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Abstract—Choquet integral is a widely used aggregation oper-
ator on one-dimensional and interval-valued information, since
it is able to take into account the possible interaction among
data. However, there are many cases where the information taken
into account is vectorial, such as Long Short-Term Memories
(LSTM). LSTM units are a kind of Recurrent Neural Networks
that have become one of the most powerful tools to deal with
sequential information since they have the power of controlling
the information flow. In this paper, we first generalize the
standard Choquet integral to admit an input composed by n-
dimensional vectors, which produces an n-dimensional vector
output. We study several properties and construction methods of
vector Choquet integrals. Then, we use this integral in the place
of the summation operator, introducing in this way the new VCI-
LSTM architecture. Finally, we use the proposed VCI-LSTM to
deal with two problems: sequential image classification and text
classification.

Index Terms—Choquet Integral, Aggregation Functions, Vec-
tor Choquet Integral, Recurrent Neural Networks, LSTM.

I. INTRODUCTION

INFORMATION aggregation process is a fundamental pro-
cedure when combining or aggregating different informa-

tion structures into a single one [1]. Its use is usual in several
fields, such as: multi-criteria decision making, economics and
finance [2], statistics, image processing [3], machine learning
[4], etc. Recently it has also been applied in deep learning, for
example in the pooling layers of convolutional neural networks
[5], [6].

Fuzzy integrals [7] are aggregation operators based on
fuzzy measures [8], [9] that are capable of modelling the
possible coalition among data [4]. In particular, the discrete
Choquet integral [10] and its generalizations [11]–[13] are
frequently used in several applications, such as classification
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[4], [14]–[16], multi-criteria decision making [17]–[19] and
brain-computer interfaces [20].

Often the data considered for aggregation are multi-valued,
i.e. they have a dimensionality greater than one. Examples of
this are vectors, which store n-dimensional information. In this
paper, we focus on vectors as the source of information to be
aggregated.

An example of application where vectorial information is
used are Long Short-Term Memories (LSTM) [21] which are
a kind recurrent neural networks and a powerful tool to model
sequential data, such as time series [22]–[24] and natural
language [25]–[28]. These networks perform an information
fusion process in order to calculate vectorial values, where
the input data, hidden memory and bias information are fused.
Traditionally, since summation is used to fuse the data, taking
the information as independent of each other. However, these
parameters may have interaction among them.

Until now different approaches of the discrete Choquet inte-
grals have been introduced for aggregating different structures,
such as intervals, with respect to admissible orders [29] and
with respect to admissible permutations [30]. However, since
the Choquet integral is defined for punctual or interval-valued
entries, it can not be used as the aggregation operator admitting
n-dimensional vector inputs, as required, for example, by the
LSTM model.

To do so, in this paper we present the Vector Choquet
Integral (VCI): an n-dimensional extension of the discrete
Choquet-like integral, such that the inputs are n-dimensional
vectors, and recovering an n-dimensional vector as output.
First, the main definition and construction methods are pre-
sented and after the main properties of the Vector Choquet
Integral are studied.

Regarding the application of the new introduced theory,
we present a new LSTM architecture based on the VCI,
called VCI-LSTM, as an example of an application where
our theoretical developments can be applied. For that, in the
vector-wise parameter data fusion process, we replace the
summation by the new vector discrete Choquet integral. To
check out the performance of the VCI-LSTM, we have tested it
in two simple architectures, in order to solve two kind of prob-
lems: sequential image classification and text classification.
Concerning text classification, spam detection, sentiment anal-
ysis and question classification datasets are considered. Three
different datasets have been used to evaluate the achievement
in each one. Results are compared with standard fusion method
and also with an order statistic, like the maximum function.
We show, validated by statistical analysis, that in most cases
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VCI-LSTM-based models outperform standard LSTM ones.
The structure of this work is as follows. In Section II,

aggregation functions and LSTM concepts are reminded. In
Section III, the new vector Choquet integral is introduced,
and its properties are studied in Section IV. In Section V, the
new VCI-LSTM unit is proposed. In Section VI, experimental
results are presented. Finally, in Section VII, conclusion and
future work are explained.

II. PRELIMINARIES

In this section, we recall basic notions necessary for the
work. We present, on the one hand, the basic theoretical
definitions of an aggregation function, a fuzzy measure and
a Choquet integral, and on the other, the explanation of the
performance of an RNN-LSTM network.

A. Aggregation functions and Choquet integral

Let us consider the lattice (L,≤) where L = [0, 1] and ≤
is the natural order on the real numbers. The elements in Ln

are in boldface, as x = (x1, . . . , xn) ∈ Ln, for m > 0 and
[0] = 0.

We denote 0 = (0, . . . , 0) ∈ Ln, 1 = (1, . . . , 1) ∈ Ln and
[m] = {1, . . . ,m}.

Two vectors (x1, . . . , xm), (y1, . . . , ym) ∈ Lm are comono-
tone if and only if there exists a permutation π : [m] → [m]
such that xπ(1) ≤ . . . ≤ xπ(m) and yπ(1) ≤ . . . ≤ yπ(m).

Definition II.1. [31] Let m be a positive integer. A function
M : Lm → L is called an m-ary aggregation function if (i)
M(0) = 0 and M(1) = 1; and (ii) is non-decreasing in each
variable, i.e., for all x = (x1, . . . , xm),y = (y1, . . . , ym) ∈
Lm, M(x) ≤ M(y) if x1 ≤ y1, . . . , xm ≤ ym.

A function F : Lm → L is called:
• Symmetric if F (xπ(1), . . . , xπ(m)) = F (x1, . . . , xm), for

all x1, . . . , xm ∈ L and any permutation π : [m] → [m]
• Idempotent if F (x, . . . , x) = x, for all x ∈ L;
• Self-dual if F (x1, . . . , xm) = 1−F (1−x1, . . . , 1−xm),

for all x1, . . . , xm ∈ L;
• Shift-invariant if F (x1 + y, . . . , xm + y) = y +

F (x1, . . . , xm), for all y, x1, . . . , xm ∈ L such that
x1 + y, . . . , xm + y ∈ L;

• Positively homogeneous if F (px1, . . . , pxm) =
pF (x1, . . . , xm), for all p, x1, . . . , xm ∈ L

• Averaging if min(x1, . . . , xm) ≤ F (x1, . . . , xm) ≤
max(x1, . . . , xm), for all x1, . . . , xm ∈ L;

• Comonotone additive if F (x1 + y1, . . . , xm + ym) =
F (x1, . . . , xm)+F (y1, . . . , ym), for all comonotone vec-
tors (x1, . . . , xm), (y1, . . . , ym) ∈ Lm such that (x1 +
y1, . . . , xm + ym) ∈ Lm.

There is a partial order ≤P induced by ≤ given as follows:
x ≤P y if and only if xi ≤ yi, for all i ∈ [n].
In fact, we can verify that (Ln,≤) is a lattice with op-
erations x ∧ y = (min(x1, y1), . . . ,min(xn, yn)) and x ∨
y = (max(x1, y1), . . . ,max(xn, yn)), having the minimum
element 0 and the maximum 1. However, we intend to use
also the total orders on Ln introduced in [32].

Definition II.2. [32] Let n be a positive integer. A linear
order ≤Adm in Ln is called admissible if, for all x,y ∈ Ln:
x ≤Adm y whenever xi ≤ yi, for all i ∈ [n].

In general, an order on Ln, no matter if partial or admissible,
is denoted by ≤L.

Definition II.3. [9] A function ν : 2[m] → L is called a
fuzzy measure on [m] if (i) ν(∅) = 0 and ν([m]) = 1 and (ii)
ν(A) ≤ ν(B), for all A ⊆ B ⊆ [m]

By Card(A) it is denoted the cardinality of the set A.
A fuzzy measure ν : 2[m] → L is called additive if
ν(A ∪ B) = ν(A) + ν(B) for all A,B ⊆ [m] such that
A∩B = ∅ and symmetric if ν(A) = ν(B), for all A,B ⊆ [m]
such that Card(A) = Card(B). Also, ν is called subadditive
if, for A,B ⊆ [m] such that A ∩ B = ∅ it holds that
ν(A ∪ B) ≤ ν(A) + ν(B) and ν is called superadditive if
ν(A ∪ B) ≥ ν(A) + ν(B). Note that this properties are also
referred to as submodularity and supermodularity, respectively,
in the literature [1].

