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Abstract— In this work, we identify that the analysis in terms of 
noise of multibeam passive beam forming networks requires a 
proper formulation, in order not to overestimate the noise 
generated by the network. We show that the inherent spatial 
diversity offered by this type of networks results in an 
improvement of the SNR, similar to the one obtained by digital 
architectures, with a penalty due to the insertion loss. To illustrate 
this phenomena, two generalized equivalent circuits are proposed 
are a numerical example is presented. 
 

Index Terms— Beam forming, noise factor, passive circuits, 
phased arrays, signal-to-noise ratio. 

I. INTRODUCTION 
OISE, defined as unpredictable, statistic perturbations 
affecting signals that contain information [1] has been 
a recurrent subject of study since the appearance of 

telecommunications due to its detrimental effects in extracting 
the signal’s information at receiver systems. Shannon-Hartley’s 
theorem [2] establishes that the capacity of a communication 
channel with a bandwidth BW has a direct relation with the 
available signal and noise powers at the receiver. Such relation 
is known as Signal-to-Noise Ratio (SNR). At microwave 
frequencies, where other noise contributions with power 
spectral densities inversely proportional to frequency [3] can be 
neglected, noise power is often described as a thermal noise 
given by the agitation of charge carriers [4], [5] which has a 
nearly constant power spectral frequency (white noise) and 
follows a Gaussian amplitude distribution, with mean µ=0 and 
variance σ2. For a fixed bandwidth BW, the thermal noise power 
is computed as:  

𝑁𝑁thermal = kB𝐵𝐵W𝑇𝑇eq =  kB𝐵𝐵WT0𝑁𝑁eq, (1) 

where kB is Boltzmann’s constant (1.38·10-23 J·K-1) and Teq is 
the equivalent noise temperature of the system, which, 
analogously, can be expressed as an equivalent noise power 
coefficient, Neq, multiplying the reference temperature T0. 

When assuming thermodynamic equilibrium (Neq=1), this 
noise temperature is related to the physical temperature of the 
system by the noise factor (F), which is a figure of merit that 
essentially accounts for the degradation of the SNR due to a 
component (for instance, an amplifier). This figure of merit is 
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completely independent from the signal or noise power present 
at the input port. Equivalently, it can be expressed also in terms 
of the noise added (Nadded) by a two-port component with signal 
gain, G, when connected to a noise source delivering a power 
Nref at the reference temperature, T0: 

𝐹𝐹 = SNRin
SNRout

= 1 + 𝑇𝑇e
T0

= 1 + 𝑁𝑁added
𝑁𝑁ref·𝐺𝐺

 . (3) 

In the remainder of this work, the physical temperature will 
be assumed the reference temperature (T0=290K). At this point, 
any two-port network can be described by two main parameters: 
the noise factor, F, and the signal gain, G. For instance, it is 
well-known that the noise factor of a matched attenuator at 
reference temperature T0 corresponds to its loss (F=L=1/G) 
[6]–[9]. This is a direct consequence of the application of 
Bosma’s Theorem [10], which allows us to compute the noise 
power generated intrinsically in any passive multiport network 
with known scattering matrix S. The theorem establishes that: 

𝑪𝑪 = 𝑐𝑐𝑐𝑐∗ ����� = kB𝐵𝐵WT0(𝐈𝐈 − 𝑺𝑺𝑺𝑺∗) (4) 

where the superscript (*) represents the conjugate transpose, (   �) 
denotes a time average and I is the identity matrix. Here, C is 
the intrinsic noise matrix, containing in its diagonal the 
intrinsically generated, outgoing noise power at each port, and 
the correlated products between such noises in the off-diagonal 
terms. In fact, it can be checked (see [11]-[12] for further 
insight), that the time average of the product of two signals is 
related to their correlation and covariance, so that: 

𝑥𝑥𝑥𝑥 ���� = cov(𝑥𝑥, 𝑥𝑥) + µxµy =  ρxy�σxσy� + µxµy (5) 

Where 0<|ρxy|<1 is the correlation coefficient between both 
signals and σi and µi are, respectively, the standard deviation 
and the average (mean) of the signal. In the case of white 
Gaussian noise (thermal noise), it is widely known that its mean 
is zero and that its power over a fixed bandwidth is given by its 
variance, thus simplifying (5).  

