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Abstract: Wind energy forecasting is a critical aspect for wind energy producers, given that the
chaotic nature and the intermittence of meteorological wind cause difficulties for both the integration
and the commercialization of wind-produced electricity. For most European producers, the quality
of the forecast also affects their financial outcomes since it is necessary to include the impact of
imbalance penalties due to the regularization in balancing markets. To help wind farm owners in
the elaboration of offers for electricity markets, the EOLO predictor model can be used. This tool
combines different sources of data, such as meteorological forecasts, electric market information,
and historic production of the wind farm, to generate an estimation of the energy to be produced,
which maximizes its financial performance by minimizing the imbalance penalties. This research
study aimed to evaluate the performance of the EOLO predictor model when it is applied to the
different Spanish electricity markets, focusing on the statistical analysis of its results. Results show
how the wind energy forecast generated by EOLO anticipates real electricity generation with high
accuracy and stability, providing a reduced forecast error when it is used to participate in successive
sessions of the Spanish electricity market. The obtained error, in terms of RMAE, ranges from 8%,
when it is applied to the Day-ahead market, to 6%, when it is applied to the last intraday market. In
financial terms, the prediction achieves a financial performance near 99% once imbalance penalties
have been discounted.

Keywords: EOLO; Wind prediction; statistical analysis; Spanish electricity markets

1. Introduction

Europe is immersed in a deep and complex energy crisis. Energy prices have risen
sharply in 2022, as a consequence of the Russia–Ukraine war and its supplies of gas as a
weapon of war, impacting the economy adversely. This crisis makes it necessary for Europe
to reconsider its renewable energy policy and minimize fossil sources. Furthermore, the
environmental pursuits of the European Union (EU), which call for member states to be
decarbonized by 2050 [1] in order to mitigate the effects of global warming, have increased
the generation of electricity from technologies based on renewable sources, especially wind
energy [2,3]. As an example, more than 20% of the energy consumed in the EU is currently
generated from renewable sources, which is more than double the amount in 2004 [4].
Another example is involves Spain’s energy consumption, where wind energy provided
23.3% of the energy demand during 2021, according to [5]. At the end of 2022, there were
21,574 wind turbines in operation, confirming wind energy providing the most electricity
in the country.

In this context of energy transition towards a system supplied by renewable energies,
natural resources such as wind energy are limited by the variability and intermittence (non-
cyclical) inherent in their complex natures [6]. This disadvantage is crucial to consider since
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there must be a balance between the amount of electricity consumed and its generation in
order to meet the operating demands of the electrical network [7,8].

Knowing how much energy is needed by customers beforehand is difficult to predict.
However, agents involved with transport and distribution have applications with which
they can predict demand during different periods. In addition, commercialization agents
buy electric power transactions for the next day based on the purchase offers presented
through market agents. These predictions should have a forecast horizon, such that it helps
to calculate power output and improve the fit of real demand curves [9,10].

Furthermore, with the implementation of the 54/1997 Electricity Law [11], the electric-
ity market in the EU transformed the landscape of the sector [12–14], and most European
and Western countries had a liberated electricity market, in which the energy produced
is agreed upon in previous auctions. This economically penalizes those agents whose
production then deviates from their predictions [15,16]. In Europe, this change means the
opening of the networks to third parties, the establishment of an organized energy trading
market, and the reduction in public intervention in the management of the system [17]. The
objectives are to develop an integrated electricity market that acts as an efficient instrument
for secure, affordable, and sustainable energy acquisition [18].

However, it is more difficult to predict the energy produced by renewable energies,
particularly in the case of wind energy because of its variability. Therefore, agents who
come to the electricity market to sell wind-farm energy need to develop methods that the
wind farm to adjust its production hourly (horizon). In recent years, a great effort has been
devoted to the development of forecasting systems for wind energy production forecasts,
because these forecasts have important economic and technical implications for the overall
electricity economy.

To meet these challenges, wholesale electricity markets are structured based on the
"horizon" [19], which is defined as the period that determines the future moment for which
we make the predictions [20]. For this research, the horizon was classified as: (i) a short-term
horizon prediction (up to 8 h in advance), which was used to improve dynamic network
security and secondary regulation management as well as to plan the electricity system;
(ii) a medium-term horizon prediction (from a few hours to 72 h in advance) allows the
electricity market operators to take the necessary measures to ensure the future stability of
the system and manage market activities (e.g., when the energy producers need to perform
maintenance, they use that horizon); and (iii) a long-term horizon prediction (several
days in advance) is interested in the future organization of power stations (e.g., reducing
economic losses for individual wind farm maintenance or planning for the creation of a
new farm).

