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Abstract

Information fusion is a crucial aspect of modern data analysis and decision mak-

ing. It involves the integration of multiple sources of information in order to form

a more complete and accurate understanding of a given subject. This process is

particularly important in fields such as computer science, engineering, and natu-

ral sciences, where large amounts of data are generated from a variety of sources

and must be synthesised to make informed decisions. Information fusion is also

essential in the design and implementation of intelligent systems, as it allows the

integration of various sensors and data sources to make more accurate predictions

and recommendations.

From a mathematical point of view, one way to study this problem is through the

idea of fusion functions, which take as input a vector of numbers and return a sin-

gle one, representative of them. A relevant kind of fusion function is the family of

aggregation functions. These functions hold two boundary conditions and mono-

tonicity with respect to the inputs, which induce some desirable properties to the

function output. However, information fusion in applied systems comprises more

than this theoretical notion. As the heterogeneity, the structure, and the volume

of the data become more relevant, other approaches to tackle this problem have

arisen. For example, in a network structure, the different inputs are associated

among each other according to a pre-established set of relationships; in time se-

ries, data present temporal dependencies. When dealing with non-structured data,

like text, audio, and image, deep learning approaches have been very successful in

transforming this kind of data into vectorial representations of real numbers using

series of affine transformations.

Despite previous efforts in the field, the problem of effectively combining diverse

and heterogeneous sources of information, remains an open and active area of re-

search. This is due to the challenges inherent in integrating multiple sources that



may be in different formats and may have conflicting or incomplete information.

For example, how the information measured relates to other sources of data and

how reliable those measures are is highly dependent on the measurement proce-

dure. Indeed, systems that fuse the information from those different sources shall

present additional complexities as well when taking into account the particularities

of each feature considered.

In this dissertation, we propose a collection of functions and algorithms to take

into account possible interactions, heterogeneities, and uncertainties when work-

ing with different sources of information. We do so by means of aggregation

theory and social network analysis, and we focus especially on those cases where

deep learning approaches are not so successful. We apply these results to a wide

range of problems, including the classification of brain computer interface sig-

nals, the classification of standard tabular data, the detection of anomalies, and the

detection of communities in social networks.



Structure of the dissertation

This dissertation is divided into two parts:

• Part I: we introduce the different perspectives of information fusion. We also present

our theoretical proposals for aggregation theory and social network analysis. Finally,

we motivate our design choices in BCI signal classification and introduce the algorithms

developed in this dissertation for community detection, classification, and anomaly de-

tection.

• Part II: we present a collection of the 9 papers published, accepted, and submitted related

to this dissertation.

Part II is made up of these publications.
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2. Fumanal-Idocin, J., Takáč, Z., Fernández, J., Sanz, J. A., Goyena, H., Lin, C. T., Wang,

Y.K., & Bustince, H. (2021). Interval-Valued Aggregation Functions Based on Moderate

Deviations Applied to Motor-Imagery-Based Brain–Computer Interface. IEEE Transac-

tions on Fuzzy Systems, 30(7), 2706-2720.

3. Fumanal-Idocin J., Vidaurre C., Fernandez J., Gomez M., Andreu-Perez J., Prasad M.

& Bustince H. (2023) Supervised Penalty-based Aggregation Applied to Motor-Imagery

based Brain-Computer-Interface Pattern Recognition. (submitted)

4. Fumanal-Idocin, J., Rodriguez-Martinez, I., Indurain, A., Minárová, M., & Bustince, H.
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(2020). Community detection and social network analysis based on the Italian wars of

the 15th century. Future Generation Computer Systems, 113, 25-40.
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más. No obstante, habrá alguna honorable excepción a esta norma, y me gustarı́a

empezar por una de las mismas.

Sin duda que esta tesis habrı́a sido imposible sin mi director Humberto Bustince,
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1

Introduction

Je ne crains pas les hommes d’armes ;
ma voie a été tracée devant moi. S’il y a
des hommes d’armes, Monseigneur Dieu
m’ouvrira une voie pour aller vers
Monseigneur Dauphin. Pour cela je suis
venu.

Sainte Jeanne d’Arc

I
Nformation fusion involves the combination of multiple sources of information to ob-

tain a more accurate and thoughtful knowledge of a phenomenon. This is one of the

key components in many fields where large volumes of data are digitised, as the ex-

pressivity of a suitable fusion process can significantly surpass the information present in any

of the individual sources (1, 2). One of the difficulties of the information process is that the

data to integrate might come from heterogeneous sources or can vary significantly in its na-

ture. For example, an image is captured using many sensors of the same kind, but a car makes

decision-making using different sensors, such as air pressure or video. Contrastive learning

and stable diffusion models integrate both image and text in their training process (3).

As the nature of information can vary significantly, different structures and models should

be built according to the original nature of the data to properly exploit its features. One of

the theoretical frameworks developed to address this problem is aggregation theory (4). An

aggregation function A : [0,1]n→ [0,1] is defined as such if the following conditions hold:

• A(0, . . . , 0) = 0

• A(1, . . . , 1) = 1

3



1. INTRODUCTION

• A is increasing.

There have been a significant number of monographics on this topic covering some of the

most important aggregation function families and some extensions of this concept to cover

weaker monotonicities or numeric domains (5, 6).

The way in which information is stored can also open new opportunities to capture and

represent its particularities. Non-structured data, like audio, video or text has been profoundly

studied in the field of neural networks, specially in deep learning models (7, 8). These net-

works transform the original data into a a numerical vector of real values from which classical

machine learning methods, can be applied (9). Although extremely popular, they are not the

only methods to extract and transform such information into a vectorial representation. For

example, Common Spatial Patterns (CSP) and related methods are also very popular to do so

in signal processing (10), especially in Brain Computer Interfaces (11, 12).

Social networks have also been used to represent data that has strong codependencies, inter-

actions and causality relations (13). For example, network science has been used in marketing

and user behaviour modelling in social networks, where people are naturally connected to each

other (14, 15). It has also been used to study the functional and structural connectivity of multi

component systems, such as the brain (16). The amount of information that this network con-

tains depends on the structure, the edge weights, and possibly the node attributes. In the latter

case, not only should the methods take into account the structural properties of the nodes but

also the attributes contained in each actor (17, 18). This is a particularly important considera-

tion for the case of task of node embedding, in which each node of the network is represented

as a numerical vector (19). In this case, the algorithm that performs the embedding must take

into account both similarities in the original attributes and the structural properties of each one.

This means that the information reduction is also bigger, as two different information must be

joint together in the same representation.

There are other cases where information fusion is performed in a more subtle way. For

example, it is possible to explore different strategies in the training process of a neural net-

work in order to incorporate additional information to the main task. For example, additional

embeddings and an additional loss function can be used in a standard training procedure for a

classification problem. This strategy uses more information for each sample us, which makes

the training more efficient in terms of epochs (20, 21). Other examples of this are reinforce-

4



ment or distillation learning, which consist of fusing the preexisting information of one model

with the new data generated in the training procedure (22, 23).

As general as the fusion methods existing can be, there are still significant gaps in the exist-

ing literature to be covered, and some questions whose answers are not completely satisfactory.

The search for the optimal aggregation function has been studied before using penalty func-

tions and moderate deviations, which measure the similarity of all possible inputs with regards

to penalty or a similarity measure (24, 25). However, they still require fine tuning some param-

eters and they do not necessarily find the optimal results in a real world problem. Besides, the

kind of data used to solve the problem can deeply affect the final performance of the system

(26). Using numbers, intervals, fuzzy sets or any of its generalisations might also carry addi-

tional complexities in their fusion procedures. Some of these complexities have not been yet

studied, and not all of the operators used in specific numeric domains have been extended to

other types of data, like intervals or real numbers.

The possibilities of information fusion in more complex structures, like social networks,

offers more possibilities and gaps to research. Homophily, the tendency of an actor to relate to

similar actors, has been studied in depth (27, 28). However, there are more structural traits that

could be exploited in different applications. The relationship between the attributed nodes and

its structural connections is also unexplored in many works, where only the distance from the

cosine is considered to compare different actors (29, 30).

The aim of this dissertation is to provide further results to elaborate more refined answers

the question of how to find the best fusion processes in a system, and how it affects the rest of

its components. In order to do so, we have studied how a wide range of aggregation functions

behave in different classification problems, using both standard tabular data, time series and

deep learning features. We have also develop a new extension of penalty-based aggregation

functions and moderate deviation functions for interval-valued data, designed to tackle some

of the problems or aspects that were present in such classification systems. We have used these

concepts in Motor-Imagery BCI systems, which consist of series of signal processing steps and

a final decision making scheme (31, 32).

Regarding social network analysis, we have a developed a new kind of functions, the affin-

ity functions, which exploit different social properties of the network to represent edge weights.

We have also proposed a series of algorithms to exploit their properties to perform community

detection, detect important nodes, or to exploit external information of the network. Finally,

5



1. INTRODUCTION

these methods were used in the area of digital humanities to provide novel results in compara-

tive mythology and artistic image classification.
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2

Motivations and objectives

Si no consigo un barco, iré nadando

San Francisco Javier

2.1 Motivation

T
He high performance of machine learning models for tasks like face recognition,

image and video generation, and voice-to-text, relies on the huge volumes of data

available in modern day computing (33, 34). State-of-the-art deep learning systems

are comprised of millions of parameters, which require even larger amounts of data (35). These

data can come from different sources of information, and sometimes models can be trained

using different types of data. For example, Autoencoders like CLIP (3) or generative models

like DALL-E use both images and text to train (36). Another paradigm rises when many models

are used to solve one problem, in which case the final decision must be performed taking into

account their individual traits and the results of their interaction (37, 38).

Huge efforts have been devoted to research these topics, however, there are still some im-

portant gaps between theory and practice that need to be addressed. Practical research has

focused on the technical possibilities and techniques that allow a computer or a distributed

system to deploy models with millions of parameters and feed them with TBs of informa-

tion (39, 40, 41). There has also been important research to perform knowledge extraction on

non-vectorial data representations. Some of the most popular structures of this kind are social

networks (42), time series (43) and more complex data flows, like the forward and backward

7



2. MOTIVATIONS AND OBJECTIVES

passes of a neural network (44). Deep learning has been very successful to extract such repre-

sentations from image, text, and even graphs. Graph convolutional neural networks have been

also applied in social network representations to perform classification and clustering problems

(45).

On the other hand, theoretical research has focused on the functions that can be used to

model the uncertainty of the data, or the mathematical properties that induce some desirable

traits in the aggregation process (5). These functions lack the power of complex models, but

offer behaviour that can be understandable. In a similar fashion, fuzzy logic inference systems

have been used successfully in problems where explainability was an important requirement in

the problem solution (46). These theoretical approaches, however, has been devoted mostly to

study vectorial tabular data.

Regarding the relationship between both approaches, theoretical research on deep learning

is still not as developed as its practise. For example, explainability of deep learning models

is considered using other experimental methods (44). The practical approaches of theory of

fusion data on the other have not escalated to big deep learning models, even though some no-

table works have been developed (47). They have been, however, very successful in ensemble

learning and decision-making (37, 48), including big data (49). Although the reason for the

success and failures of some aggregation functions in the practical domain is not yet clear.

Consequently, we think that it is of interest to further expand the possibilities of actual

theoretical results in aggregating and combining information, both in the case of vectorial and

non-vectorial representation of data. Expanding the actual existing methods regarding aggre-

gation theory can also be useful in order to expand the frontier of successful tasks handled

using this line of work. Finally, as the systems used to solve real-life problems are composed

of many components, the study of some of these functions in modelling such interactions can

also fuel further investigation.

2.2 Objectives

The main objective of this dissertation is: To develop new ways to extract and fuse features

from multicomponent systems, where the sources of available information are heterogeneus.

For its achievement, we set the following particular objectives:

• To study the behaviour of different aggregation functions under such conditions and

propose new ones according to the needs for the frameworks where they are used.

8



2.2 Objectives

• To define the appropriate set of functions to characterise the different information en-

coded in the edges of a social network.

• To study these function also in interval-valued data.

• To apply such functions to real problems: BCI-MI, tabular classification, social network

analysis and artistic image classification.

9



2. MOTIVATIONS AND OBJECTIVES
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3

Discussion of research findings

Les enfants disent que les gens sont
parfois pendus pour avoir dit la vérité.

Sainte Jeanne d’Arc

Hable poco, y en cosas que no es
preguntado no se meta.

San Juan de la Cruz

I
N this section we shall recall the most important notions in each of the results obtained

in this PhD thesis. Each of them has been published, accepted or at is currently under

review in a scientific journal. The following subsections break up those results into

the papers where they were reported.

3.1 Motor-Imagery-Based Brain–Computer Interface Using Sig-
nal Derivation and Aggregation Functions

In this work we present the Enhanced Multimodal Fusion Framework (EMF), which is a Motor-

Imagery Brain-Computer-Interface (MI-BCI) classification framework. The new method pro-

posed elaborates further on a previous work (50), in which the authors proposed a decision

making scheme to perform the final decision of the system based on multiple classifiers, each

of them trained in different wave bands.

Figure 3.1 shows a scheme of of the EMF. The framework is divided into tree main com-

ponents:

11



3. DISCUSSION OF RESEARCH FINDINGS

• Signal processing: this step consists of capturing the signal and computing the Fast

Fourier transform (FFt) in order to obtain the desired wave bands. Then, we compute

differentiation of the signal. This differentiation of the signal is similar to the Laplacian

transforms performed in the literature (51, 52). However, its effects on the signal can

be more easily explained if we decompose the signal in the three classical components

of time series: trend, stationary and random components, from which the differentiation

only preservs the last one.

• Feature extraction: we compute the CSP on the differentiated signals, and then, we use

those features to train different classifiers. We train five kinds of classifiers: LDA, QDA,

KNN, SVM and GP. For train one of each kind for all the wave bands studied.

• Multimodal decision making: finally, we compute the final decision using two aggre-

gation functions. First, we use an aggregation function to fuse the outputs obtained for

each wave band by each kind of classifier. Then, we fuse the outputs of that fusion step

using another aggregation function. We obtained the final decision in this step.

The novelties of the EMF with respect to other MI-BCI classification frameworks are the

multimodal decision making phase, consisting on two aggregation functions, and the signal

differentiation phase. We also used a higher number of CSP features compared to the standard

in the literature, which also improved the performance of the EMF (53).

With respect to the multimodal decision, not only we increased the number of aggregation

functions to two instead of one, but we tested a wide range of possible aggregation functions

to use. We discovered that the best results were obtained using different aggregation functions

for the two steps of the process, and that a fuzzy integral followed by a n-ary overlap function

performed best. The total amount of aggregation functions tested included: T-norms and T-

conorms, N-ary overlaps (54), Choquet integral and their generalizations (55), Sugeno integral

(56) and two generalizations and OWA operators (57).

The Signal differentiation phase filters the signal, removing the trend and the season com-

ponent, inherent to a time series (Figure 3.2). We suspected that these components were not

very useful, because the best wave bands to discriminate the task were the highest frequency

ones considered. This procedure is also convenient to remove possible long-range artifacts in

the measurements of the EEG signal. We also showed that this problem is also present in other

kinds of neural activation measurements (58).

12



3.1 Motor-Imagery-Based Brain–Computer Interface Using Signal Derivation and
Aggregation Functions

Framework Accuracy

EMF 83.15%
KLRRM + LSVM (60) 74,43%
CSP/AM-BA-SVM (61) 78.55%
Dempster-Shafter (62) 81.93%

Table 3.1: Comparison of different BCI frameworks in the four classes task.

The EMF was tested on the public dataset 2a of the BCI Competition IV (59), obtaining

very favourable results compared to other alternatives (Table 3.1).

As final conclusions of this work, we state that:

• A flexible aggregation process can improve significantly the performance of the system

in some cases where signal processing could not.

• The success of existing signal filtering methods in the BCI literature can be explained

in terms of temporal series. The signal differentiation here used is simpler and as good

performant as other more complicated processes used due to the same properties that can

explain their good performance.

The section of this thesis is associated with the following publication:

Fumanal-Idocin, J., Wang, Y. K., Lin, C. T., Fernández, J., Sanz, J. A., & Bustince, H. (2021).

Motor-imagery-based brain-computer interface using signal derivation and aggregation func-

tions. IEEE Transactions on Cybernetics.

13



3. DISCUSSION OF RESEARCH FINDINGS

EEG Signals

FFT

0

10

Ob
se

rv
ed

0

5

Tr
en

d

0.25
0.00
0.25

Se
as

on
al

Time

0

5

Re
sid

ua
l

Differentiation

2

0

2

Ob
se

rv
ed

0.2

0.0

0.2

Tr
en

d

0.2

0.0

0.2

Se
as

on
al

Time

2

0

2

Re
sid

ua
l

CSP

Wave Features =

( , , , , )
CSP

ClassifiersFrequency FusionClassifier Fusion

FF-LDA
FF-QDA
FF-KNN
FF-SVM
FF-GP

Left hand Right hand
0.0

0.2

0.4

0.6

0.8

1.0
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3.2 Interval-Valued Aggregation Functions Based on Moderate De-
viations Applied to Motor-Imagery-Based Brain Computer In-
terface

In this work we proposed to extend the concept of Moderate Deviation to interval-valued data.

Intervals are a basic form to represent uncertainty, in which we use its width to measure how

reliable is an observation. Then, we will exploit this property in a BCI-MI framework.

The notion of Moderate Deviation had been previously developed as a method to aggregate

a vector of values, denoting as output of this aggregation the “most similar” point to all of the

inputs (24). This concept of “most similar” is expressed using a moderate deviation function:

Definition 1 A function D : [0,1]2 → R is called a moderate deviation function, if, for all
x,y ∈ [0,1], it satisfies:

(MD1) D is non-decreasing in the second component;

(MD2) D is non-increasing in the first component;

(MD3) D(x,y) = 0 if and only if x = y.

In this work, we expand this notion to an interval-valued setting in this way:

Definition 2 Let ≤L be a total order on L([0,1]) and

L(R) = {A = [A,A] | A,A ∈ R,A≤ A} (3.1)

A function D : (L([0,1]))2 → L(R) is called an interval-valued moderate deviation function
w.r.t. ≤L, if, for X ,Y ∈ L([0,1]), it satisfies:

(MD1) D is non-decreasing in the second component w.r.t. ≤L;

(MD2) D is non-increasing in the first component w.r.t. ≤L;

(MD3) D(X ,Y ) = 0L if and only if X = Y .

Once the concept of interval-valued moderate deviation function has been established, we

also show how can this be applied to construct an interval-valued moderate deviation-based

aggregation. The idea is the same as with numerical data: given a vector of intervals we choose

as the output of the aggregation the interval that is “most similar” to the inputs.
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3. DISCUSSION OF RESEARCH FINDINGS

In this work we also give some construction methods in order to apply these concepts in

a practical setting. In the following, we display the theorems needed to give a construction

method of w-preserving interval-valued moderate deviation functions.

In (24) (Theorem 6) introduced a construction of a moderate deviation function D : [0,1]2→
[−Mn,Mp] in the following way:

D(x,y) =

{
Mp−MpR1(x,y), if x≤ y,

MnR2(x,y)−Mn, if x > y,
(3.2)

for all x,y ∈ [0,1], where Mn,Mp ∈]0,∞[.

Theorem 1 Let α ∈ [0,1], n ∈ N, let Mp,Mn be positive real numbers and D : [0,1]2 →
[−Mn,Mp] be a moderate deviation function. Let F : L([0,1])n+1 → R be the function given,
for all X1, . . . ,Xn,Y ∈ L([0,1]) such that w(Y ) = min(w(X1), . . . ,w(Xn)), by:

F(X1, . . . ,Xn,Y ) =D
(

Kα(X1),Kα(Y )
)
+ . . .+D

(
Kα(Xn),Kα(Y )

)
. (3.3)

Theorem 2 Let α,β ∈ [0,1] with β ̸= α , D : [0,1]2→ R be a strictly monotone moderate de-
viation function and C : [0,1]2→ [0,1] be an idempotent function non-decreasing in the second
component and non-increasing in the first component. Then the function D : (L([0,1]))2 →
L(R) given by: {

Kα(D(X ,Y )) =D(Kα(X),Kα(Y )) ,
w(D(X ,Y )) =C (w(X),w(Y ))

is a w-preserving interval-valued moderate deviation function w.r.t. ≤α,β .

The following corollary gives us a method of constructing wD-means based on Theorem 2

and Theorem 1.

Corollary 1 Under the assumptions of Theorem 1, where D : [0,1]2 → R is given by Equa-
tion (3.2) with R1,R2 being continuous strictly monotone restricted equivalence functions and
D : (L([0,1]))2→ L(R) is given by Theorem 2, the following statements are equivalent:

(i) F(X1, . . . ,Xn,Y ) = 0;

(ii) MD(X1, . . . ,Xn) = Y , where the interval-valued wD-mean MD is given by Equation (??)
with B = min;

(iii)

k

∑
i=1

(
Mp−MpR1

(
Kα
(
Xσ(i)

)
,Kα (Y )

))

+
n

∑
i=k+1

(
MnR2

(
Kα
(
Xσ(i)

)
,Kα (Y )

)
−Mn

)
= 0 (3.4)
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where σ : {1, . . . ,n}→ {1, . . . ,n} is a permutation such that Xσ(1) ≤α,β . . .≤α,β Xσ(n) and k is
the greatest number from {1, . . . ,n} satisfying

n

∑
i=1

D(Kα(Xσ(i)),Kα(Xσ(k)))≤ 0. (3.5)

We used the interval-valued moderate deviation-based aggregation in a MI-BCI framework

in order to test its suitability to aggregate data.

First, we construct the intervals from the probability for each class obtained from each

classifier. We use the length of the intervals to measure the inaccuracies or uncertainties related

to these classifiers’ outputs. To do so, we have used the mapping given in (63):

F(x,y) = [I(x,y), I(x,y)+ y] (3.6)

where I is an fuzzy implication function, x is the probability for each class obtained from the

classifier and we set y as 0.3. We crop the values so that they are contained in the [0,1] interval.

We have tried three different fuzzy implication functions to construct the intervals:

• Łukasiewicz: : I(x,y) = max(1− x,y).

• Reichenbach: I(x,y) = min(1,1− x+ y).

• Kleene-Dienes: I(x,y) = 1− x+ xy.

We tested the behaviour of our new approaches in the BCI competition IV dataset 2a (IV-2a)

and the BCI competition IV dataset 2b (IV-2b), which are detailed in (64). We compared this

against interval-valued OWA operators and other numerical aggregation functions, obtaining

favourable results to our interval-valued MD aggregation (Table 3.2) using a traditional fusion

scheme and a hierarchical one (50).

Proofs related and more information about this work can be found in the related publication

of this results:

Fumanal-Idocin, J., Takáč, Z., Fernández, J., Sanz, J. A., Goyena, H., Lin, C. T., Wang,

Y.K., & Bustince, H. (2021). Interval-Valued Aggregation Functions Based on Moderate De-

viations Applied to Motor-Imagery-Based Brain–Computer Interface. IEEE Transactions on

Fuzzy Systems, 30(7), 2706-2720.
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3. DISCUSSION OF RESEARCH FINDINGS

Table 3.2: Performance for the Left/Right classes task using different IV-aggregations and BCI
frameworks.

Dataset Classifier Accuracy

Trad. Average 0.8119±0.0384
IV-2a MFF Choquet 0.8049±0.0417

MD2 (Trad.) 0.8251±0.0538

Trad. Average 0.7213±0.0824
IV-2b MFF Choquet 0.7440±0.0058

MD2 (Trad.) 0.7366±0.0708

3.3 Multi-cost penalty functions applied to Motor-Imagery based
Brain-Computer-Interface

In this work we presented a generalisation of penalty-based aggregations applied to a new BCI

framework, that we called Multi-Cost Aggregation choosing functions (MCA). Similarly to

penalty-based aggregations, MCAs use a cost function to select the best aggregation function

for a given set of inputs. One of the key differences between them is that MCA use a more

general function than a penalty function to choose the optimal aggregation function.

In order to construct a MCA, we start by introducing the notion of Quasi-Restricted Simi-

larity and Dissimilarity functions. These functions are based on the concepts of REF and RDF

given in (65).

Definition 3 Let n≥ 1. A Q-REF function is a function Hs : [0,1]n+1→ [0,1] such that:

Hs(X ,y) = Hs(x1, . . . ,xn,y) = 1 if x1 = · · ·= xn = y. (3.7)

Note that REFs are specific instances of Q-REF functions. And analogously:

Definition 4 Let n≥ 1. A Q-RDF function is a function Hd : [0,1]n+1→ [0,1] such that:

Hd(X ,y) = Hd(x1, . . . ,xn,y) = 0 if x1 = · · ·= xn = y. (3.8)

We also gave a general method to build Q-REF and Q-REF functions as follows.

Proposition 1 Let hs1, . . . ,hsn : [0,1]2 → [0,1] be a family of Q-REF functions and let A :
[0,1]n→ [0,1] be an aggregation function. Then, HA

s (x1, . . . ,xn,y)=A(hs1(x1,y), . . . ,hsn(xn,y))
is also a Q-REF function.
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Proposition 2 Let hd1, . . . ,hdn : [0,1]2 → [0,1] be a family of Q-RDF functions and let A :
[0,1]n → [0,1] be an aggregation function. Then, HA

d (X ,y) = A(hd1(x1,y), . . . ,hdn(xn,y)) is
also a Q-RDF function.

One of the main ideas of this work, is that instead of using only one function, we combine

two functions to create a new cost function that takes into account both criteria. We can do so

by combining Q-REF and Q-RDF in the following way:

Proposition 3 Let Hs1,Hs2 : [0,1]n→ [0,1] be two Q-REF functions. Then, for every α ∈ [0,1]

αHs1 +(1−α)Hs2 (3.9)

is also a Q-REF function.

Proposition 4 Let Hd1,Hd2 : [0,1]n→ [0,1] be two Q-RDF functions. Then, for every α ∈ [0,1]

αHd1 +(1−α)Hd2 (3.10)

is also a Q-RDF function.

We can also consider the convex combination of a Q-REF and a Q-RDF function. If x1 =

· · ·= xn = y, we have that:

αHd(x1, . . . ,xn,y)+(1−α)Hs(x1, . . . ,xn,y) = 1−α (3.11)

So:

Proposition 5 Let Hd ,Hs : [0,1]n → [0,1] be a Q-REF and a Q-RDF function, respectively.
Then, for any α ∈ [0,1[, the function:

H(X ,y) = min(
αHd(X ,y)+(1−α)Hs(X ,y)

1−α
,1) (3.12)

is a Q-REF function.

We have considered a set of Q-RDFs and Q-REF measures as cost functions. Depending

on the mixed functions, their convex combination is also a Q-REF or a Q-RDF. Given a vector

X of size n, where each element of X is contained in the unit interval the Q-RDFs measures

studied are the following:
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3. DISCUSSION OF RESEARCH FINDINGS

• Huber loss:

h(xi,y) =

{
(xi− y)2 (xi− y)2 ≤M
2∗M ∗ (xi− y)2−M ∗M (xi− y)2 ≥M

(3.13)

where H(X ,y) = 1
n ∑n

i=1 h(xi,y).

(We use M = 0.3 for our experimentation)

• Quadratic cost:

H(X ,y) =
1
n

n

∑
i=1

(xi− y)2 (3.14)

• Optimistic cost:

H(X ,y) = (max(X)− y)2 (3.15)

• Pessimistic cost:

H(X ,y) = (min(X)− y)2 (3.16)

The Q-REF measure studied is:

• Anti-consensus cost:

H(X ,y) =
1
n

n

∑
i=1

(1− (xi− y)2) (3.17)

Combining different Q-REF and Q-RDF results in different behaviours, as illustrated in Figure

3.3. A visual scheme of the aggregation process using a MCA function, can be used in Figure

3.4.

The BCI framework used in this paper consists of extracting features from 4 different wave

bands from EEg signals: 6− 10, 8− 15, 14− 28 and 24− 35 Hz. Then, we apply Spectral

Spatial Decomposition and Common Spatial Patterns to extract features from the wave bands.

We use LDA classifiers to train on those features obtain an output for each wave band. Then,

we fuse the output of these classifiers using a MCA function. This framework is illustrated

in Figure 3.5. We also applied this fusion procedure with a multiscale CSP feature extraction

(66).

Table 3.3 shows the results for the the CBCIC 2020 dataset (67). This dataset consists of

brain imaging signals from 10 hemiparetic stroke patients with hand functional disability in a

rehabilitation task. The data contains 80 diferent trials of left/right hand movements. Decoding

motor cortical signals of brain-injured presents several challenges as the presence of irregular

because of the altered neurodynamics.
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Figure 3.3: Effect of different α parameters for a vector of five, randomly chosen numbers ∈ [0,1]:
(0.60,0.85,0.61,0.52,0.52) when using different combinations of functions as cost functions. The
× marks the minimum for each α parameter in each error configuration.