This implies that if a fuzzy measure is superadditive there
is a positive correlation between the data, i.e. the data are
redundant with each other. On the other hand, if a fuzzy
measure is subadditive there is a negative correlation between
the data, and therefore the data are complementary to each
other.

Example II.4. A fuzzy measure considered in this work is the
power measure, which is a symmetric measure. It is defined,
for all A ⊆ [m], as:

νq(A) =

(
Card(A)

m

)q

(1)

where q ∈ (0,∞).

Definition II.5. [10] The discrete Choquet integral on L with
respect to the fuzzy measure ν is defined as a map Cν : Lm →
L such that

Cν(x) =

m∑
i=1

(
xπ(i) − xπ(i−1)

)
ν
(
Aπ(i)

)
where x = (x1, . . . , xm) ∈ Lm, ν : 2[m] → L is a fuzzy
measure on [m], π : [m] → [m] is a permutation, with
xπ(1) ≤ . . . ≤ xπ(m) with the convention xπ(0) = 0, Aπ(i) :=
{π(i), . . . , π(m)} is the subset of the indices corresponding
to the m− i+ 1 greatest elements of x, for all i ∈ [m].

Remark II.6. [1] The discrete Choquet integral Cν ful-
fills the following properties: idempotence, self-duality, shift-
invariance, positive homogeneity, averaging, monotonicity and
commonotone additivity. Cν is symmetric if the corresponding
fuzzy measure is symmetric. In a similar way, Cν is additive
if the corresponding fuzzy measure is additive.

Definition II.7. [32] Let n be a positive integer and M̃ =
(M1, . . . ,Mn) be a sequence of n-ary aggregation functions
Mi : Ln → L. Given x,y ∈ Ln, we define an order ≤M

induced by M̃ as follows:
• x <M y if and only if there exists k ∈ [n] such that

Mj(x) = Mj(y) for all j ∈ [k − 1] and Mk(x) <
Mk(y);
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• x ≤M y if and only if x <M y or x = y.

Proposition II.8. [32] Let n be a positive integer and M̃ =
(M1, . . . ,Mn) be a sequence of n-ary aggregation functions
Mi : L

n → L. The order ≤M induced by M̃ is an admissible
order in Ln if and only if the aggregation functions Mi satisfy:
x = y if and only if Mi(x) = Mi(y) for all i ∈ [n].

Remark II.9. Let Mi(x) = xi for all i ∈ [n] and all x =
(x1, . . . , xn) ∈ Ln. Then the admissible order ≤M induced
by the sequence M̃ = (M1, . . . ,Mn) is the lexicographical
order, that we denote as ≤Lex.

In the following, we adapt the concept of admissible order
discussed in [32]–[34] for our context:

Definition II.10. Let n, m be positive integers and ≤L

be a partial or admissible order on Ln. A function M :
(Ln)m → Ln is a vector m-dimensional aggregation function
if it satisfies (i) M(0, . . . ,0) = 0 and M(1, . . . ,1) = 1;
and (ii) for all x1, . . . ,xm,y1, . . . ,ym ∈ Ln it holds
x1 ≤L y1, . . . ,xm ≤L ym, then M(x1, . . . ,xm) ≤L

M(y1, . . . ,ym).

B. Recurrent Neural Networks: Long Short-Term Memory

Recurrent Neural Networks (RNN) were introduced with the
objective of modeling data with temporal dependence. How-
ever, since learning algorithms for RNNs are usually based
on the backpropagation through time and gradient descent
methods, they incur in the problem of vanishing gradient [35].
This problem consists in the recurrent decrease of the value
of a variable in the output of the neural network. This is an
especially serious problem when trying to train networks with
long dependencies or time sequences.
In order to solve this problem, Long Short-Term Memory
(LSTM) [36] was introduced, representing a radical change
[35] in the training of recurrent networks since it avoids the
continuous decrease of the parameters. This artificial neuron
architecture [36] generates a state that allows the store of
knowledge that is used in later time instants. In this way,
special multiplicative units called gates are introduced in this
new architecture (Figure 1).
LSTM neurons have had various modifications in the literature,
but in this work we consider one of the most widely used [21].
In Figure 1 we can observe in detail the structure of an LSTM.
It is important to remark the following elements [37]:

• Forget gate (f ). Introduced by F. Gers in 2000 [38], it
decides about which part of the long-term information
should be discarded and what part of the long-term
information is important and should be retained and
moved on to the next time step.

• Input gate (i). It makes it possible for a part of the current
state to be transmitted and reflected in long-term memory.
It selects which part of the input should be removed while
the others carry over to the long-term state corresponding
to the next step.

• Output gate (o). It calculates the outputs and also decides
about which part of the long-term information is going
to the next step.

Fig. 1: LSTM unit representation

Next, we are going to explain the operation of the LSTM unit.
Let N be the input sequence length, H the hidden size of the
LSTM unit and T the number of timesteps. Then we get the
following weights [21] for the matrices and vectors associated
with the gates and the candidate cell (g ∈ {f, i, c, o}):

• Input weight matrices: Wgx ∈ RH×N

• Recurrent weight matrices: Wgh ∈ RH×H

• Bias weight vectors: bg ∈ RH

The operations description for each timestep t ∈ {1, . . . , T}
is the following:

i. The input values x(t) and h(t−1) enter to the gates f
(Eq. 2), i (Eq. 3), c̃ (Eq. 4) and o (Eq. 6). In each of
them, the value of x(t) is multiplied by each of the input
weight matrices (Wgx, depending on the gate g). The
same occurs with the values of h(t−1) and the recurrent
weight matrices. The H-dimensional vectors obtained
from these multiplications with the corresponding bias
bg for each gate g are fused summing them.

ii. As activation function non-linear functions are used. As
gate activation function the sigmoid logistic function,
σ(x) = (1+e−x)−1 is considered. As activation function
of the candidate cell the hyperbolic tangent tanh(x) is
taken. Both of these functions are defined on R. When
acting over vectors, they are applied coordenate-wise.

iii. The previous timestep long-term memory vector (c(t−1))
and the candidate cell one (c̃(t)) are combined in this
step. The Hadamard or element-wise product (◦) is
calculated between the values of the forget gate and input
gate respectively (Eq. 5). Both values are added obtaining
the current timestep value of the long-term vector (c(t)).

iv. Finally, the short-time memory vector (h(t)) is calculated.
First, the long-term information (c(t)) is evaluated by the
tanh(x) activation function. Subsequently, the Hadamard
product is calculated between the value of the output
gate (o(t)) and the information obtained from the last
activation function, obtaining the value of the short-term
memory vector (h(t)).

The process describing equations are the following (Eq. (2)-
(7)):

f (t) = σ(Wfxx
(t) +Wfhh

(t−1) + bf ) (2)

i(t) = σ(Wixx
(t) +Wihh

(t−1) + bi) (3)

c̃(t) = tanh(Wcxx
(t) +Wchh

(t−1) + bc) (4)
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c(t) = f (t) ◦ c(t−1) + i(t) ◦ c̃(t) (5)

o(t) = σ(Woxx
(t) +Wohh

(t−1) + bo) (6)

h(t) = o(t) ◦ tanh(c(t)) (7)

From Eq. (2)-(7) is easy to see that f (t), i(t),o(t) ∈ [0, 1]H ,
c̃(t),h(t) ∈ [−1, 1]H and c(t) ∈ RH .

III. VECTOR CHOQUET INTEGRAL (VCI)
In this section, we introduce the concept of vector Choquet

integral, studying its properties.
Let x1 = (x11, . . . , x1n), . . . ,xm = (xm1, . . . , xmn) be

m vectors in Ln, and x1 = (x11, . . . , xm1), . . . ,x
n =

(x1n, . . . , xmn) be n vectors in Lm obtained as follows:
Define the m × n matrix on L, where the rows are given
by x1, . . . ,xm. Then, the columns are x1, . . . ,xn.


x1 x2 . . . xn

x1 x11 x12 . . . x1n

x2 x21 x22 . . . x2n
...

...
...