Bidding auctions are performed hours before production with different horizons. This
is problematic for renewable power plants since their production uncertainty increases with
the prediction horizon, resulting in the accrual of significant penalties if they are unable to
meet their energy commitments [15,16]. The horizon of much interest in the literature is
the medium-term, as it is the most useful. We chose this as the target prediction horizon for
the EOLO wind-predictor model.

For the medium-term horizon, there are different families of prediction models based
on conventional sources to facilitate energy management on wind farms in order to balance
demand and generation, or even to halt generation if there is no demand. According to [9],
predicting energy production on wind farms should be performed using quantitative
models based on physical and statistical methods. The first approach is based on the
prediction of the conditions of the lower layer of the atmosphere via numerical weather
forecasting systems (numerical weather predictions, NWP), which use forecast data of
temperature, pressure, coefficients of ground friction, and orographic conditions. These
models involve significant computational resources and require solving and modeling
processes at different scales, which are highly complex both theoretically and numerically.
On the other hand, statistical models are based on variables of interest in the historical data,
such as wind speed, air temperature, and previously generated data. The goal is to detect
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relationships or patterns between the variables using time series, statistical models, and
artificial intelligence in order to extrapolate relevant associations for predictions.

With this in mind, this study employed the EOLO prediction model as a decision-
making tool for the characterization of energy sale offers among the different electrical
markets in Spain. The objective was to perform an analysis of the capabilities of the EOLO
predictor model and to adjust it according to the requirements of each market.

This paper is organized according to the following structure. Section 2 is divided
into four subsections: Section 2.1 contains an introduction to electricity markets and their
processes; Section 2.2 describes the EOLO tool, which was developed by several of the
authors; Section 2.3 describes 30 Spanish wind farms used in the present study; and finally,
the methodology is described in Section 2.4. Section 3 presents the analysis of the results
based on day-ahead and intraday markets in the dataset. Finally, this paper ends with a
discussion about the results, the limitations of the analysis, and our recommendations for
future studies in Section 4.

2. Materials and Methods

This section describes all materials used to carry out this research, which includes
three essential elements:

• European electricity markets, which for this study, were located in Spain.
• The wind-predictor model, EOLO.
• The datasets for the study.

Next, the methodology to obtain and evaluate the results is described in detail.

2.1. European Electricity Markets

In 1996, the European electricity market began when the European Parliament and the
European Council approved the first electricity directive (96/92/EC) [18]. This continued
the development and integration of the European electricity market to harmonize and
liberate the energy market of the EU.Measures enacted since 1996 have established the
following, as indicated in [21]:

• The state, with its resources, only intervenes in energy transport planning.
• All activities of the electricity industry were divided into regulated activities (transport

and distribution) and non-regulated activities (generation, commercialization), so that
energy is available for all users.

• Any independent company can access the network for both generation and demand
purposes.

• Regulated activities in network businesses are considered regulated natural monopo-
lies, with tariffs paid by all network users.

• The regulatory commission’s responsibilities include promoting and achieving compe-
tition and supervising the transparency and independence of the system’s operation.

• The creation of calendar that establishes when and who participates in different
electricity markets, as well as the amount of energy each participant can produce

• All energy producers can participate under equal conditions and with diverse bidding
strategies for different electricity markets.

These measures are intended to build a more competitive, customer-focused, flexible,
and non-discriminatory EU electricity market with market-based supply prices [22]. This
process is slow but provides a great degree of integration among the EU electricity mar-
kets, where electricity is bought and sold using supply and demand curves to determine
the price.

Data concerning the interchange of energy and pricing in the different electrical
markets are available in each country from the corresponding nominated electricity market
operator (NEMO). Table 1 lists the main NEMOs and a reference link for each country.
In the cases of Spain and Portugal, it is the Iberian Energy Market Operator (OEMI) that
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manages the different electricity markets (day-ahead, intraday, and continuous) [19,20]. In
this study, we focused on the Spanish markets (Section 2.1.1).