Table 3.3: Accuracy results for the proposed framework in the CBCIC 2020 dataset.

Dataset Quadratic Optimistic Huber Pessimistic

CBCIC Optimistic 0.8123
Huber 0.8215 0.8142
Pessimistic 0.8113 0.8000 0.8224
Anti-consensus 0.8215 0.8221 0.8231 0.8215
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X
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Figure 3.4: Visual scheme for the MCA aggregation process. (In the case of the BCI framework
in Fig. 3.5, X is the output of the LDA classifiers). 1. We compute all the possible aggregations. 2.
We compute both cost functions for each aggregation output (yi) with respect to the input vector.
3. We combine both costs for each aggregation with the mixing parameter α . 4. We select the
aggregation with the least cost value. 5. That aggregation is the final output of the MCA.
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Figure 3.5: Visual representation of the framework used in this study. First, we measure the
EEG band, and extract the information from four different frequency bands. Then, we apply SSD
and subsequently CSP to reduce dimensionality and extract features from each band. From each
frequency band we train a different LDA classifier. We make a final decision by aggregating the
output from all the LDA classifiers using a MCA, which results in the estimated probabilities for
each one of the possible classes.
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More details can be found in the following paper: Fumanal-Idocin J., Vidaurre C., Fernan-

dez J., Gomez M., Andreu-Perez J., Prasad M. & Bustince H. (2023) Supervised Penalty-based

Aggregation Applied to Motor-Imagery based Brain-Computer-Interface Pattern Recognition
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3.4 A Generalization of the Aggregation of Forces in the Gravita-
tional Clustering to Perform Anomaly Detection

In this work we propose a generalisation of the gravitational clustering algorithm (68) using

the novel concept of almost aggregation function, which is an extension of the concept of

aggregation function to real positive numbers.

The gravitational clustering algorithm (68) employs the Newton gravitational law within

the process of clustering. The scheme of this original algorithm is as follows.

Assume that we have N particles p1, . . . , pN , with their positions s1, . . . ,sN ∈ Rn.

1. Initially we:

• assign a mass 1/N to each particle pi,

• fix two real positive parameters ε and δ . We utilize δ for determining the actual

time step longitude dt. Specifically, dt has to be such that during the time slot [t, t+

dt] the fastest particle displacement is equal to δ . Besides, we use ε to determine

how close two particles can be before they are merged into one single particle, see

step 2 (ii) below,

• If in a moment two particles find themselves in a distance less than ε , we unify

them into one single particle, with the mass equal to sum of masses of both of them

and position done by their center of gravity.

• Set initial time t = 0.

2. We repeat the following steps (i)-(iv) until one single particle remains.

(i) In each time interval [t, t +dt], for each particle i we compute its movement influ-

encing function:

g(i, t,dt) =
1
2

G∑
j ̸=i

mi(t)m j(t)
mi(t)

s j(t)− si(t)
|s j(t)− si(t)|3

dt2 (3.18)

where G is a positive constant.

(ii) For each particle i, its new position is:

si(t +dt) = si(t)+g(i, t,dt) (3.19)

(iii) We raise t to t +dt.
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(iv) If two particles i and j are in a distance less than ε , we unify them into one single

particle, with its mass equal to sum of masses of both of them and its position given

by their centre of gravity of the two original particles.

Finally, we have just one particle. The relative life of the configuration with k clusters can

be computed as

Rk =
tk+1− tk

T
(3.20)

We choose as solution that corresponds to the configuration with largest relative life.

This model described above can be generalized by using a more general expression for

particle movement governing function instead of (3.18). This was already done in (68) by

using the following family of expressions

g(i, t,dt) =
1
2

G∑
j ̸=i

mi(t)am j(t)b

mi(t)
s j(t)− si(t)
|s j(t)− si(t)|3

dt2 (3.21)

with a,b > 0.

In particular, it was shown that from an experimental point of view, the best results are

obtained for a = b = 0. The resulting gravitational model is called Markov unitary model and

it is described by the governing function:

g(i, t,dt) =
1
2

G∑
j ̸=i

1
mi(t)

s j(t)− si(t)
|s j(t)− si(t)|3

dt2 (3.22)

We proceed now to define an almost aggregation function:

Definition 5 An n-dimensional function M : ([0,∞[)n→ [0,∞[ for n ≥ 2 will be called almost
aggregation function on the interval [0,∞[ if:

1. M(0, . . . ,0) = 0.

2. M is increasing in each variable (usual monotonicity).

Note that every existing aggregation function is also an almost aggregation function.

We use this kind of functions to substitute the Summatory in Eq. 3.22 for a more general

expression:

g(i, t,dt) = ∑
j ̸=i

mi(t)m j(t)
mi(t)

s j(t)− si(t)
|s j(t)− si(t)|3

dt2 (3.23)

Observe that the product of the masses in the gravitational algorithm always involves two

integer masses. In order to generalize this discrete product, given an integer N ≥ 1, we are

going to take a function: H{1, ...,N}×{1, ...,N}→H ⊂ R, such that:
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• H is increasing.

• H is symmetric.

• H is bounded on {1, ...,N}×{1, ...,N}.

As H functions, we used the following family of functions:

Hc(x,y) =





b1 if (xy)c < b1,

b2 if (xy)c > b2,

(xy)c if B1 ≤ (xy)c ≤ b2

(3.24)

These functions can be adjusted to each situation by changing the b1, b2, which can adapt

the function according to the behaviour of the algorithm. We use this property to speed up the

simulation if particles are too far from each other, and to slow it down if they are very close to

each other.

So, the final function computed instead of 3.18s is the following:

g(i, t,dt) = A j ̸=i(
H(mi(t),m j(t))

mi(t)
s j(t)− si(t)
|s j(t)− si(t)|3

)dt2 (3.25)

This expression is considerably more general than the original expression used in (68). One

of the most interesting properties We exploit this in order to adapt this algorithm to perform

anomaly detection instead of clustering.

In order to do so we are based on the idea that in the process of the gravitational simulation,

those particles that spent a lot of time of the simulation isolated are likely to be anomalies.

Besides, those particles, if they join others in clusters, tend to be clusters with few samples.

Based on those two conditions, we can detect those observations in the simulation that followed

the expected behaviour of an anomaly.

When applying the model to a new observation, we use a 1-NN classifier, so that the new

particle will be classified depending on its closer particle using the Euclidean distance.

We have compared the results obtained with our newly proposed gravitational algorithm

with three other classical anomaly detection algorithms using 4 datasets taken from Keel (69):

1. Local Outlier Factor (70) estimates the data density near one point, based on its k nearest

neighbours. Points that have substantially lower density than its neighbours are consid-

ered as anomalies.
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Table 3.4: Comparison for different anomaly detection algorithms in five different real-world
datasets, using the F1-score as performance metric.

Ecoli1 Ecoli3 Glass Wisconsin Yeast

LOF 0.84029 0.9085 0.8490 0.6881 0.9170
OCSVM 0.6237 0.6303 0.6957 0.8584 0.6676

Isolation Forest 0.8206 0.8748 0.9274 0.9631 0.9147
Anomaly-Grav 0.8634 0.9466 0.9377 0.7804 0.9423

2. One-Class SVM (71) learns a decision function for anomaly detection, in order to maxi-

mize the likelihood of the observed data with respect to the rest.

3. Isolation Forest (72) constructs an ensemble of trees from different subsamples of the

original dataset, and then, evaluates the number of partitions for each sample required to

isolate the sample in the set of trees.

The publication associated with these results is the following one: Fumanal-Idocin, J.,

Rodriguez-Martinez, I., Indurain, A., Minárová, M., & Bustince, H. (2022). A Generalization

of the Aggregation of Forces in the Gravitational Clustering to Perform Anomaly Detection.

Information Sciences.
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3.5 Community Detection and Social Network Analysis based on
the Italian Wars of the 15th Century

Social network dynamics are present in everyday life and in some well known historical events.

In this work we study how similar is our modelling of social networks compared to real life,

and if real life phenomena can be adapted to solve computational problems.

In order tackle these issues we star by defining the notion of affinity functions as a set of

functions in social network analysis of two different actors, Actorx and Actory, establishing

their mutual relation using C:

AC : [Actorx,Actory]→ [0,1]

Usually, this C is the adjacency matrix that quantifies the relationships in each pair of actors.

The affinity between two actors shows how strongly these two are connected. Since affinities

are not necessarily symmetrical, the strength of this interaction depends on who the sender and

receiver are, as happens in human interaction e.g. unrequited love.

This definition of affinity function has two benefits compared to the standard adjacency

matrix:

• Explicit asymmetries in each relationship.

• Universal comparability among edges, since all values are in the same scale.

• Information is locally scaled. So we can interpret one actor relationships without access-

ing the rest of the network.

We proceed to list some affinity functions:

• Best Friend affinity: the affinity of the actor Actorx over the Actory is defined as the

percentage of the total connectivity of Y that corresponds to Cx,y.

• Best Common Friend affinity: the affinity between two actors is defined as the biggest

affinity common to the both of them. It can be computed using both the adjacency matrix

or another previously calculated affinity.

• Friends Forever affinity: the affinity of two actors reflects the durability of the relation

in time.
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Table 3.5: Formula proposed for each of the affinities. C is the adjacency matrix and N is the
total number of actors in C.

Best friend AC(x,y) =
Cx,y

∑N
a=1 Cx,a

Best Common friend AC(x,y) = Max{Min(Cx,z,Cy,z)}/∑N
a=1Cx,a

Friends forever AC(x,y) = ∑(
Cx,y(t)

∑N
a=1 Cx,a(t)

) 1
|T | , ∀t ∈ T

Machiavelli AC(x,y) = 1− abs(Ix−Iy)
Max(Ix,Iy)

, Ia = Sum(Degree(x′))∀x such that C(a,x′)> 0

• Social Networking affinity: the affinity between two actors, Actorx and Actory, is based

on the affinities of the actors connected to Actorx with respect to Actory.

• Machiavelli Affinity: the affinity between two actors is based on the social structure that

is built around the two of them.

Their correspondent formulas can be found in Table 3.5.

Using the affinity functions, we have developed a community detection algorithm, the Bor-

gia Clustering, based on an important chapter in the European history: the 15th-century Italian

Wars. In 1497, Cesare Borgia, under the command of his father, Alexander VI, and as Com-

mander in Chief of the Papal Army, marched through the centre of Italy, conquering all the

territories that have been traditionally linked to the Papal States (73). This thrilling moment in

Renaissance history provided us with not only memorable moments of unparalleled initiative

and wit, but also with an excellent example regarding human interaction in both personal and

communitarian levels.

This algorithm is based on the classical Gravitational Clustering algorithm (68). Each actor

starts as a different community that gets closer to the others due to the effect of an attraction

force. Our contention is that the Borgia Clustering force and particle movement generates

communities emulating the dynamics seen during the XV Italian wars.

To represent each actor, we use a combination of the best friend affinity matrix and the best

common friend affinity matrix, and an influence matrix, S, based on the former. By using the

best friend affinity, we favour strong pair-wise interactions, and with the best common friend
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affinity, we also favour the formation of communities whose members share a high number of

friends. Also, each actor has a “social value”, equal to its number of connections, that reflects

its popularity.

The actors attract to each other in a simulation of gravitational-like force, depending on

their social value, affinity and distance. We consider that two actors a,b collide when the value

of S(a,b) is bigger than S(b,b). Then, we interpret that the actor a has as much influence

over the actor b as b has over itself. In that moment they are fused to form a new community.

As a result of this, the most affine pairs of actors will naturally join first and start forming

communities.

We have decided to construct the Borgia Clustering algorithm by modifying the classical

gravitational algorithm. because it can be easily modified to apply our three ideas to effectively

model our wanted dynamics and still keep the physical interpretation. To obtain the desired

behaviour, we have performed the following modifications:

1. Particles in the original algorithm have been substituted by actors.

2. We have revamped the attraction force in a way that now it takes the size, the distance

and social value of each actor into account:

Fxy =
T ((mxmy)

c,AC(x,y))
mp

x
,

sx− sy

|sx− sy|3
dt (3.26)

3. The collision condition and fusion procedure for two particles has been adapted to actors.

4. We have replaced the idea of position by the idea of influence. The position matrix has

been substituted by an influence matrix, S.

5. Besides the influence matrix, we keep an Affinity matrix, AC, that contains the affinity

for each pair of actors and/or communities alongside the execution of the algorithm.

The publication associated with this results is the following: Fumanal-Idocin, J., Alonso-

Betanzos, A., Cordón, O., Bustince, H., & Minárová, M. (2020). Community detection and

social network analysis based on the Italian wars of the 15th century. Future Generation Com-

puter Systems, 113, 25-40.
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Figure 3.6: Comparison of different Community Detection Algorithms. We have compared
the Borgia Clustering algorithm against three modularity optimization methods: Girvan-Newman
(74), Newman greedy modularity optimization (75), and the Lovaine algorithm (76). We have also
compared it against using eigenvalues of matrices (77) to detect communities and label propagation
(78).
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3.6 A Generalization of the Sugeno integral to aggregate Interval-
valued data: an application to Brain Computer Interface and
Social Network Analysis

In this work we propose to extend the concept of interval-valued Sugeno integral given in (79)

to a more general Sugeno-like integral, where the min and max operation are substitued by two

more general functions, namely F and G, in a similar way as the generalization introduced in

(56).

We define our IV-FG-Sugeno like as:

Definition 6 Let ⪯ be an admissible order on L([0,1]), m : 2N → L([0,1]) be an IV fuzzy mea-
sure w.r.t. ⪯ and F : L([0,1])×L([0,1])→ L([0,1]), G : (L([0,1]))n→ L([0,1]) be functions.
We say that a triplet (m,F,G) satisfies Condition (WDS) if for all X1, . . . ,Xn ∈ L([0,1]) and all
possible permutations σ1,σ2 on N such that Xσ1(1) ⪯ . . . ⪯ Xσ1(n) and Xσ2(1) ⪯ . . . ⪯ Xσ2(n) it
holds:

G
(

F(Xσ1(1),m(Eσ1(1))), . . . ,F(Xσ1(n),m(Eσ1(n)))
)
=

G
(

F(Xσ2(1),m(Eσ2(1))), . . . ,F(Xσ2(n),m(Eσ2(n)))
)
, (3.27)

where Eσ j(i) = {σ j(i), . . . ,σ j(n)} for j ∈ {1,2}.

Definition 7 Let n be a positive integer, ⪯ be an admissible order on L([0,1]) and let a triplet
(m,F,G) satisfies Condition (WDS). An interval-valued Sugeno-like FG-functional with re-
spect to m is a function SF,G

m :(L([0,1]))n→ L([0,1]) given by

SF,G
m (X1, . . . ,Xn) = G

(
F(Xσ(1),m(Eσ(1))), . . . ,F(Xσ(n),m(Eσ(n)))

)
(3.28)

for all X1, . . . ,Xn ∈ L([0,1]), where σ is a permutation on N such that Xσ(1) ⪯ . . .⪯ Xσ(n) and
Eσ(i) = {σ(i), . . . ,σ(n)}.

Depending on the F, G functions chosen, this function can show different properties. We

have studied idempotency, internality, positive and min-homogeneity, comonotone maxitivity

and comonotone minitivity, boundary conditions, monotonicity and property of giving back the

fuzzy measure. The proofs for this properties are developed in the associated paper with this

results (which can be seen at the end of this section).

We have used this IV-FG-Sugeno like in two different settings:
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• MI-based BCI classification framework.

• Social network analysis.

For the case of MI BCI classification, we have used the same bci framework as in our

experiments in the previously explained paper in Section 3.3. However, in this case we have

used intervals as a mean to express the uncertainty related to each prediction. We have done so

by using different kinds of classifiers for each sample. Then, the interval is constructed taking

as the lowest bound the lowest value obtained by any of the classifiers, and the same thing for

the upper bound. Since we do this for four different wave bands, we obtained four different

intervals to aggregate. We do so using the proposed FG Sugeno-like integral. Finally, this

results in a final interval-valued logit for each class. We choose the highest interval according

to an admissible order.

For the case of Social network analysis, interval-valued affinity functions (IV-affinity func-

tions) as functions that characterise the relationship between two actors, x,y with an inter-

val in the [0,1] range, where the width of that interval represents the difference in commit-

ment between two parties, contrsucted using a numerical affinity function (80). We construct

an interval-valued affinity function using a previously computed numerical affinity function.

Then, the interval is constructed as:

FC,IV (x,y) = [min{FC(x,y),FC(y,x)},max{FC(x,y),FC(y,x)}] (3.29)

Because FC(x,y) ̸= FC(y,x) in most relationships, this means that in most of the actors give

different levels of commitment than their counterparts. In real life, these kind of situations

are usually solved by finding a compromise between both parties. The IV-affinity function

models this idea, representing the actual relationship that it is formed with an interval that

ranges from both levels of commitment. The interval models the fact that we know that the

final compromise achieved by both actors should be between both commitment levels, but we

do not know exactly where.

One of the main difference between IV-affinity functions and their numerical counterpart

is that they are symmetric. This can be convenient, as it allows to represent the relationship

between two parties with one interval instead of two numerical values. This also opens the

possibility of using some of the existing methods that require symmetric matrices in social

network analysis (13, 81), while retaining the desirable properties of affinity functions, i.e.

zeros-sum game philosophy or local-only interactions taken into account (82).
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Using IV-affinities and our the FG-Sugeno like integral, we propose a series centrality mea-

sures to characterise the tendency of each actor to form relationships that have very different

levels of commitment, and if the actor tends to show more or less commitment than the other

party in each of its relationships.

The proposed centrality measures are:

1. Asymmetry is the tendency of the actor to form relationships with different levels of

commitment.

2. Altruism is the tendency of the actor to form relationships in which its level of commit-

ment is bigger than the other party.

3. Egoism is the tendency of the actor to form relationships in which its level of commit-

ment is lesser than the other party.

4. Generosity is the difference between altruism and egoism. A positive generosity means

that overall, the actor tends to give more commitment in its relationships than the other

part. A negative generosity means that the actor tends to give less commitment than the

other part in a relationship.

We have studied the proposed centrality measures in a word association network, con-

structed using The Younger Edda book. The Younger Edda is Old Norse textbook of mythical

texts, written approximately in 1220 by Snorri Sturluson. This book contains the tales of pop-

ular characters in the Nordic folklore, like Odin, Thor or Loki. Figure 3.7 shows the results in

this network for asymmetry, egoism, altruism and generosity, colouring each node according

the value of each metric.
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Figure 3.7: Altruism (a), Egoism (b), Asymmetry (c) and Generosity (d) for the Younger Edda
network, marked with different colors. Node size is proportional to the node degree. We can see
that most actors are more egoist than altruist. In fact, some of the most important actors in this
network show no altruism at all. However, no altruism does not necessarily imply a high egoism.
For example, “Odin” and “Thor” show no altruism (so all their in-affinities are higher or equal than
their out-affinities), but their asymmetry value is also low.
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3.7 Quantifying External Information in Social Network Analysis:
an Application to Comparative Mythology

Social network analysis uses centrality measures to ponder the importance of each actor ac-

cording to a structural property of the network. In this work we present an extension of this

concept to take into account external information from the original domain of the network.

We start by giving the notion of Semantic value, as the union of the intrinsic value, Ž(x),

and the extrinsic value, R(x):

z(x) = ∪(Ž(x),R(x)). (3.30)

Note that this notation reinforces this idea visually in its more general conception: if we

superpose the Ž(x) and the R(x) symbols, the result is z(x).

We define the intrinsic value of an actor x as the inherent properties that this actors pos-

sesses independently of the network structure. This concept is quite abstract, and its quantifi-

cation depends on the specific problem to solve.

The extrinsic value is defined as the union of all the semantic values that actor x neigh-

bours’:

(3.31)R(x) =
a⋃

i=1

{FC(Xi,x)z(Xi)− ∪ j∈Ji{∩(FC(Xi,x)z(Xi),FC(X j,x)z(X j))}

where Ji = { j ∈ {1, . . . ,a}, i ̸= j}. With this expression, we establish that the extrinsic value

is the union of the received semantic values from the rest of the actors. Each actor in X sends

its own semantic value to x, modulated in each case by the affinity for that relationship, and

erasing the redundancies from other relationships. Since the semantic value has a recursive

definition, the result of Eq. (3.30) is a set of intrinsic values.

However, if we quantify the intrinsic value as a number, which is convenient in many

applications, the resulting value from Eq. (3.30) is also a number, computed with the analogous

expression:

(3.32)E(x) =
a

∑
i=1

max

(
FC(Xi,x)I(Xi)−∑

j∈J
FC(Xi,X j)I(Xi)FC(X j,x),0

)

denoting the numerical intrinsic value as I. Finally, the numerical semantic value results in:

S(x) = I(x)+E(x). (3.33)
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We can use this as a centrality measure that takes into account both the external information,

expressed in the I values, and its propagation through the network, captured through the extrin-

sic value E.

Another way of using the semantic value is to compare different actors, by means of affinity

functions. To do so, we define the concept of semantic affinity.

The semantic affinity of two actors x and y measures the affinity between them based on the

idea of how notably we need to change S(x) to convert it to into S(y). Terms that are similar in

meaning should have high values of semantic affinity and non-related terms should have a very

low semantic affinity. For example, the semantic affinity between “water” and “ice” should be

high because these are very close terms and in real life we only need to freeze water below 0ºC

to obtain ice. However, the semantic affinity between “water” and “earth” should be lower, as

the difference in real life between those concepts is higher.

In order to compute the semantic affinity between two concepts, we propose a new algo-

rithm, called the Pipe algorithm. The Pipe algorithm computes the semantic affinity based on

the idea of modelling S(x) as a liquid we need to carry from x to y. Each actor x has a capacity

equal to its own semantic value S(x) and each edge x→ y can carry up to FC(x,y) ·S(y) of that

liquid. So, each edge is treated as a “pipe” where the liquid goes and each actor as a bifurca-

tion in the path. Then, we need to carry all the liquid from the source actor to the destination

actor using the best possible path. To compute the final semantic affinity value, we will take

into account three different aspects of this transportation process: how “good” were the taken

paths, the difference in magnitude between S(x) and S(y) and the average affinity values of the

emisor.

As a practical case of this methods, we propose to use the semantic value and the semantic

affinity in comparative mythology (83, 84, 85). We show the networks obtained for individual

mythologies, and the resulting one when we fuse all of them in Figure 3.8. The results of our

pipe algorithm are shown in Figure 3.9. There, we showed how this analysis reveals some

important interaction between Nordic and Celtic mythologies, and how between the main gods

of each mythology and concepts realted to kingship.

The publication associated with these results is the following one: Fumanal-Idocin J.,

Cordón O., Dimuro G., del-Hierro AR. & Butince H. (2022) Quantifying External Information

in Social Network Analysis: an Application to Comparative Mythology, IEEE Transactions on

Cybernetics.
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3.8 The Krypteia ensemble: designing classifier ensembles using
an ancient Spartan military tradition

Following a similar methodology as the one that we followed in (80), in this work we present

a real historical costume applied to solve a computational problem. In this case, we show how

we can train a classifier ensemble following the general ideas of the Spartan Krypteia.

The Krypteia was a particularly brutal initiation rite in the Spartan society for the young

men of the higher ranks of the state (87). According to Plutarch (88), each year the young

noblemen of Sparta would declare war to the Helot population of Sparta, so that any killing

or robbery committed was not considered crime. Armed with nothing but a knife, the young

Spartans were left alone and sent out in the night to the Helot settlements. They were supposed

to obtain their own methods of survival by stealing and killing in their circumvent area.

The Krypteia ensemble is a novel classifier ensemble algorithm designed to maximise the

effectiveness of each individual subject and the variability and performance of their outputs

when combined. It consists of three main steps (Figure 3.10):

1. Survival ordeal: in this phase we train each classifier individually. In order to induce

diversity in the training process, we modify the training task for each one in a stochastic

process, so that some of them have a easier or harder task than the original classification

task. We discard all the classifiers that did not meet the expected accuracy rate in their

own task.

2. Social ordeal: this second phase follows an OCS scheme in which we discard those

classifiers that have a very similar output to other classifiers with higher accuracy rate.

The aim is to avoid having samples with much more weak learners classifying them

correctly than others.

3. Aggregation learning: we learn which is the most appropriate function to combine the

output of all the surviving classifiers.

In order to guarantee some diversity between the different subjects, they are generated using

a stochastic process. The idea is that these subjects are generated in batches, and their param-

eters are obtained from a distribution i.e. the base classifier, the kind of ordeal performed, the

bias induced in their predictions. A set of subjects obtained from the same set of distributions

is called a Krypteia unit. If we want to obtain a bigger and more diverse ensemble, we can use
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different Krypteia units, instead of using a big one. The fusion of different Krypteia units is

called a Krypteia division. In the same way, fusing different Krypteia divisions is denoted as

Krypteia Army.

Stacking these three different levels of complexity allow us to gain some flexibility in

the aggregation process. We have opted to study one different aggregation function in each

complexity level, which performs better than using the same one in all levels (something that

we already noted in our results in (89)).

We compared the performance of our method in a collection of datasets with a list of

different ensemble design approaches, including Random Forest, Gradient Boosting, using

meta features and other classical approaches:

• Adaboost (90): it serially trains each classifier. In each iteration, it weights each instance

according to its difficulty to be classified, aiming to correctly classify it in the next itera-

tion. For our experimentation, we have used 50 decision trees to form the Adaboost.

• Bagging (Bootstrap Aggregation) (91): it aims to increase accuracy by combining the

outputs of the classifiers in the ensemble that were trained using different subsamples

of the original data. Sampling with replacement is used to train all the classifiers in the

ensemble and thus some of the instances may appear more than once in the training set.

For our experimentation, we have used 10 decision trees to form the Bagging classifier.

• Majority vote SVM: it consists of different SVM classifiers trained with a different ker-

nel. For our case, we have trained 5 different RBF kernels classifiers with five different

σ parameters evenly spaced such as: [0.5,1.5]/(number o f f eatures).

• Random Forest (92): it combines the output of many different decision trees computed

from different subsamples of the original data. The final decision is taken as the majority

vote of all of the trees outputs’. We have set as 100 the number of trees in the Random

Forest for our experimentation.

• K-Nearest Oracles Eliminate (K-NORAE) (93): it selects the classifiers that correctly

classify all the samples in their region of competence.

• Dynamic Ensemble Selection Multiclass Imbalance (DES-MI) (94): it generates artifi-

cial training sets of randomly balanced data and then chooses the classifiers that correctly

discriminated the minority class samples.
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• Randomized Reference Classifier (DES-RRC) (95): it combines Dynamic Ensemble Se-

lection with a measure to evaluate each possible classifier in the final ensemble using a

reference classifier.

• META-DES (96): it selects a set of classifiers from a list, using five different meta-

features to test each classifier’s competence.

• Extreme Gradient Boosting (XGBoost) (97): gradient boosting is a generalization of

Adaboost that consist of using a differentiable loss function. This function is optimized

using a gradient descent procedure, so that in each step a new weak learner is included to

reduce the loss of the system. Gradient boosting is considered to be the state-of-the-art

in classification of tabular data (98).

Table 3.6: Average performance for different ensemble classifiers and the best instance of Krypteia
ensemble classifiers used.

Algorithm Accuracy

Adaboost 83.84±19.65
Bagging 90.99±9.81

Majority Vote SVM 68.90±21.84
Random Forest 92.61±8.53

K-NORAE 90.05±11.00
DES-MI 93.87±10.59

DES-RRC 92.74±10.72
META-DES 93.60±10.70

XGBoost 95.14±9.81

SVM-Krypteia Mean 93.30±10.34
Krypteia Unit 94.09±14.36

Krypteia Division 94.49±12.85
Krypteia Army 95.83±8.35

As shown in Table 3.6, we found better results using our Krypteia ensembles than most

approaches, and the Krypteia Army was found to be the best ensemble of the compared ones.

Specific details about each of these steps can be found in the publication associated with

this work:
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Fumanal-Idocin J., Cordón O. & Bustince H. (2023) The Krypteia ensemble: designing

classifier ensembles using an ancient Spartan military tradition Information Fusion
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3.9 ARTxAI: Explainable Artificial Intelligence Curates Deep Rep-
resentation Learning of Artistic Images

In this work we study the generalisation capabilities of a deep learning model used in artistic

image classification. We have chosen a ResNet50 model as it is popular in the literature for

this kind of task (21, 99, 100, 101). Then, we propose to extract interpretable features from the

paintings, which can then be used to obtain explainable patterns using fuzzy rules.

