications
corresponding to them are as follows (see Table 2).

Table 2. Examples of pseudo grouping functions and their residuated co-implications.

Pseudo Grouping Function Residuated Co-Implications

(1)
G(x, y) = 1−min{(1− x)p, (1− y)q},

p, q > 0

R(1)
G (x, y) =

{
0, x ≥ 1− q

√
1− y

1− p
√

1− y, otherwise
,

R(2)
G (x, y) =

{
0, x ≥ 1− p

√
1− y

1− q
√

1− y, otherwise

(2) G(x, y) = 1− 2(1−x)p(1−y)q

1+(1−x)p(1−y)q ,
p, q > 0

R(1)
G (x, y) =

0, x ≥ 1− q
√

1−y
1+y

1− p
√

1−y
(1−xq(1+y) , otherwise

,

R(2)
G (x, y) =

0, x ≥ 1− p
√

1−y
1+y

1− q
√

1−y
(1−x)p(1+y) , otherwise

(3) G(x, y) = 1− (1− x)p(1− y)q, p, q > 0

R(1)
G (x, y) =

{
0, x ≥ 1− q

√
1− y

1− p
√

1−y
(1−x)q , otherwise

,

R(2)
G (x, y) =

{
0, x ≥ 1− p

√
1− y

1− q
√

1−y
(1−x)p , otherwise

(4)
G(x, y) =

{
1, α(1− x) + β(1− y) = 0

1− (α+β)(1−x)(1−y)
α(1−x)+β(1−y) , otherwise

,

α, β > 0

R(1)
G (x, y) =

{
0, [(α + β)− β(1− y)](1− x) ≤ α(1− y)

1− β(1−x)(1−y)
(α+β)(1−x)−α(1−y) , otherwise

,

R(2)
G (x, y) =

{
0, [(α + β)− α(1− y)](1− x) ≤ β(1− y)

1− α(1−x)(1−y)
(α+β)(1−x)−β(1−y) , otherwise

(5) G(x, y) = 1−max{min{1− x, 1−y
2 },

1− x− y} R(1)
G (x, y) =


0, y ≤ x
1−x

2 , x < y ≤ x+1
2

y, y > x+1
2

, R(2)
G (x, y) =


0, y ≤ max{x, 1

2}
2y− 1, y > 1

2
y− x, y > x



Axioms 2022, 11, 593 15 of 29

Table 2. Cont.

Pseudo Grouping Function Residuated Co-Implications

(6)
G(x, y) = 1−min{1− x, 1− y}

max{(1− x)2, 1− y}

R(1)
G (x, y) =

{
0, x ≥ y
max{ y−x

1−x , 1−
√

1− y}, x < y
,

R(2)
G (x, y) =


0, x ≥ y
1− 1−y

1−x , 1−
√

1− y ≤ x < y
1− 1−y

(1−x)2 , x < 1−
√

1− y

(7) G(x, y) =

{
1, α(1− x) + (1− α)(1− y) = 0
1− (1−x)(1−y)

α(1−x)+(1−α)(1−y) , otherwise
,

α ∈ (0, 1)

R(1)
G (x, y) =

{
0, x + α(1− y) + (1− α)(1− x)(1− y) ≥ 1
1− (1−α)(1−x)(1−y)

(1−x)−α(1−y) , otherwise
,

R(2)
G (x, y) =

{
0, x + α(1− x)(1− y) + (1− α)(1− y) ≥ 1
1− α(1−x)(1−y)

(1−x)−(1−α)(1−y) , otherwise

(8) G(x, y) = 1− α(1− x)(1− y)2 − (1− α)
max{0, 1− x− y}, 0 < α < 1

R(1)
G (x, y) =

{
0, 1− α(1− x)2 − (1− α)(1− x) ≥ y
5©, otherwise

,

R(2)
G (x, y) =

{
0, x ≥ y
6©, x < y

(9) G(x, y) = 1− (1− x)2(1− y)− αxy
(1− x)2(1− y), α ∈ [−1, 1]

R(1)
G (x, y) =

{
0, x ≥ y
7©, x < y

,

R(2)
G (x, y) =

{
0, x ≥ 1−

√
1− y

8©, x < 1−
√

1− y

In Table 2, 5© is max{min{1− x, 1− 1−y+(1−α)x
α(1−x)2+1−α

}, 1− 1−y
α(1−x)2 },

6© is max{min{1− x, 1− α−1+
√

(1−α)2+4α(1−x)[1−y+(1−α)x]
2α(1−x) }, 1−

√
1−y

α(1−x)},

7© is x+2αx−2αx2−1
3(αx−αx2)

+ 3
√

p + q + 3
√

p− q, where p is
y−x

2(αx−αx2)
− (x+2αx−2αx2−1)3

27(αx−αx2)3 + (2x+αx−αx2−2)(x+2αx−2αx2−1)
6(αx−αx2)2 and q is√

( 2x+αx−αx2−2
3(αx−αx2)

− (x+2αx−2αx2−1)2

9(αx−αx2)2 )3 + p2,

8© is αx3+2x+αx−x2−2αx2−1+
√

v
2(αx3+αx−2αx2)

, where v is (2αx2 − αx3 − 2x + x2 − αx + 1)2 − 4(αx3 + αx−
2αx2)(2x− x2 − y).