. . .
...

xm xm1 xm2 . . . xmn


Definition III.1. Let n, m be positive integers, ν =
(ν1, . . . , νn) be a sequence of fuzzy measures on [m] and
Cνi

: Lm → L be discrete Choquet integrals on Lm with
respect to νi, for all i ∈ [n]. A function Cν : (Ln)m → Ln,
given, for all x1, . . . ,xm ∈ Ln, by

Cν(x1, . . . ,xm) =
(
Cν1

(x1), . . . , Cνn
(xn)

)
, (8)

is called a discrete vector Choquet integral (VCI) on (Ln)m

with respect to ν and order ≤L.

The VCI Cν is said to be “representable” since it is obtained
by using n Choquet integrals on Lm separately for each
component:

Cν(x1, . . . ,xm) =

(Cν1
(x11, . . . , xm1), . . . , Cνn

(x1n, . . . , xmn)). (9)

This expression is a generalization of the standard Choquet
integral on L in the sense that if all the inputs are n-tuples
with the same coordinates, i.e. x = (x, . . . , x) and ν1 = . . . =
νn = ν, then the output is an n-tuple with the same coordinates
equal to the output of Cν .

Proposition III.2. Under the assumption of Definition III.1,
consider ν1 = . . . = νn = ν. Then:

Cν(x1, . . . ,xm) = (Cν(x1, . . . , xm), . . . , Cν(x1, . . . , xm)),
(10)

for all xi = (xi, . . . , xi) ∈ Ln, i ∈ [m].

Definition III.3. Let m, n be positive integers, ν =
(ν1, . . . , νn) be a sequence of fuzzy measures on [m] and
Cνi : Lm → L be Choquet integrals on L with respect to
νi, for all i ∈ [n]. Let M̃in = (M1, . . . ,Mn) be a sequence
of n-ary aggregation functions M1, . . . ,Mn : Ln −→ L. A
function CM̃in

ν : (Ln)m → Ln given by

CM̃in
ν (x1, . . . ,xm) = (Cν1(M1(x1), . . . ,M1(xm)), . . . ,

Cνn(Mn(x1), . . . ,Mn(xm))), (11)

for all x1, . . . ,xm ∈ Ln, is called a vector M̃in-Choquet
integral (VCI-Min) on Ln with respect to ν, M̃in and the
order ≤L.

Definition III.4. Let m, n be positive integers, ν =
(ν1, . . . , νn) be a sequence of fuzzy measures on [m] and Cνi :
Lm → L be discrete Choquet integrals on Lm with respect to
νi, for all i ∈ [n]. Let M̃out = (M1, . . . ,Mn) be a sequence
of n-ary aggregation functions M1, . . . ,Mn : Ln −→ L. A
function CM̃out

ν : (Ln)m → Ln, given by

CM̃out
ν (x1, . . . ,xm) = (M1(Cν1

(x1), . . . , Cνn
(xn)),

. . . ,Mn(Cν1
(x1), . . . , Cνn

(xn))), (12)

for all x1, . . . ,xm ∈ Ln, is called a vector M̃out-Choquet
integral (VCI-Mout) on Ln with respect to ν, M̃out, and the
order ≤L.

Remark III.5. Both M̃in-Choquet integral and M̃out-
Choquet integral can be expressed in terms of vector Choquet
integrals as follows:

CM̃in
ν (x1, . . . ,xm) =

Cν((M1(x1), . . . ,Mn(x1)), . . . , (M1(xm), . . . ,Mn(xm)))

CM̃out
ν (x1, . . . ,xm) =

(M1 (Cν(x1, . . . ,xm)) , . . . ,Mn (Cν(x1, . . . ,xm))),

for all x1, . . . ,xm ∈ Ln.

The following relation between the three types of vector
Choquet integrals is immediate.

Proposition III.6. Under the assumptions of Definition
III.3, if Mi(y) = yi, for all y = (y1, . . . , yn) ∈ Ln,
i ∈ [n], then Cν(x1, . . . ,xm) = CM̃out

ν (x1, . . . ,xm) =

CM̃in
ν (x1, . . . ,xm), for all x1, . . . ,xm ∈ Ln.

Note that, by Proposition III.2 and Proposition III.6,
all the three introduced vector Choquet integrals, namely,
Cν ,C

M̃out
ν ,CM̃in

ν , generalize the standard Choquet integral,
i.e., they recover standard Choquet integral for inputs being
n-tuples with the same coordinates.

IV. PROPERTIES OF VECTOR CHOQUET INTEGRALS

By Remark II.6, the discrete Choquet integral Cν ful-
fills the following properties: idempotence, self-duality, shift-
invariance, positive homogeneity, averaging, monotonicity
and commonotone additivity. It is also symmetric/additive
if the fuzzy measure is symmetric/additive. These prop-
erties are studied for the three vector Choquet integrals
Cν ,C

M̃in
ν ,CM̃out

ν .

A. Symmetry, boundary conditions and idempotency

Lemma IV.1. Let CM̃in
ν : (Ln)m → Ln be a vector

M̃in-Choquet integral given by Definition III.3 and CM̃out
ν :

(Ln)m → Ln be a vector M̃out-Choquet integral given by

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2022.3222035



IEEE TRANSACTIONS ON FUZZY SYSTEMS 5

Definition III.4. Then, CM̃in
ν (x, . . . ,x) = CM̃out

ν (x, . . . ,x) for
all x ∈ Ln.

Proof. CM̃in
ν (x, . . . ,x) = (Cν1

(M1(x), . . . ,M1(x)), . . . ,
Cνn

(Mn(x), . . . ,Mn(x))) = (M1(x), . . . ,Mn(x))

and CM̃out
ν (x, . . . ,x) = (M1(Cν1(x1, . . . , x1), . . . ,

Cνn
(xn, . . . , xn)), . . . ,Mn(Cν1

(x1, . . . , x1), . . . ,
Cνn

(xn, . . . , xn))) = (M1(x), . . . ,Mn(x))

Theorem IV.2. Let CM̃in
ν : (Ln)m → Ln be a vector

M̃in-Choquet integral given by Definition III.3 and CM̃out
ν :

(Ln)m → Ln be a vector M̃out-Choquet integral given by
Definition III.4. Then:

(i) Let νi be symmetric for each i ∈ [n]. Then
CM̃in

ν (x1, . . . ,xm) = CM̃in
ν (xπ(1), . . . ,xπ(m)) and

CM̃out
ν (x1, . . . ,xm) = CM̃out

ν (xπ(1), . . . ,xπ(m)), for all
x1, . . . ,xm ∈ Lm and for any permutation π : [m] →
[m];

(ii) CM̃in
ν (0, . . . ,0) = 0,CM̃out

ν (1, . . . ,1) = 1 and
CM̃in

ν (0, . . . ,0) = 0, CM̃out
ν (1, . . . ,1) = 1, for all

x1, . . . ,xm ∈ Lm;
(iii) CM̃in

ν (x, . . . ,x) = x, for all x ∈ Ln and for any
sequence ν = (ν1, . . . , νn) of fuzzy measures on [m],
if and only if Mi(x) = xi, for all x ∈ Ln, i ∈ [n];

(iv) CM̃out
ν (x, . . . ,x) = x, for all x ∈ Ln and for any

sequence ν = (ν1, . . . , νn) of fuzzy measures on [m],
if and only if Mi(x) = xi, for all x ∈ Ln, i ∈ [n].

Proof. The proof of (i) follows from the symmetry of Cνi ,
i ∈ [n]. The proof of (ii) follows from the boundary con-
ditions of Mi, Cνi

, i ∈ [n], and the proof of (iii) from
Lemma IV.1, in the particular case Mi(x) = xi, where
(M1(x), . . . ,Mn(x)) = (x1, . . . , xn) = x.The proof of (iv)
follows from (iii) and Lemma IV.1.