Bosma’s theorem has been used widely together with the 
Noise Wave Theory (NWT) – a typical approach consisting of 
treating the noise as an infinite series of noise waves [13], [14] 
– to analyze any passive multiport microwave network with 
known scattering matrix in terms of noise. In this work, the 
main goal is to analyze passive beam forming networks (BFN) 
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that feature multibeam operation, such as [15]–[18]. This 
analysis is performed following the formulation of the NWT. 
This goal is motivated by the ambiguity found when analyzing 
their performance in terms of noise and the general 
misconception that every passive component will severely 
deteriorate the SNR in the system. Whereas it is undeniable that 
losses in the network will incur in the generation of noise – a 
direct consequence of (4) – the division and recombination of 
signal and noise power within the multiple paths in this type of 
networks provide a spatial diversity that can be harnessed to 
enhance the SNR with respect to the input ports. Such analysis 
is considered essential to properly design and model hybrid 
passive-analog/active-digital architectures [19].   

II. NOISE ANALYSIS IN MULTIBEAM BFNS 
Let S be the scattering matrix of a P-port passive, multibeam 

microwave network, where P=M+N. The first M ports are the 
input ports (in a reception scenario, the antenna ports) and the 
last N ports are the output ports (beam ports in this case). 

Let a be a P×1 array containing the amplitude and phase of 
the incoming waves at each port of the network (although only 
the first M elements may be considered different to zero). Since 
the network is considered LTI (linear, time-invariant), at each 
port ‘i', the wave ai can be expressed as a linear combination of 
a signal 𝑎𝑎is and noise contribution 𝑎𝑎in that are independent and 
hence uncorrelated. Let b be a P×1 array containing the 
amplitude and phase of the outgoing waves at each port of the 
network. Similarly, the wave bi can be expressed as a linear 
combination of a signal 𝑏𝑏is and noise contribution 𝑏𝑏in. Thus: 

𝑎𝑎 =  𝑎𝑎s + 𝑎𝑎n;          𝑏𝑏 =  𝑏𝑏s + 𝑏𝑏n. (6) 
It is worth noting that, whereas signal and noise are 

independent and hence uncorrelated to each other, the different 
signal contributions may be correlated among themselves, and 
so could be the noise contributions as well. Let c be a P×1 array 
containing the noise generated intrinsically by the network 
outgoing at each port. Now, a relation between the incoming 
and outgoing waves is established by: 

𝑏𝑏 =  𝑺𝑺𝑎𝑎 + 𝑐𝑐, (7) 
where the time dependency of each term has been obviated for 
clarity. In addition, the power outgoing each port can be 
retrieved from the diagonal elements of the matrix:  

𝑩𝑩 = 𝑏𝑏𝑏𝑏∗����� = 𝑺𝑺𝑺𝑺𝑺𝑺∗ + 𝑪𝑪 = 𝑺𝑺𝑎𝑎𝑎𝑎∗�����𝑺𝑺∗ + 𝑐𝑐𝑐𝑐∗����, (8) 
which can also be expressed as two independent matrices: 

𝑩𝑩𝐬𝐬 = 𝑏𝑏s𝑏𝑏s∗������� = 𝑺𝑺𝑺𝑺𝐬𝐬𝑺𝑺∗, (9a) 
𝑩𝑩𝐧𝐧 = 𝑏𝑏n𝑏𝑏n∗�������� = 𝑺𝑺𝑺𝑺𝐧𝐧𝑺𝑺∗ + kB𝐵𝐵𝑊𝑊𝑇𝑇0(𝐈𝐈 − 𝑺𝑺𝑺𝑺∗). (9b) 