For our experimentation we have used the SemArt and the Wikiart datasets. The SemArt

dataset (102). This dataset consists of 21,384 painting images. Following the original data

partition in (102), 19,244 images are used for training (i.e. a 90%), 1,069 for validation, and

1,069 for test (i.e. a 5% each). Each painting has associated a textual artistic comment.

In this dataset four different classification tasks are proposed:

• Type: each painting is classified according to 10 different common types of paintings:

portrait, landscape, religious, etc.

• School: each painting is identified with different schools of art: Italian, Dutch, French,

Spanish, etc. There are a total of 25 classes of this kind.

• Timeframe: The attribute Timeframe, which corresponds to periods of 50 years evenly

distributed between 801 and 1900, is used to classify each painting according to its cre-

ation date. We consider only the timeframes where at least 10 paintings are present. This

corresponds to 18 classes.

• Author: corresponds to the author of each paintings. We consider a total of 350 painters,

that comprise the set of authors with more than 10 paintings in the dataset.

The WikiArt dataset contains over 81,000 images of fine-art paintings, representing a wide

range of artistic styles and historical periods, from the 11th century to the present day. Each

image in the dataset is accompanied by a set of metadata, including the title of the artwork, the

artist, the year of creation, the medium used and the dimensions of the artwork, among other

attributes.

First, we have studied the performance of different models in the SemArt classification

tasks. We use models that take into account only visual information and also some that use
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contextual information by encoding the commentaries for each painting. We have also consid-

ered Multi-task models (MTL) that are trained for the four tasks as the same time. We found

that the best results were obtained using a combination of both approaches (Table 3.7).

Secondly, we extracted the interpretable features using the grad-CAM algorithm and a style

predictor for each image. Grad-CAM is an algorithm used for X-AI in deep learning models

that highlights the parts of the image that were relevant in the network prediction. For each

image we compute the percentage of the image that was marked as relevant, the sharpness

of the boundaries between relevant and non relevant parts of the image and the number of

significant blobs detected. On the other hand, we trained a model on the Wikiart dataset to

characterise the styles of the SemArt paintings. Combining both approaches we describe each

painting according to the scores to these characteristics.

Then, we use this features to fit a Fuzzy Rule Based classifier to obtain explainable rules to

match these features to the behaviour of the Resnet model used for classification on the SemArt

or to distinguish paintings between two similar artists (Table 3.11).

Table 3.7: Correct Classification Ratio results for the different attributes on SemArt Dataset.

Method Type School TimeFrame Author

VGG16 0.706 0.502 0.418 0.482
ResNet50 0.726 0.557 0.456 0.500

VGG16 MTL 0.732 0.585 0.497 0.513
ResNet50 MTL 0.763 0.565 0.464 0.431

BoW + FCM 0.794 0.655 0.604 0.238
BoW + FCM-apppend 0.802 0.654 0.584 0.230

TF-IDF + FCM 0.786 0.645 0.604 0.229
TF-IDF + FCM-append 0.778 0.654 0.589 0.226

BoW100 + FCM 0.792 0.630 0.586 0.559

TF-IDF + FRBC 0.785 0.643 0.597 0.233
TF-IDF + FRBC-append* 0.759 0.623 0.533 0.154

CLIP-context 0.784 0.649 0.601 0.215

MTL-FCM 0.804 0.691 0.618 0.531
MTL-CLIP 0.790 0.677 0.630 0.551
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(a) (b)

(c) (d)

Figure 3.8: Word co-occurrence networks. Each network is formed using the 300 most repeated
entities in each corpus. We consider a connection between two words every time they appear
less than 10 words apart from each other in one of the analyzed texts. a. Greek Myths b. Celtic
Wonder-Tales c. The Younger Edda d. Fusion network of the three cultures. Node size is directly
proportional to the in-degree measure and the layout algorithm considered is Force Atlas 2 (86).
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Figure 3.9: Semantic affinities in all the networks studied. We chose the 10 most repeated en-
tities in each text to compare themselves. a Greek myths network. b Celtic Wonder-Tales network.
c Younger Edda network. d Fused myths network.
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Figure 3.10: Visual scheme of the Krypteia algorithm. 1. We generate random sets of parameters.
2. Each of these parameter settings creates a different Survival ordeal, where the weak learners
need to correctly solve a stochastically modified version of the original classification task. The
modification includes the Data ordeal (2.1), where we manipulate the training data, and the Bias
ordeal (2.2), where we compute a random vector that we will add as an artificial bias to each of the
classifiers predictions. 3. If they pass the Survival ordeal, a selection of the surviving classifiers
is performed by k Variability Guarantors in the Social ordeal to minimize redundancies. 4. We
choose the best aggregation function for the decision making phase of the ensemble. 5. The output
of the Social ordeal is the Krypteia Unit.

Author Antecedents DS Train Acc Test Acc

1 IF New Realism IS Low AND Post Impressionism IS Medium 0.0076 0.5000 0.0000
2 IF Early Renaissance IS Medium AND New Realism IS Medium AND Synthetic Cubism IS Medium 0.0740 0.7777 1.0000
3 IF Early Renaissance IS Low AND Synthetic Cubism IS High 0.2517 0.9390 0.8888
4 IF Synthetic Cubism IS Low 0.4624 0.9097 0.9250
5 IF Contemporary Realism IS Medium AND Synthetic Cubism IS Low AND Relevant area IS Low 0.0092 0.0000 0.0000

6 IF Contemporary Realism IS Medium AND Minimalism IS Low 0.3389 0.7586 0.7692
7 IF Early Renaissance IS Medium AND Minimalism IS Medium AND Synthetic Cubism IS Medium 0.0124 0.0000 0.0000

Figure 3.11: Rules that differentiate Van Gogh from Gauguin paintings.
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4

Conclusions

La verdad padece, pero no perece.

Santa Teresa de Jesús

I
N this dissertation we have proposed new means of fusing information using aggre-

gation functions for both numerical and interval-valued data, and we have also devel-

oped a novel kind of functions called the affinity functions for social network analysis.

Based on these new functions, we have developed the following algorithms and frameworks,

designed to tackle a wide range of problems:

• Enhanced multimodal fusion framework for BCI signal classification.

• Two variants of an interval-valued Multimodal Fusion framework for BCI signal classi-

fication.

• Affinity functions and the Borgia clustering algorithm to perform community detection

in social network analysis.

• Semantic value and semantic affinity to ponder and compare actors in a social network

that we applied to comparative mythology.

• Krypteia ensemble to perform classification in tabular data.

As a result of the theoretical and practical results of this dissertation, we have arrived at the

following conclusions:

49



4. CONCLUSIONS

• The choice of different aggregation functions can have a meaningful impact in the final

performance of a classification system, both in signal classification or standard tabular

data. Some of them can have additional properties in terms of complexity and compu-

tational time, which should be taken into account in order to choose one. For example,

Choquet and Sugeno integrals require a fuzzy measure, and some T-norms are more

expensive to compute than others because of their recursive nature.

• Multi-cost aggregation choosing functions and interval-valued moderate deviations al-

leviate the problem of choosing the aggregation function. Choosing a cost function is

usually easier and very common in many optimization problems.

• BCI systems heavily rely on the features used the preprocessing used and temporal se-

ries analysis can help alleviate the effects of possible artifacts in the EEG measurements.

Besides, choosing the correct aggregation function that models the interactions and re-

dundancies between features can be very effective to improve the quality of the system.

• Affinity functions represent the “local view” that one actor has over the whole network.

This favours the success of algorithms that exploit this but is prejudicial to those that

require a global view of the system. They can be combined using aggregations to obtain

functions that combine the different social traits that they model. This is helpful in the

Borgia Clustering to take into account different social aspects when joining actors into a

community.

• External information can be propagated using affinity functions in a network, acting

as a fusion function, through the semantic value and semantic affinity concepts. This

requires a modelization of this external value into a numerical representation. When this

information comes from the original material of the network, additional conclusions can

be reached from the original source. When this information is extracted using external

resources i.e. sentiment analysis, additional conclusions can be reached, not possible

using only the original information.
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Future Lines

Avancez courageusement. Peur de rien.
Confiance en Dieu; tout ira bien.

Sainte Jeanne d’Arc

Fides ad ea quae non videntur, spes vero
ad ea quae non sunt.

Santo Tommaso d’Aquino

A
S the number of findings and results reported in this dissertation is quite wide, the range

of possible future lines comprises different application and theoretical possibilities. In

the following, we introduce the ones that we think are more promising.

Extension of Affinity functions with reinforcement learning

Affinity functions are proposed as a means to measure an actor’s “world” view, using infor-

mation that is considered to be visible from that actor perspective. Multi-Agent Reinforcement

Learning systems are systems where agents learn to cooperate to solve a collective task. One

of the problems of these kinds of system is to measure the real communication of the systems

and how it is affected by the amount of information available to each actor. Affinity functions

could be used to model the local information for each actor and to make them communicate in

ways that are plausible in the real world.

Extending the Theory and Operators that Work with Affinity Functions
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Affinity functions were defined in the most general way according to their initial idea and

intentionality. Some additional conditions could be required in order to extend common used

operators and transformations used in adjacency networks. For example, as symmetry is recov-

ered using IV-affinity functions, these kinds of affinity functions could be the basis to extend

the concept to such operators.

Escaling of the proposed algorithms

In this dissertation we have introduced the:

• Enhanced Multimodal Fusion framework for BCI signal classification.

• Borgia Clustering for community detection.

• Gravity clustering for anomaly detection.

• Krypteia ensemble for tabular data classification.

All of these algorithms worked well when the size of the data was small. However, some

of the most interesting problems in artificial intelligence require large amounts of data, which

requires the used of batches, distributed computing, etc. All of these algorithms offer possibil-

ities in terms of implementation and further development to adapt them to higher volumes of

data.

Extending comparative mythology

One of the key applications of the results in this dissertation was in comparative mythology.

This study offered satisfactory results, but could be expanded by adding more textual resources

and other types of information. We also consider to add expert knowledge in some parts of the

process in order to obtain a system that can better explain its results.

Understanding visual arts through AI We studied that models used to classify artistic images

lacks the capabilities of a human person to understand its context and symbolic information.

We could expand the capabilities of existing methods in this task by studying the problem of

the semantic affinity in this context. We could also study how Large Language Models perceive

fiction texts compared to non-fiction and use this insight in the visual arts.
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Español: Resumen y conclusiones

6.1 Resumen

La fusión de información es un aspecto crucial del análisis moderno de datos y la toma de

decisiones. Implica la integración de múltiples fuentes de información para obtener una com-

prensión más completa y precisa de un tema determinado. Este proceso es especialmente

importante en campos como la informática, la ingenierı́a y las ciencias naturales, donde se

generan grandes cantidades de datos procedentes de diversas fuentes que deben sintetizarse

para tomar decisiones con conocimiento de causa. La fusión de información también es esen-

cial en el diseño y la implantación de sistemas inteligentes, ya que permite integrar diversos

sensores y fuentes de datos para hacer predicciones y recomendaciones más precisas.

Desde un punto de vista matemático, una forma de estudiar este problema es a través de

la idea de funciones de fusión, que toman como entrada un vector de números y devuelven

uno solo, representativo de ellos. Un tipo relevante de función de fusión es la familia de fun-

ciones de agregación. Estas funciones mantienen dos condiciones de contorno y monotonici-

dad con respecto a las entradas, que inducen algunas propiedades deseables a la salida de la

función. Sin embargo, la fusión de información en los sistemas aplicados comprende algo más

que esta noción teórica. A medida que la heterogeneidad, la estructura y el volumen de los

datos adquieren mayor relevancia, han surgido otros enfoques para abordar este problema. Por

ejemplo, en una estructura de red, las distintas entradas se asocian entre sı́ según un conjunto

preestablecido de relaciones; en las series temporales, los datos presentan dependencias tem-

porales. Cuando se trata de datos no estructurados, como texto, audio e imagen, los enfoques

de aprendizaje profundo han tenido mucho éxito en la transformación de este tipo de datos en
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representaciones vectoriales de números reales utilizando series de transformaciones afines.

A pesar de los esfuerzos previos en este campo, el problema de combinar eficazmente

fuentes de información diversas y heterogéneas, sigue siendo un área de investigación abierta y

activa. Esto se debe a los desafı́os inherentes a la integración de múltiples fuentes que pueden

estar en diferentes formatos y pueden tener información contradictoria o incompleta. Por ejem-

plo, el modo en que la información medida se relaciona con otras fuentes de datos y la fiabilidad

de esas medidas dependen en gran medida del procedimiento de medición. De hecho, los sis-

temas que fusionan la información de esas distintas fuentes presentarán también complejidades

adicionales al tener en cuenta las particularidades de cada caracterı́stica considerada.

En esta tesis, proponemos un conjunto de funciones y algoritmos para tener en cuenta

las posibles interacciones, heterogeneidades e incertidumbres cuando se trabaja con distintas

fuentes de información. Lo hacemos mediante la teorı́a de agregaciónes y el análisis de redes

sociales, y nos centramos especialmente en aquellos casos en los que los enfoques de apren-

dizaje profundo no tienen tanto éxito. Aplicamos estos resultados a una amplia gama de prob-

lemas, incluyendo la clasificación de señales de interfaz cerebro-ordenador, la clasificación de

datos tabulares estándar y la detección de anomalı́as.

6.2 Conclusiones

En esta tesis hemos propuesto nuevos medios para fusionar información utilizando funciones

de agregación tanto para datos numéricos como para datos valorados en intervalos, y también

hemos desarrollado un novedoso tipo de funciones denominadas funciones de afinidad para

el análisis de redes sociales. Basándonos en estas nuevas funciones, hemos desarrollado los

siguientes algoritmos y marcos, diseñados para abordar una amplia gama de problemas:

• Marco de fusión multimodal mejorado para la clasificación de señales BCI. variantes de

un marco de fusión multimodal interval-valued para la clasificación de señales BCI.

• Funciones de afinidad y el algoritmo de agrupación de Borgia para realizar la detección

de comunidades en el análisis de redes sociales.

• Valor semántico y afinidad semántica para ponderar y comparar actores en una red social

que aplicamos a la mitologı́a comparada.

• Krypteia ensemble para realizar clasificación en datos tabulares.
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6.2 Conclusiones

Como resultado de los resultados teóricos y prácticos de esta disertación, hemos llegado a

las siguientes conclusiones:

• La elección de diferentes funciones de agregación puede tener un impacto significativo

en el rendimiento final de un sistema de clasificación, tanto en clasificación de señales

como de datos tabulares estándar. Algunas de ellas pueden tener propiedades adicionales

en términos de complejidad y tiempo computacional, que deben tenerse en cuenta para

elegir una. Por ejemplo, las integrales de Choquet y Sugeno requieren una medida difusa,

y algunas T-normas son más caras de calcular que otras debido a su naturaleza recursiva.

• Las funciones de elección de agregación de costes múltiples y las desviaciones mod-

eradas valoradas en intervalos alivian el problema de elegir la función de agregación.

Elegir una función de coste suele ser más fácil y muy común en muchos problemas de

optimización.

• Los sistemas BCI dependen en gran medida de las funciones utilizadas el preproce-

samiento utilizado y el análisis de series temporales puede ayudar a aliviar los efectos de

posibles artefactos en las mediciones de EEG. Además, elegir la función de agregación

correcta que modele las interacciones y redundancias entre caracterı́sticas puede ser muy

eficaz para mejorar la calidad del sistema.

• Las funciones de afinidad representan la “visión local” que un actor tiene sobre toda la

red. Esto favorece el éxito de los algoritmos que la explotan, pero perjudica a los que

requieren una visión global del sistema. Pueden combinarse mediante agregaciones para

obtener funciones que combinen los distintos rasgos sociales que modelan. Esto es útil

en el Borgia Clustering para tener en cuenta diferentes aspectos sociales a la hora de unir

actores en una comunidad.

• La información externa puede propagarse utilizando funciones de afinidad en una red,

actuando como una función de fusión, a través de los conceptos de valor semántico y

afinidad semántica. Esto requiere una modelización de este valor externo en una repre-

sentación numérica. Cuando esta información procede del material original con el que

se formó la red, se pueden alcanzar conclusiones adicionales a las que se obtendrı́an

utilizando sólo la información estructural de la red.
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Abstract

In this paper we propose a new version of penalty-based aggregation functions,

the Multi Cost Aggregation choosing functions (MCAs), in which the function

to minimize is constructed using a convex combination of two relaxed versions

of restricted equivalence and dissimilarity functions instead of a penalty func-

tion. We additionally suggest two different alternatives to train a MCA in a

supervised classification task in order to adapt the aggregation to each vector

of inputs. We apply the proposed MCA in a Motor Imagery-based Brain Com-

puter Interface (MI-BCI) system to improve its decision making phase. We

also evaluate the classical aggregation with our new aggregation procedure in

two publicly available datasets. We obtain an accuracy of 82.31% for a left vs.

right hand in the Clinical BCI challenge (CBCIC) dataset, and a performance of

62.43% for the four-class case in the BCI Competition IV 2a dataset compared

to a 82.15% and 60.56% using the arithmetic mean. Finally, we have also tested

the goodness of our proposal against other MI-BCI systems, obtaining better
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results than those using other decision making schemes and Deep Learning on

the same datasets.

1. Introduction

Brain-Computer Interfaces (BCIs) provide new means of communication be-

tween the human brain and the devices or systems to be controlled by changes in

brain dynamics [1] . There are several types of BCI systems, depending on the

features extracted from the brain signals [2, 3] . One popular type is based on the

imagination of movements from specific body parts, and it usually referred to as

Motor Imagery (MI) based BCI [4] . MI-based BCI systems construct features

by exploiting the power changes in specific frequency bands that occur during

the kinesthetic imagery of body movements in the sensorimotor cortices. This

power variability is known as Event-Related De/Synchronisation (ERD/ERS)

[5]. A MI-BCI based system is usually composed of several modules compris-

ing signal processing, feature extraction, classification and control commands,

for which EEG is the leading non-invasive technology to measure brain signals

[4]. MI features are commonly computed by filtering the multivariate signals

in subject-specific frequency bands to later compute spatial filters that are able

to maximize power differences between different conditions [6] . Classification

is usually performed employing linear classifiers such as Linear Discriminant

Analysis (LDA). This is most common when the BCI system only discriminates

between two different tasks (or classes), but also QDA or SVMs are popular

classification procedures [7]. When more classes are involved, or different fea-

tures are combined, the pattern recognition module might be composed by an

ensemble of classifiers, where the common strategy to combine classification

outputs is majority voting [8, 9] or arithmetic classifier output mean [10].

Another way to combine information from different features is the inclusion

of fuzzy techniques [11] . For example in [12], the authors presented a BCI

2
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framework employing fuzzy integrals [13] to model classifier interactions. An-

other example is [14], where the authors proposed the use of interval-valued

aggregation functions. Furthermore, the promising results in [12] show that

the classifier fusion in the control command phase is crucial to increase BCI

performance. However, choosing the best aggregation function for such system

depends on several factors, such as the type or number of classifiers used. Based

on the theory of aggregation functions [15], one possible method to combine clas-

sifier outputs is to use a dissimilarity measure between the data and the fused

value. A way of measuring this dissimilarity is the so-called penalty functions.

Penalty functions are defined as a measure of deviation from a consensus

value, or in other words, as a penalty for not reaching consensus. They have been

widely studied in the fuzzy learning field [16] . Penalty functions can be used

to build fusion functions which take into account the lack of similarity between

inputs. These functions are called penalty-based functions. Some examples are

the weighted arithmetic and geometric means and median.

Penalty functions allow the choice of the “best” possible aggregation ac-

cording to a dissimilarity measure, thereby solving the problem of choosing an

aggregation function for a specific problem. However, care needs to be taken

with their design. For example, when the quadratic error is set as a penalty

function, the arithmetic mean will be selected as the best possible aggregation

regardless of the data to be aggregated [16]. This is due to, by definition, the

arithmetic mean of the input values is always the value that minimizes the

penalty.

The main goal of this paper is to propose and apply a new method to fuse

BCI classification outputs to generate a control command. This method is

based on a special type of penalty-based aggregation functions: the Multi-Cost

Aggregation-Choosing functions (MCAs). MCAs are similar to penalty-based

3
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aggregation functions because they establish a disagreement measure between

the original data and the aggregated output in order to determine the “best”

aggregation. The disagreement measure is constructed using a convex combi-

nation of two cost functions. Depending on the convex combination parameter,

the proposed functions are able to obtain more meaningful results regarding

which aggregation function is denoted as the “best”, than the classical ap-

proaches. A second goal is to demonstrate the usefulness of MCA functions

to classify MI-based BCI data in comparison to the arithmetic mean or the

classical penalty-based aggregation functions. To show that this is the case, we

perform several favorable comparisons between different aggregation functions

and to other previously published work on the same dataset [12, 17].

The paper is organized as follows. Section 2 revises the concepts of aggre-

gation and penalty functions. Section 3 introduces the main contributions for

this work: section 3.1 illustrates the BCI framework, and section 3.2 shows how

to process the EEG data. Section 3.3 explains the concept of Quasi-Restricted

Equivalence Functions and Quasi-Restricted Dissimilarity Functions and Sec-

tion 3.4 explains how to use them to construct multi-cost functions. Section 3.5

explains how to mix the different cost functions in a MCA in order to optimize

the performance in a supervised learning task and, subsequently, section 3.6

describes how to apply these functions to the BCI MI framework. Section 4

displays the experimental results for the popular BCI IV competition dataset

[18] and the Clinical Brain-Computer Interface Challenge (CBCIC) at the IEEE

World Congress of Computational Intelligence (WCCI) 2020 [19] using the MCA

functions; and in Section 5 we compare those results with other BCI frameworks.

Finally, in Section 6 we give our final conclusions and remarks for this work.

4
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2. Preliminaries

This section discusses some of the basic concepts regarding aggregation func-

tions and more precisely, penalty-based aggregation functions.

2.1. Aggregation Functions

Aggregation functions are used to fuse information from n sources into one

single output [13]. A function A: [0, 1]n → [0, 1] is said to be a n-ary aggregation

function if the following conditions hold for any vectors (x1, . . . , xn) ∈ [0, 1]n :

� A is increasing in each argument; that is, for every xi ∈ {1, . . . , n}, if xi <

y,A(x1, . . . ., xi, . . . xn) ≤ A(x1, . . . , y, . . . xn)

� A(0, . . . , 0) = 0

� A(1, . . . , 1) = 1

Some examples of n-ary aggregation functions are:

� Arithmetic mean: A(X) = 1
n

∑n
i=1 xi.

� Median: A(X) = xm, where for any permutation σ : {1, . . . , n} such that

xσ(1) ≤ · · · ≤ xσ(n), xm = xσ(n+1
2 ), if n is odd, and xm = 1

2 (xσ(n
2 ) +

xσ(n+1
2 )) if n is even.

� Max: A(X) = max(x1, . . . , xn).

� Min: A(X) = min(x1, . . . , xn).

2.2. Penalty functions

Penalty-based aggregation functions aim to reduce the disagreement between

the input data and the aggregated value in an information fusion process. This

process is measured using a disagreement measure called the penalty function.

5

93



Let X = (x1, . . . , xn) be the inputs and y be the output. If all the inputs

coincide x1 = · · · = xn, and the output y is the same as all the inputs, then

there is no disagreement. If some input xi 6= y, then we impose a “penalty” for

this disagreement. The greater the disagreement, and the more inputs disagree

with the output, the greater is the penalty. Then, the aggregation function is

obtained by finding the aggregated value that minimizes the penalty.

The formal definition of a penalty function reads as follows.

Definition 1. A function P : [0, 1]n+1 → < is a penalty function if:

� P (x, y) ≥ 0 for all x, y;

� P (x, y) = 0 if xi = y for every i ∈ {1, . . . , n};

� P (x, y) is quasi-convex in y for any x.

The penalty based function is f(x) = arg minP (x, y), if there is a unique

minimizer, and f(x) = p+q
2 if the set of minimizers is in the interval [p, q].

Any averaging aggregation function, i.e. an increasing function whose output

is between the minimum and the maximum of the inputs, can be represented as

a penalty based function.

1. Example 1: The arithmetic mean is represented via the penalty function

P (X, y) =
∑n
i=1(xi − y)2

2. Example 2: The median is represented via the penalty function P (X, y) =

∑n
i=1 |xi − y|

Given a penalty function P , a list of n aggregation functions (Ag1, . . . , Agn),

and a vector of values to aggregate, X, we compute a finite set of aggregation val-

ues over the vector X, (Ag1(X), . . . , Agn(X)). Then, we compute P (X,Agi(X))

for all components in the (Ag1(X), . . . , Agn(X)) vector and look for the com-

ponent that minimizes the value of P , that is

arg min
i
P (X,Agi(X))
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3. Methods

This section illustrates the BCI framework used and how the EEG data were

processed. We also introduce the new concepts of Quasi-Restricted Equivalence

and Quasi-Restricted Dissimilarity Functions(Q-REF and Q-RDF), and how to

construct the newly developed MCAs.

3.1. Motor Imagery Brain Computer Interface Framework

The usual modules of a BCI system can be summarized as follows:

1. EEG acquisition with an EEG device, notch filtering to remove power line

noise and possibly subsampling and/or bad impedance channel removal.

2. Feature extraction from the EEG data measured. Often, band pass filter-

ing in subject-specific or fixed bands is applied to extract specific EEG

oscillations [20]. Then, some dimensionality reduction procedure such as

Spatio-Spectral Decomposition (SSD) might be applied [21] . Then, Com-

mon Spatial Patterns (CSP) are usually employed to compute optimized

spatial filters [22] to separate MI tasks. Other possibilities include using

Riemannian geometry [23] or time-domain features modeling the signal as

Laplacian and Gaussian random process [24]. The extracted features are

log-transformed to normalize them.

3. Pattern classification is performed on the extracted features. In this paper

we use an ensemble of classifiers to decode the imagery commands. Each

base classifier is trained using for example a different band and the final

decision is taken combining all of them. The most common way to obtain

the final decision is to compute the arithmetic mean of the outputs of all

the base classifiers (each one provides a probability for each class), and

take the class with a higher aggregated value. The most common base

classifier used in combination with CSP filters and log-transformed power

values is the Linear Discriminant Analysis (LDA) [25].
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Figure 1: Visual representation of the framework used in this study. First, we measure the
EEG band, and extract the information from four different frequency bands. Then, we apply
SSD and subsequently CSP to reduce dimensionality and extract features from each band.
From each frequency band we train a different LDA classifier. We make a final decision by
aggregating the output from all the LDA classifiers using a MCA (detailed in Section 3.4),
which results in the estimated probabilities for each one of the possible classes.

A schematic view of the framework used in our experimentation can be found

in Fig. 1.

3.2. Feature extraction and classification

In order to extract features, the EEG data were first filtered in four fixed

and overlapped frequency bands, covering the range from low µ to high β bands:

6-10, 8-15, 14-28 and 24-35 Hz.

In more detail, the time interval to extract features was optimized for each

of the bands using heuristics based on the Event-Related Desynchronization

/Synchronization (ERD/ERS) effects typically observed in motor imagery data

[26]. The time-resolved ERD/ERS curves were computed as follows: first, the

EEG data were spatially filtered using small Laplacian derivations and those

channels covering the sensorimotor cortex were selected. Then, these data

were band-pass filtered at the band of interest. For each selected Laplacian
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derivation, the Hilbert transform [27] was applied to obtain the amplitude en-

velope of the oscillations. EEG activity processed in this way was averaged

across epochs separately for each class (left hand/right hand/feet/tongue MI).

The time-resolved ERD curve was calculated for each channel according to:

ERD = 100∗(POST−PRE)/PRE, where POST is the EEG processed activity at the

post-stimulus interval and PRE is the average activity in the pre-stimulus inter-

val (-500 to 0 ms). Then, the subject-specific time interval (a range of time sam-

ples within the active trial time) was selected using heuristics on the ERD/ERS

values (see [28]). These heuristics were based on the pair-wise class discrim-

inability of each time sample that was assessed by the signed r2-value (point

biserial correlation coefficient). The signed r2-value is a correlation coefficient

between a real variable (in this case the ERD/ERS value) and a dichotomous

one containing class information. Signed r2-values were computed for each chan-

nel and time sample separately and smoothed with a sliding window of 200 ms.

The most discriminative time samples were selected using signed r2-coefficient

with 0.8 as threshold value and more samples were iteratively added depending

on the averaged discriminative value of the new interval. Figure 2 shows time

intervals averaged across subjects and partitions. They mostly cover the period

between 1 and 4 seconds during feedback, although they are slightly different

depending on the band.

After selecting time intervals for each class pair, the EEG data were epoched

to form post-stimulus trials. The total dimensionality of the data was then re-

duced using SSD on the band of interest [29]. This method allows the extraction

of oscillatory neuronal sources with optimized Signal-to-noise ratio. It linearly

decomposes multivariate data maximizing the power of the signals at specific

bands and at the same time minimizing it at the neighbouring frequency bins.