B. Self-duality

Theorem IV.3. Let CM̃in
ν : (Ln)m → Ln be a vector

M̃in-Choquet integral given by Definition III.3 and CM̃out
ν :

(Ln)m → Ln be a vector M̃out-Choquet integral given by
Definition III.4. Then:

(i) For any sequence ν = (ν1, . . . , νn) of fuzzy measures
on [m] and for all x1, . . . ,xm ∈ Ln, it holds that:
CM̃in

ν (x1, . . . ,xm) = 1 − CM̃in
ν (1− x1, . . . ,1− xm)

if and only if Mi is self-dual, for all i ∈ [n];
(ii) For any sequence ν = (ν1, . . . , νn) of fuzzy measures

on [m] and for all x1, . . . ,xm ∈ Ln, it holds that:
CM̃out

ν (x1, . . . ,xm) = 1 −CM̃out
ν (1− x1, . . . ,1− xm)

if and only if Mi is self-dual for all i ∈ [n].

Proof. For (i) sufficiency, the proof follows from the self-
duality of Mi and Cνi , i ∈ [n]. Necessity: Consider
that there exist k ∈ [n] and x ∈ Ln such that
Mk(1− x) ̸= 1 −Mk(x). Then: CM̃in

ν (1− x, . . . ,1− x) =
(Cν1

(M1(1− x), . . . ,M1(1− x)), . . . , Cνn
(Mn(1− x),

. . . ,Mn(1− x))) = (M1(1− x), . . . ,Mn(1− x))
by idempotency ̸= (1−M1(x), . . . , 1−Mn(x))

= 1−CM̃in
ν (x, . . . ,x). The proof of (ii) is similar to the proof

of (i), but considering IV.1 for the necessity.

C. Shift-invariance

For y ∈ L and x = (x1, . . . , xn) ∈ Ln, we denote x+ y =
(x1 + y, . . . , xn + y).

Theorem IV.4. Let CM̃in
ν : (Ln)m → Ln be a vector

M̃in-Choquet integral given by Definition III.3 and CM̃out
ν :

(Ln)m → Ln be a vector M̃out-Choquet integral given by
Definition III.4. Then:

(i) For all x1, . . . ,xm,y ∈ Ln,
CM̃in

ν (x1 + y, . . . ,xm + y) = y +CM̃in
ν (x1, . . . ,xm),

whenever Mi(x) = xi, for all x ∈ Ln, i ∈ [n];
(ii) For any sequence ν = (ν1, . . . , νn) of fuzzy measures on

[m] and for all x1, . . . ,xm ∈ Ln, y ∈ L, it holds that:
CM̃in

ν (x1 + y, . . . ,xm + y) = y+CM̃in
ν (x1, . . . ,xm) if

and only if Mi is shift-invariant for all i ∈ [n];
(iii) For all x1, . . . ,xm,y ∈ Ln,

CM̃out
ν (x1 + y, . . . ,xm + y) = CM̃out

ν (x1, . . . ,xm)
whenever Mi(x) = xi, for all x ∈ Ln, i ∈ [n];

(iv) For any sequence ν = (ν1, . . . , νn) of fuzzy measures on
[m] and for all x1, . . . ,xm ∈ Ln, y ∈ L, it holds that:
CM̃out

ν (x1 + y, . . . ,xm + y) = y +CM̃out
ν (x1, . . . ,xm)

if and only if Mi is shift-invariant for all i ∈ [n].

Proof. For (i), the proof follows from the shift-invariance
of Cνi , i ∈ [n], and the observation that Mi(y + xj) =
yi + Mi(xj), for all i ∈ [n], j ∈ [m]. For (ii) sufficiency,
the proof follows from the shift-invariance of Mi and Cνi

,
i ∈ [n]. Necessity: Consider that there exist k ∈ [n] and
x ∈ Ln, y ∈ L, such that Mk(x+ y) ̸= y +Mk(x). Then:
CM̃in

ν (x+ y, . . . ,x+ y) = (Cν1(M1(x+ y), . . . ,
M1(x+y)), . . . , Cνn

(Mn(x+y), . . . ,Mn(x+y))) = (M1(x+
y), . . . ,Mn(x + y)) ̸= (y + M1(x, . . . , y + Mn(x)) = y +

CM̃in
ν (x, . . . ,x). The proofs of (iii) and (iv) are similar to the

proofs of (i) and (ii), considering Lemma IV.1 for the necessity
in (iv).

D. Positive homogeneity

Theorem IV.5. Let CM̃in
ν : (Ln)m → Ln be a vector

M̃in-Choquet integral given by Definition III.3 and CM̃out
ν :

(Ln)m → Ln be a vector M̃out-Choquet integral given by
Definition III.4. Then:

(i) For any sequence ν = (ν1, . . . , νn) of fuzzy measures
on [m] and for all x1, . . . ,xm ∈ Ln, p ∈ L, it holds
that:CM̃in

ν (px1, . . . , pxm) = pCM̃in
ν (x1, . . . ,xm) if and

only if Mi is positively homogeneous, for all i ∈ [n];
(ii) For any sequence ν = (ν1, . . . , νn) of fuzzy measures

on [m] and for all x1, . . . ,xm ∈ Ln, p ∈ L, it holds
that: CM̃out

ν (px1, . . . , pxm) = pCM̃out
ν (x1, . . . ,xm if

and only if Mi is positively homogeneous, for all i ∈ [n].

Proof. For (i) sufficiency, the proof follows from the positive
homogeneity of Mi and Cνi

, for all i ∈ [n]. Necessity:
Consider that there exist k ∈ [n] and x ∈ Ln, p ∈ L such
that Mk(px) ̸= pMk(x). Then:
CM̃in

ν (px, . . . , px) = (Cν1(M1(px), . . . ,M1(px)), . . . ,
Cνn(Mn(px), . . . ,Mn(px))) = (M1(px), . . . ,Mn(px))

̸= (pM1(x, . . . , pMn(x)) = pCM̃in
ν (x, . . . ,x).
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The proof of (ii) is similar, considering Lemma IV.1 for the
necessity.

E. Averageness

Now, a result with respect to averageness considering the
partial order ≤P on Ln is given.

Theorem IV.6. Let CM̃in
ν : (Ln)m → Ln be a vector

M̃in-Choquet integral given by Definition III.3 and CM̃out
ν :

(Ln)m → Ln be a vector M̃out-Choquet integral given by
Definition III.4. Then:

(i) For any sequence ν = (ν1, . . . , νn) of fuzzy mea-
sures on [m] and for all x1, . . . ,xm ∈ Ln, it holds
that: min(x1, . . . ,xm) ≤P CM̃in

ν (x1, . . . ,xm) ≤P

max(x1, . . . ,xm) if and only if Mi(x) = xi, for all
x ∈ Ln, i ∈ [n];

(ii) For any sequence ν = (ν1, . . . , νn) of fuzzy mea-
sures on [m] and for all x1, . . . ,xm ∈ Ln, it holds
that: min(x1, . . . ,xm) ≤P CM̃out

ν (x1, . . . ,xm) ≤P

max(x1, . . . ,xm) if and only if Mi(x) = xi, for all
x ∈ Ln, i ∈ [n].

Proof. For (i) sufficiency, the proof di-
rectly follows from CM̃in

ν (x1, . . . ,xm) =
(Cν1

(x11, . . . , xm1), . . . , Cνn
(x1n, . . . , xmn)) and the

averagingness of Cνi , i ∈ [n]. Necessity: Consider that there
exist k ∈ [n] and x ∈ Ln such that Mk(x) > xk. Then:
CM̃out

ν (x, . . . ,x) = (M1(x), . . . ,Mn(x)) ̸<P x.

In a similar way we obtain CM̃out
ν (x, . . . ,x) ̸>P x for

Mk(x) < xk. For (ii), the proof follows from (i) considering
Proposition III.6 for sufficiency and Lemma IV.1 for
necessity.

With respect to admissible orders, there is a weaker result
than the previous Theorem.

Corollary IV.7. Let CM̃in
ν : (Ln)m → Ln be a vector

M̃in-Choquet integral given by Definition III.3 and CM̃out
ν :

(Ln)m → Ln be a vector M̃out-Choquet integral given by
Definition III.4. Then:

(i) For all x1, . . . ,xm ∈ Ln such that xj = (xj1, . . . , xjn),
for all j ∈ [m], one has that:
((min(x11, . . . , xm1), . . . ,min(x1n, . . . , xmn)) ≤Adm

CM̃in
ν (x1, . . . ,xm)

≤Adm ((max(x11, . . . , xm1), . . . ,max(x1n, . . . , xmn))
whenever Mi(x) = xi, for all x ∈ Ln, i ∈ [n];

(ii) For all x1, . . . ,xm ∈ Ln such that xj =
(xj1, . . . , xjn) for all j ∈ [m], one has that
((min(x11, . . . , xm1), . . . ,min(x1n, . . . , xmn))

≤Adm CM̃out
ν (x1, . . . ,xm)

≤Adm ((max(x11, . . . , xm1), . . . ,max(x1n, . . . , xmn))
whenever Mi(x) = xi, for all x ∈ Ln, i ∈ [n].