A. Determination of SNR and noise factor 
At this point, the ratio of the SNR at an input port, ‘SNRin’, 

and the SNR at an output port, ‘SNRout’ could be expressed in 
terms of the matrices A, B and S. We now define an equivalent 
noise factor matrix, Feq: 

𝑭𝑭𝐞𝐞𝐞𝐞 = SNRin
SNRout

= (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑺𝑺𝐬𝐬)⊘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑺𝑺𝐧𝐧))
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑩𝑩𝐬𝐬)⊘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑩𝑩𝐧𝐧))T

 (10) 

Where ⊘ represents the element-wise division of two vectors. 
This matrix allows us to assess the SNR enhancement or 
deterioration in network for any pair of ports. Without loss of 
generality, it could be checked that, after developing (9) further, 
the (i,j)-th element of (10) would be computed as: 

𝐹𝐹eq,ji =
𝐴𝐴i,i
s /𝐴𝐴i,i

n

𝐵𝐵j,j
s /𝐵𝐵j,j

n =

��𝜎𝜎i
s�
2
+𝑑𝑑𝚤𝚤s����

2
�

𝑁𝑁i
�
∑ �∑ 𝑆𝑆jm𝜌𝜌mp

n ��𝑁𝑁m𝑁𝑁p�P
m=1 �𝑆𝑆jp

∗P
p=1 +�1−∑ 𝑆𝑆jm𝑆𝑆jm

∗P
m=1 �

∑ �∑ 𝑆𝑆jm�𝜌𝜌mp
s �𝜎𝜎ms 𝜎𝜎ps�+𝑑𝑑ms ·������𝑑𝑑ps  ������P

m=1 �𝑆𝑆jp
∗P

p=1
�. (11) 

Here, the power associated to each signal and noise 
contribution is represented following (5). In addition, it can be 
seen that both correlation coefficients ρs and ρn are included to 
account for any possible correlation among incoming signals (a 
typical scenario in multibeam networks), as well as among the 
incoming noise contributions (The reader might check on [20]–
[23] for more information regarding noise correlation in 
antenna arrays). In addition, Nm, Np are the equivalent noise 
power coefficients, defined in (2). The kBBWT0 factor is 
simplified from both numerator and denominator. 

This expression can be further developed if a pure definition 
of the noise factor is sought (namely, that Ni=1 ∀i and 𝜌𝜌xyn =0 
∀x ≠ y). However, the resulting expression would still depend 
on the inputs of the system. Hence, when computing the noise 
factor between the input port i and the output port j, only a 
single incoming signal shall be considered, arriving to:  

𝐹𝐹ji =
𝐴𝐴i,i
s /𝐴𝐴,ii

n

𝐵𝐵𝑗𝑗,𝑗𝑗
s /𝐵𝐵j,j

n =  
∑ 𝑁𝑁𝑝𝑝�𝑆𝑆jp�

2𝑃𝑃
p=1

𝑁𝑁𝑖𝑖�𝑆𝑆ji�
2 +

1−∑ �𝑆𝑆jp�
2𝑃𝑃

p=1

𝑁𝑁𝑖𝑖�𝑆𝑆ji�
2

𝑁𝑁𝑖𝑖=𝑁𝑁𝑝𝑝=1�⎯⎯⎯⎯⎯�  1

�𝑆𝑆ji�
2 (12) 

Here the signal power has been simplified from both 
numerator and denominator. The first term in (12) accounts for 
the scattering of every noise contribution across the network, 
whereas the second term accounts for the noise generated 
intrinsically. If we now substitute Np=Ni=1 (pure definition of 
the noise factor), it is observed that Fji corresponds to the loss 
experienced by the signal travelling between them, as in an 
attenuator. This is the typical approach when considering a 
passive network (i.e., F equals losses). Nevertheless, the fact 
that several signal and noise contributions might be combined 
at the output ‘j’ port must not be forgotten. Hence, despite 
presenting a noise factor Fji>1 between one input and one 
output, this does not necessarily mean that the SNR will be 
deteriorated, because the network is intrinsically offering 
spatial diversity. This can be better understood with a simple 
numerical example. 