5. Some Applications of Pseudo Overlap Functions

In this section, we reveal some applications of POFs (PGFs) in MAGDM, fuzzy mor-
phology and image processing.

5.1. Applications of Pseudo Overlap Functions in Multi-Attribute Group Decision Making
5.1.1. Pseudo Overlap Functions Generated by n-Dimensional Overlap Functions

Overlap functions have been used in multiple-attribute decision making, but because
they are commutative, they cannot be directly applied to the decision problems in which the
importance degree of different attributes is different. At the same time, in group decision-
making, if the importance of different decision experts is different, the overlap function
cannot be directly used to aggregate their decision information.

Interestingly, we can construct some pseudo overlap functions from an n-dimensional
overlap function and a set of weights (importance degree), thus applying pseudo overlap
functions to solving multi-attribute (group) decision problems with preferences. According
to reference [13], we get the theorem as below.

Theorem 10. Let O be an n-ary overlap function as well as w = (w1, . . . , wn)T be a weight

vector satisfying for every j = 1, . . . , n, wj 6= 0 and
n
∑

j=1
wj = 1. If O is strict, i.e., it satisfies
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O(y, x2, . . . , xn) > O(x1, x2, . . . , xn) if
n
∏
j=1

xj > 0 and y > x1, then the function Ow defined by

Ow(x1, . . . , xn) =
O(w1x1,...,wnxn)

O(w1,...,wn)
is a POF.

Proof. It is a corollary from Theorem 3.1 in [13].

Example 6. Let w1 = (0.3, 0.3, 0.4). The following Oi(i = 1, 2, 3, 4, 5) are pseudo overlap func-
tions obtained based on the different three-dimensional overlap functions with weight w1.

(1) Given an overlap function O(x1, x2, x3) = 0 (when x1 + x2 + x3 = 0) and 3x1x2x3
x1+x2+x3

(oth-
erwise), it is strict, so the function O1(x1, x2, x3) = 0 (when 0.3x1 + 0.3x2 + 0.4x3 = 0) and

x1x2x3
0.3x1+0.3x2+0.4x3

(otherwise) is a POF by Theorem 10;
(2) Given a strict overlap function O(x1, x2, x3) = (x1x2x3)

x1+x2+x3
3 , the function O2(x1, x2, x3)

= x1x2x3(0.3x1 + 0.3x2 + 0.4x3) is a POF by Theorem 10;
(3) Given a strict overlap function O(x1, x2, x3) = 0 (when x1x2x3 = 0) and 3x1x2x3

x1x2+x2x3+x1x3
(oth-

erwise), the function O3(x1, x2, x3) = 0 (when x1 = x2 = x3 = 0) and 0.33x1x2x3
0.12x2x3+0.12x1x3+0.09x1x2

(otherwise) is a POF by Theorem 10;

(4) Given an overlap function O(x1, x2, x3) =
3

∏
i=1

x2i
(i), in which x(1), x(2), x(3) is the substitution

of (x1, x2, x3) satisfying x(1) ≥ x(2) ≥ x(3), O is strict, so the function,

O4(x1, x2, x3) =
x2
(1′)x

4
(2′)x

6
(3′)

0.420.340.36 ,

is a POF by Theorem 10, where x(1′), x(2′), x(3′) is a permutation of (0.3x1, 0.3x2, 0.4x3) satisfying
x(1′) ≥ x(2′) ≥ x(3′);

(5) Given an overlap function O(x1, x2, x3) =
3

∏
i=1

x
1
2i
(i), in which x(1), x(2), x(3) is a substitution of

(x1, x2, x3) satisfying x(1) ≤ x(2) ≤ x(3), O is strict, so function

O5(x1, x2, x3) =
x

1
2
(1′)x

1
4
(2′)x

1
6
(3′)

0.3
1
2 0.3

1
4 0.4

1
6

is a POF by Theorem 10, where x(1′), x(2′), x(3′) is the permutation of (0.3x1, 0.3x2, 0.4x3) such
that x(1′) ≤ x(2′) ≤ x(3′).

Example 7. Let w2 = (0.1, 0.1, 0.2, 0.2, 0.2, 0.2). The following Oi(i = 6, 7, 8, 9, 10) are pseudo
overlap functions obtained based on the different six-dimensional overlap functions with weight w2.