Table 1. European electricity market operators [23].

Electricity Market Countries Reference

EXAA Austria https://www.exaa.at (accessed on 9 January 2023)

EPEX Belgium, France, Germany,
Netherlands, and Switzerland https://www.epexspot.com (accessed on 9 January 2023)

IBEX Bulgaria https://ibex.bg (accessed on 9 January 2023)
CROPEX Croatia https://www.cropex.hr (accessed on 9 January 2023)

OTE Czech Republic https://www.ote-cr.cz (accessed on 9 January 2023)
GME Italy https://www.mercatoelettrico.org (accessed on 9 January 2023)

HENEX Greece https://www.enexgroup.gr (accessed on 9 January 2023)
HUPX Hungary https://hupx.hu (accessed on 9 January 2023)

Nord Pool Spot Scandinavian and Baltic countries https://www.nordpoolgroup.com (accessed on 9 January 2023)
POLPX Poland https://www.tge.pl (accessed on 9 January 2023)

OPCOM Romania https://www.opcom.ro (accessed on 9 January 2023)
SEEPEX Serbia https://www.seepex-spot.com (accessed on 9 January 2023)
OMIE Spain and Portugal https://www.omie.es (accessed on 9 January 2023)
OKTE Slovakia https://www.okte.sk (accessed on 9 January 2023)

SOUTHPOOL Slovenia https://www.bsp-southpool.com (accessed on 9 January 2023)

The preliminary measures and the increased interconnection capacity ensure an inte-
grated, efficient, and secure European electricity market [18,21].

2.1.1. The Spanish Case

With the implementation of the 54/1997 Electricity Law [11], the Spanish electricity
system began its transition towards a liberated market: The supply of electricity was
no longer considered a public service, and new private companies took charge of many
competencies previously held by the State. No profound change occurred in the agents of
the electricity market as a result of the law, but it introduced a differentiation between the
following [24]:

• Generation activity is made up of natural or legal persons who have the capacity to
generate electricity. That electricity can be for their own consumption or for third
parties. Furthermore, other activities include the set-up, operation, and maintenance
of their production centers.

• Iberian Energy Market Operator (OMIE) is the distribution agent in charge of carrying
out the activities of economic and technical management of the electrical system; that
is, OMIE generates the supply and demand curves for the electricity market.

• Red Eléctrica de España (REE) is the transportation company that is responsible for
transporting electric energy, as well as building, maintaining, and maneuvering the
transportation facilities used for this activity. Furthermore, it is responsible for the
operation of the electrical system, which involves balancing electricity production
and consumption to guarantee the proper functioning of the electrical system so that
consumers receive the electricity they need safely and securely, without the system
becoming overloaded or collapsing.

The OMIE is responsible for organizing the electricity market in Spain. Therefore,
this operator creates a day-ahead market (DAM), where they establish the production and
consumption schedules for each hour of the following day. Only the energy producers with
the best prices participate in that market, and those with the highest bids are removed.

In the DAM, purchase-for-sale transactions of electricity must be made between
14 and 38 h of the horizon, and the gate closure time is 10D (where one day is D and D + 1
is the next day). In this market, the affected hours are 1− 24 D + 1.

https://www.exaa.at
https://www.epexspot.com
https://ibex.bg
https://www.cropex.hr
https://www.ote-cr.cz
https://www.mercatoelettrico.org
https://www.enexgroup.gr
https://hupx.hu
https://www.nordpoolgroup.com
https://www.tge.pl
https://www.opcom.ro
https://www.seepex-spot.com
https://www.omie.es
https://www.okte.sk
https://www.bsp-southpool.com
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The DAM price is accounts for the last bid matched in each hour. All energy producers
are remunerated at the hourly marginal price, regardless of the hourly marginal price or
the bids submitted. In addition, settlements are also calculated with this price. However,
the OMIE only takes economic factors into consideration.

Therefore, after the DAM, the system operator carries out an analysis with the support
of simulation applications, into which the database from the daily schedule is input in
order to determine whether the power system is safe or if there is a risk of blackouts. If
the schedule is not technically feasible, the system operator modifies it, for example, by
reducing the output of the generators causing the overloads on the grid and increasing the
load of others by the same proportion. This process is called "constraint management", and
it is aimed at making the free-contracting approach in the markets feasible from the aspect
of system security.