F. Monotonicity

The M̃in-Choquet integral CM̃in
ν is monotone, increasing

in each component, with respect to the partial order ≤P .
However, with respect to admissible orders, it is monotone

only under a specific condition. First, a direct result with
respect to the partial order ≤P is given.

Theorem IV.8. Let CM̃in
ν : (Ln)m → Ln be a vector

M̃in-Choquet integral given by Definition III.3 and CM̃out
ν :

(Ln)m → Ln be a vector M̃out-Choquet integral given by
Definition III.4. Then:

(i) For all x1, . . . ,xm,y ∈ Ln, one
has that: CM̃in

ν (x1, . . . ,xm) ≤P

CM̃in
ν (x1, . . . ,xk−1,y,xk+1, . . .xm) whenever

xk ≤P y,for some k ∈ [m];
(ii) For all x1, . . . ,xm,y ∈ Ln, one

has that CM̃out
ν (x1, . . . ,xm) ≤P

CM̃out
ν (x1, . . . ,xk−1,y,xk+1, . . .xm) whenever

xk ≤P y, for some k ∈ [m].

Proof. It directly follows from the monotonicity of Mi and
Cνi , for all i ∈ [n].

The situation with respect to admissible orders is not so
straightfoward. The monotonicity is preserved only under
rather restrictive assumptions. First, the condition for a fuzzy
measure ν under which a standard Choquet integral with
respect to ν is strictly increasing is given in the following
proposition.

Proposition IV.9. Let Cν : Lm → L be a discrete Choquet-
like integral on L with respect to fuzzy measure ν. If ν(A) <
ν(B), for all A,B ⊆ [m] such that Card(A) < Card(B),
then Cν is strictly increasing.

Recall that, according to the Remark II.9, the admissible
order ≤Adm induced by the sequence M̃in = (M1, . . . ,Mn)
such that Mi(x) = xi, for all x = (x1, . . . , xn) ∈ Ln, is the
lexicographical order ≤Lex. So the following theorem gives
us the conditions under which an M̃in-Choquet integral on
Ln is monotone with respect to ≤Lex.

Theorem IV.10. Let CM̃in
ν : (Ln)m → Ln be a vector

M̃in-Choquet integral given by Definition III.3 and CM̃out
ν :

(Ln)m → Ln be a vector M̃out-Choquet integral given by
Definition III.4. For all i ∈ [n], let Cνi be strictly increasing
and Mi(x) = xi, for all x = (x1, . . . , xn) ∈ Ln. Let
≤Adm be the admissible order induced by the sequence
M̃ = (M1, . . . ,Mn), according to the Proposition II.8 (≤Adm

is ≤Lex). Then:
(i) For all x1, . . . ,xm,y ∈ Ln, one

has that: CM̃in
ν (x1, . . . ,xm) ≤Adm

CM̃in
ν (x1, . . . ,xk−1,y,xk+1, . . .xm) whenever

xk ≤P y, for some k ∈ [m];
(ii) For all x1, . . . ,xm,y ∈ Ln, one

has that: CM̃out
ν (x1, . . . ,xm) ≤Adm

CM̃out
ν (x1, . . . ,xk−1,y,xk+1, . . .xm) whenever

xk ≤P y, for some k ∈ [m].

Proof. (i) Consider xk ≤Adm y. Then there exists p ∈ [n]
such that Mi(xk) = Mi(y), for all i ∈ [p − 1] and
Mp(xk) < Mp(y), that is, xk1 = y1, . . . , xk,p−1 = yp−1 and
xkp < yp. Hence, for all i ∈ {1, . . . , p − 1}, we have that:
Cνi(x1i, . . . , xmi) = Cνi(x1i, . . . , xk−1,i, yi, xk+1,i, . . . xmi)
and Cνp

(x1p, . . . , xmp) <
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Cνp
(x1p, . . . , xk−1,p, yp, xk+1,p, . . . xmp), from

which it follows that CM̃in
ν (x1, . . . ,xm) ≤Adm

CM̃in
ν (x1, . . . ,xk−1,y,xk+1, . . .xm). (ii) The proof follows

from that of item (i), considering Proposition III.6.

G. Comonotone additivity

First, we study the comonotone additivity with respect to
the partial order ≤P . We have the following result for M̃in-
Choquet integrals.

Theorem IV.11. Let CM̃in
ν : (Ln)m → Ln be a vector M̃in-

Choquet integral given by Definition III.4, where Mi are addi-
tive for all i ∈ [n]. Then, for all x1, . . . ,xm,y1, . . . ,ym ∈ Ln

such that there exists a permutation π : [m] → [m] with
xπ(1) ≤P . . . ≤P xπ(m) and yπ(1) ≤P . . . ≤P yπ(m), it holds
that: CM̃in

ν (x1 + y1, . . . ,xm + ym) = CM̃in
ν (x1, . . . ,xm) +

CM̃in
ν (y1, . . . ,ym)

Proof. By the additivity of Mi and the observation that,
for all i ∈ [n], the vectors (Mi(x1), . . . ,Mi(xm)),
(Mi(y1), . . . ,Mi(ym)) are comonotone whenever
(x1, . . . ,xm), (y1, . . . ,ym) are comonotone with respect to
≤P , we have that:

CM̃in
ν (x1 + y1, . . . ,xm + ym) =

CM̃in
ν (Cν1

(M1(x1 + y1), . . . ,M1(xm + ym)), . . . ,

Cνn
(Mn(x1 + y1), . . . ,Mn(xm + ym))) =

CM̃in
ν (Cν1

(M1(x1) +M1(y1), . . . ,M1(xm) +M1(ym)), . . .

Cνn
(Mn(x1) +Mn(y1), . . . ,Mn(xm)) +Mn(ym))) =

CM̃in
ν (Cν1

(M1(x1), . . . ,M1(xm))+

Cν1
(M1(y1), . . . ,M1(ym)),

Cνn
(Mn(x1), . . . ,Mn(xm))+

Cνn
(Mn(y1), . . . ,Mn(ym))) =

CM̃in
ν (x1, . . . ,xm) +CM̃in

ν (y1, . . . ,ym).

Next, an immediate consequence with respect to the addi-
tivity of M̃in-Choquet integral integrals is given.

Corollary IV.12. Under the assumptions of Theorem IV.11, if
νi are additive for all i ∈ [n], then CM̃in

ν is additive.

However, since the comonotonicity of the vectors
(x1, . . . ,xm), (y1, . . . ,ym) does not imply the comonotonic-
ity of the vectors (x1, . . . ,xn), (y1, . . . ,yn), we only have
the following result about the additivity of CM̃out

ν .

Theorem IV.13. Let CM̃out
ν : (Ln)m → Ln be a M̃out-Choquet

integral given by Definition III.4 where Mi are additive, for
all i ∈ [n]. If νi are additive for all i ∈ [n], then CM̃out

ν is
additive.

Proof. By the additivity of Mi and νi, we have that:

CM̃out
ν (x1 + y1, . . . ,xm + ym) =

CM̃out
ν (M1(Cν1

(x1 + y1), . . . , Cνn
(xn + yn)), . . . ,

Mn(Cν1
(x1 + y1), . . . , Cνn

(xm + ym))) =

CM̃in
ν (M1(Cν1

(x1) + Cν1
(y1), . . . , Cνn

(xn) + Cνn
(yn)), . . .

Mn(Cν1
(x1) + Cν1

(y1), . . . , Cνn
(xn)) + Cνn

(yn)))

= CM̃in
ν (M1(Cν1(x

1), . . . , Cνn(x
n))+

M1(Cν1
(y1), . . . , Cνn

(yn)), . . . ,

Mn(Cν1
(x1), . . . , Cνn

(xn))+

Mn(Cν1
(y1), . . . , Cνn

(yn)))

= CM̃out
ν (x1, . . . ,xm) +CM̃out

ν (y1, . . . ,ym).