B. Example: Quadrature hybrid 
This sample scenario is depicted in Fig. 1 together with its 

scattering matrix, with P=4 and M=N=2. The ports labelling is 
customized with respect to the typical notation to be consistent 
with the designation of M inputs and N outputs. Every port is 
considered matched, with ideal isolation between the ports. In 
addition, the transmission parameter has been expressed in 
terms of the canonical division factor (1:2) and an efficiency 
0<η≤1 that accounts for the ohmic and dielectric loss along each 
path. For simplicity, a balanced network is assumed. A 
quadrature hybrid can be thought of as the simplest topology 

This article has been accepted for publication in IEEE Antennas and Wireless Propagation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LAWP.2023.3269121

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV PUBLICA DE NAVARRA. Downloaded on June 26,2023 at 10:29:59 UTC from IEEE Xplore.  Restrictions apply. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3 

(2×2) of a Butler Matrix, defining two mirrored beams with 
respect to boresight, generating a relative phase between the 
antenna ports of ±90º depending on the port being used. Here, 
we analyze the reciprocal reception case. An incoming plane 
wave is assumed to arrive with an inclination θ with respect to 
boresight, generating a phase difference β between the signals 
excited at each antenna, 𝑎𝑎𝑑𝑑s. The total power captured by each 
antenna, will be proportional to the antenna’s effective area 
(gain). For simplicity, every antenna is considered equal, and 
the excitations are assumed sinusoids with amplitude as, with 
zero mean and a variance (average power) of as

2/2. In addition, 
each antenna captures a noise contribution, 𝑎𝑎𝑑𝑑n, with an average 
noise power of kBBWT0Ni, so that: 

SNRin = as2 (2kB𝐵𝐵W𝑇𝑇0𝑁𝑁i)⁄  (13) 
Let us now compute the SNRout at port 3, equivalent to that 

of port 4 due to the symmetry of the network. The intrinsically 
generated noise outgoing each port, Nadded, depends exclusively 
on the loss incurred in the network and is independent from the 
division factor (1:2). Applying (4): 

𝑁𝑁added =  kB𝐵𝐵W𝑇𝑇0(1 − 𝜂𝜂2) (14) 
This power is added to the scattered noise contributions 

present at the output, so that the total noise power at port 3 is: 

𝐵𝐵3,3
n = kB𝐵𝐵W𝑇𝑇0�𝑁𝑁1|𝑆𝑆31|2 + 𝑁𝑁2|𝑆𝑆32|2 +
2𝜌𝜌21n |𝑆𝑆31||𝑆𝑆32|�𝑁𝑁1𝑁𝑁2 + (1 − 𝜂𝜂2)�  (15) 

The correlation between the noises captured by each antenna 
at this point is yet unknown and is represented by the correlation 
coefficient 𝜌𝜌21n . The signal power outgoing this port can be 
computed straightforwardly, since the correlation between 
signals is defined by the cosine of their relative phase difference 
(which is also affected by the phase introduced by each Sij): 

𝐵𝐵3,3
s = as2

2
�|𝑆𝑆31|2 + |𝑆𝑆32|2 + 2|𝑆𝑆31||𝑆𝑆32| cos �β − π

2
�� (16) 

The ratio of SNR at the input/output ports (equivalent noise 
factor) is computed as in (11), assuming N1=N2 for simplicity: 

𝐹𝐹eq,31 =  𝜂𝜂
2𝑁𝑁1(1+𝜌𝜌21

n )+�1−𝜂𝜂2�
𝜂𝜂2𝑁𝑁1(1+cos(β−π/2))