After applying SSD, the selected sources were spatially filtered using common

9
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Figure 2: Average time interval chosen for each wave band.

spatial pattern (CSP) analysis [28] . Then, log-variance features were computed

for each trial of the training set.

The features of the test set were computed by temporally filtering the EEG

data in the four bands of interest. For each band and class pair, the corre-

sponding SSD and CSP spatial filters were then applied. Then, the data were

epoched using the previously found time intervals. Finally, the variance and

logarithm were applied to each of the features in each trial. The features were

then log-transformed and LDA classifiers [30] were trained for subsequent clas-

sification. We also considered the use of SVM classifiers for this framework, but

they showed worse results than those obtained using LDAs in our experiments.

3.3. Quasi-Restricted Equivalent Functions and quasi-Restricted Dissimilarity

Functions

In this section we present the concept of Q-REF and Q-RDF. We recall here

the notions of Restricted Equivalent Functions (REFs) and Restrict Dissimilar-

ity Functions (RDFs) [31, 32] that will be the basis for Q-REF and Q-RDF.

10

98



Definition 2. A function c : [0, 1] → [0, 1] is called a strong negation if and
only if there exists an automorphism φ such that c(x) = φ−1(1− φ(x)).

Definition 3. A function s : [0, 1]2 → [0, 1] is called a REF if:

1. s(x, y) = s(y, x);

2. s(x, y) = 1 if and only if x = y;

3. s(x, y) = 0 if and only if {x, y} = {0, 1};
4. s(x, y) = s(c(x), c(y)) for all x, y ∈ [0, 1], c being a strong negation.

5. If x ≤ y ≤ z then s(x, z) ≤ s(x, y) and s(x, z) ≤ s(y, z).

Definition 4. A function d : [0, 1]2 → [0, 1] is called a RDF if:

1. d(x, y) = d(y, x);

2. d(x, y) = 0 if and only if x = y;

3. d(x, y) = 1 if and only if {x, y} = {0, 1};
4. If x ≤ y ≤ z then d(x, y) ≤ d(x, z) and d(y, z) ≤ d(x, z).

In order to deal with more than two inputs, properties are relaxed to intro-

duce the notions of Q-REF function and Q-RDF.

Definition 5. Let n ≥ 1. A Q-REF function is a function Hs : [0, 1]n+1 →
[0, 1] such that:

Hs(X, y) = Hs(x1, . . . , xn, y) = 1 if x1 = · · · = xn = y. (1)

Note that REFs are specific instances of Q-REF functions. And analogously:

Definition 6. Let n ≥ 1. A Q-RDF function is a function Hd : [0, 1]n+1 →
[0, 1] such that:

Hd(X, y) = Hd(x1, . . . , xn, y) = 0 if x1 = · · · = xn = y. (2)

Again, RDFs are specific instances of Q-RDF functions. First of all, observe

that these two types of functions are closely related. In fact, we have the

following straightforward result.

Proposition 7. Let n : [0, 1]→ [0, 1] be a decreasing function such that n(0) =
1 and n(1) = 0 (a negation). Then, a function Hs : [0, 1]n → [0, 1] is a Q-REF
function if and only if n(Hs) is a Q-RDF function.

We can build general Q-REF and Q-REF functions as follows.
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Proposition 8. Let hs1, . . . , hsn : [0, 1]2 → [0, 1] be a family of Q-REF func-
tions and let A : [0, 1]n → [0, 1] be an aggregation function. Then, HA

s (x1, . . . , xn, y) =
A(hs1(x1, y), . . . , hsn(xn, y)) is also a Q-REF function.

Proposition 9. Let hd1, . . . , hdn : [0, 1]2 → [0, 1] be a family of Q-RDF func-
tions and let A : [0, 1]n → [0, 1] be an aggregation function. Then, HA

d (X, y) =
A(hd1(x1, y), . . . , hdn(xn, y)) is also a Q-RDF function.

Proposition 10. Let Hs1, Hs2 : [0, 1]n → [0, 1] be two Q-REF functions. Then,
for every α ∈ [0, 1]

αHs1 + (1− α)Hs2 (3)

is also a Q-REF function.

Proposition 11. Let Hd1, Hd2 : [0, 1]n → [0, 1] be two Q-RDF functions. Then,
for every α ∈ [0, 1]

αHd1 + (1− α)Hd2 (4)

is also a Q-RDF function.

Now we consider the convex combination of a Q-REF and a Q-RDF function.

If x1 = · · · = xn = y, we have that:

αHd(x1, . . . , xn, y) + (1− α)Hs(x1, . . . , xn, y) = 1− α (5)

So:

Proposition 12. Let Hd, Hs : [0, 1]n → [0, 1] be a Q-REF and a Q-RDF func-
tion, respectively. Then, for any α ∈ [0, 1[, the function:

H(X, y) = min(
αHd(X, y) + (1− α)Hs(X, y)

1− α , 1) (6)

is a Q-REF function.

3.4. Multi-cost aggregation-choosing functions

A penalty function is characterized using a disagreement measure that quan-

tifies how different the inputs X are with respect to the resulting aggregated

value y. The use of penalty functions mitigates the problem of choosing an

appropriate aggregation function: given a disagreement measure, the one whose
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output minimizes the disagreement measure will be chosen. The most common

disagreement measure is the quadratic error, however, the arithmetic mean will

always deliver the best result according to this measure [16].

To solve this problem we propose the MCAs, that present two novelties

compared to the already existing penalty-based aggregation functions:

� In order to measure the disagreement, we consider a cost function. We do

so as a cost function can be applied in situations where the term consensus

would not be adequate. For example, in a N-class classification problem,

a result of 1/N probability for a specific class, indicates that the output

does not contain almost any information. In this case, the cost function

can be used to penalize this kind of outcome. In this manuscript, we chose

Q-REFs and Q-RDFs as cost functions, as studied in Section 3.3.

� The use of a convex combination of two functions instead of a single func-

tion avoids trivial results such as the one regarding the quadratic cost,

which will always be minimized by the arithmetic mean independently of

the input data.

A schematic view of the aggregation process using a MCA can be found in

Fig. 3.

3.4.1. Costs used

We have considered a set of Q-RDFs and Q-REF measures as cost functions.

As studied in Section 3.3, and depending on the mixed functions, their convex

combination is also a Q-REF or a Q-RDF. Given a vector X of size n, where

each element of X is contained in the unit interval the Q-RDFs measures studied

are the following:
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Input vector:

X

y1=Ag1(X)

y2=Ag2(X)

yN=AgN(X)

.

.

.

Cost1(X, yi)

Cost2(X, yi)

Combined Cost(X, yi)

α

1 - α

1.

2. 3.

4.

5.

Final output

Figure 3: Visual scheme for the MCA aggregation process. (In the case of the BCI framework
in Fig. 1, X is the output of the LDA classifiers). 1. We compute all the possible aggregations.
2. We compute both cost functions for each aggregation output (yi) with respect to the input
vector. 3. We combine both costs for each aggregation with the mixing parameter α. 4. We
select the aggregation with the least cost value. 5. That aggregation is the final output of the
MCA.

� Huber loss:

h(xi, y) =





(xi − y)2 (xi − y)2 ≤M

2 ∗M ∗ (xi − y)2 −M ∗M (xi − y)2 ≥M
(7)

where H(X, y) = 1
n

∑n
i=1 h(xi, y).

(We use M = 0.3 for our experimentation)

� Quadratic cost:

H(X, y) =
1

n

n∑

i=1

(xi − y)2 (8)

� Optimistic cost:

H(X, y) = (max(X)− y)2 (9)
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Figure 4: Histogram of aggregated values for the optimistic, the quadratic, anti-consensus,
Huber and pessimistic costs using the maximum, minimum, arithmetic mean and median
as possible aggregations in the MCA, for a random sample of 100 vectors of size 5 in the
[0, 1] range. We represent in the x axis the α value and, in the y axis, the frequency of the
aggregated output values in each range for each sampled random vector.

� Pessimistic cost:

H(X, y) = (min(X)− y)2 (10)

The Q-REF measure studied is:

� Anti-consensus cost:

H(X, y) =
1

n

n∑

i=1

(1− (xi − y)2) (11)

Fig. 4 shows the effects of a penalty aggregation using the classical aggre-

gations applied to the BCI data, with a sample of 100 five dimensional (5-D)

random vectors with numbers in [0,1]. The histograms are computed over the re-

sults of aggregating 100 5-D random vectors. It is visible that the optimistic and

pessimistic costs have a “skewing effect”, so that the histogram is sharply moved

to greater and lower values, respectively. It can also be observed that there are

two very similar cost functions: the quadratic and the Huber costs. This is

expected as they only differ in “extreme” values. Finally, the anti-consensus

cost exhibits the most disperse histogram.

3.4.2. Combining costs

The combination of two costs using a convex combination requires an α ∈

]0, 1[ parameter. Depending which are the functions to be combined, Q-REFs
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or Q-RDFs, different formulas should be used:

� Both are the same type:

Combined Cost = α ∗ cost1 + (1− α) ∗ cost2 (12)

� One is a Q-REF and the other is a quasi-dissimilarity:

Combined cost = min(
αcost1 + (1− α)cost2

1− α , 1) (13)

Thus, the combined cost will be another Q-RDF when both cost1 and cost2

are both Q-RDF, and a Q-REF otherwise.

Fig. 5 shows how the cost functions behave for a five-dimensional vector of

random numbers in the interval [0, 1]: (0.60, 0.85, 0.61, 0.52, 0.52).

In order to show how each cost combination works, we computed each of

them varying the parameter α within the ]0, 1[ interval. We also marked the

preferred value for each one. Fig. 5a and Fig. 5b correspond to Q-RDFs and

the Fig. 5c and Fig. 5d are Q-REFs.

Fig. 6 studies the effect of different α values in the quadratic and optimistic

cost based on the same random vectors as before and shows that indeed the α

parameter has a notorious influence in the chosen aggregation.

3.5. Selecting the α parameter in a Multi-cost aggregation-choosing function for

a supervised classification task

As studied in Section 3.4, α plays a crucial role in the output of a MCA.

Choosing the optimal value for this parameter is not an easy task because it

heavily depends on the application.

Although some fixed α value might work sufficiently well for some applica-

tions, the fine-tuning of this parameter can also increase the performance of
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Figure 5: Effect of different α parameters for a vector of five, randomly chosen numbers
∈ [0, 1]: (0.60, 0.85, 0.61, 0.52, 0.52). The × marks the minimum for each α parameter in each
error configuration.
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Figure 6: Histogram of aggregated values for the quadratic & optimistic cost using the max-
imum, minimum, arithmetic mean and median as possible aggregations in the MCA, for a
random sample of 100 vectors of size 5 in the [0, 1] range, using different α values. We rep-
resent in the x axis the α value and, in the y axis, the frequency of the aggregated output
values in each range for each sampled random vector.
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supervised classification scenarios. As α is restricted to the ]0, 1[ interval, a

dense sampling Montecarlo optimization with accuracy as target metric is a

good option to select α. Nevertheless, when a system is composed of more than

one aggregation process and more than one MCA, the optimization needs to

be performed over a vector of numbers instead of just one value. Depending

on the size of the vector, it is still possible to optimize it performing the same

procedure as for a single value. However, one of the key ideas of the original

penalty-based aggregations is to find a suitable aggregation for each vector of

inputs. By choosing the same α parameter for each individual vector of inputs,

this philosophy is somewhat disregarded. In that case, computing an adap-

tive α, chosen according to the vector of inputs appears more appropriate. We

named this procedure the adaptive MCA.

The adaptive MCA computation carries an additional difficulty, as we need

to somehow relate our input vector with the final outcome, which is the label

for each sample. We propose the use of a regression:

α = f(WX + b) (14)

where f is an activation function, W is the weight matrix, X is the input vector

and b is the bias.

In this formula, both W and b matrices should be optimized. In this case

a Montecarlo optimization using the accuracy as the target metric is not ap-

propriate because the size of X might be too large, turning the optimization

unstable due to the “curse of dimensionality”. Thus, we propose to learn W and

b using a gradient descent optimization, where a set of initial “real” α values is

necessary.

Although “real” α values do not exist, there is a ground truth label for each

example. Suppose an aggregation function exists whose result leads to a correct
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classification. Then, there is a possible value of α that selects this optimal

aggregation, and thus, correctly classifies the sample. This value is considered

a “real” α (αreal) because it correctly classifies the sample. Usually, there will

be several different values of this parameter leading to the correct classification

of that example. We call the set of αreal the αest.

The next problem is determining which value in the set of αest should be

selected as training label to obtain W and b. Since we are interested in maximiz-

ing the variability in the selection process, we should prefer an α whose output

is as undetermined as possible. For example: in the case of the quadratic &

optimistic costs if the α value is 0, the chosen aggregation will always be the

arithmetic mean, and if it is 1, it will always be the maximum. Thus, the pre-

ferred α value should be the furthest from 0 and 1, or in other words, that α

should be as close as possible to 0.5.

In the following Section 3.5.1 we illustrate this process for the quadratic &

optimistic costs. The same procedure can be applied to the rest of the Q-REF

and the Q-RDF combinations.

3.5.1. Training adaptive α values for the quadratic & optimistic costs

This section illustrates the process of generating a numerical value, out of

the set of αest, that can be used as label to train the Eq. (14). This process

consists of two steps:

1. Compute the αest set.

2. Determine the best value in αest, that will be the closest to 0.5.

We define the predicted probability of the sample x to be of class c as c(x)

within C possible classes, and the ground truth of x as yx. We define the

classification threshold as t = max ci(x), ci ∈ C. It is evident that for any value

c(x) ≥ t, if yx = c, then the classification is correct.
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As aforementioned the quadratic error favours the arithmetic mean over the

rest of the aggregations, and the optimistic error, favours the maximum. We

consider the convex combination of both errors and the mixing parameter α:

Cost(X)α = α ∗mean(X) + (1− α) ∗max(X) (15)

The MCA that uses this cost increases with respect to the α value, because

as the value of α grows, the preferred value in the error formula gets closer to

the maximum.

Supposing that an α’ exists such that for the class c, and c = yx, the

MCAα′(x) = t, all α′′ > α′ will result in a MCAα′′(x) >= MCAα′(x) >= t,

which will result in correct classification. This means that αest are all the α

values bigger than α′. Then, the optimal αest is just the closest to 0.5.

The process is very similar for any other combination of Q-REF and Q-RDF

functions, but if the combined cost is not monotone with respect to α, then αest

can be disjoint.

Example 3.1. Taking a vector of five random numbers: x = [0.4, 0.9, 0.1, 0.5, 0.3],
we consider these five random numbers the output of five classifiers, i.e. the
probability of a sample to be of class y, being y the real label of that sample.

We select a MCA that uses the maximum and mean cost, and chooses among
the average (0.44), median (0.40), minimum (0.1) and maximum (0.90) aggre-
gations. Then, for any α < 0.5, the MCA will choose the average, and for any
α > 0.5 the MCA will select the maximum. For α = 0.5 both values are eligible.
Since the average is 0.44, if we aggregate using this value, the final result will
not correctly classify x. If we aggregate using the maximum, then the aggrega-
tion will correctly classify the sample. So, αest in this case will be all α values
greater than 0.5.

As final training label we take the immediate value following 0.5 and adjust
it to the desired precision. For example, if we consider decimals until the third
digit, the target αreal to learn for x would be 0.501.
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3.6. Multi-cost aggregation-choosing functions in the Brain Computer Interface

Framework

We use the MCA functions in the aggregation function in the decision mak-

ing phase of the BCI framework. Each MCA is composed of a set of possible

aggregations to choose from and a cost function. In the case of the adaptive-

MCA, it is also composed of a weight matrix and a bias vector. We used a set

composed of four classical aggregations: minimum, maximum, median, and the

arithmetic mean. We tested all possible combinations of Q-REFs and Q-RDFs

and presented them in Section 3.4.1.

In the case of using a non adaptive MCA, the mixing parameter was learnt

using a Montecarlo sampling of 200 possible α values in the ]0, 1[ range. On the

other hand, recall that in the case of the adaptive MCA we need to establish

the X matrix and the activation function f of Eq. (14) to apply the procedure

detailed in Section 3.5. Matrix X corresponds to the outputs of all the classifiers

in the BCI framework for each sample, whereas f is a linear activation function

(f(x) = x). Then, W and b in Eq. (14) are learnt using gradient descent

optimization.

4. Results

In this section we discuss the outcomes of applying our new approaches to

the BCI competition IV dataset 2a (IV-2a) [18] and the Clinical BCI Challenge

WCCI 2020 dataset (CBCIC) [19].

� Dataset 1: The IV-2a dataset has been extensively used to test different

BCI systems (see for example, [33, 34, 35]). It consists of four motor

imagery tasks (tongue, foot, left-hand and right-hand) performed by 9

volunteers. For each task, 22 EEG channels were collected, with a total

of 288 trials for each participant. Trials are evenly distributed among
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the 4 classes. For this dataset, we studied the classification task from

two different perspectives: binary classification of the left and right hand

classes, which is a common choice of tasks in the literature [35, 36]; and

four-class classification: left hand, right hand, foot and tongue.

� Dataset 2: the CBCIC dataset consist of brain imaging signals from 10

hemiparetic stroke patients with hand functional disability in a rehabili-

tation task. The data contains 80 diferent trials of left/right hand move-

ments. Decoding motor cortical signals of brain-injured presents several

challenges as the presence of irregular because of the altered neurodynam-

ics [19].

For both datasets, the evaluation process is the same. Each participant’s

dataset was randomly sampled in ten different partitions (each with 50% train

and 50% test trials). A total of 90, respectively 80 datasets were generated

for the IV-a Competition and CBCIC datasets. The final performance of each

configuration was obtained averaging each single dataset accuracy. The results

were obtained using different aggregation functions in the decision making phase

and compared the newly proposed MCAs. Both the adaptive and the non-

adaptive mixing parameter were employed with a set of standard aggregations

and also with the already existing penalty-based aggregation functions.

Furthermore, results for each individual subject are available in the following

GitHub repository: https://github.com/Fuminides/MCA_BCI_results.

4.1. Results for left/right hand motor imagery classification with stroke patients

(CBCIC) and BCI competition IV-2a datasets

Table 1 shows the results for the binary classification using the state-of-art

BCI framework with the arithmetic mean as the fusion function for the classifiers

output. Recall here that the choice of the penalty-based aggregation function
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Table 1: Results using Penalty-based aggregation/arithmetic mean.

Dataset Aggregation Accuracy

IV-2a dataset Average/Classic Penalty-based aggregation 0.7974

CBCIC dataset Average/Classic Penalty-based aggregation 0.8215

Table 2: Accuracy results for binary classification using MCAs optimized with Montecarlo
Sampling in the binary task.

Dataset Quadratic Optimistic Huber Pessimistic

IV-2a Optimistic 0.7904
Huber 0.7960 0.7931
Pessimistic 0.7933 0.7938 0.7915
Anti-consensus 0.7955 0.8022 0.7939 0.8030

CBCIC Optimistic 0.8123
Huber 0.8215 0.8142
Pessimistic 0.8113 0.8000 0.8224
Anti-consensus 0.8215 0.8221 0.8231 0.8215

is always the arithmetic mean, thus the results are the same for both.

Table 2 displays the results for all the possible MCA functions. The selected

aggregation functions are a set of classical aggregation procedures: arithmetic

mean, median, minimum and maximum. In this case, α was found with a simple

Montecarlo sampling optimization, using a ten-fold validation on the train set to

determine its performance. Table 3 presents analogous results to those in Table

2, but using the algorithm proposed in Section 3.5.1 to learn the α parameter.

These tables show that the best result is obtained for a MCA with α set by

the procedure described in Section 3.5, resulting in 0.8038 of accuracy in the IV-

2a dataset, and 0.8231 in the CBCIC dataset. The second best result is obtained

for a MCA with a Montecarlo optimization. Both MCA optimization algorithms

improve the result of the classical arithmetical mean: 0.7974 and 0.8224 for the

IV-2a and CBCIC dataset, respectively. We performed a Friedman test, as

both populations were not normal according to Shapiro-Wilk test. However, no

statistical differences were found.
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Table 3: Accuracy results for the adaptive MCA optimized with the algorithm in Section 3.5
in the binary task.

Dataset Quadratic Optimistic Huber Pessimistic

IV-2a Optimistic 0.8000
Huber 0.7974 0.7994
Pessimistic 0.8000 0.7798 0.7994
Anti-consensus 0.7974 0.8038 0.7970 0.8038

CBCIC Optimistic 0.8123
Huber 0.8215 0.8215
Pessimistic 0.8113 0.8132 0.8224
Anti-consensus 0.8215 0.8212 0.8221 0.8136

4.2. Results for 4-class motor-imagery classification problem (BCI competition

IV-2a)

The 4- class problem is analogous to the left/right hand problem including

“foot” and “tongue” tasks, which are noticeably harder to discriminate [18].

To study this problem we have performed similar experiments to those of the

left/right hand classification task.

Table 4 shows the results for the state-of-art BCI framework using the arith-

metic mean, which is similar to computing the classical penalty-based aggrega-

tion. The obtained accuracy was 0.6056.

Table 5 displays the results for the state-of-art BCI aggregation framework

using the MCA functions where the α parameter was optimized with the Mon-

tecarlo sampling algorithm. We found many combinations of costs that resulted

in MCAs surpassing the result of the arithmetic mean. The best result found

here was 0.6243 of accuracy.

Finally, Table 6 presents the results for the traditional BCI framework using

the MCA functions where the α parameter was optimized with the algorithm

in Section 3.5. Here, the best result was 0.6167, which was again better than

the one obtained using the arithmetic mean, but worse than the one using the

Montecarlo sampling optimization.
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Table 4: Accuracy 4-class classification results using Penalty-based aggregation/arithmetic
mean in the IV-2a dataset.

Dataset Aggregation Accuracy

IV-2a Average/Classic Penalty-based aggregation 0.6056

Table 5: Accuracy 4-class classification results using MCAs optimized with Montecarlo Sam-
pling.

Dataset Quadratic Optimistic Huber Pessimistic

IV-2a Optimistic 0.6066
Huber 0.6041 0.6040
Pessimistic 0.6027 0.6046 0.5993
Anti-consensus 0.6056 0.6087 0.6018 0.6243

According to a Shapiro-Wilk test, the accuracy populations were not normal.

So, we used a Friedman test followed by pairwise comparisons with Wilcoxon

post-hoc tests to look for statistical differences. The resulting P -values are

reported in Table 7. We found the Montecarlo optimization to significantly

outperform the rest.

5. Comparison with other Motor Imagery-Brain Computer Interface

decoding methods

In this Section we compare our results with two other MI-BCI systems. We

employed both the IV-2a and the CBCIC datasets. The selected BCI frame-

works are described in the following:

1. Multimodal Fuzzy Fusion framework (MFF) [12]: in this work the authors

Table 6: Accuracy 4-class classification results adaptive MCAs optimized with the algorithm
in Section 3.5

Dataset Quadratic Optimistic Huber Pessimistic

IV-2a Optimistic 0.6124
Huber 0.6056 0.6113
Pessimistic 0.6050 0.5966 0.5990
Anti-consensus 0.6056 0.6148 0.6033 0.6167
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Table 7: Statistical significances in the four classes classification problem with Wilcoxon post-
hoc for the different MPA approaches and the arithmetic mean.

Dataset Arithmetic mean MCA Montecarlo

IV-2a MCA Montecarlo P < .001
MCA adaptive P < .001 P < .001

use a Fast Fourier transform to extract features from the original EEG

data, then they construct a classifier ensemble using different types of

classifiers and a fuzzy integral.

2. One Versus One and Gradient Boosting [17]: the authors used Gradi-

ent Boosting classifiers [37] to select the optimal classification features.

They structured the decision making phase with different One versus One

(OVO) strategies: a classical OVO, and a tree structure for the OVO

classifiers (tree-OVO).

3. Multiscale CSP [38]: the authors extended CSP using different time win-

dows, to obtain features from different temporal scales, which then are

used to train a SVM classifier.

4. EEG net [39]: in this work, the authors proposed a specific architecture of

a a Convolutional Neural Network for EEG signals, in order to incorporate

in the network different well-known concepts of feature extraction in BCI.

5. Shallow and Deep nets [40]: are two convolutional neural networks, com-

posed of 2 and 4 blocks of convolution and max pooling blocks.

In order to compare our feature extraction method with others, we also used

the feature extraction method developed in [38] with the proposed MCA. In

this framework, the features from different time windows are concatenated and

fed to a classifier. In order to use the proposed MCA, instead of concatenating

these features into a single vector, we form k different vectors concatenating the

features from adjacent frequencies. For each of these feature vectors we train

a classifier, and then we fuse the logits from these classifiers using a MCA. We
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call this framework the multiscale MCA

We performed these comparisons using the same procedure as in Section 4

and that we summarize here: we randomly sampled 10 partitions composed of

50% train and 50% test data for each subject. This resulted in 90 different

datasets for the IV-2a competition data, and 80 datasets for the CBCIC. As

evaluation metric, we used the mean accuracy obtained in the test partitions.

Table 8 shows the results for each of the different configurations tested for

the IV-2a dataset. Table 9 shows the same comparison for the CBCIC dataset.

We found that the our method performed best for the CBCIC dataset, and

that the Multiscale MCA over performed the rest for the IV-2a dataset. In this

configuration of the Multiscale MCA we used two feature vectors and the Huber

& Anti-consensus cost.

Table 10 shows the results for the Wilcoxon post-hoc after Friedman test,

comparing the MCA Montecarlo with the rest of the frameworks tested for

the IV-2a dataset. We found that MCA Montecarlo significantly outperforms

OVO, tree-OVO frameworks but the MFF performed statistically better than

our proposal. Table 11 shows the analogous results for the CBCIC dataset.

In this case we found that our method performed significantly better than the

MFF.

6. Conclusions and Future work

In this paper we introduced the combination of two generalized versions of

REFs and RDFs cost functions to choose an optimal aggregation regarding a

vector of inputs. We showed that this technique is able to enhance the clas-

sifier fusion phase in two BCI frameworks and can improve the results of the

arithmetic mean (and subsequently, the classical penalty-based aggregations) for

both binary and multiclass MI classification problems of the BCI Competition
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Table 8: Results of each BCI framework in the IV-2a dataset, full task.

BCI framework (IV-2a) Accuracy F1-Score

MCA Montecarlo 0.6243 0.6225
MCA adaptive 0.6167 0.6016

Multiscale MCA 0.7433 0.7271

MFF-Sugeno [12] 0.6424 0.6110
MFF-Sugeno Hamacher [12] 0.6898 0.6889

Gradient boosting OVO [17] 0.5245 0.2264
Gradient boosting tree-OVO [17] 0.4524 0.1163

Multiscale CSP [38] 0.7328 0.7066

EEG Net [39] 0.5747 0.3698
Shallow Net [40] 0.4862 0.3417

Deep net [40] 0.3956 0.3277

Table 9: Results of each BCI framework in the CBCIC dataset.

BCI framework (CBCIC) Accuracy F1-Score

MCA Montecarlo 0.8231 0.8243
MCA adaptive 0.8224 0.8224

Multiscale MCA 0.7777 0.7551

MFF-Sugeno [12] 0.7990 0.7919
MFF-Sugeno Hamacher [12] 0.8145 0.7922

Gradient boosting [17] 0.5956 0.5354

Multiscale CSP [38] 0.7956 0.7911

EEG Net [39] 0.6562 0.5933
Shallow Net [40] 0.7453 0.7342

Deep net [40] 0.5331 0.4218

Table 10: Results for the Wilcoxon post-hoc, comparing the two best MCA solutions with
other BCI systems in the IV-2a dataset.

(IV-2a) MFF-Sugeno MFF-Sugeno Hamacher OVO Multiscale CSP

MCA Montecarlo P = .02 P < .001 P < .001 P < .001
Multiscale MCA P < .001 P < .001 P < .001 P < .001

Table 11: Results for the Wilcoxon post-hoc, comparing the MPA Montecarlo with other
aggregation based BCI systems in the CBCIC dataset.

(CBCIC) MFF-Sugeno MFF-Sugeno Hamacher

MCA Montecarlo P < .001 P < .001
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IV 2a and CBCIC datasets.

For the latter dataset, our BCI framework performed better than the Deep

Learning, OVO, Multimodal Fusion and Multiscale CSP proposals regardless

the aggregation function chosen. We also found that the best MCAs computed

included the Anti-Consensus cost, which favors values that differ from the con-

sensus. This result suggests that the most useful aggregated values to perform

classification can be different to the original consensus of the classifiers. This

idea differs from the original penalty functions intention, which was to measure

disagreement in order to choose the value that minimizes it.