Otherwise, unexpected breakdowns or unforeseen changes in demand, both upward
and downward, may require the OMIE to adjust their strategies. When this occurs, the
OMIE creates two news markets: the intraday market (IM), which has six sessions and is
described in Table 2; and the continuous market (CM), where the adjustments are made
one hour in advance. The aim of these markets is to anticipate all possible incidents that
occur in the daily market and suggest solutions to ensure a stable day-ahead market. These
markets are used by generators who may need to withdraw their energy offerings or sell
more energy. Marketing agents also use these markets to buy more power or to get rid of
excess energy due to errors in their consumption forecast. The IM and CM both operate
similarly to the DAM.

Table 2. Spanish intraday market structure [25,26].

Session Number 1 2 3 4 5 6

Session Opening 14:00 D 17:00 D 21:00 D 1:00 D + 1 4:00 D + 1 9:00 D + 1

Hourly periods 1–24 D + 1 21–24 D y 1–24
D + 1 1–24 D + 1 5–24 D + 1 8–24 D + 1 13–24 D + 1

Schedule horizon 10–34 3–31 3–27 3–23 3–20 3–15
Number of hours 24 h 28 h 24 h 20 h 17 h 12 h

As shown in Table 2, there are three kinds of markets that allow energy producers to
adjust their energy commitments hourly. However, this study only considered day-ahead
and intraday markets because they are challenging to predict due to the stark differences
between the two (see in Figure 1).

Electrical energy is easily generated, transported, and transformed. However, until
now, it has not been possible to store it in a practical, easy, and economical way in large
quantities, so it must be produced at the same time it is consumed [27]. Regardless of
the time of day, the REE’s Electricity Control Center (Cecoel) adjusts the balance between
electricity generation and consumption, as well as energy transport to the distribution
networks, according to the highest quality and safety conditions required and at the lowest
possible price. All energy traffic in Spain and neighboring countries is coordinated by
Cecoel and is available 24 h a day, 365 days a year.

Because of Cecoel and the significant demand for renewable energy that has increased
in recent years, the Control Center of Renewable Energies (Cecre) was created [28], with the
objective to integrate the maximum amount of renewable energy possible into the electric
market. according to Cecre, the primary form is wind energy, due to the significant increase
in wind power generation in Spain.
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Figure 1. Spanish electricity markets.

However, this form of energy has its own limitations, some of which are caused by
the irregularity and variability of wind, while others are related to wind turbines being
disconnected due to voltage dips. Cecre’s mission is to anticipate these incidents and
propose solutions when they occur. To accomplish this, it diagnoses and evaluates real-time
outages to develop practical operating measures in order to prevent energy disruptions in
the future.

Each market, except the day-ahead, is expected to remedy any imbalance between
generation and demand created in a previous market as forecasts exist for one or more
consecutive hourly periods. Energy producers take advantage of this to reduce their
established schedules or to increase their production. Furthermore, technical restrictions
enforced by OMIE ensure the security of the market economy.

2.2. Wind-Predictor Model: EOLO

The tool used to obtain the forecasts of the energy produced in wind farms and analyze
the data is EOLO [29]. EOLO was created by several authors of this paper and presented in
detail in [29]. The main concept is that in fringe electricity markets, the forecast with the
smallest margin of error is not necessarily the best forecast for economic performance.

The main characteristics of EOLO include its use of public information and its ability
to account for the financial aspect of the fringe electricity markets. Based on this data,
it provides an estimate that minimizes prediction errors while maximizing its economic
value, resulting in a useful tool for wind energy producers. They are able to maximize
their income while avoiding economic penalties due to inaccurate energy offers across the
different Spanish electricity markets.

To provide an accurate forecast for a wind farm, EOLO combined two sources of
public information:

• Meteorological predictions published by the Spanish State Meteorological Agency
(AEMET) through the API AEMET Opendata (https://opendata.aemet.es accessed
on 15 October 2022). It is important to note that the EOLO wind predictor model
must replace this source of information with a corresponding one when it is used for
another country. Some options to replace the meteorological information are available
in Table 3.