(1) Given a strict overlap function O(x1, x2, x3, x4, x5, x6) =
6x1x2x3x4x5x6

x1+x2+x3+x4+x5+x6
(when

6
∑

i=1
xi 6= 0)

and 0 (when
6
∑

i=1
xi = 0), then the function

O6(x1, x2, x3, x4, x5, x6) =

{
0, i f 0.1x1 + 0.1x2 + 0.2x3 + 0.2x4 + 0.2x5 + 0.2x6 = 0√

x1x2x3x4x5x6
0.1x1+0.1x2+0.2x3+0.2x4+0.2x5+0.2x6

, otherwise

is also a POF by Theorem 10;
(2) Given a strict overlap function O(x1, x2, x3, x4, x5, x6) = x1x2x3x4x5x6

x1+x2+x3+x4+x5+x6
6 ,

then the function

O7(x1, x2, x3, x4, x5, x6) = x1x2x3x4x5x6(0.1x1 + 0.1x2 + 0.2x3 + 0.2x4 + 0.2x5 + 0.2x6)

is a POF by Theorem 10;
(3) Given a strict overlap function O(x1, x2, x3, x4, x5, x6) =

6
1

x1
+ 1

x2
+ 1

x3
+ 1

x4
+ 1

x5
+ 1

x6

(xi 6= 0, i =

1, . . . , 6) and 0 (when
6

∏
i=1

xi = 0), then function O8(x1, x2, x3, x4, x5, x6) =
8

2
x1
+ 2

x2
+ 1

x3
+ 1

x4
+ 1

x5
+ 1

x6



Axioms 2022, 11, 593 17 of 29

(when
6

∏
i=1

xi 6= 0) and 0 (when
6

∏
i=1

xi = 0), is a POF by Theorem 10;

(4) Given a strict overlap function O(x1, x2, x3, x4, x5, x6) =
6

∏
i=1

x2i
(i), x(1), . . . , x(6) is the per-

mutation of (x1, x2, x3, x4, x5, x6) such that x(1) ≥ x(2) ≥ x(3) ≥ x(4) ≥ x(5) ≥ x(6), then
the function

O9(x1, x2, x3, x4, x5, x6) =
x2
(1′)x

4
(2′)x

6
(3′)x

8
(4′)x

10
(5′)x

12
(6′)

0.220.240.260.280.1100.112

is a POF by Theorem 10, in which x(1′), . . . , x(6′) is the substitution of (0.1x1, 0.1x2, 0.2x3, 0.2x4, 0.2
x5, 0.2x6) such that x(1′) ≥ x(2′) ≥ x(3′) ≥ x(4′) ≥ x(5′) ≥ x(6′);

(5) Given a strict overlap function O(x1, x2, x3, x4, x5, x6) =
6

∏
i=1

x
1
2i
(i), where x(1), . . . , x(6) is the

permutation of (x1, x2, x3, x4, x5, x6) such that x(1) ≤ x(2) ≤ x(3) ≤ x(4) ≤ x(5) ≤ x(6), then
the function

O10(x1, x2, x3, x4, x5, x6) =
x

1
2
(1′)x

1
4
(2′)x

1
6
(3′)x

1
8
(4′)x

1
10
(5′)x

1
12
(6′)

0.1
1
2 0.1

1
4 0.2

1
6 0.2

1
8 0.2

1
10 0.2

1
12

is a POF by Theorem 10, in which x(1′), . . . , x(6′) is the substitution of (0.1x1, 0.1x2, 0.2x3, 0.2x4, 0.2
x5, 0.2x6) such that x(1′) ≤ x(2′) ≤ x(3′) ≤ x(4′) ≤ x(5′) ≤ x(6′).

5.1.2. MAGDM on Account of Pseudo Overlap Functions

A solution for an MAGDM matter is a measure to select a relatively better scheme
from a list of them while regarding some attributes of the alternatives as well as the view
of a panel of experts. In such problems, a limited set X = {x1, . . . , xn} including practicable
schemes, U = {u1, . . . , um} including attributes as well as a set d = {d1, . . . , dt} containing
policy makers are given. The measure must select a better scheme that meets all attributes.
Moreover, every policy maker dk determines matrix S(k) = (s(k)ij )n×m, in which each line
stands for a scheme and each rank represents an attribute. In classical decision problems,
according to the view of the policy makers dk, if an alternative xi has the attribute uj, the

value of the position s(k)ij of S(k) is 1, otherwise it is 0. For some fuzzy attributes, the value of

the position s(k)ij is the grade of membership, that is, a value in [0, 1] standing for the degree
to which the scheme xi belongs to a fuzzy set related to the attribute uj. Additionally, all
attributes are classified into two classes—benefit and cost—and we use I to represent the
index set of the benefit attributes.