Future research shall aim at improving the accuracy of the system by study-

ing different ways to learn which costs should be combined for a given task. We

also intend to study the trade-off between diversity and accuracy in the classi-

fiers to aggregate, as the more diverse these outputs are, the more meaningful

the aggregation process can be.
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Abstract

Anomaly detection is the process of identifying observations that differ significantly
from the norm in a dataset. Since there is no proper formal definition of anomaly,
different algorithms have arised to cope with the different variations of this idea, like
novelty detection or outlier detection. Some of these algorithms have traditionally re-
lied on prior knowledge on the data domain, or some degree of supervised learning
in order to detect the irregular samples. In this work we propose a simulation based
algorithm to detect those observations, based on gravitational forces, that requires nei-
ther prior knowledge nor data labels to identify spurious observations. We do so by
studying different generalizations of the aggregation of gravitational forces, and the
resulting clusters obtained when the particles attract each other. We also compare our
algorithm with other unsupervised anomaly detection algorithms, obtaining favourable
results to our proposal.

Keywords: Gravitational algorithm, Anomaly detection, Clustering, Aggregation
functions

1. Introduction

Recognition of natural structures in data gives us more insight about the process
behind the data itself [7]. Due to the rise of the user-generated content (i.e. tweets,
Facebook posts, blogs, etc.) there are huge amounts of easily accessible, non-labeled
data in a wide range of topics [22, 28]. It is also very common to find incomplete,
missing or badly collected information [2]. Clustering is one of the most common tasks
performed on non-labeled [37]. This process consists in assembling observations into
different groups according to some criteria, so that objects inside one group are more
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similar to each other than those in other groups. There are a wide range of clustering
algorithms: hierarchical clustering methods apply a similarity function, and form a
tree-like structure by joining close points [39]; graph-based methods, use a graph to
represent data similarity and looks for densely connected subgraphs [32, 6]; simulation-
based algorithms are based on some kind of natural law, and adapt it and use it to look
for optimal clusters [18]. Gravitational algorithms are part of this last group.

The main idea behind gravitational clustering is to simulate gravitational forces
[36]. In this algorithm the observations are modelled as particles that attract each other
due to an attractive gravitational force. They move closer to each other until a pair of
particles gets close enough, then both of them collapse conforming a new one. This
process repeats until there is only one particle left and then, the most stable configura-
tion found is chosen as the final result. Starting from the original idea, there has been a
wide range of algorithms following it. The authors in [29] present a fuzzy gravitational
approach, where they select initial centres according to a density measure. In [12],
the authors use gravitational theory to improve an existing algorithm and in [13] the
authors use a generalization of the gravitational algorithm to detect communities in a
social network.

One problem in data analysis is the presence of anomalies. An anomaly is an
observation that is very different from the rest in a dataset and that may cause problems
in the analysis of the sample. They might be present due to an error in the measure,
faulty data or because the process that created the observation is different from the
rest. There are different ways to detect anomalies. Density based approaches look
for observations that are far from the rest of the points [9], [19]. Statistical models
assume a distribution in the data and then use it to measure how likely is an observation
to be an outlier [33]. Machine learning approaches treat this problem similarly to a
classification problem [34], [25].

Gravitational clustering algorithms have been successfully applied in clustering
problems, since the notion of gravitational force and the way it forms groups are easily
understandable [31, 27, 8]. However, spurious data can result in problems, when the
most stable configuration have been determined by a particle that was very far away
from the rest. However, this also posses the chance to solve the anomaly detection
problem using the opposite reasoning: we can detect anomalies in a dataset because
they result in faulty results using gravitational or gravitational-like forces to form the
groups.

We aim to exploit this possibility by presenting a generalization of the gravitational
clustering algorithm, using aggregation functions instead of the product of masses
and the summation of forces, in order to adapt the algorithm to anomaly detection.
These functions have been widely used in a myriad of different problems regarding
information fusion [38, 30, 17] and the Choquet and the Sugeno integrals are two of
the most popular aggregation functions in literature [11, 26]. They have been suc-
cessfully applied in Fuzzy Rules systems [24] and Brain Computer Interface Systems
[20, 14, 16, 15], among others.

The contribution of this paper is twofold:

• To replace the sum by the Choquet integral, the Sugeno integral and some gen-
eralizations of the latter in order to get the resulting force in the gravitational
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clustering algorithm.

• To use this new version of the algorithm to adapt the gravitational clustering
to an anomaly detection problem. In order to obtain the generalized version of
the algorithm, we also replace the product by a more general class of functions
which are increasing and symmetric.

We have tested our solution in a series of different real-world datasets adapted to the
anomaly detection problem, comparing out proposal with the results of other anomaly
detection approaches.

The rest of the paper goes as follows. In Section 2, we explain the basic con-
cepts related to aggregation functions and the gravitational algorithm. In Section 3 we
present the concept of almost aggregation, and in Section 4 we present our extension
of the Choquet and Sugeno integrals for the vector space. In Section 5 we present our
generalization for the gravitational algorithm. Subsequently, in Section 6 we discuss
the changes to the system convergence when including the new aggregation functions.
In Section 7 we report our results for different versions of the algorithm, and in Section
8 we compare them to other methods. Finally, in section 9 we summarize the whole
work with some final remarks.

2. Preliminaries

We start recalling some notions that are necessary for the subsequent developments
in this work.

2.1. Aggregation functions.
Let n≥ 2. An n-dimensional aggregation function on the unit interval is a function

M : [0,1]n→ [0,1] such that [5]:

1. M(0, . . . ,0) = 0.
2. M(1, . . . ,1) = 1.
3. M is increasing in each variable.

Some examples of aggregation functions are, for instance:

• The minimum: min(x1, . . . ,xn) and the maximum max(x1, . . . ,xn).

• The product P(x1, . . . ,xn) = x1 · · · · · xn.

• The arithmetic mean: A(x1, . . . ,xn) =
x1+···+xn

n .

2.2. The Choquet and the Sugeno integrals
The Choquet integral is an aggregation function that it is able to take the relation-

ship which may exist between inputs into account [17]. The key notion behind the idea
of Choquet integral is that of fuzzy measure, that we recall now. First of all, given
n≥ 1, we denote [n] = {1, . . . ,n} and the set of subsets of [n] by 2[n].

Definition 2.1. Let n≥ 1. A fuzzy measure over [n] is a set-valued function m : 2[n]→
[0,1] such that:
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• m( /0) = 0 and m([n]) = 1;

• If A⊆ B⊆ [n] then m(A)≤m(B).

Example 2.2. 1. In this work, the most important measure is that of cardinality (or
uniform measure), which is defined, for any A⊆ [n], by:

m1(A) =
|A|
n

(1)

where |A| denotes the cardinality (the number of elements) of the subset A.
2. Given any q > 0, another fuzzy measure is defined by:

mq(A) = (
|A|
n
)q (2)

which is also based on cardinality. Note that for q = 1 we recover the measure
m1.

3. Given n0 ∈ [n], the Dirac measure δn0 is defined for every A⊆ [n]:

δn0(A) =

{
1 if n0 ∈ A
0 otherwise.

(3)

A fuzzy measure m : 2[n] → [0,1] is called symmetric if for any A,B ⊆ [n] such
that |A| = |B| it holds that m(A) = m(B). Note that mq is symmetric for any q > 0.
However, the Dirac measure is not symmetric.

Now we can define the Choquet integral.

Definition 2.3. Let n ≥ 1and let m : 2[n] → [0,1] be a fuzzy measure. The Choquet
integral (based on the measure m) is the function Chm : [0,1]n → [0,1] defined, for
every (x1, . . . ,xn) ∈ [0,1]n, by:

Chm(x1, . . . ,xn) =
n

∑
i=1

(xσ(i)− xσ(i−1))m(Aσ(i)) (4)

where

• σ : [n]→ [n] is a permutation of the elements in [n] such that xσ(1) ≤ xσ(2) ≤
·· · ≤ xσ(n)

• Aσ(i) = {xσ(i),xσ(i+1), . . . ,xσ(n)} for i = 1, . . . ,n and xσ(0) = 0.

For any fuzzy measure m : 2[n]→ [0,1], the Choquet integral Chm : [0,1]n→ [0,1]
is an aggregation function [5].

Another example of aggregation function defined in terms of a fuzzy measure is the
Sugeno integral [11].
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Definition 2.4. Let n ≥ 1and let m : 2[n] → [0,1] be a fuzzy measure. The Sugeno
integral (based on the measure m) is the function Sm : [0,1]n→ [0,1] defined, for every
(x1, . . . ,xn) ∈ [0,1]n, by:

Sm(x1, . . . ,xn) =
n

max
i=1

min(xσ(i),m(Aσ(i))) (5)

with the same notations as in Def. 2.3.

For every fuzzy measure m, the function Sm : [0,1]→ [0,1] is an aggregation func-
tion.

2.3. Algorithm of Gravitational Clustering

The gravitational clustering algorithm [35] employs the Newton gravitational law
within the process of clustering. The scheme of this original algorithm is as follows.
Assume that we have N particles p1, . . . , pN , with their positions s1, . . . ,sN ∈ Rn.

1. Initially we:

• assign a mass 1/N to each particle pi,

• fix two real positive parameters ε and δ . We utilize δ for determining the
actual time step longitude dt. Specifically, dt has to be such that during
the time slot [t, t + dt] the fastest particle displacement is equal to δ . Be-
sides, we use ε to determine how close two particles can be before they are
merged into one single particle, see step 2 (ii) below,

• If in a moment two particles find themselves in a distance less than ε , we
unify them into one single particle, with the mass equal to sum of masses
of both of them and position done by their center of gravity.

• Set initial time t = 0.

2. We repeat the following steps (i)-(iv) until one single particle remains.

(i) In each time interval [t, t+dt], for each particle i we compute its movement
influencing function:

g(i, t,dt) =
1
2

G ∑
j 6=i

mi(t)m j(t)
mi(t)

s j(t)− si(t)
|s j(t)− si(t)|3

dt2 (6)

where G is a positive constant.

(ii) For each particle i, its new position is:

si(t +dt) = si(t)+g(i, t,dt) (7)

(iii) We raise t to t +dt.

(iv) If two particles i and j are in a distance less than ε , we unify them into one
single particle, with its mass equal to sum of masses of both of them and
its position given by their center of gravity of the two original particles.
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Finally, we have just one particle. The relative life of the configuration with k
clusters can be computed as

Rk =
tk+1− tk

T
We choose as solution that corresponds to the configuration with largest relative life.

This model described above can be generalized by using a more general expression
for particle movement governing function instead of (6). This was already done in [35]
by using the following family of expressions

g(i, t,dt) =
1
2

G ∑
j 6=i

mi(t)am j(t)b

mi(t)
s j(t)− si(t)
|s j(t)− si(t)|3

dt2 (8)

with a,b > 0.
In particular, it was shown in [36] that, from an experimental point of view, the best

results are obtained for a = b = 0. the resulting gravitational model is called Markov
unitary model and it is described by the governing function:

g(i, t,dt) =
1
2

G ∑
j 6=i

1
mi(t)

s j(t)− si(t)
|s j(t)− si(t)|3

dt2 (9)

3. Almost aggregation functions

In this work, it will be necessary to fuse data that are not necessarily in the interval
[0,1]. For this sake, we will establish a notion of almost aggregation function operating
over interval [0,∞[.

Definition 3.1. An n-dimensional function M : ([0,∞[)n → [0,∞[ for n ≥ 2 will be
called almost aggregation function on the interval [0,∞[ if:

1. M(0, . . . ,0) = 0.
2. M is increasing in each variable (usual monotonicity).

Note that in Def. 3.1 we do not impose a boundary condition at ∞. For this rea-
son, we do not speak of aggregation function. However, all the previous examples of
aggregation functions defined in [0,1]n can be straightforwardly extended to be almost
aggregation functions on [0,∞[n.

In particular, observe that, if we take any fuzzy measure m on [n], the function
Chm : ([0,∞[)n→ [0,∞[, defined as:

Chm(x1, . . . ,xn) =
n

∑
i=1

(xσ(i)− xσ(i−1))m(Aσ(i)) (10)

where

• σ : [n]→ [n] is a permutation of the elements in [n] such that xσ(1) ≤ xσ(2) ≤
·· · ≤ xσ(n).

• Aσ(i) = {xσ(i),xσ(i+1), . . . ,xσ(n)} for i = 1, . . . ,n and xσ(0) = 0.

6

129



is an almost aggregation function on ([0,∞[)n, and this is also the case for the Sugeno
integral. With respect to the generalized Sugeno integral in Def. 2.4, we also recover
an almost aggregation function if we consider inputs in [0,∞[.

In order to get other examples of almost aggregation functions on the interval [0,∞[,
we can generalize the Sugeno integral as follows [4].

Definition 3.2. Let n ≥ 2. Let m : 2[n] → [0,1] be a symmetric fuzzy measure, F :
[0,∞[×[0,1]→ [0,∞[ a bivariate function and G : ([0,∞[)n→ [0,∞[ an n-ary function.
A Sugeno-like FG-function is a function A : ([0,∞[)n→ [0,∞[ given by:

A(x1, . . . ,xn) = G(F(xσ(1),m(A(1))), . . . ,F(xσ(n),m(A(n))) (11)

for every (x1, . . . ,xn) ∈ ([0,∞[)n, with σ and A(·) the same as in Def. 2.3.

If F = min and G = max, we recover the usual Sugeno integral. For this work, we
are specially interested in considering F = min and G = ∑, which gives back an almost
aggregation function on [0,∞[.

4. Modification of the aggregation of attraction forces

In this section we present the changes performed to the gravitational attraction for-
mula: substituting the product of the masses for a new kind of functions, that we call H
functions, and replacing the summation of forces by the Choquet integral, the Sugeno
Integral a generalization of the Sugeno integral . Along the remainder of the paper, for
a fixed time t > 0, by abuse of notation, we denote the number of particles N(t) at the
instant t just by N.

The modification that we intend to do require some additional considerations. Note
that both Choquet and Sugeno integrals, as well as the generalizations of the latter,
are defined for aggregating numbers. However, the attraction forces are vectors, so
it is necessary to adapt both integrals to deal with vectorial data. We propose in the
following subsections an ad-hoc version of these integrals to apply in this algorithm,
that uses the attraction force vector module to do the sorting of these vectors.

First of all, we need to introduce a new class of functions that we will use to gener-
alize the product in the expression of the force.

4.1. H functions

Observe that the product of the masses in the gravitational algorithm always in-
volves two integer masses. In order to generalize this discrete product, given an integer
N ≥ 1, we are going to take a function: H{1, ...,N}×{1, ...,N}→H ⊂R, such that:

• H is increasing.

• H is symmetric.

• H is bounded on {1, ...,N}×{1, ...,N}.
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This function holds similar properties to overlap functions [10], with no conditions
when xy = 0 or xy = 1. So, taking into account that (xy)c is an overlap function for any
c > 0, we consider the following specific case of H functions:

Hc(x,y) =





B1 if (xy)c < B1,

B2 if (xy)c > B2,

(xy)c if B1 ≤ (xy)c ≤ B2

(12)

where 0≤ B1 ≤ B2 and c > 0 is a real parameter of the function.

In Figure 1 we plot the function Hc for different values of c. Of course , other
overlap functions O : [0,1]2→ [0,1] can be used in the definition H instead of (xy)c.
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Figure 1: Visualizations of the H functions(Eq. (12)) for different overlaps with parameters B1 = 0.1 and
B2 = 0.8.

4.2. Computing the Choquet Integral Aggregation of Forces
Let us fix a time t > 0. In the time instant t the particle pi is driven by the acceler-

ation given in Eq. 6. This expression can be seen as a weighted sum of vectors. From
this point of view, and taking into account that the weighted sum of numbers can be
recovered as a specific instance of the Choquet integral, we intend to consider the latter
to get a more general expression. To do so, we need to order the inputs, and, as we
have already said, we are going to do this ordering by using the force moduli. In this
way, the new aggregation of forces can be computed as follows:
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1. For each pi in time t compute the sequence of force moduli and assemble the
values in a vector~v(t), with components v j(t):

v j(t) =
Hc(m j(t),mi(t))
|~s j(t)−~si(t)|2

(13)

2. Sort the moduli in non-decreasing way. That is, consider a permutation σ of [n]
such that:

Hc(mσ(1)(t),mi(t))
|~sσ(1)(t)−~si(t)|2

≤
Hc(mσ(2)(t),mi(t))
|~sσ(2)(t)−~si(t)|2

≤ ...≤
Hc(mσ(N−1)(t),mi(t))
|~sσ(N−1)(t)−~si(t)|2

(14)

3. Taking v0(t) = 0, acquire the components v j(t)− v j−1(t) of an (N − 1)-tuple
Choquet-like integral vector. Multiply each component of Choquet-like inte-
gral vector by corresponding measure hσ( j), yielding the Choquet-like integral
weighting vector

~Chi(t)T =

[
Hc(mσ(1)(t),mi(t))
|~sσ(1)(t)−~si(t)|2

h(Aσ(1)),

(
Hc(mσ(2)(t),mi(t))
|~sσ(2)(t)−~si(t)|2

−
Hc(mσ(1)(t),mi(t))
|~sσ(1)(t)−~si(t)|2

)
h(Aσ(2)), ...

...,

(
Hc(mσ(N−1)(t),mi(t))
|~sσ(N−1)(t)−~si(t)|2

−
Hc(mσ(N−2)(t),mi(t))
|~sσ(N−2)(t)−~si(t)|2

)
h(Aσ(N−1))

]
=

If the cardinality is used as the fuzzy measure h in Choquet-like integral weight-
ing vector, we get

~Chi(t)T =

[
Hc(mσ(1)(t),mi(t))
|~sσ(1)(t)−~si(t)|2

,

(
Hc(mσ(2)(t),mi(t))
|~sσ(2)(t)−~si(t)|2

−
Hc(mσ(1)(t),mi(t))
|~sσ(1)(t)−~si(t)|2

)
N−2
N−1

, ...

...,

(
Hc(mσ(N−1)(t),mi(t))
|~sσ(N−1)(t)−~si(t)|2

−
Hc(mσ(N−2)(t),mi(t))
|~sσ(N−2)(t)−~si(t)|2

)
1

N−1

]

Remark: ~Chi(t) with its N−1 components ~Chi,σ( j)(t) is specific for each particle
pi.

4. By using (σ(1), ...,σ(N−1)), permute, the line vectors of distances, one below
the other, getting the distance matrix Di(t) with dimension (N−1)×D.

Di =




~sσ(1)−~si
|~sσ(1)−~si|
~sσ(2)−~si
|~sσ(2)−~si|

...

~sσ(N−1)−~si
|~sσ(N−1)−~si|




=




s1
σ(1)−s1

i
|~sσ(1)−~si|

s2
σ(1)−s2

i
|~sσ(1)−~si| ...

sD
σ(1)−sD

i
|~sσ(1)−~si|

s1
σ(2)−s1

i
|~sσ(2)−~si|

s2
σ(2)−s2

i
|~sσ(2)−~si| ...

sD
σ(2)−sD

i
|~sσ(2)−~si|

...

s1
σ(N−1)−s1

i
|~sσ(N−1)−~si|

s2
σ(N−1)−s2

i
|~sσ(N−1)−~si| ...

sD
σ(N−1)−sD

i
|~sσ(N−1)−~si|




(15)
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5. Perform the weighted aggregation of distances, i.e. multiply transposed ~Chi by
Di(t) and include it in the acceleration vector function; i.e. the vector function
driving the movement of particle within the current time step.

~gi(t) =
1

mi(t)
~Chi(t)TDi(t)dt2 (16)

Apparently, we get (16) from (21), for ~wi(t)T = ~Chi(t)T and Mi(t) = Di(t);

4.3. Computing the Sugeno Integral Aggregation of Forces
An analogous procedure can be developed if we want to use the Sugeno instead of

the Choquet.

1. ∀pi in time t compute the moduli of all forces acting between pi and each other
particle; and record the moduli in~v(t), with components v j(t).

2. Arrange the moduli nondecreasingly, (14). Remember the permutation σ( j) in
accordance with the definition 2.3

3. For each σ( j) put

uσ( j)(t) = min
(

vσ( j),h(Aσ( j))

)
(17)

and record in vector~ui(t)
4. Find maximal component of~u(t) and remember its argument

Si(t) = max
σ( j)

uσ( j)(t) (18)

αi(t) = arg(max
σ( j)

uσ( j)(t)) (19)

5. αi
th particle is the only one influencing the current movement of ith particle

~gi(t) =
1

mi(t)
Si(t)

~sα(i)(t)−~si(t)
|~sα(i)(t)−~si(t)|

dt2 (20)

Let us recall that (20) can be regarded as a special case of (21) - when as ~wi(t)T an
D-tuple vector (Si(t), ...,Si(t)) is taken, and the D dimensional square matrix Mi(t) =

diag(~dα(i)(t)) is put. Herein the diagonal elements are components of ~dα(i)(t)=
~sα(i)(t)−~si(t)
|~sα(i)(t)−~si(t)| .

The generalized versions of the Sugeno integral the Sugeno-Hamacher and the FG-
Sugeno, can be computed following the same procedure, changing the min-max func-
tion for the appropriate functions.

4.4. Computing the generalized Sugeno Integral Aggregation of Forces
1. Compute all moduli of all forces acting between pi and each other particle; and

record the moduli in~v(t), with components v j(t).
2. Arrange the moduli non-decreasingly. Remember the used permutation
3. For each force modulus and corresponding fuzzy measure (cardinality) carry out

the F function. Arrange all items into generalized Sugeno-like weighting vector
4. Involve product of the weighting vector and distance matrix in the acceleration

vector function. Herein, the weighting vector is either FG-Sugeno or H-Sugeno
like integral.
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5. New gravitational clustering algorithm

Summarizing the theoretical developments in nthe previous section, our idea for
the new clustering algorithm is to replace the expression mi(t)a−1m j(t)b in Eq. (8) by a
more general expression of the type H(ma−1

i ,mb
j) that can include both the product and

the unitary model and any other possibly interesting functions. We also intend to adapt
this formula to the different conditions throughout the execution of the algorithm.

We also change the sum in the original expression by an aggregation function. The
benefit of an aggregation function is that we can weight each attraction force according
to its module. Accordingly, we can treat small forces, which can be related to huge
distances, i.e. anomalies. We have decided to use the Sugeno and the Choquet integrals,
and their generalizations as almost aggregation functions.

We also want to make our algorithm being able to detect anomaly clusters. We
call anomaly clusters those clusters in the most stable configuration that are very small
and that lived a significant amount of time. To modulate those two conditions, we
added two more new parameters to the algorithm: P, that establishes the size boundary
between anomaly and non-anomaly clusters, and PT , which sets the minimum time
that a cluster must hold in time to declare anomaly.

5.1. Dynamic aggregation of masses

Sometimes it is not possible to obtain a good result fixing B1 and B2 from the
beginning. Usually, this happens when one or more outliers create a “fake” most stable
configuration because they are “too far away” from the rest of data. The dynamic model
tries to fix this problem by recalculating B1 and B2 in each iteration, aiming to reduce
or augment the velocity. In doing so, we try to make outliers move as fast as possible
and to make potentially good configurations more stable. If the dynamic version is
used, then we can set initially B1 and B2 to 0 and 1 respectively, as they will be updated
accordingly during the execution of the algorithm.

To achieve that, we slow down the particles at the beginning, until some condition is
met. Then we speed up the process. This makes initial clusters more stable compared
to latter combinations, so outliers that are too far from inliers will not take as much
simulated time as in the static model. When to slow and when to speed things up - this
is done heuristically. We check the biggest particle, the percentage of the total mass that
it possesses, and compare it to a constant K between 0 and 1. If it is smaller, we slow
down the process by reducing B2, if bigger, we speed up the particles by increasing B1.

For our experiments, we found the most appropriate K value tends to be around
0.10−0.15.

5.2. Formulation of the new Gravitational Algorithm involving the distance aggrega-
tions for anomaly detection

When a configuration of N particles is given: p1, . . . , pN , and their positions s1, . . . ,sN ∈
Rn, the new algorithm that we propose is the following:

1. Initially, we:

• Initially one particle pi is one cluster with its mass equal to 1/N.
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• We fix real positive parameters ε and δ , δ < ε if the clustering is prior to
attracting.

• We utilize δ for determining the actual time step longitude of the actual
dt = dt(t,δ ). Since δ is fixed, we have just dt(t). Indeed, [t, t + dt(t)] is
the time period in which the most rapid particle moves by δ .

• If two particles find themselves in a distance less than ε , we unify them in
one with the mass equal to the sum of masses of both of them and position
in their center of gravity.

• We set t = 0 initially.

• Choose both an aggregation function, D, and a c for the Hc function.

• Set the K value to regulate the velocity in the clustering process.

2. We repeat following steps (i)-(iv) until the unique particle remains.

(i) In each time interval [t, t+dt], for each particle i we compute its movement
influencing function:

~gi(t) =
1

mi(t)
~wi(t)TMi(t)dt2 (21)

with ~wi(t) being a vector of weights and Mi(t) distance matrix.

(ii) We find the fastest particle

I = arg(max
i
{|~gi|(t)}), (22)

then we gain the length dt(t) of current time step

|~gI(t)|= δ ⇒ dt(t) (23)

and finally the new position of each particle i is:

~si(t +dt(t)) =~si(t)+~gi(t) (24)

(iii) We raise t to t +dt(t).

(iv) If two particles i and j are in a distance less than ε , we unify them.

(iv) If the biggest mass is bigger than K, we raise B1. If not, we decrease B2.

(iv) If two particles i and j are in a distance less than ε , we unify them.

Finally we have just one particle. For the sake of further use, we record the time points
in a vector~τ , when due to merging of particles, the number of particles decreases~τ =
{tN−k1 , tN−k2 , ..., tN−kl = t1}, each index 0 < k1 < ... < kq < N standing as a numbers
of remaining particles, since the number of particles can decrease by more than one in
one step; e.g., within the interval [tN = 0, tk1 ] the number of particles is N, within the
time interval [tN−k1 , tN−k2 ] the number of particles is N−k1, etc. Formally, in [t1,∞] all
data are gathered in one cluster, i.e. one particle remains and persists.
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The period of one level of a clustering configuration can be quantified relatively as

Rk =
tN−kl − tN−kl+1

T
(25)

where T is the lifespan of entire clustering mechanism. Then, we mark as anomalies
those particles that exited in clusters of size P or less that stayed alive less than the PT
parameter.

When applying the model to a new observation, we use a 1-NN classifier, so that
the new particle will be classified depending on its closer particle using the Euclidean
distance.

5.3. Decision Making Scheme for the Generalized Gravitational Clustering for Anomaly
Detection

We can use a similar strategy to bootstrap aggregation for our algorithm in order
improve the results. This process consists of sampling different percentages of at-
tributes and samples from the original dataset, and then using an aggregation function
to compute the threshold to declare each particle an anomaly or not:

1. We set the size of the ensemble as E, and choose an aggregation function F1.
2. For each model e ∈ E:

(2.1) We randomly chose a subset of features from the dataset.
(2.2) We randomly subsample the dataset.
(2.3) We compute the algorithm as in Section 5.2.

3. We denote the result for each model in the ensemble E for particle p as Op. For
each particle, we compute its outlier score, S as:

S =
∑Op

|E| (26)

4. The final threshold, T , is computed as:

T = F1(S) (27)

where S is the vector with the S for each individual particle.
5. We denote as anomalies all of those that have an outlier score bigger than T .

6. Convergence and shrinkage of the system in time

Ensuring the convergence of the algorithm involving the aggregation of distances
means ensuring the contractivity of the system of particles, driven by the acceleration
function (21), in time. In accordance with [3], we immerse the system of particles to a
rectangular (convex) hull and control the particles in order to prevent them of escaping
from the region, or remaining on its border. As the maximal shift within one time step
is restricted to δ , we just have to check and control the particles in the distance δ or
lower, from each border. If we take D = 2, we can illustrate the problem graphically
(see Figure 2).
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Figure 2: Particles’ x coordinate control on the covering rectangular region. All particles in the δ margin are
driven inwards.

