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A B S T R A C T

The relaxation of the property of monotonicity is a trend in the theory of aggregation and fusion functions
and several generalized forms of monotonicity have been introduced, most of which are based on the notion
of directional monotonicity. In this paper, we propose a general framework for generalized monotonicity that
encompasses the different forms of monotonicity that we can find in the literature. Additionally, we introduce
various new forms of monotonicity that are not based on directional monotonicity. Specifically, we introduce
dilative monotonicity, which requires that the function increases when the inputs have increased by a common
factor, and a general form of monotonicity that is dependent on a function 𝑇 and a subset of the domain 𝑍.
This two new generalized monotonicities are the basis to propose a set of different forms of monotonicity.
We study the particularities of each of the new proposals and their links to the previous relaxed forms of
monotonicity. We conclude that the introduction of dilative monotonicity complements the conditions of weak
monotonicity for fusion functions and that (𝑇 ,𝑍)-monotonicity yields a condition that is slightly stronger than
weak monotonicity. Finally, we present an application of the introduced notions of monotonicity in sentiment
analysis.
. Introduction

The task of representing a collection of numerical data by a single
umber is common in many data science processes. Historically, several
lasses of functions have been proposed to address the problem, among
hich means are a prominent example [1]. Nowadays, this task is
pproached by aggregation functions, which, since the last decades of
he past century, have become a theory of study of their own [2–4].
o specify, an aggregation function 𝐴 is a function that takes 𝑛 values
rom the real unit interval, outputs a number in the same interval and
atisfies some fundamentals: it must satisfy the boundary conditions
(0,… , 0) = 0 and 𝐴(1,… , 1) = 1 and it must be increasing with respect

o all its arguments. Aggregation functions are an active research topic,
oth from the theoretical and applied perspectives [5–7].

One of the tendencies in the theory of aggregation is the relaxation
f the monotonicity condition [8]. The existence of functions that do
ot satisfy the monotonicity property but are undoubtedly valid to
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fuse information, such as the Lehmer mean [9] or the mode function,
motivated the introduction of weaker forms of monotonicity. The first
attempt was the introduction of weak monotonicity [10], which focuses
on the case in which all the inputs increase by the same amount.
Then, this concept was generalized by directional monotonicity [11] by
considering increasingness along a fixed real direction 𝐫 ∈ R𝑛. Later on,
directional monotonicity has become the basis of several new relaxed
forms of monotonicity that are, to some extent, relative to directions.
For example, cone monotonicity deals with monotonicity along all the
directions within a cone [12], ordered directional [13] and strength-
ened ordered directional monotonicity [14] deal with monotonicity
according to a direction that is dependent of the relative order of
the inputs, pointwise directional monotonicity [15] studies directional
monotonicity from a local perspective and ( ,)-monotonicity studies
monotonicity with respect to a family of vectors [16]. Some of these
notions of monotonicity have been applied to computer vision [17] and
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fuzzy rule based classification systems [18,19] and, currently, the relax-
ation of monotonicity is still a trend in the theory of aggregation [20–
22].

In this work, our objective is twofold. On the one hand, we aim
at obtaining a formal generalization of monotonicity for 𝑛-ary fusion
functions 𝐹 ∶ [0, 1]𝑛 → [0, 1], that extends the relaxed forms of

onotonicity that can be found in the literature. On the other hand,
e propose some new forms of relaxed monotonicity that are not based
n directional monotonicity and do not necessarily rely on a direction.
pecifically, we study the situation in which the inputs of the function
ave increased by a constant factor. This originates the concept of dila-
ive monotonicity, which, in turn, is the basis for reversed dilative and
irectional dilative monotonicity. We also propose a more general form
f monotonicity, its relation to the rest of forms of monotonicity and its
otential role in applications. Moreover, we illustrate the applicability
f the proposed types of monotonicity in an example of a sentiment
nalysis (text classification) problem.

This work is organized in the following manner. In Section 2 we
ecall the definitions of some of the forms of monotonicity that we can
ind in the literature. In Section 3 we provide the general framework
or generalized monotonicity and we relate it to the existing forms
f relaxed monotonicity. In Section 4 we introduce the concepts of
ilative, reversed dilative and directional dilative monotonicity and
tudy their properties. In Section 5 we present a general form of
onotonicity that relies on a function 𝑇 and a subset 𝑍 ⊂ [0, 1]𝑛, we

study its properties paying special attention to the case in which 𝑇
is defined in terms of a binary disjunctive aggregation function and
a binary conjunctive aggregation function. We finish this work with
some conclusions of our findings and a remark about future works in
Section 7.

2. Preliminaries

In this section we recall the definition of an aggregation function
as well as the formal definitions of the different forms of relaxed
monotonicity in the literature.

Let us start with the concept of standard monotonicity. From here
on, let 𝑛 ∈ N = {1, 2,…}.

Definition 2.1. A function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is increasing (resp.
ecreasing), whenever for all 𝐱, 𝐲 ∈ [0, 1]𝑛 such that 𝑥𝑖 ≤ 𝑦𝑖 for all
∈ {1,… , 𝑛}, it holds that 𝐹 (𝐱) ≤ 𝐹 (𝐲) (resp. 𝐹 (𝐱) ≥ 𝐹 (𝐲)).

In this work we deal with fusion functions. In general, a fusion
function can be seen as a 𝑛-ary grupoid, assigning to 𝑛 real values
from [0, 1] a unique output from the same interval. Whenever certain
additional properties are fulfilled, we can recall the concept of an
aggregation function.

Definition 2.2. A fusion function 𝐴 ∶ [0, 1]𝑛 → [0, 1] is an aggregation
function if the following conditions hold:

• 𝐴(𝟎) = 0, where 𝟎 = (0,… , 0);
• 𝐴(𝟏) = 1, where 𝟏 = (1,… , 1);
• 𝐴 is increasing.

Additionally, we say that an aggregation function 𝐴 is conjunctive
if 𝐴(𝐱) ≤ min(𝐱) for all 𝐱 ∈ [0, 1]𝑛, it is disjunctive if 𝐴(𝐱) ≥ max(𝐱) and
it is averaging if min(𝐱) ≤ 𝐴(𝐱) ≤ max(𝐱) for all 𝐱 ∈ [0, 1]𝑛.

A function that satisfies the boundary condition is known as a
semi-aggregation function [23].

Definition 2.3 ([23]). A function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is a semi-
aggregation function if

• 𝐹 (𝟎) = 0;
• 𝐹 (𝟏) = 1.
2

In this work, we deal with functions that meet the boundary con-
ditions, i.e., they are semi-aggregation functions, and also satisfy some
kind of relaxed form of monotonicity.

Weak monotonicity was the first attempt at relaxing the monotonic-
ity condition for aggregation functions. Thus, it is less restrictive than
standard monotonicity but ensures that the output increases whenever
all the inputs have increased by the same amount.

Definition 2.4 ([10]). A function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is weakly increas-
ing (resp. weakly decreasing), if for all 𝑐 > 0 and (𝑥1,… , 𝑥𝑛) ∈ [0, 1]𝑛

such that 0 ≤ 𝑥𝑖+ 𝑐 ≤ 1 for all 𝑖 ∈ {1,… , 𝑛}, it holds that 𝐹 (𝑥1,… , 𝑥𝑛) ≤
𝐹 (𝑥1 + 𝑐,… , 𝑥𝑛 + 𝑐) (resp. 𝐹 (𝑥1,… , 𝑥𝑛) ≥ 𝐹 (𝑥1 + 𝑐,… , 𝑥𝑛 + 𝑐)).

This property studies monotonicity along the direction defined by
he fixed vector 𝟏. Directional monotonicity arose from considering an
rbitrary vector 𝟎 ≠ 𝐫 ∈ R𝑛.

efinition 2.5 ([11]). Let 𝟎 ≠ 𝐫 ∈ R𝑛. A function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is
-increasing (resp. 𝐫-decreasing), if for all 𝑐 > 0 and 𝐱 ∈ [0, 1]𝑛 such that
+ 𝑐𝐫 ∈ [0, 1]𝑛, it holds that 𝐹 (𝐱) ≤ 𝐹 (𝐱 + 𝑐𝐫) (resp. 𝐹 (𝐱) ≥ 𝐹 (𝐱 + 𝑐𝐫)).

Weak and directional monotonicity refer to a function property, but
hey can be also studied in a pointwise manner, i.e., focusing on a
pecific point of the domain.

efinition 2.6 ([15]). Let 𝟎 ≠ 𝐫 ∈ R𝑛. A function 𝐹 ∶ [0, 1]𝑛 → [0, 1]
s 𝐫-increasing (resp. 𝐫-decreasing) at 𝐱, if for all 𝑐 > 0 such that
+ 𝑐𝐫 ∈ [0, 1]𝑛, it holds that 𝐹 (𝐱) ≤ 𝐹 (𝐱 + 𝑐𝐫) (resp. 𝐹 (𝐱) ≥ 𝐹 (𝐱 + 𝑐𝐫)).

This pointwise condition can be used to characterize the general
ondition of directional monotonicity (and other types of monotonicity,
ee [15]).

There are some other relaxed forms of monotonicity that rely on
ncreasingness with respect to more than a single vector. For example,
he concept of cone monotonicity [12] was originally presented for
ositive cones 𝐶 ⊂ (R+)𝑛. In general, it can be defined for any cone
⊂ R𝑛.

efinition 2.7 ([12]). Let 𝐶 ⊂ R𝑛 be a nonempty cone. A func-
ion 𝐹 ∶ [0, 1]𝑛 → [0, 1] is cone increasing (resp. cone decreasing)
ith respect to 𝐶 if 𝐹 is directionally increasing (resp. directionally
ecreasing) with respect to any direction 𝐫 ∈ 𝐶.

Moreover, directional monotonicity has been further generalized by
 ,)-monotonicity [16], which is defined with respect to a family of
unctions  and a family of vectors  .

efinition 2.8 ([16]). Let  = {𝑔𝑗 ∶ 𝐷 → [0, 1] ∣ 𝐷 ⊆ [0, 1]2 and 𝑗 ∈
1,… , 𝑛}} be a family of functions and  ⊆ [0, 1]𝑛 ⧵ {𝟎} a family
f vectors. A function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is ( ,)-increasing (resp.
 ,)-decreasing) if for every 𝐫 = (𝑟1,… , 𝑟𝑛) ∈  it holds that

(𝑔1(𝑟1, 𝑥1),… , 𝑔𝑛(𝑟𝑛, 𝑥𝑛)) ≥ 𝐹 (𝑥1,… , 𝑥𝑛)

resp. 𝐹 (𝑔1(𝑟1, 𝑥1),… , 𝑔𝑛(𝑟𝑛, 𝑥𝑛)) ≤ 𝐹 (𝑥1,… , 𝑥𝑛)), where 𝑔𝑗 ∈  and
𝑟𝑖, 𝑥𝑖) ∈ 𝐷 for any 𝑖.

Other forms of monotonicity, such as OD, SOD monotonicity or
irectional monotonicity in a more general framework, can be found
n [13,14,22].

Additionally, let us recall the concept of positive homogeneity.

efinition 2.9. A function 𝐹 ∶ R𝑛 → R is positively homogeneous if
or any 𝛼 ≥ 0 and any 𝐱 ∈ [0, 1]𝑛, it holds that 𝐹 (𝛼𝐱) = 𝛼𝐹 (𝐱).
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3. Generalized monotonicity

In this section, we provide a formal generalization of all the defined
types of monotonicity for 𝑛-ary fusion functions of the form 𝐹 ∶
[0, 1]𝑛 → [0, 1]. To that end, we define monotonicity with respect to
a binary relation  on [0, 1]𝑛.