Remark IV.14. Since there is not a relation between
the comonotonicity of the vectors (Mi(x1), . . . ,Mi(xm)),
(Mi(y1), . . . ,Mi(ym)) and the comonotonicity of the vectors
(x1, . . . ,xm), (y1, . . . ,ym) with respect to ≤Adm, an M̃in-
Choquet integral on Ln is not comonotone additive with
respect to admissible orders ≤Adm. The same holds for a
M̃out-Choquet integral on Ln.

H. Properties of the Vector Choquet Integral

Remark IV.15. According to Proposition III.6 and the results
in Section IV, a vector Choquet integral on Ln defined by
Definition III.1, Cν : (Ln)m → Ln is:

• symmetric (if νi is symmetric for each i ∈ [n]);
• satisfies the boundary conditions;
• idempotent;
• self-dual;
• shift-invariant;
• positively homogeneous;
• averaging with respect to ≤P , and in the sense of

Corollary IV.7, also with respect to ≤Adm;
• monotone with respect to ≤P , and monotone with respect

to ≤Lex if Cνi
are strictly increasing for all i ∈ [n];

V. VCI-LSTM: LSTM UNIT ARCHITECTURE
MODIFICATION BASED ON THE VECTOR CHOQUET

INTEGRAL

This section explains the Choquet integral-based LSTM
(VCI-LSTM), that is, the introduction of the definitions set
out in the previous sections in the architecture of this kind of
recurrent neural networks.

The modification is based in two steps:
1) The normalization of sequential data vectors using the

sigmoid function. Instead of applying the sigmoid func-
tion after aggregating the data, we first normalise the data
to [0, 1]H element-wise with the sigmoid function.

2) The replacement of the classical operator of the LSTM
network (sum of vectors) by the aggregation of vectorial
data using an n-dimensional aggregation function

M : ([0, 1]H)3 → [0, 1]H .
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In this case M (Fig. 2) is the Vector Choquet Integral
(Cν , Definition III.1). The new equations that configure
the VCI-LSTM performance generated by modifying the
aggregation function are represented in Figure 2, where it
is shown the modified part of Figure 1 (standard LSTM).

gate g ∈ {f, i, o}
Cν (σ(Wgxx

(t)), σ(Wghh
(t−1)), σ(bg))

x(t)

h(t−1)

Fig. 2: VCI-LSTM parameter fusion.

In this work, two different VCI-LSTM are considered,
depending on the type of fuzzy measure used for the Choquet-
like integral:

• Fixed fuzzy measure-based VCI-LSTM. We adopt the
power measure (Example II.4, Eq. (1)), fixing q = 2 in the
exponent of the power fuzzy measure ν2 : 2[3] → [0, 1].
We use a superadditive fuzzy measure (setting q = 2 in
the exponent of the power fuzzy measure), in which the
elements have a negative correlation between the data and
therefore analyse what is the behaviour of the integral
based on such a measure in which complementarity
between the data is assumed. However, as we show in
Section VI, we also consider the possibility of a positive
correlation between the data.
Therefore, the fuzzy measures sequence used for the
vector Choquet-like discrete integral is given by ν2 =
(ν2, . . . , ν2). This aggregation operator is denoted by
VCI2.

• Parameter-learned fuzzy measure-based VCI-LSTM. In
this case, the power measure (Example II.4, Eq. (1)) is
used, but with q ∈ (0,∞) as a trainable parameter of
the model. Then, in the same way as the recurrent neural
network model learns weights matrices, it also learns this
parameter. The used fuzzy measure is denoted by νq and
the sequence of fuzzy measures is νq = (νq, . . . , νq).
This aggregation operator is denoted by VCIq .

To compare the LSTM (Sum) and the two types of VCI-LSTM
(VCI2 and VCIq), we also use a statistical order, the maximum
(Max), which is also an extreme concrete case of the Choquet
integral.

VI. EXPERIMENTAL STUDY

The present section presents the experimental study done
to test the architecture modification raised in Section V.
The section is divided into three subsections. The first two
ones correspond to the two completed experimental blocks:
sequential image classification and text classification. In each
of them, the datasets used, the specific architecture and the
experimental results obtained are explained. The third one
corresponds to the realized analysis about the fuzzy measure
on the modelling context.

A. Experiment 1: Sequential image classification

Although the use of images in a recurrent neural network
may be unusual due to the sequential dependence of the

input information, in many recurrent network architectures
images are used as benchmarks [39], [40]. This is because
images offer a large amount of information in each pixel. This
information in this case is interpreted as sequential information
[41].

1) Experimental framework: In this experiment three stan-
dard image datasets are used. In Table I the most important
attributes for each of them are displayed. All of them are
balanced datasets.

TABLE I: First experiment dataset descriptions

Name Description Train Test Dims # Classes
Fashion-MNIST [42] clothing items 60.000 10.000 28× 28 10

MNIST [43] handwriting digits 60.000 10.000 28× 28 10
EMNIST [44] handwriting letters 88.800 14.800 28× 28 27

Regarding the used neural architecture, as we can see in
Figure 3, we set up an structure in which the images are taken
as sequential data. In each time step t ∈ {1, . . . , T} a row of
the image is taken as input data x(t) ∈ [0, 1]N . In the case of
these three datasets in particular, T = N = 28.

The used architecture consists in two layers. The first one,
an LSTM unit (Section II-B) with H = 128 hidden size
layer. Second, a dense layer, that connects the H nodes
from the LSTM with NC nodes of the dense layer, giving
a probability value in [0, 1] to each of them. If (φ1, . . . , φNC

)
is the vector of probabilities extracted from the dense layer,
being NC the number of classes, it is classified in the class
number corresponding to the maximum probability value of
the softmax vector (S = (S1, . . . , SNC

)). That is, Sj =

argmax
exp(φj)∑NC

k=1 exp(φk)
for j ∈ {1, . . . , NC}.

In this experiment, for each dataset and for each aggrega-
tion, 10 independent runs of 40 epochs each were performed.
The learning rate set for the experiment is α = 0.1 and the
optimization method used for learning has been the stochastic
gradient descent (SGD) [45]. The optimization method used
is the Cross Entropy Loss.

...
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LSTM

Dense

ŷ(1)

x(2)

LSTM

Dense

ŷ(2)

x(s)

LSTM

Dense

ŷ(s)

...

T

N

x(1)∈RN

Fig. 3: Graphical representation of the used architecture.

2) Experimental results: We show the results obtained after
calculating the arithmetic mean and standard deviation of 10
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independent runs for each of the aggregation functions (Table
II) and the summation. The result with the greatest average
accuracy is highlighted in bold.

First, regarding the results obtained with a single aggre-
gation function (Table II), in two of the three cases, the
best average result is obtained when we aggregate the values
using the vector Choquet integral, but when the exponent
q ∈ (0,∞) it is learned by the recurrent neural network itself.
This means that using the vector Choquet integral and learning
this parameter, the algorithm adjusts better the weighting of
the data as well as the interaction modeling between them.

The main difference we see in the case of the dataset
Fashion-MNIST, where the data fusion with the vector Cho-
quet integral improves 0.33 points in comparison with the
classical form of data fusion in this architecture, the sum. In
the case of the other datasets, in MNIST does not improve and
EMNIST improves very little in comparison with the sum. The
contrast on the results between the first and second and third
datasets can also be seen in the obtained p-values after aplying
statistical test (Table III). Fashion-MNIST dataset results with
VCI-LSTM are statistically different in comparison with the
standard one, but this is not the case for EMNIST. This
difference between the results is justified with the different
distribution of the pixels in the images of three datasets.
Whereas Fashion-MNIST dataset has more distributed infor-
mation, MNIST and EMNIST are datasets with less distributed
information, where less correlation and interaction between
them may be.