6.1. Acceleration function with Choquet-like integral vector inside
Without loss of generality, we continue with two dimensions in order to have an

illustration tool at hand. When we multiply the line vector ~Chi by matrix Di, as per-
formed in (16), indeed we multiply the σ( j)th component of ~Chi(t) by the σ( j)th nor-

malized position difference vector
~sσ( j)(t)−~si(t)
|~sσ( j)(t)−~si(t)| and carry out the summation through

σ( j). Accordingly, having the first column of matrix Di(t) assembled in vector ~d1
i (t),

the first coordinate from (16) can be withdrawn:

g1
i (t) =

1
mi(t)

~Chi(t)T .~d1
i (t)dt2 (28)

Next we follow the consideration exploiting the physical interpretation provided in [3].
As far as the first coordinate (x) concerns, we have to prevent the particles from both
right and left hand δ margin of getting on the vertical borderline or even escaping out
from the covering rectangle through it (Figure 2). We direct these particles inwards,
hence the first coordinate of its acceleration has to be negative for the particles at the
right hand side margin; and positive at the left hand side. Let us take a particle from
the right hand side δ margin and assign index R to it. It has to read g1

R < 0, so

1
mR

(t)(ChR,1(t)d1
R,1 + ...+ChR,N−1(t)d1

R,N−1)dt2(t)< 0 (29)

and this is valid if and only if the sum in brackets is negative. Directly from the con-
struction of the Choquet-like integral vector follows that all components of ~ChR(t) are
non-negative. Let us rewrite this inequality in sense of H function:

N−1

∑
j=1

(
Hc(mσ( j)(t),mR(t))
|~sσ( j)(t)−~sR(t)|2

−
Hc(mσ( j−1)(t),mR(t))
|~sσ( j−1)(t)−~sR(t)|2

)
N− j
N−1

s1
σ( j)(t)− s1

R(t)

|~sσ( j)(t)−~sR(t)|
< 0

(30)
After truncating 1

N−1 from (30) and abbreviating of the non-negative member

Pσ( j) =

(
Hc(mσ( j)(t),mR(t))
|~sσ( j)(t)−~sR(t)|2

−
Hc(mσ( j−1)(t),mR(t))
|~sσ( j−1)(t)−~sR(t)|2

)
(N− j)
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we have the required convergence criterion in the form

N−1

∑
j=1

Pσ( j)

s1
σ( j)(t)− s1

R(t)

|~sσ( j)(t)−~sR(t)|
< 0 (31)

Herein, Pσ( j) can be regarded physically, too. The particles closer to particle pR are
more influencing for its next movement. Finally, (31) can be expressed in a form that
reflects the split of all particles to those more and less far from the border than pR. The
particles with the same x coordinate have no influence on the movement of pR in the x
direction. For the sake of more clarity we omit independent variable (t) in setting up
algorithm convergence criterion:

N−1

∑
j=1

Pσ( j)

s1
σ( j)− s1

R + |s1
σ( j)− s1

R|
2|~sσ( j)−~sR|

<
N−1

∑
j=1

Pσ( j)

s1
R− s1

σ( j)+ |s1
σ( j)− s1

R|
2|~sσ( j)−~sR(t)|

(32)

This form of inscription emphasizes the fact that total attracting impact of the particles
nearer to x-coordinate borderline has to be smaller than the impact of all others.
Remark: The convergence criterion subsequently determines setting delta parameter of
the algorithm.

6.2. Acceleration function with Sugeno-like integral vector inside
Likewise in case of Choquet-like integral vector, we work in two dimensions; with

regard of future easy enhancing to D dimensions. Form (20) we can withdraw the first
coordinate of the acceleration vector and control the x coordinate of the movement of
the particle pR situated on the right hand side δ margin of the domain,

g1
R(t) =

1
mR(t)

SR(t)
~sα(R)(t)−~sR(t)
|~sα(R)(t)−~sR(t)|

(33)

demanding its negativity. Since SR > 0, equivalently, we require

s1
α(R)(t)− s1

R(t)< 0 ⇐⇒ s1
α(R)(t)< s1

R(t) (34)

This means δ parameter should be set so that α th particle will not fall into a δ
margin of the covering domain. And it is not possible to ensure.

6.3. Acceleration function with FG-Sugeno-like integral vector inside
Let us take G = ∑ and F(x,y) = x.y, in FG-Sugeno integral, see definition 2.4. We

have

F(Hc(mσ( j),mi),
N− j
N−1

) =
Hc(mσ( j),mi)(N− j)

N−1
(35)

Herein, the acceleration vector governing the particle pi movement is

~gi(t) =
1

mi(t)
~Vi(t)TDidt2 (36)
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and its first coordinate is then

g1
i =

1
mi

N−1

∑
j=1

Hc(mσ( j),mi)
N− j
N−1

s1
σ( j)− s1

i

|~sσ( j)−~sR|
dt2 (37)

As reasoned above, at the right hand side δ margin of covering rectangle we require
negativeness of the g1

R, the 1st coordinate of the acceleration of particles. g1
R < 0 ⇐⇒ :

N−1

∑
j=1

Hc(mσ( j),mR)(N− j)
s1

σ( j)− s1
R

|~sσ( j)−~sR|
< 0 (38)

and its split reflecting the position of the particles yields:

N−1

∑
j=1

Hc(mσ( j),mR)(N− j)
s1

σ( j)− s1
R + |s1

σ( j)− s1
R|

|~sσ( j)−~sR|
<

<
N−1

∑
j=1

Hc(mσ( j),mR)(N− j)
s1

R− s1
σ( j)+ |s1

σ( j)− s1
R|

|~sσ( j)−~sR|
(39)

6.4. Acceleration function with H-Sugeno-like integral vector inside
G=sum and F(x,y) = xy

x+y−xy

F(Hc(mσ( j),mi),
N− j
N−1

) =
Hc(mσ( j),mi)

N− j
N−1

Hc(mσ( j),mi)+
N− j
N−1 −Hc(mσ( j),mi)

N− j
N−1

We have acceleration of the form

~gi(t) =
1

mi(t)
~Wi(t)TDidt2 (40)

and its first coordinate

g1
i =

1
mi

N−1

∑
j=1

Hc(mσ( j),mi)
N− j
N−1

Hc(mσ( j),mi)+
N− j
N−1 −Hc(mσ( j),mi)

N− j
N−1

s1
σ( j)− s1

i

|~sσ( j)−~sR|
dt2 (41)

Likewise in above cases, we require negativeness of the g1
R, the 1st coordinate of the

acceleration of particles at the right hand side δ margin of covering rectangle. g1
R <

0 ⇐⇒ :

N−1

∑
j=1

Hc(mσ( j),mR)(N− j)
(N−1)Hc(mσ( j),mR)+(N− j)−Hc(mσ( j),mR)(N− j)

s1
σ( j)− s1

R

|~sσ( j)−~sR|
< 0

and by rearranging of this form we have sufficient criterion for convergence on the right
hand side of the covering rectangle

N−1

∑
j=1

Hc(mσ( j),mR)(N− j)
( j−1)Hc(mσ( j),mR)+N− j

s1
σ( j)− s1

R

|~sσ( j)−~sR|
< 0 (42)
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and its split reflecting the position of the particles yields:

N−1

∑
j=1

Hc(mσ( j),mR)(N− j)
( j−1)Hc(mσ( j),mR)+N− j

s1
σ( j)− s1

R + |s1
σ( j)− s1

R|
|~sσ( j)−~sR|

<

<
N−1

∑
j=1

Hc(mσ( j),mR)(N− j)
( j−1)Hc(mσ( j),mR)+N− j

s1
R− s1

σ( j)+ |s1
σ( j)− s1

R|
|~sσ( j)−~sR|

(43)

(43) says that the weight of the influence of the particles attracting the particle outward
in x direction has to be lower than the influence of the other particles.

7. Experimental Results

In this section we present the results obtained using the different parameters of our
proposed gravitational algorithm. For our experimentation, we have used five differ-
ent datasets, obtained from the KEEL repository [1], which are summarized in Table
1. These datasets were originally proposed for classification and the preprocessing
required to convert each dataset into an anomaly detection problem is detailed in the
KEEL repository [1].

The proposed algorithm is composed of a set of different parameters designed to
regulate its behaviour:

• The two parameters of the function H: the c exponent and the K, that regulates
when to speed up or slow down the simulation.

• Base anomaly threshold in each individual model (before the decision making
phase), for both cluster size P, and time alive PT . So clusters with size lesser
then P that lived more than PT will be declared as anomalies.

• The aggregation function used to fuse the attractive forces.

• The number of models to use in the decision making scheme.

A small summary of the numerical parameters can be found in Table 2. We can easily
fixate some of them if we do not expect significant changes in the outcome P = 5% of
the total mass, and PT = 10% of the total execution time. These heuristically chosen
values work well with most configurations.

In the following, we have explored the effect of the rest of the parameters. For
each of the subsequent tasks, the evaluation process is the same: we split the data into
70%/30% train/test partitions, so that we generate the clusters in the training set, and
then classify the instances in the test set.

We have compared the performance of different aggregations for the force vectors
and different versions of the H function. Table 3 shows the results using the standard
product of the masses instead of the H-function. We found that in this case the sum-
mation performed better than the rest of the aggregations. Table 4 shows the results
using an H function with static B1 B2, where we found that in three cases the summa-
tion was the best performant aggregation, the arithmetic mean and the median in one
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Table 1: Imabalance ratio, features and samples for each dataset studied.

Dataset Imb. Ratio Features Samples

Ecoli1 3.36 7 336

Ecoli3 8.6 7 336

Glass6 6.38 9 214

Wisconsin 1.86 8 683

Yeast3 8.1 8 1484

Table 2: Brief description of the parameters of the proposed algorithm.

Parameter Description

c Exponent present in the H function in Eq. (12).

Static or dynamic If static, B1 and B2 are fixed from the start. If dy-
namic, B1 and B2 change during the execution of
the algorithm.

K Parameter that establishes when the B1 and B2 pa-
rameters grow, based on the percentage of the total
mass of the simulation that is present in a single par-
ticle.

P Maximum anomaly cluster size.

PT Maximum alive time for an anomaly cluster.

Number of Models Number of models to use in the decision making
phase.

Aggregation function Function used to aggregate the force vectors for
each particle (Summation in the original Gravita-
tional Clustering).
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Table 3: F1 score for the proposed algorithm using different aggregation functions for the attraction forces,
using the standard product of the masses.

Dataset Aggregation

Sum FG-Sugeno Choquet Arithmetic Mean Median

Ecoli1 0.8468 0.8270 0.8350 0.8331 0.8177

Ecoli3 0.9285 0.9343 0.9432 0.9432 0.9154

Glass6 0.9254 0.8945 0.8960 0.9057 0.8878

Wisconsin 0.8062 0.7971 0.7954 0.7954 0.8006

Yeast3 0.9347 0.9239 0.9324 0.9324 0.9163

case each one. Finally, Table 5 shows the results using the dynamic version of the B1
and B2 parameters, where we found that the arithmetic mean and the summation each
won in two datasets, and the FG-Sugeno in one of them. In general, we found that
the summation is a good performing aggregation, compared to both our new integrals
and classical ones. We also found that in general terms, the dynamic model of our
algorithm perform better than the use the standard product of the masses and the static
version of the H function.

However, results changed when we consider the decision making scheme proposed
in Section 5.3. We tried to use 5,10,15 and 20 number of models to fuse, and an
aggregation function to compute a threshold, as displayed in Eq. (26). In order to
reduce the number of possibilities, we use the same aggregation function to fuse the
distances and to compute the threshold. We found the best results using the FG-Sugeno
integral. Table 6 shows the results of this proposal using different numbers of models
in the decision making scheme.

8. Comparison With Other Anomaly Detection Algorithms

In this section, we have compared the results obtained with our newly proposed
gravitational algorithm with three other classical anomaly detection algorithms:

1. Local Outlier Factor [9] estimates the data density near one point, based on its k
nearest neighbours. Points that have substantially lower density than its neigh-
bours are considered as anomalies.

2. One-Class SVM [21] learns a decision function for anomaly detection, in order
to maximize the likelihood of the observed data with respect to the rest.

3. Isolation Forest [23] constructs an ensemble of trees from different subsamples
of the original dataset, and then, evaluates the number of partitions for each
sample required to isolate the sample in the set of trees.
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Table 4: F1 score for the proposed algorithm using different aggregation functions for the attraction forces,
using a static version of the H function with B1 = 0.2 and B2 = 0.8.

Dataset Aggregation

Sum FG-Sugeno Choquet Arithmetic Mean Median

Ecoli1 0.8365 0.8318 0.8318 0.8477 0.8074

Ecoli3 0.9382 0.9327 0.9316 0.9327 0.9050

Glass6 0.9282 0.8888 0.8910 0.8841 0.8935

Wisconsin 0.7985 0.7962 0.7972 0.7962 0.8128

Yeast3 0.9390 0.9101 0.9101 0.9153 0.8803

Table 5: F1 score for the proposed algorithm using different aggregation functions for the attraction forces,
using the dynamic version of the H function.

Dataset Aggregation

Sum FG-Sugeno Choquet Arithmetic Mean Median

Ecoli1 0.8416 0.8250 0.8407 0.8458 0.8157

Ecoli3 0.9477 0.8843 0.9419 0.9419 0.8772

Glass6 0.9102 0.9270 0.9091 0.9257 0.8933

Wisconsin 0.8140 0.7923 0.7884 0.7884 0.7993

Yeast3 0.9306 0.9164 0.9329 0.9334 0.7993
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Table 6: F1 score for the proposed algorithm using different numbers of models for the decision making
phase using the best possible aggregation function (the minimum) to take de decision. We use the FG-
Sugeno aggregation function for the attraction forces and using the dynamic version of the H function.

Datasets Number of Models

5 10 15 20

Ecoli1 0.8841 0.8900 0.8947 0.8952

Ecoli3 0.8887 0.8918 0.8943 0.8949

Glass6 0.8925 0.8925 0.8938 0.8944

Wisconsin 0.8767 0.8904 0.8956 0.8968

Yeast3 0.8884 0.8897 0.8916 0.8925

Table 7 shows the results for the different datasets studied in our experimentation
for the methods described, and for the original gravitational clustering algorithm. We
found our results to be superior to those obtained by other methods in three cases

9. Conclusions

In this work we have presented a new version of the Gravitational clustering algo-
rithm designed to detect anomalies. We have done so by proposing a generalization of
the product of the masses using a new class of symmetric and increasing functions that
can change during the execution of the algorithm; and a generalization of the summa-
tion of forces for a more general aggregation function. Finally, we have proposed an

Table 7: Comparison for different anomaly detection algorithms in five different real-world datasets, using
the F1-score as performance metric.

Ecoli1 Ecoli3 Glass Wisconsin Yeast

LOF 0.84029 0.9085 0.8490 0.6881 0.9170

OCSVM 0.6237 0.6303 0.6957 0.8584 0.6676

Isolation Forest 0.8206 0.8748 0.9274 0.9631 0.9147

Anomaly-Grav 0.8634 0.9466 0.9377 0.7804 0.9423
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ensemble technique to combine the output of different gravitational clustering execu-
tions to solve this task.

We have tested the effects of different parameters of our algorithm, and we have
compared our solution with other anomaly detection algorithms. We have found our
results being superior to those of the original gravitational algorithm, and comparable
or better than those obtained using Isolation Forest and One Class SVM.

Future research shall aim at the exploration how to choose the optimal aggregation
in the decision making phase, and how to choose the suboptimal partitions of the data
in the ensemble constructed with different models of the proposed algorithm.
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a b s t r a c t

In this contribution we study social network modelling by using human interaction as a basis. To do so,
we propose a new set of functions, affinities, designed to capture the nature of the local interactions
among each pair of actors in a network. By using these functions, we develop a new community
detection algorithm, the Borgia Clustering, where communities naturally arise from the multi-agent
interaction in the network. We also discuss the effects of size and scale for communities regarding
this case, as well as how we cope with the additional complexity present when big communities arise.
Finally, we compare our community detection solution with other representative algorithms, finding
favourable results.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Network analysis has become an important tool to study sys-
tems composed of interacting agents, such as proteins or human
societies [1–5]. One of the key ideas in social sciences is the
one that we, human beings, are embedded by our own social
nature in a complex web of social relations and interactions.
Traditionally, this hierarchy that we have formed has been mod-
elled as a network, where each person is represented as a node
that is connected to others according to some criteria. Social
networks analysis stands as an appropriate tool to understand
many characteristics of the human behaviour, as it seems that
many of us are deeply affected by the social structure in which
we take part [6]. Adjacency matrices are the most common form
of network representation [7]. However, if there is more data
available to construct the network, a more complex model can
be used [8]. Depending on the context, different models have
been developed to mimic human behaviour: in an educational
organization [9] and when dealing with conversations [10].

There are many problems related to social networks, such as
information diffusion [11], social circles detection [12], coalition
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(O. Cordón), bustince@unavarra.es (H. Bustince), maria.minarova@stuba.sk
(M. Minárová).

formation [13], recommendation systems [14] or user behaviour
prediction [15]. Social networks can also be seen as multi-agent
systems, and it is possible to study their emergent properties [16].
One key step to analyse a network is to identify its commu-
nity structure: the groups of nodes that can be identified as
a functional sub-partition of the graph [17,18] e.g a group of
friends or a protein complex [19]. Communities are important
because we can infer significant knowledge from a node or a set
of nodes if we know whether or not they share the same com-
munity and what kind of community it is. One classical method
to develop community detection is hierarchical clustering [20],
although there are many algorithms performing community de-
tection in a social network that improve the results obtained by
this method. Authors in [21] use a genetic algorithm to iden-
tify densely connected groups of nodes. The algorithm in [22]
performs an initial community detection in the most important
nodes in the network, and then labels the rest of them.

Modularity is a measure that quantifies the quality of a graph
partition into different modules. Networks with high modularity
have a high number of edges between the nodes within modules,
and a low number of them between nodes in different mod-
ules [23]. There are many modularity-based methods to perform
community detection. The proposal in [24] uses the idea of mod-
ularity and it is much faster than previous algorithms. Authors
in [25] propose a modularity optimization approach to work on
large networks, with this being one of the most extensively used
community detection methods.

https://doi.org/10.1016/j.future.2020.06.030
0167-739X/© 2020 Elsevier B.V. All rights reserved.
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In this paper, our goal is to solve some of the social net-
work analysis problems that we have identified both in actor
interaction and community detection. First, current community
detection algorithms do not take into account neither the differ-
ent nature of the involved human beings when applied to social
networks, nor the impact to its structure. We have also noted how
scale in social networks can alter its dynamics. Besides, when it
comes to community detection, many of the existing algorithms
have problems in densely connected graphs and the appropriate
algorithms are often awfully time consuming [26].

To solve these problems, we studied how human-inspired
algorithms can lead to a better understanding of the structure of a
social network and its communities. In contrast to existing litera-
ture, which uses an adjacency matrix to model a network [27], we
propose a set of functions for the sake of better capturing the re-
lationships between each pair of actors in the social network. We
model an algorithm that forms communities in a similar fashion
to real social networks. Finally, we propose a new representation
space for these graphs, called ‘‘affinities’’, that can be calculated
from the original adjacency graph. These affinities model how
strong the relationship between two nodes according to differ-
ent criteria is. Based on these functions, we have developed a
new algorithm based on the gravitational algorithm described
in [28]. We have called our new algorithm to perform community
detection the Borgia Clustering.

Using the affinity functions and the Borgia Clustering, we aim
at having a better understanding of local interactions and how
they can affect global dynamics. Regarding community detection,
our target is to obtain a state-of-the-art algorithm to perform this
task. Such algorithm would be able to generate a dendrogram
faithfully reflecting the evolution of the network in the clustering
process and choose the right configuration inside it.

To test the quality of our proposals, we have studied how the
new affinities affect the interaction between actors in some real-
world datasets. We have also tested our community detection
method in four different networks.

The rest of the paper is as follows. In Section 2 we explain
the basics of the gravitational algorithm and graph theory and
we explain what is a T-Norm and an Overlap. In Section 3 we
explain the new representation space for social networks based
on the traditional adjacency matrix used for graph representation.
In Section 4 we introduce the Borgia Clustering algorithm, the
historical moment that inspired it, and how it did so. In Section 5
we discuss some issues that we found working with communities
of different sizes. In Section 6 we test our algorithm on three
real world datasets and in Section 7 we compare the quality of
our solution against other representative algorithms. Finally, in
Section 8 we summarize the whole work and state some future
guidelines.

2. Preliminaries

In this section we will briefly explain some of the already-
existing concepts related to some of the new proposals in this
paper:

• The gravitational clustering algorithm.
• Aggregation functions.
• Graph theory.

2.1. Algorithm of gravitational clustering

The algorithm of Gravitational Clustering [28] employs the
Newton gravitational law within the process of clustering. In this
algorithm, each observation is a particle that attracts the others
according to their distances and masses. When two particles are

closer than the collision distance, they are merged into a single
one. Its mass is the sum of those particles and its position is
their centre of masses. This process repeats until only one particle
exists. This algorithm results in a dendrogram containing each
particle fusion. Finally the most stable configuration (with the
largest lifespan) is taken as the resulting one. The scheme is as
follows:

We suppose that we have n particles p1, . . . , pn, with their
positions s1, . . . , sn ∈ Rn. We also have two parameters: ϵ,
which establishes the collision distance for two particles, and δ
which determines the movement for the fastest particle in each
iteration.

1. Initially we assign a mass (mi) 1 to each particle pi.
2. We fix real positive parameters ϵ and δ

• We utilize δ for determining the actual time step lon-
gitude, dt . It is the time in which the fastest particle
moves.
• If in a moment two particles find themselves in a

distance less than ϵ we unify them in one particle.
The mass of the new resulting particle is the sum of
both masses and its position is their centre of masses.
Likewise in the case of three or more particles.

3. Initial time is set to t = 0.
4. We repeat the following steps (i)-(iv) until a single particle

remains.

(i) In each time interval [t, t+dt], for each particle pi we
compute its movement influencing function:

g(i, t, dt) =
1
2
G

∑
j̸=i

mi(t)mj(t)
mi(t)

sj(t)− si(t)
|sj(t)− si(t)|3

dt2 (1)

where G is a positive constant.
(ii) For each particle i, its new position is:

si(t + dt) = si(t)+ g(i, t, dt)

(iii) We increment t to t + dt .
(iv) If two particles i and j are closer than ϵ, they are fused

as explained above.

After the algorithm ends, we have just one particle. The duration
of the entire process is denoted by T . We measured the duration
of each iteration, as well, with the aim of being able to detect
afterwards the most stable configuration. The final result is the
configuration that lasted the longest period of the simulated time.

2.2. Aggregation functions

Definition 2.1. Aggregation functions are used to combine the
information of multiple numerical sources into a single one. A
function A : [0, 1]n → [0, 1] is said to be n-ary aggregation
function is said to be a n-ary aggregation function if the following
conditions hold [29]:

• A is increasing in each argument: ∀i ∈ {1, . . . , n}, i <
y, A(x1, . . . , i, . . . , xn) ≤ A(x1, . . . , y, . . . , xn)
• A(0, . . . , 0) = 0
• A(1, . . . , 1) = 1

Definition 2.2. A bivariate aggregation function T: [0, 1]2 →
[0, 1] is a t-norm if, ∀x, y, z ∈ [0, 1], it satisfies the following
properties:

• Commutativity: T (x, y) = T (y, x)
• Associativity: T (x, T (y, z)) = T (T (x, y), z).
• Boundary condition: T (x, 1) = x
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Fig. 1. Directed and weighted graph. a. Adjacency matrix of the graph. b. Visual
representation of the graph.

Two prototypical examples of T-norms are the minimum and
the product.

2.3. Graphs

A graph G is represented as G(V , E) where V is a set of vertices
and E is a set of edges that connect some pairs of vertices in the
graph G.

There are different kinds of graphs, depending on the infor-
mation related to each edge. In case we have some information
regarding the strength of the relationships, we call it a weighted
graph. If we do not have such information, it is called an un-
weighted graph. Edges can also be undirected, when an edge
between Vi ↔ Vj represents a bidirectional relationship, or
directed, when the edge between Vi → Vj can be different from
the edge Vj → Vi.

Graphs can be characterized by using many statistics such as
the average number of connections per node, the average path
lengths between nodes, etc.

Graphs can be modelled by using different representations.
The most common ones are the adjacency or connectivity matrix
and the adjacency list.

The adjacency matrix A of a graph G is a N × N matrix where
N is the number of nodes in G. Each entry Aij in this matrix
corresponds to the value associated with the Vi → Vj edge. If the
graph is unweighed, those values will be 0 or 1, while if the graph
is weighted, those values will be the corresponding weights for
each edge (Fig. 1). The adjacency list is similar to the adjacency
matrix, but instead of storing N × N elements, we store a list for
each vertex containing the rest of nodes which are communicated
with it.

3. Affinity functions as an actor representation

We define ‘‘Affinities’’ as a set of functions of two different
actors, Actorx and Actory, establishing their mutual relation using
C:

AC : [Actorx, Actory] → [0, 1]

Usually, this C is the adjacency matrix that quantifies the rela-
tionships in each pair of actors, although C can be, for example,
another affinity matrix, or a list of them. The affinity between
two actors shows how strongly these two are connected. Since
affinities are not necessarily symmetrical, the strength of this in-
teraction depends on who the sender and receiver are, as happens
in human interaction e.g. unrequited love.

We proceed to list some affinity functions:

• Best Friend affinity (BF): the affinity of the actor Actorx
over the Actory is defined as the percentage of the total
connectivity of Y that corresponds to Cx,y.
• Best Common Friend affinity (BCF): the affinity between

two actors is defined as the biggest affinity common to the
both of them. It can be computed using both the adjacency
matrix or another previously calculated affinity.

Table 1
Formula proposed for each of the affinities. C is the adjacency matrix and N
is the total number of actors in C .
Affinityx,y Formula

Best friend AC (x, y) =
Cx,y∑N
a=1 Cx,a

Best Common friend AC (x, y) = Max{Min(Cx,z , Cy,z )}/
∑N

a=1 Cx,a

Friends forever AC (x, y) =
∑

( Cx,y(t)∑N
a=1 Cx,a(t)

) 1
|T | , ∀t ∈ T

Social networking AC (x, y) = Mean(A′C (x
′, y)) ∀x′ , such that

A′C (x, x
′) > 0

Machiavelli AC (x, y) = 1− abs(Ix−Iy)
Max(Ix,Iy)

, Ia = Sum(Degree(x′)) ∀x
such that C(a, x′) > 0

• Friends Forever affinity (FF): the affinity of two actors
reflects the durability of the relation in time.
• Social Networking affinity (SN): the affinity between two

actors, Actorx and Actory, is based on the affinities of the
actors connected to Actorx with respect to Actory.
• Machiavelli Affinity (MA): the affinity between two actors

is based on the social structure that is built around the two
of them.

All but the Machiavelli affinity are personal affinities. A for-
mula to calculate each affinity function is in Table 1.

There are, mainly, two types of affinity functions: personal
affinities and structural affinities. Personal affinities establish the
strength of a interpersonal connection Actorx → Actory using
their respective connections and shared friends. Structural affini-
ties quantify the relationship of a pair of actors based on the
properties of their nodes, such as their degree or betweenness.

One particular difference between these two types is that the
expected value of a personal affinity is affected by degree of an
actor, but this does not necessarily happen in structural affinities.
This is because the personal affinity functions behave like a zero-
sum game. It can be easily seen in the best friend affinity, where
the higher the number of connections the higher the denominator
value in the expression.

3.1. Effects of different affinity functions in plato’s Republic

For illustration, we consider the network of word association
in classical literature. In particular, we take Republic, by Plato.
We visualize the resulting network (Fig. 2) and the heatmap
for the original network (Fig. 3) for each different affinity. In
these networks, each node corresponds to a different word in the
original work, and its size is directly proportional to its degree.
In the co-occurrences network (Fig. 3a), each edge represents the
number of times when two words appear together in a paragraph,
and in the affinity graphs (Fig. 3b–f), each edge is the affinity
value for each pair of nodes. For the sake of clarity, only the 130
most frequent words are present in each network.

We have computed all the different affinities provided in
Table 1. Depending on the affinity function used, the resulting
edges and their weights can be very different. In Table 2 we have
computed the five affinities for the entity ‘‘Man’’, and we proceed
to discuss the results obtained:

1. Best friend affinity: we obtained a network with the same
edges as the original adjacency matrix, but with a weight
for each edge. For example, let us consider the ‘‘Man’’ actor
entity. In Table 2 there are the top incoming and outgoing
BF affinities for the ‘‘Man’’ entity. Outgoing entities are the
same as in the adjacency matrix. However, the incoming
edges are terms that associate exclusively or almost exclu-
sively with this actor. This happens because ‘‘Man’’ is an
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actor that appears constantly in the text, and so it appears
mostly with other entities that arise frequently, such as
‘‘Justice’’ or ‘‘State’’. However, some less important actors
appear almost entirely associated with ‘‘Man’’, like ‘‘Desire’’
or ‘‘Master’’. So, using this affinity we can easily observe
which are the concepts semantically closer to an actor.