Definition 3.1. Let  ⊂ [0, 1]𝑛×[0, 1]𝑛 be a binary relation. A function
𝐹 ∶ [0, 1]𝑛 → [0, 1] is -increasing (resp. -decreasing) if for any
(𝐱, 𝐲) ∈  it holds that 𝐹 (𝐱) ≤ 𝐹 (𝐲) (resp. 𝐹 (𝐱) ≥ 𝐹 (𝐲)).

Definition 3.1 provides a framework to generalize all the aforemen-
tioned forms of monotonicity. For instance, setting

 = {(𝐱, 𝐲) ∈ [0, 1]𝑛 × [0, 1]𝑛 ∣ 𝑥𝑖 ≤ 𝑦𝑖 ∀𝑖 ∈ {1,… , 𝑛}},

e recover standard monotonicity (see Definition 2.1).

emark 3.2. The following are two special cases of binary relation:

• the universal relation: ∗ = [0, 1]𝑛 × [0, 1]𝑛;
• the empty relation: ∗ = ∅.

ote that, on the one hand, a function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is ∗-
ncreasing if and only if 𝐹 is a constant function, i.e., 𝐹 (𝐱) = 𝑐 ∈ [0, 1]
or all 𝐱 ∈ [0, 1]𝑛. The same result holds for ∗-decreasingness.

On the other hand, all functions 𝐹 ∶ [0, 1]𝑛 → [0, 1] are trivially
∗-increasing and ∗-decreasing.

Similarly, all functions 𝐹 ∶ [0, 1]𝑛 → [0, 1] are trivially -increasing
nd -decreasing for  = {(𝐱, 𝐱) ∣ 𝐱 ∈ [0, 1]𝑛}.

Moreover, if we consider two relations 1 and 2 such that 1 ⊂
2, then every fusion function that is 2-increasing is also 1-

ncreasing.

The next results show how Definition 3.1 generalizes the rest of the
iscussed forms of monotonicity.

roposition 3.3. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1]. Then, the following items hold:

(a) 𝐹 is weakly increasing if and only if 𝐹 is -increasing with

 = {(𝐱, 𝐲) ∈ [0, 1]𝑛 × [0, 1]𝑛 ∣ 𝐲 = 𝐱 + (𝑐,… , 𝑐) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐 ≥ 0}.

(b) Let 𝟎 ≠ 𝐫 ∈ R𝑛. 𝐹 is 𝐫-increasing if and only if 𝐹 is -increasing
with

 = {(𝐱, 𝐲) ∈ [0, 1]𝑛 × [0, 1]𝑛 ∣ 𝐲 = 𝐱 + 𝑐𝐫 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐 ≥ 0}.

(c) Let 𝐶 ⊆ R𝑛 be a nonempty cone. 𝐹 is cone increasing with respect
to 𝐶 if and only if 𝐹 is -increasing with

 = {(𝐱, 𝐲) ∈ [0, 1]𝑛×[0, 1]𝑛 ∣ 𝐲 = 𝐱+𝑐𝐫 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐 ≥ 0 𝑎𝑛𝑑 𝑠𝑜𝑚𝑒 𝐫 ∈ 𝐶}.

(d) Let  = {𝑔𝑗 ∶ 𝐷 → [0, 1] ∣ 𝐷 ⊆ [0, 1]2 𝑎𝑛𝑑 𝑗 ∈ {1,… , 𝑛}} be a
family of functions and  ⊆ [0, 1]𝑛 ⧵ {𝟎} a family of vectors. 𝐹 is
( ,)-increasing if and only if 𝐹 is -increasing with

 = {(𝐱, 𝐲) ∈ [0, 1]𝑛 × [0, 1]𝑛 ∣ 𝐲 =
(

𝑔1(𝑟1, 𝑥1),… , 𝑔𝑛(𝑟𝑛, 𝑥𝑛)
)

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐫 ∈  𝑤ℎ𝑒𝑟𝑒 (𝑟𝑖, 𝑥𝑖) ∈ 𝐷 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖}.

roof. Items (a)–(d) are straightforward from Definition 3.1 and from
efinitions 2.4, 2.5, 2.7 and 2.8, respectively. □

Note that Proposition 3.3 holds similarly for the cases of decreas-
ngness instead of increasingness, taking into account each type of
onotonicity.

. Some new classes of generalized monotonicity based on dila-
ion

Besides defining a framework for all the relaxed forms of monotonic-
ty that can be found in the literature, Definition 3.1 enables to define
ome new classes of relaxed monotonicity.
3

d

.1. Dilation based monotonicity

We propose a monotonicity condition that is defined whenever the
nputs are dilated by a factor.

efinition 4.1. A function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is dilative increasing
resp. decreasing) if it is 𝑑 -increasing (resp. 𝑑 -decreasing) for

𝑑 = {(𝐱, 𝐲) ∈ [0, 1]𝑛 × [0, 1]𝑛 ∣ 𝐲 = 𝑐𝐱 for some 𝑐 ≥ 1 or 𝐱 = 𝟎}.

Clearly, if a function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is increasing, then it is also
𝑑 -increasing, which puts this notion of monotonicity as a relaxed form

f monotonicity.

emark 4.2. The concept of dilative monotonicity is similar to weak
onotonicity, considering the product by a constant rather than the

ddition. Indeed, the definition could be given in the following terms: A
unction 𝐹 ∶ [0, 1]𝑛 → [0, 1] is dilative increasing (resp. decreasing) if for
ll 𝑐 ≥ 1 and 𝐱 ∈ [0, 1]𝑛 such that 𝑐𝐱 ∈ [0, 1]𝑛, it holds that 𝐹 (𝐱) ≤ 𝐹 (𝑐𝐱)
resp. 𝐹 (𝐱) ≥ 𝐹 (𝑐𝐱)).

However, dilative monotonicity is different from weak monotonic-
ty. The following is an example of a function that is weakly increasing
ut not dilative increasing.

xample 4.3. Let 𝑓 ∶ [0, 1]𝑛 → [0, 1] be an averaging aggregation
unction and let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be a function given by

𝐹 (𝐱) =
⎧

⎪

⎨

⎪

⎩

1, if 𝐱 = 𝟏;
𝑓 (𝐱), if 𝐱 ≠ 𝟏 and max(𝐱) − min(𝐱) < 0.5;
0, otherwise.

(1)

Note that 𝐹 is not increasing in general. Indeed, let 𝑛 = 2 and 𝑓 be the
rithmetic mean. Then, consider 𝐱 = (0.4, 0) and 𝐲 = (0.5, 0). Clearly,
≤ 𝐲, but 𝐹 (𝐱) = 0.2 > 0 = 𝐹 (𝐲).

Moreover, 𝐹 is weakly increasing but not 𝑑 -increasing. The fact
hat 𝐹 is weakly increasing is easy to verify since 𝑓 is increasing and
henever max(𝐱) − min(𝐱) < 0.5, then max(𝐱 + 𝑐𝟏) − min(𝐱 + 𝑐𝟏) < 0.5.
owever, considering 𝑓 to be the arithmetic mean, if we take 𝐱 =
0.4, 0.1) and 𝑐 = 2, then

(𝐱) = 𝐹 (0.4, 0.1) = 0.25 > 0 = 𝐹 (0.8, 0.2) = 𝐹 (2𝐱).

We can find also functions that are dilative increasing but not
eakly increasing.

xample 4.4. Let 𝑔 ∶ [0, 1]𝑛 → [0, 1] be an averaging aggregation
unction and let 𝐺 ∶ [0, 1]𝑛 → [0, 1] be a function given by

(𝐱) =
⎧

⎪

⎨

⎪

⎩

1, if 𝐱 = 𝟏;
𝑔(𝐱) if 𝐱 ∉ {𝟎, 𝟏} and min(𝐱)∕max(𝐱) < 0.5;
0, otherwise.

(2)

unction 𝐺 is not increasing. Indeed, if we set 𝐱 = (0.5, 0.1) and 𝐲 =
0.5, 0.5). Clearly, 𝐱 ≤ 𝐲, but 𝐺(𝐱) > 0 = 𝐺(𝐲).

Moreover, we can check that 𝐺 is not weakly increasing, but it
s 𝑑 -increasing. Indeed, the fact that 𝐺 is 𝑑 -increasing is easy to
erify since 𝑔 is increasing and whenever min(𝐱)∕max(𝐱) < 0.5, then
in(𝑐𝐱)∕max(𝑐𝐱) < 0.5. To check that 𝐺 is not weakly increasing, if we

onsider 𝑔 to be the arithmetic mean, we can take 𝐱 = (0.2, 0). Thus,
(𝐱) = 0.1. Now, if we set 𝐫 = (0.5, 1) and 𝑐 = 0.4, we can see that

(𝐱 + 𝑐𝐫) = 𝐺(0.2 + 0.4 ⋅ 0.5, 0 + 0.4 ⋅ 1) = 𝐺(0.4, 0.4) = 0.

herefore, 𝐺 is not weakly increasing.

We can also find functions that are both weakly increasing and

ilative increasing, but not increasing in the standard sense.
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Fig. 1. Illustration of the relation of the set of increasing functions, weakly increasing
functions and dilative increasing functions, with points representing functions (1), (2),
and (3).

Example 4.5. Let ℎ ∶ [0, 1]𝑛 → [0, 1] be an averaging aggregation
function and let 𝐻 ∶ [0, 1]𝑛 → [0, 1] be a function given by

𝐻(𝐱) =
{

ℎ(𝐱), if 𝐱 ≠ 𝟎 and min(𝐱)∕max(𝐱) ≥ 0.5;
0, otherwise. (3)

The function 𝐻 is not increasing. Indeed, if we set 𝐱 = (0.2, 0.2) and
𝐲 = (0.6, 0.2). Clearly, 𝐱 ≤ 𝐲, but 𝐻(𝐱) = 0.2 > 0 = 𝐻(𝐲).

However, 𝐻 is both weakly increasing and 𝑑 -increasing. Indeed,
note that if min(𝐱)

max(𝐱) ≥ 0.5, then for any 𝑐 > 0 such that 𝐱 + 𝑐𝟏 ∈ [0, 1]𝑛, it
holds that
min(𝐱 + 𝑐𝟏)
max(𝐱 + 𝑐𝟏)

=
min(𝐱) + 𝑐
max(𝐱) + 𝑐

≥ 0.5.

Then, the fact that 𝐻 is weakly increasing is easy to check.
Similarly, if min(𝐱)

max(𝐱) ≥ 0.5, then for any 𝑐 ≥ 1 such that 𝑐𝐱 ∈ [0, 1]𝑛, it
holds that
min(𝑐𝐱)
max(𝑐𝐱)

=
min(𝐱)
max(𝐱)

≥ 0.5.

Thus, it is easy to check that 𝐻 is also 𝑑 -increasing.

By Examples 4.3–4.5 we have shown that the set of functions
that are weakly increasing and the set of functions that are dilative
increasing are different sets but they have a nonempty intersection (see
Fig. 1).

Another interesting property of dilative monotonicity is its relation
with positive homogeneity. Dilative monotonicity is related to positive
homogeneity in the same way that weak monotonicity is related to
shift-invariance [10]. Namely, if a function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is
positive homogeneous, then it is dilative increasing. Indeed, if 𝐹 is
positive homogeneous and we consider 𝑐 ≥ 1 and 𝐱 ∈ [0, 1]𝑛 such that
𝑐𝐱 ∈ [0, 1]𝑛. Then, it holds that 𝐹 (𝑐𝐱) = 𝑐𝐹 (𝐱) ≥ 𝐹 (𝐱), since 𝑐 ≥ 1.

However, the converse does not hold.

Example 4.6. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be given by

𝐹 (𝐱) = 1
𝑛

𝑛
∑

𝑖=1
𝑥2𝑖 .

Clearly, 𝐹 is an aggregation function and 𝐹 is dilative increasing.
However, 𝐹 is not positive homogeneous. Indeed, let us consider 𝑛 = 4,
then

0.5 ⋅ 𝐹 (1, 1, 1, 1) = 0.5 ≠ 0.25 = 𝐹 (0.5, 0.5, 0.5, 0.5).