TABLE II: Different aggregation functions and summation
mean accuracy for the first architecture

Aggr. Fn. Fashion-MNIST MNIST EMNIST
Max 86.45± 0.69 98.88± 0.10 92.76± 0.10
VCI2 87.22± 0.28 98.08± 0.30 91.65± 0.42
VCIq 89.33± 0.17 98.68± 0.10 92.80± 0.10
Sum 89.00± 0.24 98.90± 0.08 92.78± 0.13

TABLE III: Mann-Whitney U test p-values for best accuracy
aggregation comparison against Sum

Aggr. Fn. Fashion-MNIST MNIST EMNIST
Sum/VCIq .002 .025 .248

B. Experiment 2: Text classification - Sentiment analysis

Second, we use natural language processing datasets to eval-
uate the VCI-LSTM. In this case, we propose an architecture
different from the previous case, since for language processing
and text classification a deep recurrent network is necessary.
For it, we will chain more than one LSTM units.

TABLE IV: Second experiment dataset descriptions

Name Description Train Test # Classes
IMDb [25] film reviews 25.000 25.000 2
TREC [46] questions classif. 5.500 500 6

sms spam [26] spam filtering 3.344 2.240 2

1) Experimental framework: As we can see in Table IV,
the datasets are different from each other, TREC has little
more than 20% of data volume of IMDb dataset, and also has
the triple of classes. Also, IMDb dataset is balanced, TREC is
not enough balanced for all the classes and sms spam dataset
So, we see the operation of the architecture in very different
datasets.

Before entering in the architecture used in this second

x

VCI-LSTM 2

Dense

ŷ

VCI-LSTM 1

GloVe Embedding

Nc

256

256

300

Fig. 4: Graphical representation of the architecture used in the
second experiment

experiment, we performed a pre-processing of the data, based
on the ”tokenization“ and the construction of the vocabulary.
Tokenization consists of separating words using the spaces
between them as separators. Building vocabulary is a larger
process. First, a positive integer P is fixed (in this experiment
we fix it at 25, 000). Subsequently, the P most frequent words
are encoded with numbers from the set {1, . . . , P}. Words that
are not among the most frequent P are encoded with the value
P+1, which means unknown. To keep the same length in each
sentence within a batch, the value P + 2 is used representing
the padding. In this way, each example of the data set consists
of a vector x ∈ {1, . . . P + 2}s.

Regarding the used architecture (Figure 4), we establish a
structure in which at each timestep t ∈ {1, . . . , T} an element
of the input vector x(t) ∈ {1, . . . , P + 2} is taken, which
represents a word.

The architecture consists in four layers: embedding layer,
double stacked LSTM units (which includes two layers) and
a dense layer:

• Embedding [47]. It is the way to reduce the input space
(in this case, a sentence) to a smaller dimension. It
consists of a simple search matrix that encodes the input
words in vectors, taking values depending on how the
words are related in the input texts. In this sense, words
with close representations have a greater relationship.
The relationship between words is defined by subtraction
of vectors. For example, if we subtract the vector that
represents Ireland from the vector that represents Dublin
and add the vector that represents England, we would
obtain a vector close to the one that represents London
[48]. In this case, for obtaining vector representation
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of words we use the GloVe (Global Vectors for Word
Representation) [49] unsupervised learning algorithm,
with 6B-sized tokens and 50 or 300 dimensions vectors,
depending on the dataset.

• Double stacked LSTM units. Two LSTM memory units,
joined together; each of them has the size of H = 256
nodes in their hidden layer. The first memory unit, LSTM
1, connects 50 nodes from the embedding with 256 from
the first cell. The second, LSTM 2, joins the 256 nodes
of LSTM 1 with this second cell.

• Dense layer. Finally, a fully connected or dense layer is
used. It connects the 256 nodes of the LSTM unit with
10 nodes, assigning a probability value of [0, 1] to each
of them. The operation of this layer is the same as in the
previous experiment.

In this experiment, for each dataset and for each function
combination, 10 independent runs of 15 epochs each were
performed (25 epochs for the last one). The learning rate set
for the experiment is α = 1 × 10−3 and the optimization
method used for learning has been the Adam algorithm [50].

2) Experimental results: Next, we show the arithmetic
mean and standard deviation of the results obtained for 10
independent runs in this second experiment. As in the previous
experiment, for each data set, the aggregation with the highest
mean accuracy is highlighted in bold. First, we will analyze the
results obtained assigning the same function for both stacked
LSTM units. As we can see in Table V, when we use the

TABLE V: Different aggregation functions and summation
mean accuracy for double stacked units with same function
for each one

Aggr. Fn. IMDb TREC sms spam
Max 85.69± 0.68 81.80± 4.02 94.83± 4.64
VCI2 77.47± 2.02 79.80± 2.50 94.17± 4.07
VCIq 85.93± 0.29 83.38± 1.54 97.94± 0.68
Sum 86.04± 0.19 80.51± 4.61 91.11± 4.45

TABLE VI: Mann-Whitney U test p-values for best accuracy
aggregation comparison against Sum

Aggr. Fn. IMDb TREC sms spam
Sum/VCIq .158 .035 < .001

same unit for both double stacked units, VCI-LSTM (with
LSTM-learned fuzzy measure parameter) generally obtains
better results. Regarding to TREC set, there is a difference of
2.87 points in comparison with classical unit. Bigger average
difference is observed in sms spam one, where is a gaining of
6.83 points, which also justifies that VCI-LSTM regularizes
better the learning in comparison with the LSTM. This means
that, in several runs with another fusion operators, it is more
difficult to reach a global minimum of the loss function, and
recurrently it ends up sinking to a local minimum, or stag-
nating at a saddle point. Regarding to IMDb set, although the
mean accuracy value is lower than the baseline, the difference
in comparison with summation is smaller, but the number
of epochs that the algorithm needs to reach the convergence

is smaller (Figure 5). Also, we have evaluated our results
applying Mann-Whitney U statistical test [51], where we have
upholded that all of them are statistically significant.

Fig. 5: Comparison of the evolution of the mean accuracy for
the validation set, for VCI-LSTM (VCIq and VCI2) and LSTM
(Sum) for IMDb dataset.
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In order to try all possible combinations, the second part
of this experiment consists in using different units (different
functions) in the double stacked units. In this sense, for
each dataset, we run all unit combinations between the three
previous aggregation functions and the summation. As in the
previous cases, we take the arithmetic mean and standard
deviation of 10 independent runs (Table VII). The results for
same aggregations (diagonals) are also shown for comparing.

TABLE VII: Different aggregation functions and summation
mean accuracy for double stacked units with different func-
tions for each one

LSTM 1

L
ST

M
2

Aggr Max VCI2 VCIq Sum

IM
D

b Max 85.69± 0.68 86.28± 0.31 85.72± 0.33 86.83± 0.44
VCI2 85.98± 0.49 77.47± 2.02 85.15± 0.19 75.01± 9.31
VCIq 86.02± 0.46 86.49± 0.29 85.93± 0.29 86.31± 0.39
Sum 85.30± 0.55 82.31± 3.54 86.04± 0.09 86.04± 0.04

TR
E

C Max 81.80± 4.20 75.91± 6.32 79.73± 4.01 82.52± 1.52
VCI2 81.03± 2.85 79.80± 2.50 79.62± 4.28 79.45± 3.66
VCIq 83.22± 2.24 81.07± 2.18 83.38± 1.54 82.75± 1.60
Sum 82.17± 2.24 77.05± 4.05 82.64± 2.23 80.51± 4.61

sm
s

sp
am Max 94.83± 4.46 95.31± 4.33 97.26± 0.63 91.75± 4.90

VCI2 93.96± 3.96 94.17± 4.07 94.26± 3.76 92.13± 4.92
VCIq 96.60± 0.78 94.03± 4.61 97.94± 0.68 94.82± 3.81
Sum 95.14± 4.52 88.49± 3.66 97.34± 1.32 91.11± 4.41

Regarding to IMDb set, the best result is obtained with Sum-
Max combination. Nevertheless, 4 of the 5 best results are
when any kind of VCI-LSTM is used. Although the best mean
accuracy only gains 0.69 percentage points over the sum, three
best results give statistical significance p-values in comparison
with summation (Table VIII).

For TREC dataset, over all combinations, best results are
obtained when parameter-learned VCI-LSTM is used. Con-
cretely, the three best results are VCI-LSTM-based Choquet
integral and maximum combinations. The best result gains
more than 3 points against the sum. After evaluating with the
p-value (Table VIII), although the best three results gain some
points over the sum, there are only statistically significant
differences for the two best ones.