2. Best common friend affinity: this affinity is capable of
‘‘deducing’’ edges based on the already existing ones in the
adjacency matrix. This leads to a noticeable increment in
the number of edges in the network. The density of the
network corresponding to the original adjacency matrix
is 0.0346, while the best common friend shows a den-
sity of 0.3437. This is a consequence of the small world
problem [30]. Usually, small nodes are connected to a high-
degree node (hub) and to some other small nodes, so many
pairs of nodes without an edge between them do have a
common connection. Only four actors that were connected
in the adjacency matrix did not share any common associa-
tion. If we look at Table 2, the column BCF shows the result
of this affinity for the ‘‘Man’’ entity. The outgoing edges are
the same as in the rest of the affinities and the incoming
edges are actors that were very affine to one of the top
outgoing affinities of ‘‘Man’’. For example, the ‘‘Tyrant’’
actor in the adjacency matrix is only connected to the
‘‘Soul’’ actor, which is one the top connections of ‘‘Man’’.
This results in a high BCF affinity value from ‘‘Tyrant’’ to
‘‘Man’’, as the only connection of ‘‘Tyrant’’ is also a very
important connection for ‘‘Man’’.

3. Friends forever affinity: the friends forever affinity is com-
puted by using the ten different chapters of the book as a
time unit. This network is very different of the other ones,
as each pair of actors needs to repeatedly appear over the
whole book in order to have a high affinity value, which
can be more revealing to the nature of the original material
than the rest of affinities. As the book changes the topic in
each chapter, the associations and words not linked to any
particular subject are favoured here. For example, taking
the ‘‘Man’’ entity in Table 2, we can see in the column
FF the concept ‘‘Evil’’, which does not appear in any other
of the affinity functions. The association of the concepts
‘‘Evil’’ and ‘‘Man’’ does not appear as many times as other
important associations, but it is repeatedly discussed in all
of the different chapters of the books, which resulted in a
high FF affinity value.

4. Social networking affinity: we obtained again a network
with the same number of edges as in the best common
friend affinity, due to the same reasons. High values of this
affinity reveal local social groups, because in order to have
a high affinity between Actorx and Actory, the majority of
connections of Actorx should have a high previous affinity
value with respect to Actory (Ac’ in the formulation in
Table 1). If we look at the SN column in Table 2, we
can see that the outgoing edges are quite similar to the
ones in other affinities, but the incoming edges change
significantly. These edges arise from concepts that are se-
mantically very close to the ‘‘Man’’ actor. This happens
because Actorx, in order to have a high affinity value with
Actory, needs to be connected with other actors connected
to Actory. This results in that in order to have a high affinity
with ‘‘Man’’, an actor needs to have a high affinity with
other actors that also have a high affinity with ‘‘Man’’.

5. Machiavelli affinity: nodes are more affine to each other
depending on their importance in the network, so equally
important actors in the book, e.g. Life and Justice, appear
very close to each other. The structure of this network is
particularly different from the rest of them. This can be

Table 2
The effect of different affinity calculations for the ‘‘Man’’ actor in Plato’s
Republic . Each column shows the top values for the adjacency matrix and
different affinity functions for each edge of the ‘‘Man’’ actor.
Outgoing Adj. BF BCF FF SN MA

Top 1 Justice Justice Justice Life Soul Life
Top 2 Life Life Injustice Other State Justice
Top 3 Injustice Injustice Soul One Justice State
Top 4 Soul Soul Life Soul Life Men
Top 5 State State State Evil Injustice Soul

Incoming

Top 1 Justice Master Tyrant Reward Shepherd Soul
Top 2 Life Desire Desire God Medicine Justice
Top 3 Injustice Action Spirit Gold Father Life
Top 4 Soul Word Journey Work Age State
Top 5 State Case Master Protect Enemies Men

clearly seen in Fig. 2f. The bigger mass contains all the
most important actors in the network, while the other
masses refer to less important concepts or characters that
appear in the book. If we look at incoming and outgoing
edges in Table 2, we can see that they are very similar
to those in the adjacency matrix. This is because ‘‘Man’’
is a key concept of this book, and so are ‘‘Life’’, ‘‘Soul’’ or
‘‘Justice’’, which are its higher Machiavelli affinities. Actors
with similar Eigenvector centrality value [31] result in a
high Machiavelli affinity.

4. Borgia clustering

Using the affinity functions, we have developed a community
detection algorithm, the Borgia Clustering, based on an important
chapter in the European history: the 15th-century Italian Wars. In
1497, Cesare Borgia, under the command of his father, Alexander
VI, and as Commander in Chief of the Papal Army, marched
through the centre of Italy, conquering all the territories that
have been traditionally linked to the Papal States [34] (Fig. 4).
This thrilling moment in Renaissance history provided us with
not only memorable moments of unparallelled initiative and wit,
but also with an excellent example regarding human interaction
in both personal and communitarian levels.

This algorithm is based on the classical Gravitational Cluster-
ing algorithm [28], which has not previously been applied for
community detection. Each actor starts as a different community
that gets closer to the others due to the effect of an attraction
force. Our contention is that the Borgia Clustering force and par-
ticle movement generates communities emulating the dynamics
seen during the XV Italian wars:

• All countries aim to grow. Although it may seem a trivial
thing, this is not always the case. Sometimes states prefer to
create and maintain a balance rather than breaking it in its
own favour. This means that all the attractive forces must be
non negative, and there must always be at least one bigger
than zero.
• Some parts of Italy are culturally more similar to different

countries. Naples, for example, is much more influenced by
the Spanish culture than Milan, and future dynastic unions
and conquests will make evident these differences. So, the
attraction force for a pair of particles must grow with their
affinity.
• The differences in size and power make some alliances

more valuable than others. The Italian republics look for
alliances not only in their peninsula but on the lands of
more powerful nations. This behaviour favours the creation
of opposing sides led by great powers, as was the case with
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Fig. 2. Network representation of the social network for the Plato’s Republic. a. Co-appearances network. b. Best friend affinity network. c. Best common friend
affinity network. d. Friends forever affinity network. e. Social network affinity network. f. Machiavelli affinity network. All of them have been drawn using the Force
Atlas 2 algorithm [32].

the many Franco-Spanish wars that occurred in the fifteenth
and sixteenth centuries. The attractive force of an actor must
grow with their inherent value and influence in the net.
• There were many countries of different size and importance

involved in that historical event. France and Spain were the
biggest ones, followed by Milan, Venice, Florence and the
Kingdom of Naples. There were also the Papal States and
the ‘‘independent lords’’ in central Italy. Contrary to naive
thinking, the smallest counties were not conquered by the
biggest countries, which are the ones with bigger armies,
but by the Papal States. So, even though more size implies

more attractive force, this must not be the only factor, and
the actors size and scale must be also taken into account.

To represent each actor, we use a combination of the best
friend affinity matrix and the best common friend affinity matrix,
and an influence matrix, S, based on the former. By using the best
friend affinity, we favour strong pair-wise interactions, and with
the best common friend affinity, we also favour the formation of
communities whose members share a high number of friends.
Also, each actor has a ‘‘social value’’, equal to its number of
connections, that reflects its popularity.

The actors attract to each other in a simulation of
gravitational-like force, depending on their social value, affinity
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Fig. 3. Heatmap representation of the social network in Plato’s Republic. a The original matrix of co-occurrence of each pair of words. b The affinity matrix for
the Best friend affinity. c. The affinity matrix for the Best Common Friend. d. The affinity matrix for the Friend Forever affinity. e. The affinity matrix for the Social
Networking affinity f. The affinity matrix for the Machiavelli affinity.

and distance. We consider that two actors a, b collide when the
value of S(a, b) is bigger than S(b, b). Then, we interpret that the
actor a has as much influence over the actor b as b has over itself.
In that moment they are fused to form a new community. As a
result of this, the most affine pairs of actors will naturally join
first and start forming communities.

We have decided to construct the Borgia Clustering algorithm
by modifying the classical gravitational algorithm. because it
can be easily modified to apply our three ideas to effectively
model our wanted dynamics and still keep the physical interpre-
tation. To obtain the desired behaviour, we have performed the
following modifications:

1. Particles in the original algorithm have been substituted by
actors.

2. We have revamped the attraction force in a way that now
it takes the size, the distance and social value of each actor
into account.

3. The collision condition and fusion procedure for two parti-
cles has been adapted to actors.

4. We have replaced the idea of position by the idea of in-
fluence. The position matrix has been substituted by an
influence matrix, S.

5. Besides the influence matrix, we keep an Affinity matrix,
AC , that contains the affinity for each pair of actors and/or
communities alongside the execution of the algorithm.

Finally, we have also studied how to optimize the delta pa-
rameter, which controls the maximal movement of each particle
for each iteration, to speed up the computation.

4.1. Particle modification

In social networks, each particle is not a point in the space, but
an actor. Actors have a set of additional properties, usually related
to the semantic information available for each one. The most
important one is the connectivity, which allows us to compute
the best friend and best common friend affinity.

Actors have an initial social value, m, that initially corresponds
to its degree, that is similar to the concept of particle mass in

155



J. Fumanal-Idocin, A. Alonso-Betanzos, O. Cordón et al. / Future Generation Computer Systems 113 (2020) 25–40 31

Fig. 4. Italy in times of the Borgias. a. Italy’s lordships before Cesare Borgia’s campaign as Commander in Chief of the Papal Army. Each colour represents a different
faction. There is a large amount of independent and small counties in central Italy, more precisely, under de iure territories of the Papal States [33]. b. A portrait of
Cesare Borgia circa 1500. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the original algorithm. This allows us to display two well-known
social behaviours: popular people are more socially attractive
than people with fewer friends. This fact is called cumulative ad-
vantage in network theory [35] (from the physical point of view,
a greater mass implies a greater attractive force). Furthermore,
people with few friends try to hang out with popular people, but
not the reverse (greater mass also implies less movement).

The concept of particle position is substituted for the actor
pairwise-influence, denoted as the matrix S, that is built up by
using an affinity matrix. The value sij reflects the influence that
the actor j has over the actor i. The self-influences (si,i) are
set to 1. Actors will interact with each other along time and
they will move closer as time passes due to this interaction.
Besides, self-influences will decrease during the execution of the
algorithm.

The matrix AC is initially the same as the matrix S, but AC
only changes its values when two actors collide and form a new
community.

4.2. Actor fusion

The condition for checking whether two actors have collided
using the Euclidean distance is not good enough in this context
due to the curse of dimensionality. Thus, we have used the idea of
influence instead of position to check whether two actors should
be fused or not.

Each actor starts as being completely influential over itself.
During the execution of the algorithm, actors attract to each
other, causing a reduction in their own self-influence, and aug-
menting the influence other actors have over them. When the
influence of one actor over another is greater than the self-
influence of that actor, those actors will collapse into a new
community.

The fusion of two actors a, b results in the emergence of a new
actor whose social value is the sum of ma and mb, whose position
is their centre of masses of sa and sb, and whose affinities in the
affinity matrix are calculated using formula (2).

AC (ab) =
maAC (a)+mbAC (b)

ma +mb
(2)

4.3. New attraction formula

We have modified the attraction formula to take into ac-
count not only the mass and distance, but the whole set of
characteristics present in each actor.

We take into account the bilateral relationships using the AC
and S matrices. The AC matrix returns the affinity for a pair of
actors/communities, and we use the S to compute the Euclidean
distances between them, so that the more common or similar
affinities between two actors are, the higher the attraction force
will be.

We also need to take into account the size of the
actor/community. To do so, we add a ‘‘greedy expanse’’ penal-
ization parameter, p. This p penalizes the size of the actor in a
non-linear way, so that the bigger it gets, the more difficult to
move. The penalization is computed as 1

mp
x
for each actor x. This

idea used here for the sake of coping with size is what we have
called the ‘‘Early Roman policy’’, in Section 5.

The product of the masses and the AC are aggregated by
using a T-norm as aggregation function [36]. Using a T-norm is
important for computational speed. T-norms are always less than
or equal to the minimum function. If the AC (x, y) = 0, we do not
need to calculate the attraction force between x and y because we
know that it must be 0.

The computational cost of the original gravitational algorithm
is O(kn2), where k refers to the number of iterations and n to
the number of particles. Because of the T-norm aggregation, in
our case, the cost is O(kl), l representing the number of edges in
the graph. This is a significant result since the maximum possible
value for l in a undirected network is n2 and real networks
are usually sparse. Therefore, the complexity order reduction is
actually very large.

As a result, the final formula for the attraction force is the
following:

Fxy =
T ((mxmy)c, AC (x, y))

mp
x

,
sx − sy
|sx − sy|3

dt (3)

In it, T stands for a t-norm function, AC for the chosen affinity
function, sx for the influence vector of actor x.
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4.4. Choosing a configuration

In the original gravitational algorithm, the configuration with
the longest life in simulated time is chosen as the final one. This
criterion is extremely fast to compute but tends to return a very
small number of communities. This happens because in the last
steps of the algorithm we only have a reduced number of particles
that move very slowly because they are very heavy.

There is no problem if the desired number of communities is
low (< 5) but in case we want more, it is necessary to add an
extra term to measure the quality, R, of each configuration, Z:

R(Z) = SimulatedTime(Z) ∗ log(NumCommunities(Z)) (4)

where q is a partition of the graph. By using this formula, we
reward both stability in time and a higher number of different
communities.

It is also possible to specify the exact number of communities
wanted.

4.5. Formulation of the algorithm

To sum up, the formulation of the Borgia Clustering algorithm
is the following one:

1. We assign a social value to each actor equal to its degree
in the original network.

2. We set t as 0 and the parameter δ. The δ parameter restricts
the shift magnitude in each iteration for the fastest parti-
cle. Then, the dt of each particular iteration is computed
based on the movement of the fastest particle. The rest of
particles’ movement is computed based on this dt value.

3. We compute the affinity matrix, AC . Then, we set the initial
influence matrix, S, equal to AC .

4. Next, clustering and attracting steps alternate alongside
with the repetition of a) - d) steps until all actors are fused
into one.

(a) The function for driving the movement of each actor
i in a time interval [t, t + dt] is:

gi(t) =
1
mp

i

∑
j̸=i

T ((mxmy)c, AC (i, j))
sj(t)− si(t)
|sj(t)− si(t)|3

dt

(5)

(b) The fastest actor is indexed as F

F = arg(max
i
{|gi|(t)}),

dt(t) for the next step is computed from |gF (t)| = δ:

δ =
1
mp

F

∑
j̸=F

T ((mxmy)c, AC (F , j))|
sj(t)− sF (t)
|sj(t)− sF (t)|3

|dt ⇒

⇒ dt(t) =
δmp

F∑
j̸=F T ((mxmy)c, AC (F , j))| sj(t)−sF (t)

|sj(t)−sF (t)|3
|

(6)

It is apparent that for each t , dt(t) is positive. The
influence vector of each actor i is set:

si(t + dt(t)) = si(t)+
gi(t)
mi

(7)

(c) t ← t + dt(t).
(d) The test is executed inspecting whether there are ac-

tors i and j that meet the collision condition (si,j ≥ sj,j).
If so, they fuse into one with new mass and influence
vector as described above.

4.6. About the particle system contraction

Since a Markovian process is studied, where only the actual
state of the system is taken into consideration, in order to prove
the convergence of the algorithm it is enough to prove the con-
tractiveness of the particles system. The authors in [37] proved
the convergence of the original gravitational algorithm using an
overlap function, Gs, instead of the product, using this formula for
the attraction force between particles x and y is:

F(x, y) = Gs(mxmy)
sx − sy
|sx − sy|3

In the case of the Borgia algorithm, the attraction force is
the one described in Eq. (3). All the statements for the original
attraction force formula still hold true for the new one. So, the
convergence proof for the Borgia Algorithm is analogous to that
already present in [37].

4.7. Parameter selection

The Borgia Clustering algorithm depends on a number of dif-
ferent parameters:

1. Affinity function: we can choose one or a combination
of different affinity functions. Depending on the chosen
one, we obtain different behaviours e.g. Best Friend affinity
favours one-to-one interactions, while the Social Network-
ing favours local high-density groups to attract.

2. Attraction force: we need to choose a T-norm and an ex-
ponent for the product of the masses. In the case of the
T-norm, we can use the product as a default, and in case of
the exponent, c , there are different alternatives: previous
results in [28] indicates that c = 0 or c = 1 gives the best
results in clustering.

3. Greedy expanse penalization factor: the bigger this factor,
the harder it is for big masses to keep growing. Generally
speaking, if we want to favour local interactions, we should
set a high value (+5). If we want the big actors to take the
lead in the process we should set a low value (0 or 1).

4.7.1. Affinity selection
We use the affinity function in the Borgia Clustering algorithm

to reflect local pair-wise interactions and local group-level inter-
actions. We reflect both characteristics using the best friend and
the best common friend affinities (using the formulas in Table 1).
By using the former, we can compute how affine two actors are.
Based on the relationship between them; and using the latter, we
can compute their affinity according to the common connections
they share. To take both affinity functions into account, we have
used a convex combination of them:

AC (x, y) = αBestFriendC (x, y)+ (1− α)BestCommonFriendC (x, y)

and then we choose and appropriate α. We have tested the
effects of different α using the famous Zachary network [38],
the co-occurrences character network of the Game of Thrones
(GoT) novels [39] and the Eurovision voting phase [40]. A detailed
description for these networks can be found in Sections 6 and 7.

In Fig. 5 we show the corresponding heatmap for each α and
in Fig. 6 we show the corresponding network representations.

In Fig. 7 We check the effects of different α in the modularity
value for the GoT and the Eurovision voting phase networks using
a standard greedy expanse parameter and the exponent c .

When it comes to the number of communities detected, there
is no clear effect of the affinity used. It seems that using the Com-
mon Friend affinity in Eurovision, we get bigger communities, but
this does not hold up in the GoT network.
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Fig. 5. Heatmap representation of the Zachary’s karate social club. The S matrix of the Borgia algorithm with different α values. a α = 0.0. b α = 0.25 c α = 0.5.
d α = 0.75. e α = 1.0.

Fig. 6. Network representation of the Zachary’s karate social club Affinity Matrix. a α = 0.0. b α = 0.25 c α = 0.5. d α = 0.75. e α = 1.0.

By measuring modularity and modularity density, it seems
that a lower α benefits the modularity density, whilst a bigger
value results in a better modularity. There is no α value that
obtains the best results in both measures, but values in the
interval [0.5, 1] apparently give a good result in terms of both
metrics and the number of communities obtained.

4.7.2. Greedy expanse parameter selection
We use the greedy expanse parameter, p, to limit the influence

of big particles in the algorithm. The ideal value of the parameter
might depend on the topology of the network and the rest of the
chosen parameters. If p is too big, then the smaller communities
will move too quickly, and if it is too small, the bigger commu-
nities will negate the local interactions of the smaller particles.
In Fig. 8 we have studied how our algorithm performs using
different p and different α values for the affinity function.

The chosen p value has a significant effect in the final result.
Generally speaking, a correct value should be > 2, since it seems
that the number of communities obtained in the ≤ 2 cases are
abnormally high. The tendency in the modularity values is not so
clear alongside p.

4.7.3. Delta parameter
The delta parameter delimits the maximal magnitude of move-

ment for an actor in each iteration. In the classical gravitational
algorithm, this parameter is a fixed number. However, our ex-
perimental tests have revealed that for two actors to collide for
the first time we need much more iterations than for the rest
of the collisions. We have tackled with this problem by setting
a different delta for the first iteration, such that it warrants a
collision in the first iteration. To do so, we calculate the distances
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Fig. 7. Affinity combination study a. Modularity values and number of communities for different combinations of Best Friend and Common Friend affinities in the
Eurovision voting network with parameters c = 0, p = 3. b. Modularity values and number of communities for different combinations of Best Friend and Common
Friend affinities in the GoT social network with parameters c = 0, p = 3. We have standardized the results for each metric.

Fig. 8. Greedy parameter modularity study. Modularity [23] and Modularity Density [41] values and number of communities for different greedy expanse penalization
parameter in the Eurovision voting network (a) and GoT (b). We have used the mean for three different α (0.5, 0.75, 1.0) in each p.

Fig. 9. Differences in the dynamic and static delta.

to collide for each pair of actors and then, set the delta value as
the minimum of them.

The higher the delta, the less accurate the gravitational simu-
lation is. The reason for this is that we only use this form of delta
calculation in the first iteration. In this moment, actors are far
from each other, which makes the attraction forces very weak.

In Fig. 9 we have studied the differences for four different
datasets when using the static or the dynamic delta. There is no
difference in two of them, while in the other two, only two fu-
sions were different. The final result in all cases was not affected.
However, changes in the execution time are consistently better
(Fig. 10). It is important to note, however, that the simulation
process in the Borgia Clustering can take longer execution time
than other community detection algorithms.

5. The scalability problem

Social groups present lots of emergent properties when the
number of people composing them increases. A group of fifty
people is not just ten times a group of five, because human
interaction does not follow a linear behaviour. In the case of the
Borgia Clustering algorithm, we have used what we call ‘‘The
Early Roman policy’’ [42] which aims at curbing the communities’
tendency to grow as their size increases. In this context, we have
implemented this policy by adding a ‘‘greedy expanse’’ penaliza-
tion parameter, p, to correctly model the growth of social groups.
This parameter penalizes ‘‘greedy’’ nodes that join too quickly
with others due to their high attraction force. By setting a high
p, they become slower, avoiding other nodes to join with one
another so fast.

However, there is more than one way to cope with this ad-
ditional complexity. Apart from the greedy expanse penalization,
we have also proposed an additional a set of policies to treat the
nodes labelled as too big (formed by the fusion of many actors)
to be treated in the same way as smaller ones, which emerge as
the result of different phenomena that still exist or have existed
in human societies:

• Naive or linear policy: no difference between big and small
communities.
• French or authoritarian policy: based on the famous French

absolutist monarchies [43]. Only the affinities for the biggest
actor in the node are taken into account.
• Early Roman policy: based on the end of the expansion of

the Roman Empire [42]. Communities receive a penalization
in their attraction power according to their size. This would
be the case of the ‘‘greedy expanse’’ penalization parameter
used in the experimental section.
• Late Roman policy: based on the Diocletian tetrarchy [44].

When a community is too big, it is divided in half depending
on its members’ affinities.
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Fig. 10. Execution times for the Borgia Algorithm. a, b. Execution time for different number of edges in the full Eurovision network [40] (2369 total edges). The
red line shows the mean of 30 executions of the algorithm, alongside the quartile distribution, for different network sizes. These networks have been obtained by
randomly sampling the desired percentage of edges from the original graph. While (a) shows the times for the static delta, (b) shows the times for the dynamic
delta. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

• Greek policy: based on the organization of the ancient Greek
world [45]. When two actors are about to form a big node,
they are frozen instead and they cannot have any more
attractive interactions between them.
• Aristocratic policy: based on the natural hierarchy formed

in many societies [46]. When a community is too big, it is
treated as a smaller community formed only by the top-k
most important members of the community.

6. Results for real-life networks

In this section we present the results for the community de-
tection in three different social networks: GoT, Eurovision and the
word association network for Heart of Darkness. The cut for each
dendrogram has been obtained by using the best configuration
according to the formula in Eq. (4).

6.1. Game of thrones

Song of Ice and Fire is a popular fantasy book in the saga
written by George R.R. Martin which, to this day, is constituted
by five books. This series of novels presents a numerous set
of interesting characters, most of them members of one of the
dynasties that rule the fantasy world of Westeros.

We used the data in [47], that counts co-occurrences of each
character in the original text, and then we created the adjacency
matrix.

To compute the algorithm on Song of Ice Fire network we used
α = 0.5, p = 3 and c = 0.

The result in Fig. 11 shows how the characters are grouped
around the different sub-plots in the book. If we look at the
dendrogram, we can see that the characters whose plot is more
‘‘stable’’ (they do not change much from places or acquaintances)
form or join communities faster than those who play an impor-
tant role in different places or events in the books.

6.2. Eurovision song contest

Eurovision is a musical contest where 42 countries compete
against each other in order to get the highest score. The par-
ticipants should judge and give points to the rest according to
the quality of the musical performance. This is, of course, only
the theory, since in practice it is noticeable how cultural and
geographical proximities play an important role in the outcome
of the contest. From the dataset in [40], we have taken not only

the last decade of voting, but also both the whole record of finals
voting to study how countries historically behave when they are
voting. These networks are interesting to us because they have
very high density (Fig. 12), as they are almost fully connected,
and because we actually have semantic information about each
actor. This means that we can interpret the resulting communities
without relying too much on numerical measures.

In this case, we use the same parameter selection as in the
previous case; α = 1, p = 3 and c = 0.

In the first case, the last decade of Eurovision (Figs. 12a,
13a), we have obtained four different communities. At a local
level, it seems that strong cultural and geographical components
influence the voting process, e.g Greece and Cyprus, Spain and
Portugal. These components are more relevant in some com-
munities than in others. There is a community consisting al-
most exclusively of countries of Slavic Europe, other has mainly
Mediterranean countries, etc. However, in our time cultural bias
is not so pronounced when compared to the whole historic record
of voting.

If we take into account the whole voting record since 1975,
we obtain five communities (Figs. 12b, 13b). Two of them have
a clear cultural resemblance between their members: the Nordic
countries, and the Spain–France–Portugal–Andorra axis. There are
also two Eastern-Europe groups and a Western one (with some
exceptions in them that could be a consequence of a ‘‘migration’’
effect [48]).

6.3. Heart of darkness

Heart of Darkness is the famous novel written by Joseph Conrad
in 1899. The story narrates the abuse committed by the Belgium
King during the late 19th century. Besides its humanistic interest,
this novel presents a mysterious character, Kurtz, which is partic-
ularly interesting for our research. This omnipresent individual,
seen as a demigod by the natives who constantly refer to him,
only makes an appearance in the final stages of the book. We have
computed the word association network in the same way as that
in Section 3. Each node corresponds to a word in the original text
and each edge is the corresponding affinity between two entities,
using as C the original number of co-occurrences for each pair of
words in the same paragraph.

We can see the result using Borgia Clustering community
detection in Fig. 14. We obtain three different communities. The
most notable one is the ‘‘Kurtz’’ community. It is characterized by
the number of words that induce a moral bias in the reader about
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Fig. 11. Community detection in the GoT network. a. The network formed by the top-35 most important characters in the book. Each of the five communities
is marked with a different colour. b. The dendrogram formed during the execution of the algorithm. Each community is marked with same colours as in (a). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Networks and community detection in Eurovision contest. a. Last decade of voting record in Eurovision finals. b Whole voting record in Eurovision finals.

this character, such as: ‘‘Darkness’’, ‘‘Devil’’, or ‘‘Power’’. There
are also some other important concepts linked to this character:
‘‘Knowledge’’, ‘‘Desire’’, ‘‘Reason’’, ‘‘Eloquence’’, etc. All of these
show the fascination that his figure inspires in the natives that
the first-person narrator and protagonist encounters through the
journey. The ‘‘man’’ community and the ‘‘time’’ are both seman-
tically more heterogeneous, although the latter one is mainly
composed of terms that describe the place in which the action
takes place.

7. Comparison with other community detection algorithms

Finally, to benchmark our community detection algorithm,
we have chosen datasets with ground truth labels: the famous
Zachary’s karate club social network [38], politics books [49], that
contains the number of co-purchases of different books about
US politics, football network [17], that represents the number of
matches between each pair of teams, and Dolphins [50] which is a
network that registers the frequency each pair of dolphins played
together.
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Fig. 13. Dendrogram and community detection for the last decade of voting record in Eurovision finals. a. Dendrogram and community detection for the last
decade of voting record in Eurovision finals. b Dendrogram community detection for the whole voting record in Eurovision finals.

Fig. 14. Community detection in Heart of Darkness. a. The network resulting from the top-200 most repeated names in the book. Each one of the five communities
is marked with a different colour. b. AC heatmap and the dendrogram formed during the execution of the algorithm. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Table 3
Results for the Borgia Clustering. a. Zachary Karate club network. Parameters: α = 0.7, p = 3,G(x, y) = 1. b. Dolphin
network. Parameters: α = 0.7, p = 3,G(x, y) = 1. c. Football network. Parameters: α = 1, p = 0,G(x, y) = 1. d. Polbooks
club network. Parameters: α = 1.0, p = 0,G(x, y) = 1.