The fact that positive homogeneity implies dilative increasingness
enables to construct dilative increasing functions, as the following
construction method shows.
4

Theorem 4.7. Let 𝑓 ∶ [0, 1] → [0, 1] be a function such that 𝑓 (0) = 0
and 𝑓 (1) = 1. Then, 𝐹 ∶ [0, 1]𝑛 → [0, 1], given by

𝐹 (𝐱) =
⎧

⎪

⎨

⎪

⎩

0, 𝑖𝑓 𝐱 = 𝟎;

𝑓
(

min(𝐱)
max(𝐱)

)

max(𝐱), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(4)

is dilative increasing.

Proof. Given 𝛼 > 0, it holds that 𝐹 (𝛼𝐱) = 𝛼𝐹 (𝐱), therefore 𝐹 is positive
homogeneous and, hence, 𝐹 is dilative increasing. □

Remark 4.8. The construction (4) can be generalized by considering
three positively homogeneous functions 𝐴,𝐵, 𝐶 ∶ [0, 1]𝑛 → [0, 1] such
that, for all 𝐱 ∈ [0, 1]𝑛, it holds that 𝐴(𝐱) ≤ 𝐵(𝐱). Then, we can construct
a dilative increasing function 𝐹 ∶ [0, 1]𝑛 → [0, 1] given by

𝐹 (𝐱) =
⎧

⎪

⎨

⎪

⎩

0, if 𝐱 = 𝟎;

𝑓
(

𝐴(𝐱)
𝐵(𝐱)

)

𝐶(𝐱), otherwise,

with the convention 0
0 = 0.

Moreover, we can derive some properties of a function constructed
as in (4).

Proposition 4.9. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be constructed as in (4). Then,
𝐹 is idempotent.

Proof. Let 𝑡 ∈ [0, 1]. Let us show that 𝐹 (𝑡,… , 𝑡) = 𝑡. If 𝑡 = 0, then clearly
𝐹 (0,… , 0) = 0. If 𝑡 > 0, then

𝐹 (𝑡,… , 𝑡) = 𝑡𝑓
( 𝑡
𝑡

)

= 𝑡𝑓 (1) = 𝑡. □

There are other properties that are dependent on the unary function
𝑓 that we use for construction.

Proposition 4.10. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be constructed as in (4). Then,
𝐹 is continuous if and only if 𝑓 is continuous.

Proof. First of all, assume 𝐹 is continuous and 𝑓 is not. Thus, on the
one hand, there exists 𝑥0 ∈ [0, 1] such that

lim
𝑥→𝑥0

𝑓 (𝑥) ≠ 𝑓 (𝑥0).

On the other hand, let {𝐱𝑗} be a sequence given by 𝐱𝑗 = (𝑥1𝑗 , 1,… , 1)
such that lim𝑗→∞ 𝑥1𝑗 . Since 𝐹 is continuous,

lim
𝑗→∞

𝐹 (𝐱𝑗 ) = 𝐹 (𝑥0, 1,… , 1).

But,

lim
𝑗→∞

𝐹 (𝐱𝑗 ) = lim
𝑗→∞

𝐹 (𝑥1𝑗 , 1,… , 1)

= lim
𝑗→∞

𝑓 (𝑥1𝑗 ),

and 𝐹 (𝑥0, 1,… , 1) = 𝑓 (𝑥0), which is a contradiction.
For the converse, if 𝑓 is continuous, then in the case that 𝐱 ≠ 𝟎, 𝐹

is a composition of continuous functions. To show that 𝐹 is continuous
everywhere, let us consider a sequence {𝐱𝑗} such that lim𝑗→∞ 𝑥𝑗𝑖 = 0
for every 𝑖 ∈ {1,… , 𝑛}. Thus, since max(𝐱𝑗 ) tends to 0 when all the
components of 𝐱𝑗 tend to 0 and 𝑓 is bounded, it holds that

lim
𝑗→∞

𝐹 (𝑥𝑗1,… , 𝑥𝑗𝑛) = 0 = 𝐹 (0),

which implies that 𝐹 is continuous. □

Regarding the monotonicity of 𝐹 , it is not possible to characterize
the monotonicity of 𝐹 in terms of the monotonicity of 𝑓 , we only
achieve a partial result.
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Proposition 4.11. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be constructed as in (4). Then,
if 𝐹 is increasing, then 𝑓 is increasing.

Proof. Let 𝑥, 𝑦 ∈ [0, 1] such that 𝑥 ≤ 𝑦 and set 𝐱 = (𝑥, 1,… , 1) and
𝐲 = (𝑦, 1,… , 1). Clearly, 𝐱 ≤ 𝐲 and, since 𝐹 is increasing, it holds that
𝐹 (𝐱) ≤ 𝐹 (𝐲). Now, we have that 𝐹 (𝐱) = 𝑓 (𝑥) and 𝐹 (𝐲) = 𝑓 (𝑦) and,
hence, 𝑓 is increasing. □

However, the converse of Proposition 4.11 does not hold. In the
next example we show a function 𝐹 as in (4) which is not increasing,
although 𝑓 is.

Example 4.12. Let 𝑓 ∶ [0, 1] → [0, 1] be given by 𝑓 (𝑥) = 𝑥2, which is
increasing. Let 𝑛 = 2 and 𝐹 be constructed as in (4) using the defined
function 𝑓 . Thus,

𝐹 (𝑥1, 𝑥2) =

⎧

⎪

⎨

⎪

⎩

0, if (𝑥1, 𝑥2) = (0, 0)
min(𝑥1, 𝑥2)2

max(𝑥1, 𝑥2)
, otherwise.

Note that (0.2, 0.5) ≤ (0.2, 0.8), but

𝐹 (0.2, 0.5) = 0.08 > 0.05 = 𝐹 (0.2, 0.8),

nd therefore 𝐹 is not increasing.

Although the notion of dilative monotonicity is essentially different
rom directional monotonicity, it can also be characterized in terms of
ointwise directional monotonicity [15].

heorem 4.13. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be a function. Then, 𝐹 is dilative
ncreasing if and only if 𝐹 is pointwise directionally increasing in the sense
hat it is 𝐫𝐱-increasing at 𝐱 for all 𝐱 ∈ [0, 1]𝑛 with 𝐫𝐱 = (𝑥1,… , 𝑥𝑛).

roof. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be a dilative increasing function and
et 𝐱 ∈ [0, 1]𝑛. If we consider 𝐫𝐱 = (𝑥1,… , 𝑥𝑛) and 𝑐 > 0 such that
+ 𝑐𝐫𝐱 ∈ [0, 1]𝑛, it holds that

(𝐱 + 𝑐𝐫𝐱) = 𝐹 (𝐱 + 𝑐𝐱) = 𝐹 ((1 + 𝑐)𝐱),

nd by dilative increasingness, it holds that 𝐹 ((1 + 𝑐)𝐱) ≥ 𝐹 (𝐱).
herefore, 𝐹 (𝐱 + 𝑐𝐫𝐱) ≥ 𝐹 (𝐱).

For the converse, let 𝐹 be 𝐫𝐱-increasing at 𝐱 for all 𝐱 ∈ [0, 1]𝑛

ith 𝐫𝐱 = (𝑥1,… , 𝑥𝑛). Since 𝐹 (𝐱 + 𝑐𝐫𝐱) = 𝐹 ((1 + 𝑐)𝐱), to show that
(𝑑𝐱) ≥ 𝐹 (𝐱), it suffices to take 𝑐 = 𝑑 − 1. □

.2. Reversed dilative monotonicity

An alternate type of monotonicity comes from considering the dual
orm to dilation, i.e., instead of considering monotonicity in the direc-
ion of 𝐱 (as stated in Theorem 4.13), we could consider directions 𝟏−𝐱,
hich leads to reversed dilative monotonicity (see Theorem 4.17).

efinition 4.14. A function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is reversed dilative in-
reasing (resp. decreasing) if it is 𝑟𝑑 -increasing (resp. 𝑟𝑑 -decreasing)
or

𝑟𝑑 = {(𝐱, 𝐲) ∈ [0, 1]𝑛 × [0, 1]𝑛 ∣ 𝐲 = 𝐱 + 𝑠(𝟏 − 𝐱) for some 𝑠 ∈ [0, 1]}.

As with dilative increasingness, if a function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is
ncreasing, then it is also 𝑟𝑑 -increasing. Therefore, reversed dilative
onotonicity is another relaxed form of monotonicity.

Reversed dilative monotonicity is related to dilative monotonicity
nd we can construct reversed dilative increasing functions from dila-
ive increasing functions. This property can be achieved by means of
ual functions. Given a function 𝐹 ∶ [0, 1]𝑛 → [0, 1], we define its dual
𝑑 ∶ [0, 1]𝑛 → [0, 1] as
𝑑

5

(𝐱) = 1 − 𝐹 (𝟏 − 𝐱).
heorem 4.15. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be a function. Then, 𝐹 is dilative
ncreasing if and only if 𝐹 𝑑 is reversed dilative increasing.

roof. (⇒) Let 𝑠 ∈ [0, 1[ (note that the case 𝑠 = 1 is trivial) and, thus,
𝑑 (𝐱 + 𝑠(𝟏 − 𝐱)) = 1 − 𝐹 (𝟏 − (𝐱 + 𝑠(𝟏 − 𝐱)))

= 1 − 𝐹 ((1 − 𝑠)(𝟏 − 𝐱)) .

ow, since 𝐹 is dilative increasing, we can take 𝑐 = 1
1−𝑠 > 1 and it

holds that

𝐹 ((1 − 𝑠)(𝟏 − 𝐱)) ≤ 𝐹 (𝑐(1 − 𝑠)(𝟏 − 𝐱)) = 𝐹 (𝟏 − 𝐱) .

Therefore,

1 − 𝐹 ((1 − 𝑠)(𝟏 − 𝐱)) ≥ 1 − 𝐹 (𝟏 − 𝐱) ,

which proves that 𝐹 𝑑 is reversed dilative increasing.
(⇐) Let 𝐹 be reversed dilative increasing and let us take 𝐱 ∈ [0, 1]𝑛

nd 𝑐 > 1 such that 𝑑𝐱 ∈ [0, 1]𝑛. Thus,
𝑑 (𝑐𝐱) = 1 − 𝐹 (𝟏 − 𝑐𝐱) ,

nd since 𝐹 is reversed dilative increasing, we can take 𝑠 = 1− 1
𝑐 ∈]0, 1],

and then

𝐹 (𝟏 − 𝑐𝐱) ≤ 𝐹 ((𝟏 − 𝑐𝐱) + 𝑠(𝟏 − (𝟏 − 𝑐𝐱)))
= 𝐹 (𝟏 − 𝑐𝐱 + (𝑐 − 1)𝐱)
= 𝐹 (𝟏 − 𝐱).

Therefore,

𝐹 𝑑 (𝑐𝐱) ≥ 1 − 𝐹 (𝟏 − 𝐱),

hich proves that 𝐹 𝑑 is dilative increasing. □

Theorem 4.15 serves as construction method of functions satisfying
eversed dilative monotonicity. Indeed, it is possible to consider the
ual of the function given in Theorem 4.7.

emark 4.16. We have established the relation between positive
omogeneity and dilative increasingness. The case of reversed dilative
ncreasingness is related in a similar way to the dual notion of ho-
ogeneity. In [24] homogeneity is generalized by end-point linearity,
hich studies the property of a function being linear when restricted

o line segments. This way, homogeneity corresponds to 𝟎-end linearity
nd, thus, the concept is generalized to 𝐳-homogeneity, for 𝐳 ∈ R𝑛. In
ur case, reversed dilative increasingness is related to 𝟏-homogeneity
n the same way dilative increasingness is related to homogeneity
𝟎-homogeneity).

The reader can find construction methods of 𝟎- and 𝟏-homogeneous
unctions in [24], which serve as construction methods of dilative and
eversed dilative increasing functions, respectively.