Finally, in the sms spam dataset, we can observe a big
difference in mean accuracy between the cases where self-
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TABLE VIII: Three best combinations of aggregation func-
tions in LSTM and Mann-Whitney U test p-values for best
accuracy aggregation comparison against Sum

IMDB LSTM 1 LSTM 2 Mean acc. p-value
Best comb. Sum Max 86.83± 0.44 < .001

2nd Best comb. VCI2 VCIq 86.49± 0.29 < .001
3rd Best comb. Sum VCIq 86.31± 0.39 .008

TREC LSTM 1 LSTM 2 Mean acc. p-value
Best comb. VCIq VCIq 83.38± 1.54 .042

2nd Best comb. Max VCIq 83.22± 2.24 .059
3rd Best comb. Sum VCIq 82.75± 1.60 .153

sms spam LSTM 1 LSTM 2 Mean acc. p-value
Best comb. VCIq VCIq 97.94± 0.68 < .001

2nd Best comb. VCIq Sum 97.34± 1.32 < .001
3rd Best comb. Max VCIq 97.26± 0.63 < .001

learnt VCI-LSTM unit is used and otherwise. All the VCI-
LSTM-based model results are statistically significant (Table
VIII shows for the three best ones). In this case we have also
observed that when we use VCI-LSTM with VCIq the model
does not sinks on saddle points, in comparison with other
aggregation-based units. This also explains the difference on
standard deviations between different models.

C. Analysis of the fuzzy measure on the modelling context

In this experimentation we have used the Vector Choquet
Integral based on a fixed fuzzy measure and a model-learned
fuzzy measure. Concretely, the fixed one is a superadditive
fuzzy measure in order to evaluate how the Choquet Integral
behaves with a negative correlation among data. Regarding the
model-learned fuzzy measure, we can study which fuzzy mea-
sure obtains better results based on gradient descent learning.
On the modeling context, we can observe that depending on
the fuzzy measure, the correlation between data is different,
so this adaptative method of VCI can improve some model
results. To do so, we have extracted the arithmetic mean and
standard deviation of the value of the parameter q > 0 for all
experiments in which we have learned the fuzzy VCI measure
in all LSTM cells.

TABLE IX: Values of q parameter for each dataset in the first
experiment

q > 0 Fashion-MNIST MNIST EMNIST
VCI-LSTM 0.3575± 0.0180 0.0796± 0.0174 0.1947± 0.0171

TABLE X: Values of q parameter for each dataset in the second
experiment

q > 0 IMDb TREC sms spam
VCI-LSTM 1 0.1145± 0.0208 0.0261± 0.0113 0.0358± 0.0148
VCI-LSTM 2 0.0988± 0.0221 0.0380± 0.0269 0.0417± 0.0120

On Tables IX and X we can observe that the exponent of
the average parameter of the power fuzzy measure is a small
number, always less than 0.4, and with the exception of one
dataset, less than 0.2. The standard deviation of the parameter
shows little difference between cases independently, where

it has no relation to the average value. This implies that in
the case where the mean value is similar, the width of the
parameter range is larger, while when the mean value is larger,
the width is smaller.

With the results about the average values of the parameter
of the fuzzy measure learned by the neural network, we can
observe that the fuzzy measure is always subadditive, i.e., that
there is a large positive correlation between the data.. That
is, two of the three vectors that are added in this process are
almost redundant. This means that the maximum value in each
case contains information that is also contained in the other
vector components. However, we can observe that although the
maximum function by itself obtains good results, in most cases
it needs to be complemented with other values. That is, in
terms of averaging aggregation functions, the best performing
functions are close to the maximum.

In addition, we have checked in each of the cases what the
maximum value is, on the understanding that if it were always
the same, there would be no point in training some parameters.
However, the maximum value has a similar distribution among
the values to be aggregated, which makes it necessary to use
this method of aggregating information.

VII. CONCLUSION

In this paper we have presented the Vector Choquet Integral,
as a vectorial extension of the classical Choquet-like discrete
integral, and we have studied some of its properties. Also we
have applied it in order to introduce the VCI-LSTM unit: a
modification of a LSTM recurrent neural network based on
the replacement of the summation by the VCI. We have tested
this unit in different scenarios to solve different problems.

Regarding the future work, in the theoretical side, intend
to consider new forms of n-dimensional information fusion.
In the applied side, we want to use these modifications which
are capable of n-dimensional modeling, such as, Generalized
Extended Bonferroni Means in newer and more complex
architectures, in order to optimize the information fusion
methods on recurrent neural network models based on fuzzy
measures, in order to improve the performing of more concrete
problems dealing with sequential information.
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received the M.Sc. and Ph.D. degrees 1991 and
1998, respectively, both from the Instituto de In-
formatica of Universidade Federal do Rio Grande
do Sul, Brazil. In 2015, she had a Pos-Doc post-
doctorate grant from the Science Without Bor-
ders Program from the Brazilian Research Funding
Agency CNPq, to join GIARA research group at
Universidad Publica de Navarra (UPNA), and, in
2017, she had a talent grant at the Institute of Smart
Cities of Universidad Publica de Navarra, Spain.

Currently, she is a full professor with Universidade Federal do Rio Grande,
Brazil, a Researcher level 1 of CNPq, and a visitant professor with UPNA.

Susana Montes received the M.Sc degree in math-
ematics, option statistics and operational research,
from the University of Valladolid, Valladolid, Spain,
in 1993, and the Ph.D. (cum laude) degree from the
University of Oviedo, Gijón, Spain, in 1998.

She is currently a Full Professor with the De-
partment of Statistics and Operational Research,
University of Oviedo, where she is the Leader of the
research group UNIMODE. She has several publica-
tions in international journals and communications
in international conferences, and she is participating

in several national and international projects at the moment, some of them
led by her. Dr. Montes received the Best Mathematics Ph.D. Thesis Award
from the University of Oviedo. She is currently the Secretary of EUSFLAT
and Vice-President of IFSA.

Irene Dı́az received the M.Sc degree in mathemat-
ics, option applied mathematics and computation,
from the University of Oviedo, Oviedo, Spain, in
1995, and the Ph.D. (cum laude) degree from the
University Carlos III of Madrid, Spain, in 2001.

She is currently a Full Professor of Computer
Science and Artificial Intelligence at the Department
of Computer Science of the University of Oviedo,
where she belongs to the research group UNIMODE.
She has several publications in international journals
and communications in international conferences,

and she is participating in national and international projects at the moment,
some of them led by her.

Humberto Bustince received the Graduate degree in
physics from the University of Salamanca in 1983
and Ph.D. in mathematics from the Public University
of Navarra, Pamplona, Spain, in 1994. He is a
Full Professor of Computer Science and Artificial
Intelligence in the Public University of Navarra,
Pamplona, Spain where he is the main researcher
of the Artificial Intelligence and Approximate Rea-
soning group, whose main research lines are both
theoretical (aggregation functions, information and
comparison measures, fuzzy sets, and extensions)

and applied (image processing, classification, machine learning, data mining,
and big data). He has led 11 I+D public-funded research projects, at a national
and at a regional level. He is currently the main researcher of a project in the
Spanish Science Program and of a scientific network about fuzzy logic and
soft computing. He has been in charge of research projects collaborating with
private companies. He has taken part in two international research projects.
He has authored more than 210 works, according to Web of Science, in
conferences and international journals, with around 110 of them in journals
of the first quartile of JCR. Moreover, five of these works are also among
the highly cited papers of the last ten years, according to Science Essential
Indicators of Web of Science. Dr. Bustince is the Editor-in-Chief of the online
magazine Mathware & Soft Computing of the European Society for Fuzzy
Logic and technologies and of the Axioms journal. He is an Associated
Editor of the IEEE Transactions on Fuzzy Systems Journal and a member
of the editorial board of the Journals Fuzzy Sets and Systems, Information
Fusion, International Journal of Computational Intelligence Systems and
Journal of Intelligent & Fuzzy Systems. He is the coauthor of a monography
about averaging functions and coeditor of several books. He has organized
some renowned international conferences such as EUROFUSE 2009 and
AGOP. Honorary Professor at the University of Nottingham, National Spanish
Computer Science Award in 2019 and EUSFLAT Excellence Research Award
in 2019.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2022.3222035

 