• Data concerning the state of the electric system and the evolution of the different
markets were obtained from REE’sSystem Operator Information System (e-sios) (https:
//www.esios.ree.es accessed on 15 October 2022) through its API. When the EOLO
wind-predictor model is outsourced to another country, this information source must
be replaced with a corresponding one. Some options to replace this information are
available in Table 1.

Pairing this information with the historic production of wind farms, EOLO created
different predictors and new indicators (described in [29]), which were used to feed several
automatic learning models. Figure 2 roughly summarizes the inputs and outputs of the
EOLO model.

https://opendata.aemet.es
https://www.esios.ree.es
https://www.esios.ree.es
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Table 3. European information about meteorology agencies.

Country Meteorology Agency Reference

Austria Central Institute for Meteorology and
Geodynamics https://www.zamg.ac.at (accessed on 9 January 2023)

Belgium Institut Royal Météorologique https://www.meteo.be (accessed on 9 January 2023)
France Meteo France https://meteofrance.com (accessed on 9 January 2023)

Germany Deutscher Wetterdienst https://www.dwd.de (accessed on 9 January 2023)
Netherlands Royal Netherlands Meteorological Institute https://www.knmi.nl (accessed on 9 January 2023)
Switzerland MeteoSwiss https://www.meteoswiss.admin.ch (accessed on 9 January 2023)

Bulgaria National Institute of Meteorology
and Hydrology http://www.meteo.bg (accessed on 9 January 2023)

Croatia Meteorological and Hydrological Service http://meteo.hr (accessed on 9 January 2023)
Czech

Republic Czech Hydrometeorological Institute https://www.chmi.cz (accessed on 9 January 2023)

Italy Servizio Meteorologico http://www.meteoam.it (accessed on 9 January 2023)
Greece Hellenic National Meteorological Service http://www.emy.gr (accessed on 9 January 2023)

Hungary Meteorological Service of the
Republic of Hungary https://www.met.hu (accessed on 9 January 2023)

Scandinavian
Danish Meteorological Institute; Swedish

Meteorological and Hydrological Institute;
Norwegian Meteorological Institute

https://www.dmi.dk
https://www.smhi.se
https://www.met.no (accessed on 9 January 2023)

Baltic
countries

Estonian Weather Service; Latvian
Environment, Geology and Meteorology

Agency; Lithuanian Hydrometeorological
Service; Finnish Meteorological Institute

https://www.ilmateenistus.ee
https://videscentrs.lvgmc.lv
http://www.meteo.lt
https://www.ilmatieteenlaitos.fi (accessed on 9 January 2023)

Poland Institute of Meteorology and
Water Management https://www.imgw.pl (accessed on 9 January 2023)

Romania National Meteorological Administration https://www.meteoromania.ro (accessed on 9 January 2023)

Serbia Republic Hydrometeorological Service
of Serbia https://www.hidmet.gov.rs (accessed on 9 January 2023)

Spain Agencia Estatal de Meteorología https://www.aemet.es (accessed on 9 January 2023)
Portugal Institute Português do Mar e da Atmosfera https://www.ipma.pt (accessed on 9 January 2023)
Slovakia Solvak Hydrometeorological Institute https://www.shmu.sk (accessed on 9 January 2023)
Slovenia Meteorological Office http://www.arso.gov.si (accessed on 9 January 2023)

Figure 2. EOLO input and output scheme.

Using these data and indicators, EOLO employed a two-stage approach: in the first
stage, it attempts to estimate accurate wind energy production; and in the second, the best
forecast from an economic point of view. This second stage involves the analysis of the
economic impact of energy policies on the market, and then the predictions of the first
stage are evaluated based on the economic trends in prices and imbalance penalties.

EOLO only used a few variables to feed the automatic learning models. The variables
were selected based on their correlation with the objective data, the historic production