Similar to the method in [13], we present a solution for the problem as below:
(1) Standardize the decision matrix S(k) to a normal decision matrix N(k) = (n(k)

ij )n×m,

where n(k)
ij =

s(k)ij , j ∈ I

1− s(k)ij , j /∈ I
;

(2) Given a t-dimensional POF O, the standard decision matrices are aggregated into
the overall decision matrix with O as follows: cij = O(n(1)

ij , . . . , n(t)
ij );

(3) For every scheme xi, in order to calculate the group totality preference value gtpi,
we aggregate its membership degrees to each attribute by using an m-dimensional pseudo
overlap function O′ as follows: gtpi = O′(ci1, . . . , cim);

(4) Array all schemes in descending order according to group totality preference values
and select the top scheme.

5.1.3. Living Example

The living example in [13] is regarded to demonstrate our approach.
Assume an investor plans to invest a portion of capital in one corporation. Finally, he

narrows the range to six corporations: x1 stands for the chemical corporation, x2 stands
for the food corporation, x3 stands for the computer corporation, x4 stands for the car
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corporation, x5 stands for the furniture corporation, x6 stands for the pharmaceutical
corporation. The investor is assisted by three experts (e1, e2 and e3). The experts establish
some attributes utilized to estimate investments.

Three beneficial attributes as below:
(u1) short period interests; (u2) mid-term interests; (u3) long-term interests;
The lossy attributes as below:
(u4) investment hazard; (u5) investment trouble; (u6) other investment disadvantages.
The decision matrices of the three experts are as follows, see Tables 3–5.

Table 3. Appraisal of expert e1.

S(1) u1 u2 u3 u4 u5 u6

x1 0.7 0.8 0.6 0.7 0.5 0.9
x2 0.8 0.6 0.9 0.7 0.6 0.7
x3 0.5 0.4 0.8 0.3 0.8 0.8
x4 0.6 0.7 0.6 0.7 0.8 0.6
x5 0.9 0.8 0.4 0.7 0.7 0.8
x6 0.8 0.3 0.7 0.7 0.6 0.7

Table 4. Appraisal of expert e2.

S(2) u1 u2 u3 u4 u5 u6

x1 0.6 0.8 0.5 0.6 0.4 0.8
x2 0.7 0.6 0.8 0.6 0.7 0.7
x3 0.7 0.6 0.8 0.7 0.8 0.8
x4 0.6 0.7 0.5 0.6 0.8 0.7
x5 0.7 0.8 0.7 0.7 0.6 0.8
x6 0.6 0.4 0.8 0.7 0.6 0.7

Table 5. Appraisal of expert e3.

S(3) u1 u2 u3 u4 u5 u6

x1 0.7 0.6 0.6 0.6 0.4 0.7
x2 0.7 0.6 0.7 0.6 0.6 0.7
x3 0.6 0.5 0.8 0.5 0.8 0.8
x4 0.6 0.7 0.7 0.5 0.8 0.6
x5 0.7 0.8 0.6 0.7 0.6 0.8
x6 0.4 0.5 0.9 0.7 0.6 0.6

These decision matrices are normalized respectively to obtain three normal decision
matrices N(1), N(2) and N(3), which are described as below, see Tables 6–8.

Table 6. Normalized decision matrix of expert e1.

N(1) u1 u2 u3 u4 u5 u6

x1 0.7 0.8 0.6 0.3 0.5 0.1
x2 0.8 0.6 0.9 0.3 0.4 0.3
x3 0.5 0.4 0.8 0.7 0.2 0.2
x4 0.6 0.7 0.6 0.3 0.2 0.4
x5 0.9 0.8 0.4 0.3 0.3 0.2
x6 0.8 0.3 0.7 0.3 0.4 0.3

Table 7. Normalized decision matrix of expert e2.

N(2) u1 u2 u3 u4 u5 u6

x1 0.6 0.8 0.5 0.4 0.6 0.2
x2 0.7 0.6 0.8 0.4 0.3 0.3
x3 0.7 0.6 0.8 0.3 0.2 0.2
x4 0.6 0.7 0.5 0.4 0.2 0.3
x5 0.7 0.8 0.7 0.3 0.4 0.2
x6 0.6 0.4 0.8 0.3 0.4 0.3
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Table 8. Normalized decision matrix of expert e3.

N(3) u1 u2 u3 u4 u5 u6

x1 0.7 0.6 0.6 0.4 0.6 0.3
x2 0.7 0.6 0.7 0.4 0.4 0.3
x3 0.6 0.5 0.8 0.5 0.2 0.2
x4 0.6 0.7 0.7 0.5 0.2 0.4
x5 0.7 0.8 0.6 0.3 0.4 0.2
x6 0.4 0.5 0.9 0.3 0.4 0.4

Next, because three experts with the weights w = (0.3, 0.3, 0.4), we aggregate the
standard decision matrices of them by using three-dimensional pseudo overlap function
O1 in Example 6 to obtain the overall decision matrix, as shown in Table 9 below.

Table 9. Overall decision matrix.