, (17) 

In a plausible scenario – in which the signals arrive from the 
direction of maximum radiation (namely, β=π/2) and where the 
noise contributions are independent (𝜌𝜌21n = 0) – this factor can 

be lower than unity (the SNR is enhanced) due to the spatial 
diversity inherent to the network: 

𝐹𝐹eq,31 =  𝜂𝜂
2(𝑁𝑁1−1)+1
2𝜂𝜂2𝑁𝑁1

= 1
2
− 1

2𝑁𝑁1
+ 1

2𝜂𝜂2𝑁𝑁1

𝑁𝑁1=1�⎯⎯�  1
2𝜂𝜂2

 (18) 

However, if an adequate expression, consistent with the pure 
noise factor definition, is desired, (15) and (16) are reduced to: 

𝐵𝐵3,3
n = kB𝐵𝐵W𝑇𝑇0;        𝐵𝐵3,3

s = as2

2
· 𝜂𝜂

2

2
 (19) 

So that the actual noise factor between ports 1 and 3 is: 

𝐹𝐹31 =  2
𝜂𝜂2

= 1

�𝑆𝑆ji�
2 (20) 

The fundamental difference between (20) and (17), besides 
the simplifications made in between, is that the later takes into 
account the spatial diversity offered intrinsically by division 
and recombination taking place inside the network, whereas 
(20) treats individually the contribution coming from each input 
port. As such, if we consider (18) for N1=1, the equivalent noise 
factor (ratio between SNRs) is 4 times (M2) lower than that in 
(20), thanks to the coherent combination of two signals.  

C. Equivalent representation 
At this point, the equivalent circuit in Fig. 2 could be 

considered. After the division from each input to two channels 
(a process which generates noise), each channel is affected by 
an attenuation and a phase delay which are related to the 
corresponding Sij parameter between each pair of ports. Then, 
the combination of signal and noise contributions is performed 
with an ideal power combiner (i.e., a lossless Wilkinson), which 
does not introduce noise. By using this representation, the same 
results as in previous section obtained in either way – (17), (18) 
and (20), depending on the Ni and number of signals considered. 

One last remark worth mentioning is that the attenuator 
blocks used in this representation lack a physical meaning, 
since their attenuation, L=1/(2·η2), is lower than unity for 
values of η close to 1. Nevertheless, they do not need to be 
realizable since this is an equivalent representation. In terms of 
attenuation, these blocks compensate the additional attenuation 
introduced the power divider and combiner (1/N and 1/M, 
respectively). Otherwise, since L already accounts for the Sij 
transmission parameter, both the signal and noise captured by 
the antennas would be attenuated excessively. In terms of noise, 

 
Fig. 1. Example scenario concerning the reception of a tilted wave front by a 
phased array fed by a quadrature hybrid. 

S

as·ej0 as·ejβ

s3(t) + n3(t) s4(t) + n4(t)

1 2

3 4

n1 n2

 
Fig. 2. Equivalent circuit of the quadrature hybrid accounting for division and 
recombination within the network. 
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1 : 2
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φ2,3

2 : 1

L=1/(2·η2)

1 : 2

φ1,4

L=1/(2·η2)

φ2,4

2 : 1

Compensated attenuation 
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φi,j = exp(j·arg(Si,j))
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the power divider at the input generates an excess of thermal 
noise power, which is compensated by the L block. This could 
also be understood as a correlation factor of ρxy= –1 between 
both noises, so that the noise generated by the L block interferes 
destructively with the noise excess generated by the divider.  