Reversed dilative monotonicity can also be characterized in terms
f pointwise directional monotonicity.

heorem 4.17. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be a function. Then, 𝐹
s reversed dilative increasing if and only if 𝐹 is pointwise directionally
ncreasing in the sense that it is 𝐫𝐱-increasing at 𝐱 for all 𝐱 ∈ [0, 1]𝑛 with
𝐱 = (1 − 𝑥1,… , 1 − 𝑥𝑛).

roof. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be a reversed dilative increasing function
and let 𝐱 ∈ [0, 1]𝑛. If we consider 𝐫𝐱 = (1− 𝑥1,… , 1− 𝑥𝑛) and 𝑐 > 0 such
that 𝐱 + 𝑐𝐫𝐱 ∈ [0, 1]𝑛, it holds that

𝐹 (𝐱 + 𝑐𝐫𝐱) = 𝐹 (𝐱 + 𝑐(𝟏 − 𝐱)),

and by reversed dilative increasingness, it holds that 𝐹 (𝐱 + 𝑐(𝟏 − 𝐱)) ≥
𝐹 (𝐱). Therefore, 𝐹 (𝐱 + 𝑐𝐫𝐱) ≥ 𝐹 (𝐱).

For the converse, let 𝐹 be 𝐫𝐱-increasing at 𝐱 for all 𝐱 ∈ [0, 1]𝑛 with
𝐱 = (1 − 𝑥1,… , 1 − 𝑥𝑛). Since 𝐹 (𝐱 + 𝑐𝐫𝐱) = 𝐹 (𝐱 + 𝑐(𝟏 − 𝐱)), to show that
(𝐱 + 𝑠(𝟏 − 𝐱)) ≥ 𝐹 (𝐱), it suffices to take 𝑐 = 𝑠. □
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4.3. Directional dilative monotonicity

Similar to the extension of weak monotonicity to directional mono-
tonicity, we can define a form of dilative monotonicity by considering
a vector 𝐝 ∈ R𝑛 instead of a constant 𝑐. We call this notion directional
ilative monotonicity.

efinition 4.18. Let 𝐝 ∈ R𝑛 be such that 𝑑𝑖 ≥ 1 for all 𝑖 ∈ {1,… , 𝑛}. A
function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is dilative 𝐝-increasing (resp. 𝐝-decreasing)
if it is 𝐝-increasing (resp. 𝐝-decreasing) for

𝐝 = {(𝐱, 𝐲) ∈ [0, 1]𝑛 × [0, 1]𝑛 ∣ 𝐲 = 𝑐𝐝 ⋅ 𝐱 for some 𝑐 ≥ 0, 𝐱 ≤ 𝐲},

where ⋅ denotes the standard scalar product: 𝐝 ⋅ 𝐱 = (𝑑1𝑥1,… , 𝑑𝑛𝑥𝑛).

Remark 4.19. Note that when 𝐝 = (1,… , 1), dilative 𝐝-monotonicity
coincides with dilative monotonicity.

Directional dilative monotonicity is more restrictive than dilative
monotonicity, but it can also be considered a relaxed form of mono-
tonicity. Indeed, if a function is increasing, then it is also directional
dilative increasing for any 𝐝 ∈ R𝑛 be such that 𝑑𝑖 ≥ 1 for all 𝑖 ∈
{1,… , 𝑛}. However, there exist functions that are directional dilative
ncreasing, but not increasing.

xample 4.20. Let 𝐝 = (1.2, 1.4) and 𝐹 ∶ [0, 1]2 → [0, 1] be a function
given by

𝐹 (𝑥1, 𝑥2) =
{

0, if 𝑥2 < 0.3 or (𝑥1, 𝑥2) = (1, 0.3)
1, otherwise.

Clearly, 𝐹 is not increasing because (0.5, 0.3) ≤ (1, 0.3) and 𝐹 (0.5, 0.3) =
1 > 0 = 𝐹 (1, 0.3). However, 𝐹 is (0, 1)-increasing because whenever the
second argument increases, the value of 𝐹 increases as well. Moreover,
𝐹 is dilative 𝐝-increasing. Indeed, let 𝐱 ∈ [0, 1]2 and 𝑐 > 0 such that
𝐱 ≤ 𝑐𝐝 ⋅ 𝐱 ∈ [0, 1]2, i.e., it holds that

𝑥1 ≤ 1.2𝑐𝑥1,

and

𝑥2 ≤ 1.4𝑐𝑥2.

Suppose, for contradiction, that 𝐹 (𝑥1, 𝑥2) > 𝐹 (1.2𝑐𝑥1, 1.4𝑐𝑥2). Since 𝐹 is
(0, 1)-increasing, the only possibility is that 𝑥2 = 1.4𝑐𝑥2, which implies
𝑐 = 1

1.4 . But, in that case, 𝑥1 > 1.2 1
1.4𝑥1, which is a contradiction.

Therefore, 𝐹 is dilative 𝐝-increasing.

Although directional dilative monotonicity is a relaxed form of
monotonicity, it is still quite restrictive. This is, in part, due to the
fact that dilative 𝐝-increasingness implies dilative increasingness with
respect to more vectors.

Proposition 4.21. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] and 𝐝 ∈ R𝑛 be such that
𝑖 ≥ 1 for all 𝑖 ∈ {1,… , 𝑛}. If 𝐹 is dilative 𝐝-increasing, then 𝐹 is dilative
𝑝-increasing for every 𝑝 ∈ N, where 𝐝𝑝 = (𝑑𝑝1 ,… , 𝑑𝑝𝑛 ).

roof. For induction, the case 𝑝 = 1 coincides with the definition of
ilative 𝐝-increasingness. Assume that 𝐹 is dilative 𝐝𝑝-increasing for
very 𝑝 ∈ {1,… , 𝑘}. Let us show that 𝐹 is also dilative 𝐝𝑘+1-increasing.
et 𝐱 ∈ [0, 1]𝑛 and 𝑐 > 0 such that 𝐱 ≤ 𝑐𝐝𝑘+1 ⋅𝐱 ∈ [0, 1]𝑛. Note that, since
𝑖 ≥ 1, it holds that

≤ 𝑐𝐝𝑘 ⋅ 𝐱 ≤ 𝑐𝐝𝑘+1 ⋅ 𝐱 ∈ [0, 1]𝑛.

ince 𝐹 is dilative 𝐝𝑛-increasing, it holds that 𝐹 (𝐱) ≤ 𝐹 (𝑐𝐝𝑘 ⋅ 𝐱).
oreover, setting 𝐲 = 𝑐𝐝𝑘 ⋅ 𝐱, since 𝐹 is dilative 𝐝-increasing, it holds

hat

(𝐲) ≤ 𝐹 (𝐝 ⋅ 𝐲) = 𝐹 (𝑐𝐝𝑘+1 ⋅ 𝐱),
6

which completes the proof. □ s
5. Some new classes of generalized monotonicity based on a gen-
eral function and a subset of [𝟎, 𝟏]𝒏

In this section we introduce another new type of monotonicity
that is more general than the ones presented in the previous section.
In some sense, this type of monotonicity can generalize directional
monotonicity and dilative monotonicity as well.

5.1. General case: Monotonicity based on a function 𝑇

We now study monotonicity of functions 𝐹 ∶ [0, 1]𝑛 → [0, 1]
according to a certain non-empty set 𝑍 ⊂ [0, 1]𝑛 and with respect to
a function

𝑇 ∶ [0, 1]𝑛 ×𝑍 → R𝑛,

that relates the inputs of 𝐹 with the elements of 𝑍.

Definition 5.1. Let ∅ ≠ 𝑍 ⊂ [0, 1]𝑛 and 𝑇 ∶ [0, 1]𝑛×𝑍 → R𝑛. A function
𝐹 ∶ [0, 1]𝑛 → [0, 1] is (𝑇 ,𝑍)-increasing (resp. (𝑇 ,𝑍)-decreasing) if it is
(𝑇 ,𝑍)-increasing (resp. (𝑇 ,𝑍)-decreasing) for

(𝑇 ,𝑍) = {(𝐱, 𝐲) ∈ [0, 1]𝑛 × [0, 1]𝑛 ∣ 𝐲 = 𝑇 (𝐱, 𝐳) for some 𝐳 ∈ 𝑍, 𝐱 ≤ 𝐲}.

If a function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is increasing, then it is also (𝑇 ,𝑍)-
increasing, making (𝑇 ,𝑍)-monotonicity a relaxed form of monotonicity.

Remark 5.2. The concept of (𝑇 ,𝑍)-monotonicity introduced in Def-
inition 5.1 may seem similar to the notion of generalized directional
monotonicity, or ( ,)-monotonicity introduced in [16] (see Defini-
tion 2.8 for its definition and Proposition 3.3(d) for its characterization
as a monotonicity with respect to a binary relation  on [0, 1]𝑛).

However, there exist some differences. First of all, ( ,)-
monotonicity relies on a family of functions  = {𝑔𝑗 ∶ 𝐷 → [0, 1] ∣ 𝐷 ⊂
[0, 1]2 and 𝑗 ∈ {1,… , 𝑛}}, and each of the functions 𝑔𝑗 affects one of the
inputs. Moreover, each coordinate of the elements in  affects via the
corresponding 𝑔𝑗 the input 𝑗 of function 𝐹 . Contrarily, function 𝑇 is a
function that outputs a 𝑛-tuple in R𝑛 and could mix all the components
of the elements in 𝑍 with all the inputs of function 𝐹 to produce an
output.

Second of all, in order to consider (𝑇 ,𝑍)-increasingness, we re-
quire that the transformation 𝑇 (𝐱, 𝐳) yields a greater tuple than 𝐱,
i.e., we require 𝑇 (𝐱, 𝐳) ≥ 𝐱 in order to meet the monotonicity condition
𝐹 (𝑇 (𝐱, 𝐳)) ≥ 𝐹 (𝐱). However, this is not the case in the case of Defi-
nition 2.8. In fact, ( ,)-increasingness could yield a condition that
corresponded to an actual decrease of function 𝐹 .

As mentioned before, (𝑇 ,𝑍)-monotonicity is related to the rest of
types of monotonicity.

For example, we can recover a more restrictive version of weak
monotonicity, that is not exactly weak monotonicity.

Proposition 5.3. Let 𝑍 = {(𝑧,… , 𝑧) ∣ 𝑧 ∈ [0, 1]} and 𝑇 ∶ [0, 1]𝑛 ×𝑍 →
R𝑛 be given by

𝑇 (𝐱, 𝐳) =
(

min(𝑥1 + 𝑧, 1),… ,min(𝑥𝑛 + 𝑧, 1)
)

. (5)

If a function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is (𝑇 ,𝑍)-increasing, then 𝐹 is weakly
increasing.

Proof. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be (𝑇 ,𝑍)-increasing and let 𝐱 ∈ [0, 1]𝑛 and
𝑐 > 0 such that 𝐱+ 𝑐𝟏 ∈ [0, 1]𝑛. Thus, we have that min(𝑥𝑖 + 𝑐, 1) = 𝑥𝑖 + 𝑐
or all 𝑖 ∈ {1,… , 𝑛} and, then, if we set 𝐳 = (𝑐,… , 𝑐) ∈ 𝑍,

(𝐱 + 𝑐𝟏) = 𝐹
(

min(𝑥1 + 𝑐, 1),… ,min(𝑥𝑛 + 𝑐, 1)
)

= 𝐹 (𝑇 (𝐱, 𝐳)) ≥ 𝐹 (𝐱).

herefore, 𝐹 is weakly increasing. □

The following example shows that the type of monotonicity pre-
ented in Proposition 5.3 and weak monotonicity are not equivalent.
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Example 5.4. Let 𝐹 ∶ [0, 1]2 → [0, 1] be given by

(𝑥1, 𝑥2) =

⎧

⎪

⎨

⎪

⎩

5𝑥32 + 5𝑥21𝑥2 − 10𝑥1𝑥22 + 4𝑥22 − 4𝑥1𝑥2 + 𝑥2, if 𝑥1 ≥ 𝑥2

5𝑥31 + 5𝑥22𝑥1 − 10𝑥2𝑥21 + 4𝑥21 − 4𝑥2𝑥1 + 𝑥1, otherwise.