C u1 u2 u3 u4 u5 u6

x1 0.439 0.533 0.316 0.130 0.316 0.029
x2 0.537 0.360 0.638 0.130 0.130 0.090
x3 0.350 0.240 0.640 0.210 0.040 0.040
x4 0.360 0.490 0.344 0.146 0.040 0.130
x5 0.580 0.640 0.295 0.090 0.130 0.040
x6 0.331 0.146 0.622 0.090 0.160 0.106

Then we obtain the group totality preference vector GTP by considering O6 in Example 7,
in which w = (0.1, 0.1, 0.2, 0.2, 0.2, 0.2). The outcome is shown in Table 10.

Table 10. Group totality preference value.

GTP x1 x2 x3 x4 x5 x6

gtpi 0.0184 0.0255 0.0086 0.0146 0.0148 0.0137

On account of Table 10, we get the array of the schemes as below:

x2 � x1 � x5 � x4 � x6 � x3.

Of course, we can get other rankings by using other different pseudo overlap functions
in Examples 6 and 7. Table 11 contains eleven rankings obtained by the pseudo overlap
functions and the result of four methods in [13] for this matter.

Table 11. Summary of the permutations gained with presented means as well as other methods.

Three-Dimensional
Functions

Six-Dimensional
Functions Ranking

Maximum x2 � x1 � x6 � x5 � x4 � x3
Minimum x2 � x1 � x6 � x4 = x5 � x3

WHD x5 � x3 � x2 � x4 � x6 � x1
AOWAD x5 � x2 � x4 � x3 � x6 � x1

O1 O6 x2 � x1 � x5 � x4 � x6 � x3
O1 O7 x2 � x1 � x5 � x6 � x4 � x3
O1 O8 x2 � x6 � x4 � x5 � x1 � x3
O2 O6 x2 � x1 � x4 � x5 � x6 � x3
O2 O7 x2 � x1 � x5 � x6 � x4 � x3
O2 O8 x2 � x6 � x4 � x5 � x1 � x3
O3 O6 x2 � x1 � x5 � x4 � x6 � x3
O3 O7 x2 � x1 � x5 � x6 � x4 � x3
O3 O8 x2 � x5 � x4 � x1 � x6 � x3
O4 O9 x2 � x6 � x1 � x4 � x5 � x3
O5 O10 x2 � x5 � x4 � x1 � x6 � x3

The above table shows that fifteen methods return ten different rankings.
In addition, when there are no exact weights, other non-commutative pseudo overlap

functions (which cannot be directly generated by the method in Theorem 10) can also
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be selected. Non-commutative functions represent the different importance of different
attributes or experts, but the importance degrees are not expressed by specific numbers,
which are hidden in the functions (in this case, we can think that the weights can vary
according to the attribute value). For the example above, we can use the following non-
commutative pseudo overlap functions:

O11(x1, x2, x3) = x
1
6
1 x

1
4
2 x

1
2
3

O12(x1, x2, x3) =

{
0 i f x1 = x2 = x3 = 0

6x1x2x3
3x1+2x2+x3

otherwise

O13(x1, x2, x3) =
2x

1
4
1 x

1
3
2 x

1
2
3

1 + x
1
4
1 x

1
3
2 x

1
2
3

O14(x1, x2, x3, x4, x5, x6) = x
1
12
1 x

1
10
2 x

1
8
3 x

1
6
4 x

1
4
5 x

1
2
6

O15(x1, x2, x3, x4, x5, x6) =

{
0, i f xi = 0(i = 1, 2, . . . , 6)

10x1x2x3x4x5x6
4x1+2x2+x3+x4+x5+x6

, otherwise

O16(x1, x2, x3, x4, x5, x6) =
2x

1
7
1 x

1
6
2 x

1
5
3 x

1
4
4 x

1
3
5 x

1
2
6

1 + x
1
7
1 x

1
6
2 x

1
5
3 x

1
4
4 x

1
3
5 x

1
2
6

The results are shown in Table 12 below.
Analyzing Table 12, it is obvious that the nine schemes revert to four various arrange-

ments. Among them, most (seven) think the best alternative is x2 and nine think that x3
is the worst alternative. Moreover, rankings in Tables 11 and 12 can be fused and further
analyzed by referring to the method in [36], which is omitted here.

Through the above comparative analysis, we show that the pseudo overlap functions
can not only aggregate multiple information, but also indicate the importance of different
information (including the importance of attributes and the importance of experts). They
are more flexible than the overlap functions, and convenient for decision makers for
choosing good alternatives.

Table 12. Summary of the permutations gained with suggested means.