III. GENERALIZED MODEL AND DISCUSSION 
The scheme in Fig. 2 is now generalized to the case of a 

passive multibeam forming network with M inputs (antennas) 
and N outputs (beam ports) in Fig. 3, consisting of M·N 
interconnected channels. Both, signal and noise, arriving at an 
antenna are first divided among N channels (introducing noise 
in this division). In each channel, the incoming signal and noise, 
as well as the noise generated in the power divider, are 
compensated with an attenuation/gain that depends on the 
corresponding Sij transmission parameter between each pair of 
ports, as well as on the number of ports [L=1/(M·N·|Sij|2)]. In 
addition, each signal and noise contribution then experience a 
delay (established by the corresponding Sij). Finally, the M 
channels dedicated for each output port are combined without 
the generation of additional noise. This last combining block is 
responsible for taking into account every possible correlation 
between the different signals or the different noises captured by 
the antennas (the noises generated internally within each chain 
are naturally uncorrelated). In terms of individual pairs of 
input/output port, we could follow the path in between to check 
that the gain across this path corresponds to the specific 
transmission parameter: 

𝐺𝐺j,i = 1 N⁄ · MN�𝑆𝑆ij�
2 · 1 M⁄ =   �𝑆𝑆ij�

2
 (21) 

In the same manner, the noise factor of each chain is obtained: 

𝐹𝐹j,i = N +
1 MN�𝑆𝑆ij�

2⁄ −1

1 N⁄
+ M

MN�𝑆𝑆ij�
2
N�

= 1

�𝑆𝑆ij�
2 (22) 

which agrees with that obtained in (20) for the sample scenario. 
Thus, the equivalent circuit proposed in Fig. 3 successfully 
models the behavior of an arbitrary multibeam network. 
Nevertheless, the traditional representations of a reception 
scenario with an antenna array, such as those proposed by Lee 

[24] or Gatti [25], consist of analyzing the system as M parallel 
channels contributing to an output port.  

In such works, when every channel is equal (same gain and 
noise factor), the noise factor of the system corresponds to that 
of an individual channel. However, special care must be taken 
when using those representations for a multibeam network. In 
this case, assuming the noise factor in (22) for every channel 
would incur in the computation of an excess in noise power of 
(M-1)·kBBWT0. Therefore, a correction must be introduced. 

This is addressed by dividing the noise factor of the chain 
by the number of antennas contributing to each port, as shown 
in Fig. 4. This representation is equivalent to that in Fig. 3, and 
both satisfy all previous calculations in Sections II and III.  
Here, each output (beam) port is considered individually as the 
combination of M channels, just as in [24] and [25]. However, 
the fundamental difference is that  each channel has a noise 
factor of 1/(M|Sji|2), instead of 1/|Sji|2, which is typically 
considered for every passive component. 

IV. CONCLUSION 
Namely, it can be concluded that any multibeam passive 

beam forming network can be represented as the combination 
of M·N passive channels, where each channel generates (1/M)th 
of the thermal noise generated by the network (the number of 
antennas contributing to a single port). The noise factor of each 
channel is then (1/M)th of the noise factor of the system. Here, 
we aimed to demonstrate that, despite being passive (and hence 
lossy), the spatial diversity – inherent to multibeam networks – 
allows us to potentially achieve SNR enhancements similar to 
those achieved with digital architectures, at the expense of a 
reduced SNR enhancement due to the unavoidable insertion 
loss of the network. This is contrary to the common misbelief 
that every passive component deteriorates the SNR with respect 
to their inputs. Consequently, using passive BFN as an 
alternative to digital phased arrays should not impose a 
significant SNR deterioration, provided that the insertion loss 
in the network is low. 

This analysis could be of great use in the development of 
hybrid architectures, in which passive BFN are combined with 
digital architectures, allowing the designer to relax the 
requirements of the digital processing units while maintaining 
their performance in terms of SNR.  

 

Fig. 3. Generalized model (equivalent circuit) of a passive multibeam BFN 
accounting for the division and recombination occurring inside the network. 
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Fig. 4. Generalized model (equivalent circuit) of a passive multibeam BFN as 
the combination of M independent channels for each of the N output ports. 
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