(6)

Clearly, 𝐹 is a continuous semi-aggregation function. It is not an
ggregation function because it is not increasing, as, for example,
1, 0.2) ≤ (1, 0.5), but

(1, 0.2) = 0.2 > 0.125 = 𝐹 (1, 0.5).

ig. 2 shows the graph representation of 𝐹 .
Although not increasing, 𝐹 is weakly increasing. Indeed, let (𝑥1, 𝑥2)
[0, 1]2 and 𝑐 > 0 such that (𝑥1 + 𝑐, 𝑥2 + 𝑐) ∈ [0, 1]2. Without loss of

enerality, let us assume that 𝑥1 ≥ 𝑥2 > 0. Thus, it can be checked that

(𝑥1 + 𝑐, 𝑥2 + 𝑐) =
𝑐 + 𝑥2
𝑥2

𝐹 (𝑥1, 𝑥2),

which means that 𝐹 is weakly increasing.
However, let us see that 𝐹 is not (𝑇 ,𝑍)-increasing in the sense

of Proposition 5.3. Considering 𝑍 = {(𝑧, 𝑧) ∣ 𝑧 ∈ [0, 1]} and 𝑇 ∶
[0, 1]2 × 𝑍 → R2 as in (5) with 𝑛 = 2, and taking (𝑥1, 𝑥2) = (1, 0.2)
and 𝑧 = 0.3, we have that

𝐹
(

𝑇 ((𝑥1, 𝑥2), (𝑧, 𝑧))
)

= 𝐹
(

min(𝑥1 + 𝑧, 1),min(𝑥2 + 𝑧, 1)
)

= 𝐹 (1, 0.5)

< 𝐹 (1, 0.2)

= 𝐹 (𝑥1, 𝑥2).

Example 5.5. The function known as Lehmer mean, 𝐿 ∶ [0, 1]2 →

[0, 1], given by

𝐿(𝑥1, 𝑥2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 𝑥1 + 𝑥2 = 0

𝑥21 + 𝑥22
𝑥1 + 𝑥2

, otherwise,
(7)

is another example of a continuous semi-aggregation function that is
not increasing, but is weakly increasing as proved in [11].

Let us see that 𝐿 is not (𝑇 ,𝑍)-increasing in the sense of Proposi-
tion 5.3. Considering 𝑍 = {(𝑧, 𝑧) ∣ 𝑧 ∈ [0, 1]} and 𝑇 ∶ [0, 1]2 ×𝑍 → R2 as
in (5) with 𝑛 = 2, and taking (𝑥1, 𝑥2) = (1, 0) and 𝑧 = 0.3, we have that

𝐿
(

𝑇 ((𝑥1, 𝑥2), (𝑧, 𝑧))
)

= 𝐿
(

min(𝑥1 + 𝑧, 1),min(𝑥2 + 𝑧, 1)
)

= 𝐿(1, 0.3)

< 𝐿(1, 0)

= 𝐿(𝑥1, 𝑥2).

The property that the functions in Examples 5.4 and 5.5 are lacking
is that the upper marginal functions 𝑓1, 𝑓2 ∶ [0, 1] → [0, 1] given by
𝑓1(𝑡) = 𝐹 (𝑡, 1) and 𝑓2(𝑡) = 𝐹 (1, 𝑡) are not increasing.

In dimension 3, i.e., for a function 𝐹 ∶ [0, 1]3 → [0, 1], the upper
marginal functions of dimension 1 would be:

• 𝑓 (1)
1 (𝑡) = 𝐹 (𝑡, 1, 1); 𝑓 (1)

2 (𝑡) = 𝐹 (1, 𝑡, 1); and 𝑓 (1)
3 (𝑡) = 𝐹 (1, 1, 𝑡).

The upper marginal functions of dimension 2 would be:

• 𝑓 (2)
1 (𝑡, 𝑠) = 𝐹 (𝑡, 𝑠, 1); 𝑓 (2)

2 (𝑡, 𝑠) = 𝐹 (1, 𝑡, 𝑠); and 𝑓 (2)
3 (𝑡, 𝑠) = 𝐹 (𝑠, 1, 𝑡).

If 𝐹 is weakly increasing, for 𝐹 to be (𝑇 ,𝑍)-increasing, we would need
that the marginal functions of dimension 2 are weakly increasing and
the marginal functions of dimension 1 are increasing (which is the same
as being weakly increasing in dimension 1).

Thus, we can achieve (𝑇 ,𝑍)-monotonicity if we require this extra
property to a weakly increasing function.
7

m

Fig. 2. Graph representation of the function given in Eq. (6) in Example 5.4.

Proposition 5.6. If a function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is weakly increas-
ing and all its upper marginal functions of dimensions 1,… , 𝑛 − 1 are
weakly increasing, then 𝐹 is (𝑇 ,𝑍)-increasing, where 𝑇 and 𝑍 are as in
Proposition 5.3.

Proof. It is straightforward. □

Remark 5.7. Although weak increasingness and the property of (𝑇 ,𝑍)-
ncreasingness (as in Proposition 5.3) are essentially different, being
he latter more restrictive, as far as we know, in all the applications
n which a weakly increasing function has been needed, a (𝑇 ,𝑍)-
ncreasing function has been used. This fact leads to think that this
roperty captures more precisely the actual requirements of a fu-
ion function in order to fuse information when we think of weak
ncreasingness.

In the literature, we can find numerous examples of such functions
eing applied in different settings. For example, 𝐶 -integrals are, in

general, not increasing but they satisfy (𝑇 ,𝑍)-increasingness and they
ave been used in fuzzy rule based classification systems [19,25] and
n multimodal data fusion for enhancing the motor-imagery-based brain
omputer interface [26].

On the other hand, if we modified (5) into 𝑇 (𝐱, 𝐳) = (𝑥1+𝑧,… , 𝑥𝑛+𝑧),
e would recover the standard weak monotonicity.

xample 5.8. Given a fuzzy measure1 m ∶ 2𝑁 → [0, 1], where
= {1,… , 𝑛}, two specific examples of 𝐶 -integrals are the ones based

n the minimum t-norm and the Hamacher t-norm (see [25]). These
wo functions are given by

𝑀
m (𝐱) =

𝑛
∑

𝑖=1
min

(

𝑥(𝑖) − 𝑥(𝑖−1),m(𝐴(𝑖))
)

; (8)

and

𝐶𝐻
m
(𝐱) =

𝑛
∑

𝑖=1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 𝑥(𝑖) = 𝑥(𝑖−1),
m(𝐴(𝑖)) = 0

(𝑥(𝑖) − 𝑥(𝑖−1))m(𝐴(𝑖))
𝑥(𝑖) − 𝑥(𝑖−1) +m(𝐴(𝑖)) − (𝑥(𝑖) − 𝑥(𝑖−1))m(𝐴(𝑖))

, otherwise,

(9)

where:

• (𝑥(1),… , 𝑥(𝑛)) is an increasing permutation of the input 𝐱;

1 A function m ∶ 2𝑁 → [0, 1] is said to be a fuzzy measure if m(∅) = 0,
(𝑁) = 1 and, for all 𝑋, 𝑌 ⊆ 𝑁 , if 𝑋 ⊆ 𝑌 , then m(𝑋) ≤ m(𝑌 ).
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• 𝑥(0) = 0; and
• 𝐴(𝑖) = {(𝑖),… , (𝑛)} is the subset of the indices of the 𝑛−𝑖+1 largest

components of 𝐱.

These two functions are (𝑇 ,𝑍)-increasing, where 𝑇 and 𝑍 are as in
roposition 5.3.

We can achieve a similar kind of relation between (𝑇 ,𝑍)-
onotonicity and the rest of the discussed types of monotonicity,

xcept for ( ,)-monotonicity due to the differences explained in
emark 5.2.

The next two results relate (𝑇 ,𝑍)-monotonicity with directional and
one monotonicity, respectively.

roposition 5.9. Let 𝟎 ≠ 𝐫 ∈ [0, 1]𝑛 and 𝑍 = {(𝑧𝑟1,… , 𝑧𝑟𝑛) ∈ [0, 1]𝑛 ∣
∈ [0, 1]} and 𝑇 ∶ [0, 1]𝑛 ×𝑍 → R𝑛 be given by

(𝐱, 𝐳) =
(

min(𝑥1 + 𝑧1, 1),… ,min(𝑥𝑛 + 𝑧𝑛, 1)
)

.

f a function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is (𝑇 ,𝑍)-increasing, then 𝐹 is 𝐫-increasing.

Proof. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be (𝑇 ,𝑍)-increasing and let 𝐱 ∈ [0, 1]𝑛 and
𝑐 > 0 such that 𝐱+𝑐𝐫 ∈ [0, 1]𝑛. Thus, we have that min(𝑥𝑖+𝑐𝑟𝑖, 1) = 𝑥𝑖+𝑐𝑟𝑖
for all 𝑖 ∈ {1,… , 𝑛} and, then, if we set 𝐳 = (𝑐𝑟1,… , 𝑐𝑟𝑛) ∈ 𝑍,

𝐹 (𝐱 + 𝑐𝐫) = 𝐹
(

min(𝑥1 + 𝑐𝑟1, 1),… ,min(𝑥𝑛 + 𝑐𝑟𝑛, 1)
)

= 𝐹 (𝑇 (𝐱, 𝐳)) ≥ 𝐹 (𝐱).

Therefore, 𝐹 is 𝐫-increasing. □

Proposition 5.10. Let 𝐶 ⊂ [0, 1]𝑛 be a nonempty cone and 𝑍 = {𝑧𝐫 ∈
[0, 1]𝑛 ∣ 𝑧 ∈ [0, 1], 𝐫 ∈ 𝐶} and 𝑇 ∶ [0, 1]𝑛 ×𝑍 → R𝑛 be given by

(𝐱, 𝐳) =
(

min(𝑥1 + 𝑧1, 1),… ,min(𝑥𝑛 + 𝑧𝑛, 1)
)

.

If a function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is (𝑇 ,𝑍)-increasing, then 𝐹 is cone
increasing with respect to 𝐶.

Proof. The proof is similar to that of Proposition 5.9 taking into
account all the vectors 𝐫 ∈ 𝐶. □

The following three results relate (𝑇 ,𝑍)-monotonicity with dilative,
reversed dilative and directional dilative monotonicity, respectively.

Proposition 5.11. Let 𝑍 = {(𝑧,… , 𝑧) ∈ [0, 1]𝑛 ∣ 𝑧 ∈ [0, 1]} and
𝑇 ∶ [0, 1]𝑛 ×𝑍 → R𝑛 be given by

𝑇 (𝐱, 𝐳) =
(

min(𝑥1∕𝑧, 1),… ,min(𝑥𝑛∕𝑧, 1)
)

,

with the conventions 0
0 = 0 and 𝑎

0 = ∞ for 𝑎 > 0. If a function 𝐹 ∶ [0, 1]𝑛 →
[0, 1] is (𝑇 ,𝑍)-increasing, then 𝐹 is dilative increasing.

Proof. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be (𝑇 ,𝑍)-increasing and let 𝐱 ∈ [0, 1]𝑛

and 𝑑 ≥ 1 such that 𝑑𝐱 ∈ [0, 1]𝑛. Thus, we have that min(𝑑𝑥𝑖, 1) = 𝑑𝑥𝑖
for all 𝑖 ∈ {1,… , 𝑛} and, then, if we set 𝐳 = ( 1𝑑 ,… , 1

𝑑 ) ∈ 𝑍,

𝐹 (𝑑𝐱) = 𝐹
(

min(𝑑𝑥1, 1),… ,min(𝑑𝑥𝑛, 1)
)

= 𝐹 (𝑇 (𝐱, 𝐳)) ≥ 𝐹 (𝐱).