Three-Dimensional
Functions

Six-Dimensional
Functions Ranking

O11 O14 x6 � x2 � x4 � x1 � x5 � x3
O11 O15 x2 � x1 � x6 � x4 � x5 � x3
O11 O16 x2 � x6 � x1 � x4 � x5 � x3
O12 O14 x2 � x6 � x4 � x1 � x5 � x3
O12 O15 x2 � x1 � x6 � x4 � x5 � x3
O12 O16 x2 � x6 � x1 � x4 � x5 � x3
O13 O14 x6 � x2 � x4 � x1 � x5 � x3
O13 O15 x2 � x1 � x6 � x4 � x5 � x3
O13 O16 x2 � x6 � x1 � x4 � x5 � x3

5.2. Application of Pseudo Overlap Functions in Fuzzy Mathematical Morphology

The method of analyzing object shape in images using different neighborhood trans-
formations based on set theory is known as mathematical morphology. At present, there
is a mathematical morphology for binary images and a fuzzy mathematical morphology
for gray images. Some authors improve fuzzy mathematical morphology by quoting
t-norms and fuzzy implications when defining the most basic fuzzy dilation and fuzzy
erosion operations (see [37]). We will introduce pseudo overlap functions and pseudo
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grouping functions into fuzzy mathematical morphology, and use the new operators in
fuzzy mathematical morphology to extract the edge of gray images.

5.2.1. Fuzzy Mathematical Morphology Based on Pseudo Overlap Functions

A, B denote fuzzy sets on the referential S, and the membership function values cor-
responding to x are A(x) as well as B(x), where A represents fuzzy set of the gray image
to be operated, and B represents the fuzzy set of a smaller structural element. In fuzzy
mathematical morphology, the fuzzy expansion operation D(A, B) as well as the corrosion
operation E(A, B) of gray image A by structural element B are as follows:

D(A, B)(y) = sup
x∈{x|x∈B,x+y∈A}

{min[A(y + x), B(x)]}∀y ∈ A

E(A, B)(y) = in f
x∈{x|x∈B,x+y∈A}

{max[A(y + x), B(x)]}∀y ∈ A.

When a pseudo overlap function is applied to fuzzy mathematical morphology, the pseudo
overlap function is used to replace the intersection operation in fuzzy dilation, and its
corresponding pseudo grouping function is used to replace the union operation in fuzzy
erosion. At this time, the gray image A is subjected to the fuzzy expansion operation
D(A, B) and the fuzzy corrosion operation E(A, B) performed by the structural element B,
which are defined as follows, respectively:

D(A, B)(y) = sup
x∈{x|x∈B,x+y∈A}

{O[A(y + x), B(x)]} (15)

E(A, B)(y) = in f
x∈{x|x∈B,x+y∈A}

{G[A(y + x), B(x)]} (16)

5.2.2. Experimental Framework

In the original fuzzy mathematical morphology, after the image is blurred, t-norms
and fuzzy implications are often used to expand and erode the image, and then de-blur
it. However, we use pseudo overlap functions and pseudo grouping functions as fuzzy
expansion and erosion operators, convex combine their results, and then defuzzify it. The
specific steps are as follows.

(1) Fuzzy grayscale image
The grayscale image shown in Figure 3 is selected as the image to be processed, which

is a single channel image with a resolution of 1200 * 675.

Figure 3. Grayscale image.

Set M represents the set of all points x = (m, n) in this image, and N represents the
pixel value of each point in set M, at this time, there is a surjection f: M → N. Where
M is a point set with 1200 * 675 points, m = 1, 2, . . . , 1200, n = 1, 2, . . . , 675, N ⊆ Z, and
∀x ∈ M, f(x) ⊆ [0, 255].

Note that function g: N→ A is the membership function of pixel value a in B:

g(a) =
a−Xmin

Xmax −Xmin
a ∈ B,
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where Xmin and Xmax are the maximum and minimum values in set N respectively; then
the mapping gf: M→ A is the function A(x) of the membership of each point x in the gray
image M.

(2) Fuzzy dilation and fuzzy erosion operation
After obtaining the fuzzy set A of the gray image, the structure operators of fuzzy

dilation and fuzzy erosion are BD and BE respectively.
BD = {0.9/(−1,−1), 0.9/(0,−1), 0.9/(1,−1), 0.9/(−1, 0), 1.0/(0, 0), 0.9/(1, 0),

0.9/(−1, 1), 0.9/(0, 1), 0.9/(1, 1)};
BE = {0.9/(−1,−1), 0.1/(0,−1), 0.1/(1,−1), 0.1/(−1, 0), 0.2/(0, 0), 0.1/(1, 0),

0.1/(−1, 1), 0.1/(0, 1), 0.1/(1, 1)}.
Fuzzy set A is fuzzily dilated by structural operator BD through formula (15) to obtain

fuzzy set D(A, BD), and is fuzzily eroded by structural operator BE through formula (16)
to obtain fuzzy set E(A, BE). The POF O as well as its corresponding pseudo grouping
function G selected in the formula are O(a, b) = a2b, G(a, b) = 1− (1− a)2(1− b).

(3) Defuzzification convex combination result
Firstly, the results of dilation and erosion are obtained through the convex combination

formula shown below to obtain the fuzzy set C.

C(y) = 0.9D(A, BD)(y) + 0.1E(A, BE)(y) ∀y ∈ A.