https://www.zamg.ac.at
https://www.meteo.be
https://meteofrance.com
https://www.dwd.de
https://www.knmi.nl
https://www.meteoswiss.admin.ch
http://www.meteo.bg
http://meteo.hr
https://www.chmi.cz
http://www.meteoam.it
http://www.emy.gr
https://www.met.hu
https://www.dmi.dk
https://www.smhi.se
https://www.met.no
https://www.ilmateenistus.ee
https://videscentrs.lvgmc.lv
http://www.meteo.lt
https://www.ilmatieteenlaitos.fi
https://www.imgw.pl
https://www.meteoromania.ro
https://www.hidmet.gov.rs
https://www.aemet.es
https://www.ipma.pt
https://www.shmu.sk
http://www.arso.gov.si
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(first stage), and the ideal economic performance (regardless of penalties). This is one of
the main benefits of the EOLO model. The correlation analysis of all available variables in
the input dataset identifies those that have the most influence on energy production. This
allows a reduced set of variables to be used when training the model and ensures a rapid
response in time to facilitate a timely offer of sale in the markets. It also provides estimates
that represent the real-time production, independent of weather conditions or time of year.
Furthermore, this characteristic allows specific parameters be adjusted for the individual
characterization of each wind farm.

The output of EOLO is an optimized forecast with minimal deviations and excellent
economic performance. In this study, we analyzed its results for the day-ahead and intraday
electricity markets. The details of EOLO exceeded the scope of this article; therefore,
interested readers can find detailed explanations in [29].

2.3. Dataset

To analyze the suitability of the EOLO, we focused on the different markets in Spain,
and we included a set of 30 Spanish wind farms that were part of the same electric company.
The 30 wind farms were distributed throughout Spain, including in the insular territories.
Table 4 summarizes the nominal power (KW) and the period studied, along with the
proposed predictor of each wind farm. The available period allowed us to analyze the
different horizons in the electricity markets.

Table 4. Wind farms analyzed using the EOLO wind predictor, including the nominal power (KW) of
each wind farm and the study period (from–to) [29].

Wind Farm Power (KW) From To

Farm_1 5500 31 May 2020 UTC 28 Jan 202 UTC
Farm_2 28,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_3 29,900 31 May 2020 UTC 28 Jan 202 UTC
Farm_4 17,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_5 14,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_6 11,900 31 May 2020 UTC 28 Jan 202 UTC
Farm_7 21,710 31 May 2020 UTC 28 Jan 202 UTC
Farm_8 5000 31 May 2020 UTC 28 Jan 202 UTC
Farm_9 5000 31 May 2020 UTC 28 Jan 202 UTC

Farm_10 12,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_11 50,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_12 49,900 31 May 2020 UTC 28 Jan 202 UTC
Farm_13 36,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_14 50,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_15 30,800 31 May 2020 UTC 28 Jan 202 UTC
Farm_16 16,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_17 36,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_18 30,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_19 16,900 31 May 2020 UTC 28 Jan 202 UTC
Farm_20 18,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_21 30,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_22 21,250 31 May 2020 UTC 28 Jan 202 UTC
Farm_23 24,000 31 May 2020 UTC 28 Jan 202 UTC
Farm_24 39,600 31 May 2020 UTC 28 Jan 202 UTC
Farm_25 13,600 31 May 2020 UTC 28 Jan 202 UTC
Farm_26 6600 31 May 2020 UTC 28 Jan 202 UTC
Farm_27 9610 31 May 2020 UTC 28 Jan 202 UTC
Farm_28 7000 31 May 2020 UTC 28 Jan 202 UTC
Farm_29 10,800 31 May 2020 UTC 28 Jan 202 UTC
Farm_30 49,500 31 May 2020 UTC 28 Jan 202 UTC
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2.4. Methodology

The methodology consisted of the use of the EOLO wind-predictor model, described
in [29], including some considerations to improve its performance in the time horizons
affected by the different Spanish electrical markets and to reduce the computational costs
required to compute the results. In this section, we summarize the steps, and we explain,
in detail, the adjustments introduced into the EOLO predictor:

1. The application of the EOLO predictor: the wind farms used in this period. These
aspects are described in Section 2.3. The only criteria for the selection of these wind
farms and the study period were the availability of evaluation data from a collabo-
rative wind farm company. Detailed information about these wind farms, including
their nominal power, is shown in Table 4.
In [29], the EOLO predictor computed the output for all time horizons considered
in different markets, including results from the second hour (the closest horizon
considered in the different electricity markets, either the continuous market) up to
38th hour (the furthest horizon for the daily or day-ahead market). In this study, we
have allowed the EOLO to choose the target market, either the day-ahead, 1st-6th
hour intraday, or continuous market; in order to reduce its computational demands
as we only computed the specific outputs for the different markets. The options are
summarized in Table 2. This resulted in the EOLO providing a reduced output for the
different markets (e.g., for the day-ahead market, EOLO generated the output for the
horizons from the 14th to the 38th hours; or for the sixth intraday market, EOLO only
generated the output for the horizons from the 3rd to the 15th hours).