Therefore, 𝐹 is dilative increasing. □

Proposition 5.12. Let 𝑍 = {(𝑧,… , 𝑧) ∈ [0, 1]𝑛 ∣ 𝑧 ∈ [0, 1]} and
𝑇 ∶ [0, 1]𝑛 ×𝑍 → R𝑛 be given by

𝑇 (𝐱, 𝐳) =
(

min(𝑥1 + 𝑧(1 − 𝑥1), 1),… ,min(𝑥𝑛 + 𝑧(1 − 𝑥𝑛), 1)
)

.

If a function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is (𝑇 ,𝑍)-increasing, then 𝐹 is reversed
dilative increasing.

Proof. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be (𝑇 ,𝑍)-increasing and let 𝐱 ∈ [0, 1]𝑛

and 𝑠 ∈ [0, 1] such that 𝐱 + 𝑠(1 − 𝐱) ∈ [0, 1]𝑛. Thus, we have that
min(𝑥𝑖 + 𝑠(1 − 𝑥𝑖), 1) = 𝑥𝑖 + 𝑠(1 − 𝑥𝑖) for all 𝑖 ∈ {1,… , 𝑛} and, then,
if we set 𝐳 = (𝑠,… , 𝑠) ∈ 𝑍,

𝐹 (𝐱 + 𝑠(1 − 𝐱)) = 𝐹
(

min(𝑥 + 𝑠(1 − 𝑥 ), 1),… ,min(𝑥 + 𝑠(1 − 𝑥 ), 1)
)
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1 1 𝑛 𝑛 a
= 𝐹 (𝑇 (𝐱, 𝐳))
≥ 𝐹 (𝐱).

Therefore, 𝐹 is reversed dilative increasing. □

Proposition 5.13. Let 𝐝 ∈ R𝑛 be such that 𝑑𝑖 ≥ 1 for all 𝑖 ∈ {1,… , 𝑛}
and 𝑍 = {(𝑧 1

𝑑1
,… , 𝑧 1

𝑑𝑛
) ∈ [0, 1]𝑛 ∣ 𝑧 > 0} and 𝑇 ∶ [0, 1]𝑛 × 𝑍 → R𝑛 be

iven by

(𝐱, 𝐳) =
(

min(𝑥1∕𝑧1, 1),… ,min(𝑥𝑛∕𝑧𝑛, 1)
)

,

with the conventions 0
0 = 0 and 𝑎

0 = ∞ for 𝑎 > 0. If a function 𝐹 ∶ [0, 1]𝑛 →
0, 1] is (𝑇 ,𝑍)-increasing, then 𝐹 is dilative 𝐝-increasing.

roof. Let 𝐹 ∶ [0, 1]𝑛 → [0, 1] be (𝑇 ,𝑍)-increasing and let 𝐱 ∈ [0, 1]𝑛 and
> 0 such that 𝑐𝐝 ⋅ 𝐱 ∈ [0, 1]𝑛. Thus, we have that min(𝑐𝑑𝑖𝑥𝑖, 1) = 𝑐𝑑𝑖𝑥𝑖

or all 𝑖 ∈ {1,… , 𝑛} and, then, if we set 𝐳 = ( 1𝑐
1
𝑑1
,… , 1𝑐

1
𝑑𝑛
) ∈ 𝑍,

𝐹 (𝑐𝐝 ⋅ 𝐱) = 𝐹
(

min(𝑐𝑑1𝑥1, 1),… ,min(𝑐𝑑𝑛𝑥𝑛, 1)
)

= 𝐹 (𝑇 (𝐱, 𝐳)) ≥ 𝐹 (𝐱).

Therefore, 𝐹 is dilative 𝐝-increasing. □

In what follows, we study two particular cases of (𝑇 ,𝑍)-
monotonicity: the case in which 𝑇 is formed by means of a disjunctive
binary aggregation function and the case in which 𝑇 is formed by
means of a conjunctive binary aggregation function.

5.2. Special case: Monotonicity based on conjunctive and disjunctive binary
aggregation functions

We pay special attention to two specific classes of (𝑇 ,𝑍)-monotone
functions, the ones in which 𝑇 is constructed as a tuple of binary
functions. Concretely, for a fixed binary function 𝐻 ∶ [0, 1]2 → [0, 1],
we consider function 𝑇 ∶ [0, 1]𝑛 ×𝑍 → R𝑛 to be given by

𝑇 (𝐱, 𝐳) =
(

𝐻(𝑥1, 𝑧1),… ,𝐻(𝑥𝑛, 𝑧𝑛)
)

,

.e., the same function is applied to all the inputs and for a position 𝑗
only the 𝑗th component of 𝐱 and 𝐳 play a role. More specifically, we
focus on the case in which 𝐻 is a disjunctive aggregation function or
a conjunctive aggregation function.

Let us start with a disjunctive aggregation function.

Definition 5.14. Let ∅ ≠ 𝑍 ⊂ [0, 1]𝑛 and 𝐴 ∶ [0, 1]2 → [0, 1] be a
binary disjunctive aggregation function. A function 𝐹 ∶ [0, 1]𝑛 → [0, 1]
s (𝐴,𝑍)-increasing (resp. (𝐴,𝑍)-decreasing) if it is 𝐷

(𝐴,𝑍)-increasing
resp. 𝐷

(𝐴,𝑍)-decreasing) for

𝐷
(𝐴,𝑍) = {(𝐱, 𝐲) ∈ [0, 1]𝑛 × [0, 1]𝑛 ∣ 𝐲 =

(

𝐴(𝑥1, 𝑧1),… , 𝐴(𝑥𝑛, 𝑧𝑛)
)

for some 𝐳 ∈ 𝑍}. (10)

Note that the fact that 𝐴 is a disjunctive aggregation function makes
t certain that the condition 𝐱 ≤ 𝐲 is satisfied.

Moreover, (𝐴,𝑍)-monotonicity is of importance because it is the
pecific case of (𝑇 ,𝑍)-monotonicity that allows to include all the other
orms of monotonicity in the literature. Specifically, if we consider
(𝑥, 𝑦) = min(𝑥 + 𝑦, 1), i.e., the Lukasiewicz t-conorm, we can relate

o weak, directional and cone monotonicity (recall Propositions 5.3,
.9 and 5.10). If we consider 𝐴(𝑥, 𝑦) = min(𝑥∕𝑦, 1), with the conven-
ion 0∕0 = 0 and 𝑎∕0 = ∞ for 𝑎 > 0, we can relate to dilative
onotonicity (Proposition 5.11) and directional dilative monotonicity

Proposition 5.13). Finally, if we consider 𝐴(𝑥, 𝑦) = min(𝑥 + 𝑦(1 − 𝑥), 1),
e can relate to reversed dilative monotonicity (Proposition 5.12).

Similarly, we can consider a conjunctive aggregation function 𝐵 ∶
0, 1]2 → [0, 1]. However, in this case, it is not possible to obtain a tuple

=
(

𝐵(𝑥1, 𝑧1),… , 𝐵(𝑥𝑛, 𝑧𝑛)
)

uch that 𝐱 ≤ 𝐲, unless the equality is obtained. For that reason, we need
o make an adjustment to define (𝐵,𝑍)-increasingness with respect to

conjunctive operator.
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Fig. 3. Regions of the domain for the different conditions that (𝐴,𝑍)- and
(𝐵,𝑍)-increasingness require to function 𝐹 in Example 5.17.

Definition 5.15. Let ∅ ≠ 𝑍 ⊂ [0, 1]𝑛 and 𝐵 ∶ [0, 1]2 → [0, 1] be a
binary conjunctive aggregation function. A function 𝐹 ∶ [0, 1]𝑛 → [0, 1]
is (𝐵,𝑍)-increasing (resp. (𝐵,𝑍)-decreasing) if it is 𝐶

(𝐵,𝑍)-decreasing
(resp. 𝐶

(𝐵,𝑍)-increasing) for

𝐶
(𝐵,𝑍) = {(𝐱, 𝐲) ∈ [0, 1]𝑛 × [0, 1]𝑛 ∣ 𝐲 =

(

𝐵(𝑥1, 𝑧1),… , 𝐵(𝑥𝑛, 𝑧𝑛)
)

for some 𝐳 ∈ 𝑍}. (11)

Remark 5.16. Note that in Definition 5.15 we have defined (𝐵,𝑍)-
increasingness in terms of 𝐶

(𝐵,𝑍)-decreasingness, and (𝐵,𝑍)-
decreasingness in terms of 𝐶

(𝐵,𝑍)-increasingness. This is due to the
fact that we aim at defining an increasingness condition whenever the
inputs increase and, when using a conjunctive aggregation function, we
are making the inputs decrease.

Another way of interpreting the difference between Definitions 5.14
and 5.15 is by the sign of the inequality: for a function 𝐹 ∶ [0, 1]𝑛 →
[0, 1], we say that 𝐹 is (𝐴,𝑍)-increasing if

𝐹 (𝐱) ≤ 𝐹
(

𝐴(𝑥1, 𝑧1),… , 𝐴(𝑥𝑛, 𝑧𝑛)
)

,

and 𝐹 is (𝐵,𝑍)-increasing if

𝐹 (𝐱) ≥ 𝐹
(

𝐵(𝑥1, 𝑧1),… , 𝐵(𝑥𝑛, 𝑧𝑛)
)

.

These notions are general and, as we later show, capable of gener-
alizing various types of monotonicity. But, their generality covers the
most basic forms of monotonicity. In particular, if the set 𝑍 is finite,
(𝐴,𝑍)- and (𝐵,𝑍)-increasingness are reduced to a condition regarding
the value of certain regions of the domain with respect to the points in
𝑍. The next example illustrates this fact when 𝑍 is a singleton.

Example 5.17. Let 𝐹 ∶ [0, 1]2 → [0, 1] be a fusion function and let
𝑍 = {(𝑧1, 𝑧2)} ⊂ [0, 1]2 and let 𝐴 = max and 𝐵 = min.

The conditions of (max, 𝑍)- and (min, 𝑍)-increasingness are equiv-
alent to the following conditions for the points in the domain of 𝐹 ,
according to the regions that are depicted in Fig. 3.

On the one hand, 𝐹 is (max, 𝑍)-increasing whenever:

• 𝐹 (𝑧1, 𝑥2) ≥ 𝐹 (𝑥1, 𝑥2) for all (𝑥1, 𝑥2) in (𝐴);
• 𝐹 (𝑥1, 𝑥2) ≥ 𝐹 (𝑥1, 𝑥2) for all (𝑥1, 𝑥2) in (𝐵);
• 𝐹 (𝑧1, 𝑧2) ≥ 𝐹 (𝑥1, 𝑥2) for all (𝑥1, 𝑥2) in (𝐶);
• 𝐹 (𝑥1, 𝑧2) ≥ 𝐹 (𝑥1, 𝑥2) for all (𝑥1, 𝑥2) in (𝐷).

On the other hand, 𝐹 is (min, 𝑍)-increasing whenever:

• 𝐹 (𝑥1, 𝑧2) ≤ 𝐹 (𝑥1, 𝑥2) for all (𝑥1, 𝑥2) in (𝐴);
• 𝐹 (𝑧1, 𝑧2) ≤ 𝐹 (𝑥1, 𝑥2) for all (𝑥1, 𝑥2) in (𝐵);
• 𝐹 (𝑥 , 𝑥 ) ≤ 𝐹 (𝑥 , 𝑥 ) for all (𝑥 , 𝑥 ) in (𝐶);
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• 𝐹 (𝑧1, 𝑥2) ≤ 𝐹 (𝑥1, 𝑥2) for all (𝑥1, 𝑥2) in (𝐷).