Then, the fuzzy set C is defuzzified to obtain the number set M′.

M′(y) = by ∗ 255c ∀y ∈ C, (17)

where bc is rounding down.
After the fuzzy expansion and fuzzy erosion results of the original intensity of the

image are convex combined, the convex combination results are de-blurred to obtain M′, as
the grayscale image shown in Figure 4.

Figure 4. Convex combination result after defuzzification.

On the other hand, when the de-blurring operation shown in formula (17) is directly
performed on D(A, BD) and E(A, BE), the results of dilation and erosion of the original
image are shown in Figure 5 and Figure 6, respectively.

Figure 5. Result of dilation of the original image.
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Figure 6. Result of erosion of the original image.

5.2.3. Analysis of Experimental Results

In order to present the actual application effect, we used the edge extraction operation
in mathematical morphology to extract the edges of objects in the original gray image M
and the gray image M′ processed by fuzzy mathematical morphology based on pseudo
overlap functions. The principle of edge extraction of a binary image by mathematical
morphology is to dilate the foreground of the binary image, and then make a difference
between the dilation result and the original image to obtain the edge of the binary image.

Firstly, binarization is performed on the gray image M and M′, respectively, to obtain
the binary images Mb, M′b, as shown in Figures 7 and 8 below.

Figure 7. Binarization result of gray image M.

Figure 8. Binarization result of gray image M′.

We take the binary structure operator Bb as follows:

Bb =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 (18)

Then we perform edge extraction operations on binary images Mb and M′b, respectively:
Edge1 = D(M′b)−M′b, Edge2 = D(Mb)−Mb.

The results of edge extraction for the original gray image and the gray image processed
by fuzzy mathematical morphology with pseudo overlap functions are revealed in Figure 9
and Figure 10 respectively.
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Figure 9. Result of edge extraction for the original gray image.

Figure 10. Result of edge extraction for the gray image processed by fuzzy mathematical morphology.

According to Figures 9 and 10, the edge graph obtained by our method (Figure 10)
has fewer unorganized points, that is, the gray image processed by fuzzy mathemati-
cal morphology with pseudo overlap functions can achieve better image edges through
edge extraction in mathematical morphology. This is because the dilation and erosion
operations of fuzzy mathematical morphology with pseudo overlap function expand the
contrast of foreground and background in the gray image from two aspects: reducing
the background gray value and increasing the foreground gray value, which can be seen
from Figures 5 and 6. Moreover, after introducing convex combination, the advantages of
dilation and erosion are combined to further expand the contrast of foreground and back-
ground in the gray image. This allows us to extract the foreground with a more accurate
threshold in the binarization operation, thus reducing noise similar to that in Figure 9.

5.3. Application of Pseudo Grouping Functions in Image Processing

In image segmentation, one of the most commonly used methods is threshold segmen-
tation. In threshold processing, different targets of a picture are described by the gray level
of every pixel. This technology mainly looks for a threshold t, so that the pixels with an
intensity less than or equal to t are classified as the backdrop of the picture, while pixels
with an intensity greater than t are classified as targets, and the converse is also true ([38]).
Aranzazu Jurio et al. proposed a threshold algorithm based on the convex combination of
the fuzzy method and grouping function in reference [12]. Our work is to introduce the
pseudo grouping function to calculate the grouping value. Finally, we use the improved
threshold algorithm to perform threshold segmentation on a gray image and compare it
with Otus’s algorithm, one of the most commonly used thresholding methods.

In this section, we show the performance of thresholding segmentation with the
convex combination of pseudo grouping functions and the convex combination of grouping
functions on 10 T1 weighted MRI images (see Figure 11). The MR cerebrum information as
well as hand-operated segmentations originated from the morphometric analysis center
of Massachusetts General Hospital. We evaluated the quality of excision by comparing
with the ideal manually segmented images obtained on the same web page (see Figure 12).
The purpose of this image segmentation was to divide each pixel in the cerebrum into two
kinds—gray matter and white matter. In fact, it is a part of brain region volume analysis,
which plays a great role in assessing the development of illness, for instance, Alzheimer’s
disease, epilepsy or schizophrenia ([39,40]).
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Figure 11. Original images.

Figure 12. Ideal manual segmentation image.

To improve the effect of thenconvex combination thresholding results of grouping
functions on image segmentation, we consider using pseudo grouping functions instead of
grouping functions. Because theoretically a grouping function is a special case of a pseudo
grouping function, pseudo grouping functions give a wider function selection range and
have a greater chance of finding a better function, which may improve the accuracy of
thresholding image segmentation. We confirm this below.

The specific content of the experiment is that we randomly selected the grouping
functions in advance and segmented the 10 images with their convex combination, which
achieved a certain segmentation effect. Then, the convex combination of pseudo grouping
functions was also used for segmentation to compare with it. Finally, we illustrate the
superiority of the proposed method by the percentage of good classified pixels.