2. In [29], several basic predictors based on historical data are used to generate new
data to feed the automatic learning models. In practical applications, the following
models have been used for that purpose: (i) persistence models, which are based
on the assumption that the energy produced in the future will be the same as it is
now; (ii) moving average models, which are based on the assumption that the energy
produced in the future is rational according to past events, which is also known as the
mean value of the past productions; and (iii) meteorological models, which estimate
the energy to be produced as a function of the meteorological forecast. Based on [29],
these authors concluded that the proposed models were not enough to predict a
long-term horizon.
Therefore, we used the same models but included more variants of the moving average
models to estimate the behavior of a wind farm based on the previous days. Based on
all the data presented to the automatic learning models, EOLO chose variables that
had the strongest association to the target in the training data. Thus, the computational
cost derived from the increased input data was minimal. Furthermore, the training
of the automatic learning models was only conducted when the relative correlation
order between the different variables had changed.

3. After the incorporation of the these improvements, the simulations were performed
for the selected wind farms. In total, 210 simulations were executed, with 7 sim-
ulations for each of the 30 wind farms, one for each of the different markets (the
day-ahead market and the 6 intraday markets).
These simulations were performed in the Calendula cluster, a property of Castilla y
León Supercomputing Center (SCAYLE (http://www.scayle.es accessed on 15 Octo-
ber 2022 )), where we used the Cascade Lake cluster, which was made up of 37 servers
with the following technical specifications: 2 Intel Xeon Gold 6240 processors, with
18 cores each and working at a frequency of 2.6 GHz; 192 GB of RAM; and an Infini-
band HDR 100 Gbps connection. In addition, this cluster had 7 NVidia Tesla V100
GPU units.
For each simulation, we used 4 servers and 1 processor. With these resources, it
required approximately 60 h to perform 210 simulations.

http://www.scayle.es
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4. Once all the simulations were completed, we evaluated the performance of the EOLO
forecasts for the different markets. For this purpose, we used the normalized mean
absolute error (RMAE) as a measure of the quality of the forecasts:

RMAE =
∑n

i=1 |P̂i − Pi|
n ∗ Pi(max)

· 100 (1)

where Pi refers to the ith measure of the production, P̂i corresponds to the predicted
value, Pi(max) refers to the nominal power of the wind farm, and n is the total sample
number of the validation set. RMAE provided an idea of the magnitude of the error
concerning the magnitude of the prediction to be performed (i.e., a certain absolute
error may be excellent if the magnitude of the data evaluated is greater than the error,
but it can also be poor if the magnitude of the data evaluated is in the same order of
magnitude). This type of error was used to compare all the wind farms without the
influence of their power.

5. Finally, we grouped both the forecasts obtained by EOLO and the error indices,
utilizing different criteria, and we designed several graphical representations to assist
in interpreting the results. Results are provided with details in Section 3.

3. Results

This section gathers and analyses the results obtained by the EOLO predictor for
30 wind farms located in different regions in Spain. We also generated the forecasts for
different Spanish electrical markets, namely the day-ahead market and six intraday markets.

3.1. The Day-Ahead Market

Several graphics were used to evaluate the EOLO predictions for the day-ahead market.
The first one was a bubble map, which is plot that identifies each of the 30 wind farms
together with each RMAE error with a point located at the corresponding geographical
coordinates of the corresponding wind farm. The color of the point depends on the
magnitude of the RMAE error for the predicted day-ahead market. This visualization
allowed us to evaluate error dependencies according to the location of the wind farms but
also based on the uniformity of errors.

This graph is shown in Figure 3. The RMAE error was generally less than 8, with
only one case having a higher RMAE error, near 12. These results indicated that the EOLO
predictor provided very reliable results with good accuracy. The wind farm with the highest
RMAE is located in complex terrain, to which we attributed the higher error.