Note that, within each region, there are no further requirements; 𝐹
could take any value satisfying the described conditions and it would
still satisfy the monotonicity properties. In fact, (max, 𝑍)-increasingness
does not require that any condition is fulfilled for the points in (𝐵) and
nor does (min, 𝑍) for the points in (𝐶).

The following is an example of a function that is (min, 𝑍)-increasing
with 𝑍 a set with infinitely many elements, which makes the condition
more restrictive.

Example 5.18. Let 𝑍 = {(𝑧, 𝑧) ∣ 𝑧 ∈ [0, 1]}. The function 𝐹 ∶ [0, 1]2 →

[0, 1], given by

𝐹 (𝑥1, 𝑥2) =

⎧

⎪

⎨

⎪

⎩

0.5, if (𝑥1, 𝑥2) = (1, 0.5)
1, if 𝑥1 = 1, 𝑥2 ≠ 0.5
0, otherwise,

is (min, 𝑍)-increasing but not increasing. Indeed, 𝐹 is not increasing as
(1, 0.5) ≥ (1, 0.3) but

𝐹 (1, 0.5) = 0.5 < 1 = 𝐹 (1, 0.3).

In order to show that 𝐹 is (min, 𝑍)-increasing, let 𝐱 ∈ [0, 1]2 and
𝐳 = (𝑧, 𝑧) ∈ 𝑍. Then, let us break it into cases:

• If (𝑥1, 𝑥2) = (1, 0.5), then clearly 𝐹 (𝑥1, 𝑥2) = 0.5. Now, let 𝑧 ∈
[0, 1]. If 𝑧 < 1, then 𝐹 (min(1, 𝑧),min(0.5, 𝑧)) = 0. If 𝑧 = 1, then
𝐹 (min(1, 1),min(0.5, 1)) = 0.5. Hence, it holds that 𝐹 (min(𝑥1, 𝑧),
min(𝑥2, 𝑧)) ≤ 𝐹 (𝑥1, 𝑥2).

• If 𝑥1 = 1 and 𝑥2 ≠ 0.5, then 𝐹 (𝑥1, 𝑥2) = 1 and, therefore,
𝐹 (min(𝑥1, 𝑧),min(𝑥2, 𝑧)) ≤ 𝐹 (𝑥1, 𝑥2).

• If (𝑥1, 𝑥2) does not fall in any of the previous cases, then 𝐹 (𝑥1, 𝑥2)
= 0 and notice that 𝑥1 < 1. Therefore, min(𝑥1, 𝑧) < 1 for any
𝑧 ∈ [0, 1] and, consequently, 𝐹 (min(𝑥1, 𝑧),min(𝑥2, 𝑧)) = 0.

The cases (min, 𝑍)- and (max, 𝑍)-increasingness with 𝑍 as in Exam-
ple 5.18 are of particular interest as shown in the next results.

The next one shows that the boundary conditions of 𝐹 makes it
impossible for it to be (min, 𝑍)-decreasing or (max, 𝑍)-decreasing.

Proposition 5.19. Let 𝑍 = {(𝑧,… , 𝑧) ∣ 𝑧 ∈ [0, 1]} and 𝐹 ∶ [0, 1]𝑛 → [0, 1]
be a function satisfying 𝐹 (𝟎) = 0 and 𝐹 (𝟏) = 1. Then, the following hold:

(a) 𝐹 is not (min, 𝑍)-decreasing.
(b) 𝐹 is not (max, 𝑍)-decreasing.

Proof.

(a) If 𝐹 was (min, 𝑍)-decreasing, then it would hold that

𝐹 (min(𝑥1, 𝑧),… ,min(𝑥𝑛, 𝑧)) ≥ 𝐹 (𝐱)

for any 𝐱 ∈ [0, 1]𝑛 and 𝑧 ∈ [0, 1]. However, if we take 𝐱 = 𝟏 and
𝑧 = 0, we have that

𝐹 (min(𝑥1, 𝑧),… ,min(𝑥𝑛, 𝑧)) = 𝐹 (𝟎) = 0 < 1 = 𝐹 (𝐱).

(b) If 𝐹 was (max, 𝑍)-decreasing, then it would hold that

𝐹 (max(𝑥1, 𝑧),… ,max(𝑥𝑛, 𝑧)) ≤ 𝐹 (𝐱),

for any 𝐱 ∈ [0, 1]𝑛 and 𝑧 ∈ [0, 1]. However, if we take 𝐱 = 𝟎 and
𝑧 = 1, we have that

𝐹 (max(𝑥1, 𝑧),… ,max(𝑥𝑛, 𝑧)) = 1 > 0 = 𝐹 (𝐱). □

Moreover, to be both (min, 𝑍)- and (max, 𝑍)-increasing is a strong
property of monotonicity. In fact, for two dimensional functions, it
coincides with being increasing.

For the proof of the following Theorem, we make use of the concept
of OD monotonicity [13].
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Definition 5.20 ([13]). Let 𝟎 ≠ 𝐫 ∈ R𝑛. A function 𝐹 ∶ [0, 1]𝑛 → [0, 1] is
said to be Ordered Directionally (OD) 𝐫-increasing if for each 𝐱 ∈ [0, 1]𝑛,
nd any permutation 𝜎 with 𝑥𝜎(1) ≥ ⋯ ≥ 𝑥𝜎(𝑛) and any 𝑐 > 0 such that

≥ 𝑥𝜎(1) + 𝑐𝑟1 ≥ ⋯ ≥ 𝑥𝜎(𝑛) + 𝑐𝑟𝑛 ≥ 0, (12)

t holds that

(𝐱 + 𝑐𝐫𝜎−1 ) ≥ 𝐹 (𝐱),

here 𝐫𝜎−1 = (𝑟𝜎−1(1),… , 𝑟𝜎−1(𝑛)).

heorem 5.21. Let 𝑍 = {(𝑧, 𝑧) ∣ 𝑧 ∈ [0, 1]} and 𝐹 ∶ [0, 1]2 → [0, 1].
hen, 𝐹 is both (min, 𝑍)- and (max, 𝑍)-increasing if and only if 𝐹 is
ncreasing.

roof. If 𝐹 is increasing, then it is easy to check that 𝐹 is also (min, 𝑍)-
nd (max, 𝑍)-increasing.

For the converse, let us assume that 𝐹 is both (min, 𝑍)- and (max, 𝑍)-
ncreasing and let 𝐱 = (𝑥1, 𝑥2) ∈ [0, 1]2. By Proposition 6.1 in [14], we
now that 𝐹 is increasing if and only if it is OD (0, 1)-increasing and
D (1, 0)-increasing. Let us start with OD (0, 1)-increasingness.

• If 𝑥1 ≥ 𝑥2, let 𝑐 > 0 such that 𝑥1 ≥ 𝑥2 + 𝑐. Now, take 𝑧 = 𝑥2 + 𝑐.
Thus, since 𝐹 is (max, 𝑍)-increasing,

𝐹 (𝑥1, 𝑥2 + 𝑐) = 𝐹 (max(𝑥1, 𝑧),max(𝑥2, 𝑧)) ≥ 𝐹 (𝐱).

• If 𝑥1 < 𝑥2, let 𝑐 > 0 such that 𝑥1 + 𝑐 ≤ 𝑥2. If we take 𝑧 = 𝑥1 + 𝑐,
by (max, 𝑍)-increasingness,

𝐹 (𝑥1 + 𝑐, 𝑥2) = 𝐹 (max(𝑥1, 𝑧),max(𝑥2, 𝑧)) ≥ 𝐹 (𝐱).

Therefore, 𝐹 is OD (0, 1)-increasing. Let us know show that it is also
OD (1, 0)-increasing.

• If 𝑥1 ≥ 𝑥2, let 𝑐 > 0 such that 𝑥1 + 𝑐 ≥ 𝑥2. Now, take 𝑧 = 𝑥1. Thus,
since 𝐹 is (min, 𝑍)-increasing,

𝐹 (𝑥1 + 𝑐, 𝑥2) ≥ 𝐹 (min(𝑥1 + 𝑐, 𝑧),min(𝑥2, 𝑧)) = 𝐹 (𝑧, 𝑥2) = 𝐹 (𝑥1, 𝑥2).

• If 𝑥1 < 𝑥2, let 𝑐 > 0 such that 𝑥1 ≤ 𝑥2 + 𝑐. If we take 𝑧 = 𝑥2, by
(min, 𝑍)-increasingness,

𝐹 (𝑥1, 𝑥2 + 𝑐) ≥ 𝐹 (min(𝑥1, 𝑧),min(𝑥2 + 𝑐, 𝑧)) = 𝐹 (𝑥1, 𝑧) = 𝐹 (𝑥1, 𝑥2).

Hence, 𝐹 is both OD (0, 1)- and OD (1, 0)-increasing and, consequently,
increasing. □

However, when 𝑛 ≥ 3, the two conditions are not equivalent to
standard increasingness. If a function 𝐹 ∶ [0, 1]𝑛 → [0, 1] with 𝑛 ≥ 3
is increasing, then it is also (min, 𝑍)- and (max, 𝑍)-increasing. But a
function that is both (min, 𝑍)- and (max, 𝑍)-increasing needs not be
increasing in the standard sense for 𝑛 ≥ 3.

Example 5.22. Let 𝑛 ≥ 3 and 𝐹 ∶ [0, 1]𝑛 → [0, 1] be given by

𝐹 (𝐱) = 𝑥(1) − 𝑥(2) + 𝑥(3), (13)

where (⋅) is a permutation of 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑛) such that 𝑥(1) ≥ 𝑥(2) ≥
⋯ ≥ 𝑥(𝑛).

Function 𝐹 satisfies the boundary conditions 𝐹 (𝟎) = 0 and 𝐹 (𝟏) = 1
nd 𝐹 is not increasing. Indeed, if we consider 𝐱 = (0.7, 0.5, 0.2,… , 0.2)
𝐲 = (0.7, 0.6, 0.2,… , 0.2), it holds that 𝐹 (𝐱) = 0.4 > 0.3 = 𝐹 (𝐲). Let us

how that 𝐹 is both (min, 𝑍)- and (max, 𝑍)-increasing. Firstly, we show
hat

(1) − 𝑥(2) + 𝑥(3) ≤ max(𝑥(1), 𝑧) − max(𝑥(2), 𝑧) + max(𝑥(3), 𝑧) (14)

for any 𝑧. Note that 𝑥(1) − 𝑥(2) + 𝑥(3) ≤ max(𝑥(1), 𝑧) + 𝑥(3) − 𝑥(2). It is easy
to show that 𝑥(3) − 𝑥(2) ≤ max(𝑥(3), 𝑧) − max(𝑥(2), 𝑧), so inequality (14) is
valid for any 𝑧.

We now show that

min(𝑥 , 𝑧) − min(𝑥 , 𝑧) + min(𝑥 , 𝑧) ≤ 𝑥 − 𝑥 + 𝑥 (15)
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(1) (2) (3) (1) (2) (3)
for any 𝑧. Note that 𝑥(1)−𝑥(2)+𝑥(3) ≥ 𝑥(1)−𝑥(2)+min(𝑥(3), 𝑧). It is easy to
show that 𝑥(1) −𝑥(2) ≥ min(𝑥(1), 𝑧) −min(𝑥(2), 𝑧), so inequality (15) is sat-
isfied for any 𝑧. Summing up, function (13) is both (min, 𝑍)-increasing
nd (max, 𝑍)-increasing, but not increasing.

Moreover, any function of the form

(𝐱) = 𝑥(1) − 𝑥(2) + 𝑥(3) − 𝑥(4) +⋯ + 𝑥(2𝑘−1) − 𝑥(2𝑘) + 𝑥(2𝑘+1)

as also these properties for any 𝑘 such that 2𝑘 + 1 ≤ 𝑛.