In the thresholding process of Aranzazu jurio et al., a fuzzy set µQBt
(q) related to the

background and a fuzzy set µQOt
(q) related to the image target are constructed by using

the strict equivalence function for a fixed gray level t(t = 0, 1, . . . , L− 1), for each gray level
q(q = 0, 1, . . . , L− 1), h(q) is expressed as quantity of pixels with pixel intensity q.

When calculating the maximum grouping value using the convex combination of
grouping functions GGcomb(x, y), select an appropriate threshold for each image:

t∗ = arg max
t

L−1

∑
q=0

GGcomb(µQBt
(q), µQOt

(q)) · h(q), (19)

when the convex combination of pseudo grouping functions PGGcomb(x, y) is introduced
for the thresholding operation, the threshold t∗ related to the maximum grouping value is
taken as the best threshold. The formula of the improved algorithm is:

t∗ = arg max
t

L−1

∑
q=0

PGGcomb(µQBt
(q), µQOt

(q)) · h(q). (20)

Then, five grouping functions are used as follows:
G1(x, y) = x + y− xy

G2(x, y) = 2−(1−x)2(1−y)−(1−x)(1−y)2

2
G3(x, y) =

√
x2 + y2 − x2y2

G4(x, y) = 1− (1− x)(1− y)
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G5(x, y) = 1− 2(1−x)(1−y)
1+(1−x)(1−y) .

The five pseudo grouping functions are selected as below:
PG1(x, y) = G1(x, y)
PG2(x, y) = G2(x, y)
PG3(x, y) = G3(x, y)

PG4(x, y) =

{
1, 1.1(1− x) + (1− y) = 0

1− (1.1+1)(1−x)(1−y)
1.1(1−x)+(1−y) otherwise

PG5(x, y) = G5(x, y).
Through the convex combination of the above grouping functions and pseudo group-

ing functions, the results of threshold segmentations of 10 graphs are as follows (see
Figures 13 and 14).

Figure 13. Obtained segmentations by the convex association of grouping functions.

Figure 14. Obtained segmentations from the convex association of pseudo grouping functions.

We show the experimental results through specific data. In Table 13, we reveal the
threshold obtained from every picture as well as the percentage of good sorted picture
elements. The second column presents the outcomes gained from the convex association of
grouping functions, and the third column presents the outcomes gained from the convex
association of PGFs. As we can see from the experiment, our method has higher accuracy,
that is, the use of convex association of PGFs significantly improves the segmentation
accuracy of each image.

Table 13. Thresholds and percentages obtained from convex association of grouping functions and
convex association of pseudo grouping functions.

Image
Convex Combination of

Grouping Functions
Convex Combination of

Pseudo Grouping Functions
th % th %

1 185 95.88 195 98.53
2 179 96.73 195 99.04
3 163 94.26 178 99.27
4 183 96.05 192 97.86
5 176 97.77 187 98.80
6 173 96.90 181 98.33
7 181 95.37 193 97.87
8 182 95.65 195 98.87
9 181 95.48 199 99.08

10 162 95.15 177 99.13
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Then, in contrast with Otsu’s algorithm ([41]), the thresholding method on the basis of
pseudo grouping functions has greater advantages. In Table 14, we show the thresholds
obtained by the two algorithms and the percentage of pixels with good classification. We
can find that our method obtains the better results for each picture in the test case, hence it
mends Otsu’s thresholding technique with regard to the group of pictures.

Table 14. Thresholds and percentages obtained from presented algorithm as well as Otsu’s algorithm.

Image
Convex Combination of

Pseudo Grouping Functions Otsu’s

th % th %
1 195 98.53 185 95.88
2 195 99.04 179 96.73
3 178 99.27 160 94.26
4 192 97.86 184 96.25
5 187 98.80 171 96.72
6 181 98.33 171 96.42
7 193 97.87 184 96.05
8 195 98.87 182 95.65
9 199 99.08 182 95.76

10 177 99.13 159 95.15

6. Conclusions

Starting from many practical application fields, we expand the theory of OFs as
well as grouping functions, introduce new concepts of POFs and PGFs for the first time,
and investigate their basic properties, construction methods, and induced residuated
implication operators and residuated co-implication operators. Moreover, we discuss
some applications of pseudo overlap (grouping) functions in multiple attributes group
decision-making, fuzzy mathematical morphology and image processing. The experimental
results show that: (1) pseudo overlap functions can aggregate the decision information
of attributes or experts with different importance; (2) pseudo overlap functions and their
convex combination can be used to enrich the operators in fuzzy mathematical morphology,
and expand the contrast between foreground and background in gray images, so as to
reduce the noise in edge extraction; (3) pseudo grouping functions can be used to improve
the accuracy of thresholding image segmentation in image processing. Therefore, POFs
and PGFs have a wide adaptability and application value. There are still many theoretical
and applied problems to be studied in terms of pseudo overlap functions and fuzzy logic
(see [42–47]).
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