Down-scaling methodologies, as described in [30], would allow for an individual
analysis of this outlier, and we will use a more detailed analysis in future works. Another
option was to use the portfolio effect since the 30 wind farms belonged to the same company,
allowing them to represent a grouped offer to the electrical markets. In [29], the authors
analyzed the advantages of this option.

Figure 4 to compares the probability distributions of the real and predicted data.
Therefore, the data from the 30 wind farms were classified by month to analyze if different
seasonal parameters were correctly identified. The comparison of these density distribu-
tions showed that the energy forecast by EOLO accurately reproduced the density profiles
from the real data.
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Figure 3. RMAE error in the day-ahead forecast according to the location of the wind farms
under study.

Figure 4. Hourly densities of power generated and predicted by EOLO (day-ahead market).

3.2. Intraday Markets

Regarding the intraday markets, we should distinguish between the 6 markets (see
Table 2): Intraday 1 (I1), Intraday 2 (I2), Intraday 3 (I3), Intraday 4 (I4), Intraday 5 (I5), and
Intraday 6 (I6).
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Figure 5 represents the RMAE observed by Intraday 6 along different horizons. The
RMAE was less than 6.25 for all horizons, and the error level increased with the horizon.
Moreover, the last horizon presented the most significant variability.

Figure 5. RMAE distribution by horizon for Intraday 6.

The box-plot in Figure 6 compares the errors generated by the six intraday markets.
The RMAE decreased as the sessions advanced and the interquartile range was also smaller
in the final session, which indicated a similar error level for all wind farms.

Figure 6. RMAE distribution by intraday session.
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3.3. Comparison of All Markets

The last analysis evaluated the participation in successive intraday session and its
impact on the error level. The resultant heat-map is shown in in Figure 7. The horizontal
axis corresponds to the hours of the day while the vertical axis refers to each market session.
This plot demonstrated the evolution of the error level as a new intraday market corrected
the previous predictions. The sixth intraday contained the lowest error level (green and
yellow colors), and in general, all hours were corrected by the end of the process (black
boxes in Figure 7).

Figure 7. Error evolution by market session.

4. Discussion

Climate change and the reduction in CO2 have caused a significant shift in electrical
energy production. Currently, the world is focused on renewable energies, mainly wind
energy. In Spain, wind energy was the primary source of electricity generation in 2021,
exceeding 23% of the demand [5].

However, the principal interest of renewable energy producers is the prediction of
production, as they need to know the amount of energy to offer in the different markets,
which, for this study, involved the Spanish energy markets.

The present study evaluated the predictive tool EOLO for the improved demand
predictions of wind energy according to different Spanish markets. As our results demon-
strated, the set of algorithms used to program EOLO were well-adapted for the selected
markets, which was indicated by the low RMAE of the results.

Multiple studies, as noted throughout this paper, found the best participation for
wind energy producers at different hours. The analyzed evidence suggested this differed
between markets, especially when comparing the initial hours of each market. If the first
hour of the market was the first hour affected, the prediction was better.

Another important consideration affecting wind energy producers was the Intraday
6 market data. This intraday market was probably the best opportunity for wind energy
producers in the market due to the low RMAE. However, other considerations may have
impacted these results, such as that bidding is free at this time.

EOLO has proved to be valuable tool for processing of this type of data, and it provides
an adaptable framework for more specific and advanced modeling of real wind farms.
Furthermore, while the EOLO predictor model was developed with the Spanish markets
in mind, it is able to be adapted for other markets by substituting different sources of
information that are available in each country and by considering the differences in the
timetables of each electrical market.
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Limitations of the Study and Avenues of Future Research

Due to the specific analysis of this article, some limitations should be noted. First, the
historic production sample used only included Spanish wind farms, limiting the general-
izability of the results and requires additional validation in other national contexts [13].
Second, this study was limited to information regarding the local characteristics of the
terrain of each wind farm, which was provided by AEMET at the closest municipalities.

Future studies should also include methods that have been successfully tested in
other scenarios by the authors of [30], and they should include the use of NWP models,
specifically microscale models [31], to adapt the predictive AEMET information. Other
ways to improve the estimation of energy production in wind farms include the application
of vertical wind profiles to transfer the forecasts to the height of the nacelle, or the use
of advanced air density models under different meteorological conditions. Furthermore,
improving EOLO with information regarding superficial temperature studies in group
TIDOP would be worth exploring in future studies.
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