. Application to text classification

In this section we present an example of a possible application of
he proposed theoretical developments that illustrates their usability.
oncretely, we make use of functions that satisfy the discussed types
f monotonicity in an information fusion process in a text classification
roblem regarding sentiment analysis.

Sentiment analysis falls within the context of natural language
rocessing and consists in the identification and extraction of subjective
pinions or attitudes expressed in text. A typical form of sentiment
nalysis is a classification process in which the goal is to classify a text
s expressing a positive or negative sentiment.

Several techniques have been proposed to tackle the problem of
entiment analysis, including supervised and unsupervised Machine
earning techniques [27]. Nowadays, the majority of methods that
ome on top of the benchmark datasets are based on Deep Learning [28,
9]. However, our proposal does not aim at overcoming the state of the
rt techniques for sentiment analysis, but we feel it serves to illustrate
he appropriateness of the studied types of fusion function properties
n certain information fusion processes.

We base our proposal on the fusion of feature vectors that represent
ach word in the text to classify. These vectors are commonly known
s word embeddings [30], which are numeric vectors that encode the
eaning of words in a way that words that share a similar meaning

re closer in the feature space. An schema of the whole document
lassification process can be seen in Fig. 4, which shows the following
teps:

1. The words of the document are extracted and mapped to their
feature vector representation.

2. The word-level feature vectors are fused component-wise by
means of a fusion function to generate a document-level feature
vector.

3. The document-level feature vector is fed as input to a Machine
Learning classifier, which outputs the class, i.e., the polarity, of
the document.

For our experimental framework, we set two methods of obtaining
he word embeddings in Step 1; thirteen fusion functions to fuse the
ord embeddings into document feature vectors in Step 2 and a single

lassifier in Step 3.
Concretely, we use GloVe [31] and word2vec [32,33] as word

mbedding techniques. The former is based on word co-occurrence
rom a corpus and the latter is based on representing the words as the
ctivations of a hidden layer of a specific kind of neural network. There
xist available repositories with pre-trained word embeddings, both for
he GloVe word embeddings2 and for the word2vec word embeddings.3

We test our proposal with different dimension of word embeddings:
50, 100, 200 and 300 for GloVe and 300 for word2vec. In order to be
consistent with the input domain of the fusion functions that we study
in this work, we translate the values of the pre-trained word embedding
to [0, 1].

As fusion functions, we use the arithmetic mean (AM), the minimum
(Min), the maximum (Max), the geometric mean (GM), the harmonic

2 https://nlp.stanford.edu/projects/glove/.
3 https://code.google.com/archive/p/word2vec/.

https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
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Fig. 4. Document classification process involving the fusion of word-level feature vectors into a document-level feature vector.
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ean (HM), the product (P) and the probabilistic sum (PS) representing
ggregation functions, i.e., functions that are increasing; the function
iven in Example 4.12 (DF), for 𝑛 ≥ 2, as a dilative increasing function;

the dual function of the one given in Example 4.12 (RDF), for 𝑛 ≥ 2,
s a reversed dilative increasing function; the Lehmer mean (LM) –
ee Example 5.5 – and the function given in Example 5.4 (F-5.4), for
≥ 2, as weakly increasing functions that are not (𝑇 ,𝑍)-increasing

s in Proposition 5.3; and the functions 𝐶𝑀
m and 𝐶𝐻

m in Eqs. (8) and
9), respectively, as functions that are both weakly increasing and
𝑇 ,𝑍)-increasing as in Proposition 5.3.

As classifier, we use a feedforward neural network, also known as
ultilayer perceptron, with a single hidden layer with 100 neurons and
eLU as activation. The rationale of not using a excessively complex
lassifier is that we aim at illustrating the effect of the different fusion
unctions when generating the document feature vectors. Additionally,
or each type of word embedding, we fix the same initialization weights
or the different fusion functions so that we are able to compare the
esults.

In order to check the results of our proposal, we carry out ex-
eriments in a dataset that is often used as benchmark for sentiment
nalysis: the IMDb dataset4 [34], which is a binary sentiment analysis
ataset which has 50,000 reviews from the Internet Movie Database
IMDb). This dataset is balanced in terms of polarity, i.e., there are
5,000 positive and 25,000 negative reviews. Additionally, the data
re evenly split into a training set and a test set. For our experi-
ents, we carry out a stop-word removal process, which is a common
reprocessing step in text classification [35].

For evaluation, we set as reference the test results of the process
sing the arithmetic mean as fusion function. We train each model
00 times, using different weight initializations, and compare the top
test accuracy values for each fusion function. To test whether there

xist statistical significance, we use the nonparametric Mann–Whitney
test [36] setting as null hypothesis the fact that the distribution

nderlying the top 5 accuracy values of the process using the arithmetic
ean is the same as the distribution underlying the top 5 accuracy val-
es using each of the other fusion functions. We require a significance
evel of 0.05.

In Table 1 we show the Test results of the experiments in terms
f the accuracy of the classification. First, we can see that the results
rogressively improve as we increase the dimension of the feature
ectors, achieving the highest overall accuracy rates by word2vec.
dditionally, we observe that the average values of the accuracy rates

or each fusion function are quite similar, which suggest that all the
stablished fusion techniques are valid.

With respect to the influence of each fusion function, we derive
hat, computing the average performance of each fusion function, the
unction 𝐶𝐻

m , satisfying (𝑇 ,𝑍)-increasingness, comes on top. Focusing

4 The IMDb dataset is available at: https://ai.stanford.edu/~amaas/data/
entiment/.
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in lower dimensions (embeddings of 50, 100 or 200 components),
the function 𝐶𝐻

m , satisfying (𝑇 ,𝑍)-increasingness, yields the overall
best results; it gets the best accuracy rate in the case of GloVe-50, it
lies among the best performers in GloVe-100 and it is the runner-up
in GloVe-200. Moreover, for all the embedding extraction techniques
except word2vec, one of the functions satisfying (𝑇 ,𝑍)-increasingness
(𝐶𝑀

m and 𝐶𝐻
m ) overcome both the functions that are only weakly

increasing (LM and F-5.4). For higher dimensions (embeddings of
300 components), the dilative increasing function (DF) yields the best
results.

Another interesting outcome of the experimentation is that, for all
the feature extraction settings except GloVe-100, none of the best fusion
functions satisfies the condition of increasingness in the standard sense;
they satisfy either dilative or (𝑇 ,𝑍)-increasingness. In fact, focusing
in the average performance of each fusion function across feature
extraction methods, the functions DF, F-5.4, 𝐶𝑀

m and 𝐶𝐻
m overcome

every aggregation function (AM, Min, Max, GM, HM, P and PS).

7. Conclusions

We have proposed a framework for general monotonicity for fusion
functions based on a binary relation . This framework encompasses all
the different forms of monotonicity of fusion functions in the literature
and enables the introduction of additional forms of monotonicity.

In that sense, we have presented the concept of dilative monotonic-
ity, which deals with the increasingness of a function when the inputs
are multiplied by the same, greater than one, constant. In the same
way that weak monotonicity is linked with shift-invariance, dilative
monotonicity is linked with positive homogeneity. Moreover, we have
studied the relation between the set of weakly increasing functions,
dilative increasing functions and increasing functions, concluding that
the latter is within the intersection of the former two, while there
also exist functions that are both weakly and dilative increasing and
not increasing. We have also proposed a construction method for
dilative increasing functions and have studied its properties. Besides,
dilative monotonicity has motivated the proposal of reversed dilative
monotonicity and directional dilative monotonicity, whose properties
and links are also studied in this work.

Additionally, we have presented a new class of monotonicity that
is based on a subset 𝑍 of the domain and a function 𝑇 ∶ [0, 1]𝑛 ×

→ R𝑛, which makes this type of monotonicity is more general
han the previous ones. We have studied its properties and focused
n the specific case that 𝑇 is defined in terms of binary disjunctive
nd conjunctive aggregation functions. The link between this type of
onotonicity and the rest shows interesting results. In particular, the

ase in which (𝑇 ,𝑍) monotonicity recovers a more restrictive property
han weak monotonicity is interesting because we have checked that
n the applications that data were fused according to a weak monotone
unction, that function satisfied (𝑇 ,𝑍) monotonicity in all the cases [19,
5,26].

https://ai.stanford.edu/~amaas/data/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/
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Table 1
Average classification accuracy (%) of the top 5 test result for each fusion method in the IMDb dataset. The best accuracy rate for each feature
extraction method is highlighted.

GloVe-50 GloVe-100 GloVe-200 GloVe-300 word2vec AVG

AM 0.7010 ± 0.0003 0.7494 ± 0.0007 0.7864 ± 0.0001 0.7901 ± 0.0001 0.7983 ± 0.0002 0.7650 ± 0.0003
Min 0.6909 ± 0.0212 0.7640 ± 0.0010* 0.7866 ± 0.0001 0.7891 ± 0.0001* 0.7926 ± 0.0001* 0.7647 ± 0.0045
Max 0.6845 ± 0.0126 0.7665 ± 0.0004* 0.7856 ± 0.0001* 0.7892 ± 0.0002* 0.7922 ± 0.0002* 0.7636 ± 0.0027
GM 0.6723 ± 0.0003* 0.7669 ± 0.0002* 0.7858 ± 0.0001* 0.7885 ± 0.0001* 0.7932 ± 0.0001* 0.7613 ± 0.0002
HM 0.6762 ± 0.0007* 0.7660 ± 0.0005* 0.7858 ± 0.0002* 0.7887 ± 0.0002* 0.7933 ± 0.0001* 0.7620 ± 0.0003
P 0.6933 ± 0.0237 0.7660 ± 0.0002* 0.7856 ± 0.0002* 0.7886 ± 0.0002* 0.7924 ± 0.0002* 0.7652 ± 0.0049
PS 0.6935 ± 0.0131 0.7607 ± 0.0026* 0.7854 ± 0.0003* 0.7880 ± 0.0003* 0.7922 ± 0.0001* 0.7640 ± 0.0033
DF 0.7047 ± 0.0080 0.7551 ± 0.0016* 0.7862 ± 0.0002 0.7905 ± 0.0001* 0.7989 ± 0.0002* 0.7671 ± 0.0020
RDF 0.6886 ± 0.0005* 0.7571 ± 0.0043* 0.7859 ± 0.0002* 0.7902 ± 0.0002 0.7957 ± 0.0001* 0.7635 ± 0.0011
LM 0.6847 ± 0.0005* 0.7556 ± 0.0006* 0.7860 ± 0.0001* 0.7892 ± 0.0001* 0.7952 ± 0.0001* 0.7621 ± 0.0003
F-5.4 0.7143 ± 0.0050* 0.7560 ± 0.0077 0.7864 ± 0.0002 0.7897 ± 0.0001* 0.7958 ± 0.0003* 0.7685 ± 0.0026
𝐶𝑀
m

0.7011 ± 0.0162 0.7653 ± 0.0001* 0.7867 ± 0.0002* 0.7899 ± 0.0001* 0.7939 ± 0.0001* 0.7674 ± 0.0033
𝐶𝐻
m

0.7210 ± 0.0042* 0.7641 ± 0.0004* 0.7866 ± 0.0004 0.7890 ± 0.0001* 0.7936 ± 0.0001* 0.7709 ± 0.0010

*Results indicate a 𝑝-value lesser than 0.05 in the comparison with AM.
Finally, we have presented a possible application of the proposed
otions of general monotonicity. We have utilized functions satisfying
he studied types of monotonicity in an information fusion process of a
entiment analysis (text classification) problem. The results show that,
or most of the tested settings, the best function to carry out the fusion
s not increasing, but rather dilative or (𝑇 ,𝑍)-increasing.

For a future work, we think it would be interesting to carry out
n experimental study comparing the performance of purely weakly
ncreasing functions with the stronger (𝑇 ,𝑍)-increasing functions to

determine whether this stronger property is indeed desirable in a fuzzy
rule based classification system.
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