Mod. M. density ARI NMI C Mod. M. density ARI NMI C

Greedy Mod. 0.3871 0.1868 0.5684 0.4540 3 0.4954 0.1659 0.4658 0.4149 4
Girvan–Newman 0.4156 0.2258 0.4070 0.3529 4 0.5193 0.2011 0.4505 0.4404 5
Label prop. 0.3956 0.2139 0.6841 0.5750 3 0.4684 0.1829 0.492 0.4418 4
L. eigenvector 0.4012 0.1969 0.4351 0.4172 4 0.4911 0.1809 0.3211 0.3439 5
Lovaine 0.4138 0.2296 0.4292 0.3592 4 0.5175 0.2032 0.3140 0.3397 5
Borgia C. 0.3693 0.1797 0.8822 0.8324 2 0.3787 0.1362 1.0000 1.0000 2
Grav. Clus. 0.0342 0.0555 0.0325 0.0757 3 −0.0010 0.0422 0.0091 0.0115 4

(a) (b)

Mod. M. density ARI NMI C Mod. M. density ARI NMI C

Greedy Mod. 0.5564 0.2744 0.4844 0.5584 6 0.5019 0.1739 0.6378 0.4929 4
Girvan–Newman 0.5996 0.4321 0.7781 0.8014 10 0.5168 0.1989 0.6823 0.4875 5
Label prop. 0.5974 0.4027 0.7445 0.7701 9 0.5106 0.1874 0.6701 0.5088 4
L. eigenvector 0.4926 0.2593 0.4640 0.5611 8 0.4671 0.1439 0.5466 0.4428 4
Lovaine 0.6044 0.4167 0.7070 0.7551 9 0.5267 0.1991 0.6463 0.4576 5
Borgia C. 0.6005 0.4909 0.8966 0.8978 12 0.4994 0.1665 0.6685 0.5649 3
Grav. Clus. 0.2319 0.0848 0.1202 0.2899 7 0.0053 0.0646 0.0234 0.0203 2

(c) (d)

Fig. 15. Comparison of different Community Detection Algorithms. We have compared the Borgia Clustering algorithm against three modularity optimization
methods: Girvan–Newman, Newman greedy modularity optimization, and the Lovaine algorithm. We have also compared it against using eigenvalues of matrices to
detect communities and label propagation.

To test the quality of our solution and to study the best
parameter selection in the Borgia Clustering algorithm, we have
compared it to other community detection algorithms: Girvan–
Newman [20], Newman greedy modularity optimization [24],
the Lovaine algorithm [25], using the eigenvalues of matrices to
detect communities [51], and label propagation [52]. The reported
results for the label propagation method is the median of five
executions due to its stochastic nature. We have used the Normal-
ized Mutual Information (NMI) [53] and Random Adjusted Index
(ARI) [54] to compare the results against ground truth labels. We
have also compared Modularity [23] and Modularity Density [41]
for each solution.

The results are shown in Fig. 15 using the Borgia Clustering
algorithm in the ARI and NMI measures. A comparison including
modularity and modularity density can be found in Table 3. Borgia
Clustering does not use at all the concept of modularity, so it
was expected to perform worse with respect to this index com-
pared to the methods that actually optimize this metric: Greedy
Modularity, Girvan–Newman and Lovaine.

In the same table, we also show the results for the traditional
gravitational algorithm that was developed originally for cluster-
ing problems [28]. As expected, this algorithm performs poorly
compared to the others, as it was not specifically designed for
this problem. Using the affinity matrices instead of the adjacency
matrices showed no improvement for this algorithm either.

8. Conclusions and future work

In this work we have proposed a new set of functions based on
human nature to represent actors and we have shown the effects

that different affinities have on the same real-work networks. We
have discussed the importance of scale in networks, and we have
applied our ideas to develop a new human-based community
detection algorithm, the Borgia Clustering, based on the centre-
Italian wars of the 15th century. Using this algorithm, we have
obtained good results compared to the most used community
detection algorithms up-to-date. We think that this algorithm
can offer significant improvements in very dense networks, when
modularity is not a reliable measure to optimize. Also, this algo-
rithm always converges to the same value, so there is no need to
run it multiple times to obtain a valid result. Furthermore, due
to the intuitive principles that the algorithm stands on, we think
that results obtained with it can be easily interpretable.

Future research will aim at applying Borgia Clustering in large
scale networks, studying the constraints and requirements to
perform the community detection process efficiently, in terms
of memory and execution time. We also intend to explore the
effects of affinity functions in dynamic environments, where net-
works change along time [55], and exploit them with the Borgia
Clustering algorithm.
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1. Introduction

Aggregation functions are used to fuse several data into one single output value, representative of the original set 
of inputs [1,2]. As this fusion process is critical in many multi-component systems, aggregation functions have been 
studied in a wide range of different settings, like fuzzy rule-based classification systems [3–5], image processing [6,7], 
unsupervised learning [8], decision making [9,10,6] or brain computer-interfaces [11,12].

Two of the most popular aggregation functions are the Choquet and Sugeno integrals [13,27]. These integrals 
fuse the data using a fuzzy measure, which models the different relations among the inputs [14,15]. By using these 
functions we are able to model the coalitions between the different features to fuse in the aggregation process. The 
famous Ordered Weighted Aggregation operators (OWAs) [16] are a particular case of the Choquet integral using a 
symmetric fuzzy measure [17].

Both the Choquet and Sugeno integrals have been profoundly studied, and many works have been published regard-
ing their characterization, properties, and relation with other aggregation functions [18–21]. More recently, a series 
of generalizations of the Choquet integral have been proposed and applied to different fuzzy-rule based classification 
systems [19,3,15]. The Sugeno integral has been generalized in a similar way, applied to image processing [25].

However, all of these works have been proposed to deal with numerical data. The use of other data representations, 
like intervals, have been proven popular to model the uncertainty linked to experimental observations or estimations, 
but it requires some additional challenges related to the lack of standard order in the framework of intervals [22]. An 
Interval-Valued Sugeno integral (IV-Sugeno) was proposed in [23], and some more general expressions encompassing 
both Choquet and Sugeno integral were given in [24]. However, the different generalizations of the Sugeno integral 
were not studied. We believe that these generalizations can be of interest in the interval-valued setting, as its numerical 
counterpart has been successfully applied to Brain Computer Interface systems [12] and image thresholding [25].

In this work, we present an in-depth study of the properties of the IV-Sugeno, and its possible generalizations. 
Then, we present two different applications using interval-valued data:

• We present a novel way to construct intervals in a Motor Imagery (MI) Brain Computer Interface (BCI) classifi-
cation framework. We explain how the intervals are constructed from the output of different classifiers, and how 
we aggregate them using the IV-Sugeno integral.

• We present the interval-valued version of affinity functions in social network analysis [26]. These functions use in-
tervals to measure the difference in commitment in a pairwise relationship between two people. Then, we explain 
how we use the IV-Sugeno to characterize each actor in the network based how asymmetric are its relationships.

The rest of the paper goes as follows. Section 2 recalls some notions needed to understand the rest of the pa-
per: aggregation theory, the numerical Sugeno integral and interval-valued aggregations. In Section 3, we introduce 
so-called interval-valued Sugeno-like FG-functional as an interval-valued generalization of the Sugeno integral. In 
Section 4, the mathematical properties of the proposed functionals are studied, and in Section 5, a construction method 
for interval-valued Sugeno-like FG-functionals is proposed. Section 6 illustrates the proposed BCI framework and 
its use of interval-valued Sugeno-like FG-functionals. Section 7 proposes the interval-valued affinity functions, and 
four centrality measures for social network analysis using the newly proposed ideas. Finally, in Section 8, we give our 
conclusions and future lines for this work.

2. Preliminary

In this section we recall some notions needed in our subsequent developments. We also fix the notation, mostly in 
accordance with [2], wherein more details on theory of aggregation functions can be found.

2.1. Aggregation functions

The process of merging an information represented by several values into a single one is formalized by so-called 
aggregation functions. The finite space of attributes can be represented by the set N = {1, . . . , n}, n ∈N and the inputs 
by n-tuples of reals from the unit interval [0,1]. Let us denote vectors (x1, . . . , xn) ∈ [0,1]n by bold symbols x.
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Definition 1. Let n ∈N . A function A : [0,1]n → [0,1] is an n-ary aggregation function if it is nondecreasing in each 
variable and the boundary conditions A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1 are satisfied.

We list some of the well-known aggregation functions. Let x ∈ [0,1]n.

• The arithmetic mean AM(n) is defined by AM(n)(x) = 1
n

n∑

i=1
xi .

• The weighted arithmetic mean WAMw is defined by WAMw(x) = 1
n

n∑

i=1
wixi , where the weight vector w =

(w1, . . . , wn) ∈ [0, 1]n is such that 
n∑

i=1
wi = 1.

• The minimum and maximum operators defined by Min(x) = min{x1, . . . , xn} and Max(x) = max{x1, . . . , xn}, 
respectively, can be regarded as the special cases of the so-called order statistics OSk : [0,1]n → [0,1] defined 
by OSk(x) = xσ(k), where σ is a permutation on N such that xσ(1) ≤ · · · ≤ xσ(n). Clearly, Min = OS1 and Max =
OSn.

The following properties of real functions can be desirable in different contexts of aggregation.

Definition 2. Let n ∈N . A function A : [0,1]n →R is said to be:

• internal, if for each x ∈ [0,1]n it holds Min(x) ≤ A(x) ≤ Max(x);
• idempotent, if A(x, . . . , x) = x for each x ∈ [0,1];
• comonotone maxitive, if A(x ∨ x) = A(x) ∨ A(x) for all comonotone vectors x, x ∈ [0,1]n (vectors x, x are 

comonotone, if (xi − xj )(xi − xj ) ≥ 0 for all i, j ∈ {1, . . . , n});
• comonotone minitive, if A(x ∧ x) = A(x) ∧ A(x) for all comonotone vectors x, x ∈ [0,1]n;
• positively homogeneous, if A(cx) = cA(x) for each x ∈ [0,1]n and c > 0 such that cx ∈ [0,1]n;
• min-homogeneous, if A(c ∧ x) = c ∧ A(x) for each x ∈ [0,1]n and c ∈ [0,1].

2.2. Sugeno integral

The Sugeno integral introduced in 1974 [27] is widely used in many applications due to its ability to model inter-
actions between inputs by means of the so-called fuzzy measure.

Definition 3. A set function m : 2N → [0,1] is a fuzzy measure, if m(C) ≤ m(D) whenever C ⊆ D ⊆ N and m(∅) =
0, m(N) = 1.

Definition 4. A fuzzy measure m is said to be symmetric, if m(E) = m(F) whenever |E| = |F | for all E, F ⊆ N (here 
|E| stands for the cardinality of the set E).

Restricting to the finite space and vectors of reals from the unit interval, the (discrete) Sugeno integral can be 
defined as follows.

Definition 5. Let m : 2N → [0, 1] be a fuzzy measure, x = (x1, . . . , xn) ∈ [0, 1]n. The Sugeno integral with respect to 
m is defined by

Sum(x) = max
i∈N

min{xσ(i),m(Eσ(i))} (1)

where σ is a permutation on N such that xσ(1) ≤ · · · ≤ xσ(n), Eσ(i) = {σ(i), . . . , σ(n)} for i = 1, . . . , n.

Note, that the Sugeno integral is an idempotent function, which is also internal, comonotone maxitive, comonotone 
minitive, min-homogeneous and it extends the fuzzy measure, i.e., Sum(1A) = m(A), where 1A is the indicator of the 
set A ⊆ N , i.e.,
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1A(i) =
{

1 if i ∈ A

0 otherwise
,

for each i ∈ N .
The following generalization of the formula (1) was introduced in [25], replacing the minimum and maximum 

operators by some more general functions.

Definition 6. Let m : 2N → [0, 1] be a symmetric fuzzy measure, F : [0, ∞[×[0, 1] → [0, ∞[, G : [0, ∞[n→ [0, ∞[. 
The Sugeno-like FG-functional with respect to m is defined by

Sm
FG(x) = G

(
F(xσ(1),m(Eσ(1))), . . . ,F (xσ(n),m(Eσ(n)))

)
, (2)

with the same meaning of σ and Eσ(i) as in Definition 5.

Note that the symmetry of the fuzzy measure ensures the Sugeno-like FG-functional to be well-defined.

2.3. Interval-valued aggregation functions

When aggregating data with some uncertainty represented by intervals, a need of interval-valued aggregation func-
tions appears. Moreover, for using an interval-valued fuzzy integrals, there is also a need of a total order on the class 
of all intervals.

Let us denote by L([0, 1]) = {X = [X, X] | 0 ≤ X ≤ X ≤ 1} the set of all closed subintervals in [0, 1]. We denote 
0 = [0, 0], 1 = [1, 1]. The standard partial order ≤spo on L([0, 1]) is given by:

[X,X] ≤spo [Y ,Y ] ⇔ X ≤ Y and X ≤ Y .

Definition 7. An order  on L([0, 1]) is called admissible, if
(i)  is a total order on L([0, 1]), and
(ii) for all X, Y ∈ L([0, 1]) it holds X  Y whenever X ≤spo Y .

The following construction method for admissible orders on L([0, 1]) was suggested in [28].
Let M1, M2 : [0, 1]2 → [0, 1] be aggregation functions, such that for all X, Y ∈ L([0, 1]) it holds

M1(X,X) = M1(Y ,Y ) ∧ M2(X,X) = M2(Y ,Y ) ⇒ X = Y.

We define the total order relation ≤M1,M2 as follows:

X ≤M1,M2 Y iff

{
M1(X,X) < M1(Y ,Y ) or

M1(X,X) = M1(Y ,Y ) and M2(X,X) ≤ M2(Y ,Y ).

Now, let α ∈ [0, 1], X ∈ L([0, 1]). Define a function Kα(X) = (1 − α)X + αX.
Let α �= β ∈ [0, 1]. The total order relation ≤M1,M2=:≤α,β corresponding to M1 = Kα and M2 = Kβ is an admis-

sible order.
Well-known particular cases of ≤α,β are the following:

• Xu and Yager order ≤XY =≤0.5,1:

[X,X] ≤XY [Y ,Y ] ⇔
{

X + X < Y + Y or

X + X = Y + Y and X − X ≤ Y − Y .

• lexicographical orders ≤Lex1=≤0,1, ≤Lex2=≤1,0:

[X,X] ≤Lex1 [Y ,Y ] ⇔
{

X < Y or

X = Y and X ≤ Y

and
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[X,X] ≤Lex2 [Y ,Y ] ⇔
{

X < Y or

X = Y and X ≤ Y .

It was shown in [28], that for a given α ∈ [0, 1[ all admissible orders ≤α,β with β > α coincide. This admissible 
order will be denoted by ≤α+. Similarly, for a given α ∈]0, 1] all admissible orders ≤α,β with β < α coincide. This 
admissible order will be denoted by ≤α−.

Definition 8. Let  be an admissible order on L([0, 1]). A function m : 2N → L([0, 1]) is called an interval-valued 
fuzzy measure w.r.t. , if m(∅) = 0, m(N) = 1 and m(A)  m(B) for all A ⊆ B ⊆ N .

Definition 9. Let n ≥ 2. Let  be an admissible order on L([0, 1]). An n-dimensional interval-valued (IV) aggregation 
function w.r.t.  is a mapping M : L([0, 1])n → L([0, 1]) satisfying the following properties:

• M(0, . . . , 0) = 0;
• M(1, . . . , 1) = 1;
• M is an increasing function in each component w.r.t. .

3. An interval-valued generalization of the Sugeno integral

In this Section we give our definition of the generalized interval-valued Sugeno integral, which is an interval-valued 
counterpart to (2). To simplify our notation we will use the lattice symbols Min = ∧ and Max = ∨.

Definition 10. Let  be an admissible order on L([0, 1]), m : 2N → L([0, 1]) be an IV fuzzy measure w.r.t.  and 
F : L([0, 1]) × L([0, 1]) → L([0, 1]), G : (L([0, 1]))n → L([0, 1]) be functions. We say that a triplet (m, F, G)

satisfies Condition (WDS) if for all X1, . . . , Xn ∈ L([0, 1]) and all possible permutations σ1, σ2 on N such that 
Xσ1(1)  . . .  Xσ1(n) and Xσ2(1)  . . .  Xσ2(n) it holds:

G
(
F
(
Xσ1(1),m(Eσ1(1))

)
, . . . ,F

(
Xσ1(n),m(Eσ1(n))

))=
G
(
F
(
Xσ2(1),m(Eσ2(1))

)
, . . . ,F

(
Xσ2(n),m(Eσ2(n))

))
, (3)

where Eσj (i) = {σj (i), . . . , σj (n)} for j ∈ {1, 2}.

Definition 11. Let n be a positive integer,  be an admissible order on L([0, 1]) and let a triplet (m, F, G) satisfies 
Condition (WDS). An interval-valued Sugeno-like FG-functional with respect to m is a function SF,G

m : (L([0, 1]))n
→ L([0, 1]) given by

SF,G
m (X1, . . . ,Xn) = G

(
F
(
Xσ(1),m(Eσ(1))

)
, . . . ,F

(
Xσ(n),m(Eσ(n))

))
(4)

for all X1, . . . , Xn ∈ L([0, 1]), where σ is a permutation on N such that Xσ(1)  . . .  Xσ(n) and Eσ(i) =
{σ(i), . . . , σ(n)}.

The following result is immediate.

Lemma 12. Let g : L([0, 1]) → L([0, 1]) be a function. If a triplet (m, F, G) satisfies Condition (WDS), then the 
triplet (m, F, g ◦ G) satisfies Condition (WDS).

Conditions under which a triplet (m, F, G) satisfies Condition (WDS), i.e. under which the function SF,G
m is well 

defined, are given in the following proposition.

Proposition 13. Let F : L([0, 1]) × L([0, 1]) → L([0, 1]), G : (L([0, 1]))n → L([0, 1]) be functions and m : 2N →
L([0, 1]) be an IV fuzzy measure with respect to an admissible order . Then the following hold:
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(i) A triplet (m, F, G) satisfies Condition (WDS) for any symmetric m.
(ii) Let G = f ◦ Proj1 for some function f : L([0, 1]) → L([0, 1]). Then a triplet (m, F, G) satisfies Condition 

(WDS) for any m.
(iii) Let F be non-decreasing in the second variable and G = f ◦∨ for some function f : L([0, 1]) → L([0, 1]). Then 

a triplet (m, F, G) satisfies Condition (WDS) for any m.

Proof. A triplet (m, F, G) satisfies Condition (WDS) if the value of the functional defined by Formula (4) is for each 
vector (X1, . . . , Xn) ∈ L([0, 1]) independent of the choice of permutation ordering this vector in accordance with 
given admissible order  on L([0, 1]). We have to discuss the case when some ties occur in vector (X1, . . . , Xn).

(i) Let X1, . . . , Xn ∈ L([0, 1]) and σ1, σ2 be permutations on N such that there is a tie:

Xσ1(k) = . . . = Xσ1(p) = Xσ2(k) = . . . = Xσ2(p) (5)

for some 1 ≤ k < p ≤ n, where Xσ1(k−1) ≺ Xσ1(k) if k > 1 and Xσ1(p+1) � Xσ1(p) if p < n. Then the symmetry 
of measure m implies

F
(
Xσ1(k+1),m

({σ1(k + 1), . . . , σ1(n)})
)

= F
(
Xσ2(k+1),m

({σ2(k + 1), . . . , σ2(n)})
)

...

F
(
Xσ1(p),m

({σ1(p), . . . , σ1(n)})
)

= F
(
Xσ2(p),m

({σ2(p), . . . , σ2(n)})
)

(6)

hence Condition (WDS) is satisfied.
(ii) Directly follows from Equation (4).

(iii) Considering the same tie as in (i), by the monotonicity of F and m, we have:

∨
(

F
(
Xσ1(k),m

({σ1(k), . . . , σ1(n)})
)
, . . . ,F

(
Xσ1(p),m

({σ1(p), . . . , σ1(n)})
)
)

=

F
(
Xσ1(k),m

({σ1(k), . . . , σ1(n)})
)

= F
(
Xσ2(k),m

({σ2(k), . . . , σ2(n)})
)

=

∨
(

F
(
Xσ2(k),m

({σ2(k), . . . , σ2(n)})
)
, . . . ,F

(
Xσ2(p),m

({σ2(p), . . . , σ2(n)})
)
)

. (7)

Hence, the triplet (m, F, ∨) satisfies Condition (WDS), and consequently, by Lemma 12, also triplet the 
(m, F, G) satisfies the condition. �

Remark 14. Observe that the three instances of well defined triplets (m, F, G) in Proposition 13 are not the only ones, 
but they involve all non-trivial cases. For instance, we do not mention the case of F(X, Y) = f (X) for some function 
f : L([0, 1]) → L([0, 1]) which together with an arbitrary function G : L([0, 1])n → L([0, 1]) yields a well-defined 
function SF,G

m for all fuzzy measures m. In fact, in that case SF,G
m does not depend on a fuzzy measure m.

Since in the definition of standard Sugeno integral the functions G = ∨ and F = ∧ are used, we also consider the 
three special cases of IV Sugeno-like FG-functionals, in particular S∧,G

m , SF,∨
m and S∧,∨

m .

Corollary 15. Let F : L([0, 1]) × L([0, 1]) → L([0, 1]), G : (L([0, 1]))n → L([0, 1]) be functions and m : 2N →
L([0, 1]) be an IV fuzzy measure with respect to an admissible order . Then the following hold:

(i) Let F be non-decreasing in the second variable. Then a triplet (m, F, ∨) satisfies Condition (WDS) for any m.
(ii) Let G = f ◦ Proj1 or G = f ◦ ∨ for some function f : L([0, 1]) → L([0, 1]). Then a triplet (m, ∧, G) satisfies 

Condition (WDS) for any m.
(iii) A triplet (m, ∧, ∨) satisfies Condition (WDS) for any m.

Proof. (i) Directly follows from Proposition 13 (iii).
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(ii) Directly follows from Proposition 13 (ii)-(iii).
(iii) Follows from item (i). �

Taking F = ∨, G = ∧ and degenerate intervals (i.e. intervals X = [X, X] with X = X) as inputs the IV Sugeno-like 
FG-functional recovers standard Sugeno integral on [0, 1].

Proposition 16. Let μ : 2N → [0, 1] be a fuzzy measure and m : 2N → L([0, 1]) be the IV fuzzy measure given by 
m(A) = [μ(A), μ(A)] for all A ⊆ N . Let S∧,∨

m : (L([0, 1]))n → L([0, 1]) be an IV Sugeno-like FG-functional with 
respect to m for F = ∨ and G = ∧. Then the function f : [0, 1]n → [0, 1] given by

f (x1, . . . , xn) = y where S∧,∨
m ([x1, x1], . . . , [xn, xn]) = [y, y], (8)

is the Sugeno integral on [0, 1] with respect to μ.

Proof. The proof follows from the observation that for any admissible order  and all x, y ∈ [0, 1] it holds [x, x] 
[y, y] if and only if x ≤ y. �

4. Properties of the IV Sugeno-like FG-functional

In this section we study the mathematical properties of the IV Sugeno-like FG-functional: idempotency, internality, 
positive and min-homogeneity, comonotone maxitivity and comonotone minitivity, boundary conditions, monotonic-
ity and property of giving back the fuzzy measure.

4.1. Idempotency

Proposition 17. An interval-valued Sugeno-like FG-functional SF,G
m is idempotent for any m whenever:

(i) F(X, 1) = X for all X ∈ L([0, 1]) and G = Proj1; or
(ii) F(X, 1) = X for all X ∈ L([0, 1]), F is non-decreasing in the second variable and G = ∨; or

(iii) G is idempotent and F(X, Y) = X for all X, Y ∈ L([0, 1]).

Proof. By Proposition 13 the functional SF,G
m : (L([0, 1]))n → L([0, 1]) is well-defined in all cases (i)-(iii). The fact 

that SF,G
m (X, . . . , X) = X for all X ∈ L([0, 1]) is easy to check. �

Remark 18. It is worth to put out that relaxing the assumption:

F is non-decreasing in the second variable

in Proposition 17 (ii) by the assumption:

F(X,Y )  F(X,1) for all X,Y ∈ L([0,1]) (9)

we obtain a sufficient condition under which SF,∨
m is idempotent for any symmetric m.

Corollary 19.

(i) An interval-valued Sugeno-like FG-functional SF,∨
m is idempotent for any m whenever F(X, 1) = X for all 

X ∈ L([0, 1]) and F is non-decreasing in the second variable.
(ii) An interval-valued Sugeno-like FG-functional S∧,G

m is idempotent for any m whenever G = ∨ or G = Proj1.
(iii) An interval-valued Sugeno-like FG-functional S∧,∨

m is idempotent for any m.

Note that, as it is in item (iii) of Proposition 17, if F(X, Y) = X for all X, Y ∈ L([0, 1]), then SF,G
m = G so the 

Sugeno-like FG-functional does not depend on fuzzy measure m and we obtain a trivial case.
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4.2. Internality

Recall that a function is called internal if it is between minimum and maximum. We study the conditions under 
which an interval-valued Sugeno-like FG-functional is internal for any (symmetric) fuzzy measure.

Proposition 20. An interval-valued Sugeno-like FG-functional SF,G
m satisfies:

(i) SF,G
m � ∧ for any m whenever

(a) F(X, 1) � X for all X ∈ L([0, 1]) and G = f ◦ Proj1 for some function f : L([0, 1]) → L([0, 1]) such that 
f � Id; or

(b) F(X, 1) � X for all X ∈ L([0, 1]), F is non-decreasing in the second variable and G = f ◦ ∨ for some 
function f : L([0, 1]) → L([0, 1]) such that f � Id .

(ii) SF,G
m  ∨ for any m whenever

(a) F(X, 1)  X for all X ∈ L([0, 1]) and G = f ◦ Proj1 for some function f : L([0, 1]) → L([0, 1]) such that 
f  Id; or

(b) F(X, 1)  X for all X ∈ L([0, 1]), F is non-decreasing in the second variable and G = f ◦ ∨ for some 
function f : L([0, 1]) → L([0, 1]) such that f  Id .

(iii) SF,G
m is internal for any m whenever

(a) F(X, 1) = X for all X ∈ L([0, 1]) and G = Proj1; or
(b) F(X, 1) = X for all X ∈ L([0, 1]), F is non-decreasing in the second variable and G = ∨.

Proof. By Proposition 13 and Corollary 15 the functional SF,G
m : (L([0, 1]))n → L([0, 1]) is well-defined in all cases. 

The fact that SF,G
m is internal is easy to check in each case separately. �

Remark 21. It is worth to put out that relaxing the assumption:

F is non-decreasing in the second variable

in Proposition 20 (i)(b) (or Proposition 20 (ii)(b), or Proposition 20 (iii)(b)) by the assumption:

F(X,Y )  F(X,1) for all X,Y ∈ L([0,1]) (10)

we obtain a sufficient condition under which SF,G
m � ∧ (or SF,G

m  ∨, or SF,G
m is internal) for any symmetric m.

Corollary 22.

(i) An interval-valued Sugeno-like FG-functional SF,∨
m satisfies:

(a) SF,∨
m � ∧ for any m whenever F(X, 1) � X for all X ∈ L([0, 1]) and F is non-decreasing in the second 

variable.
(as ) SF,∨

m � ∧ for any symmetric m whenever F(X, 1) � X for all X ∈ L([0, 1]).
(b) SF,∨

m  ∨ for any m whenever F(X, 1)  X for all X ∈ L([0, 1]) and F is non-decreasing in the second 
variable.

(bs ) SF,∨
m  ∨ for any symmetric m whenever F(X, Y)  X for all X, Y ∈ L([0, 1]).

(c) SF,∨
m is internal for any m whenever F(X, 1) = X for all X ∈ L([0, 1]) and F is non-decreasing in the 

second variable.
(cs ) SF,∨

m is internal for any symmetric m whenever F(X, Y)  X and F(X, 1) = X for all X ∈ L([0, 1]).
(ii) An interval-valued Sugeno-like FG-functional S∧,G

m satisfies:
(a) S∧,G

m � ∧ for any m whenever G = f ◦ Proj1 or G = f ◦ ∨ for some function f : L([0, 1]) → L([0, 1])
such that f � Id .

(b) S∧,G
m  ∨ for any m whenever G = f ◦ Proj1 or G = f ◦ ∨ for some function f : L([0, 1]) → L([0, 1])

such that f  Id .
(c) S∧,G

m is internal for any m whenever G = Proj1 or G = ∨.
(iii) An interval-valued Sugeno-like FG-functional S∧,∨

m is internal for any m.
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4.3. Positive and min-homogeneity

Recall that a function f : L([0, 1])n → L([0, 1]) is called positively homogeneous if f (cX1, . . . , cXn) =
cf (X1, . . . , Xn) for all (X1, . . . , Xn) ∈ L([0, 1])n and all c ∈ R+ such that c(X1, . . . , Xn) = (cX1, . . . , cXn) ∈
L([0, 1])n with convention c[X, X] = [cX, cX].

Similarly, a function f : L([0, 1])n → L([0, 1]) is called min-homogeneous if f (c ∧ (X1, . . . , Xn)) = c ∧
f (X1, . . . , Xn) for all (X1, . . . , Xn) ∈ L([0, 1])n and all c ∈R+ such that c ∧ (X1, . . . , Xn) = (c ∧ X1, . . . , c ∧ Xn) ∈
L([0, 1])n, with convention c ∧ [X, X] = [c ∧ X, c ∧ X]. We study the conditions under which an interval-valued 
Sugeno-like FG-functional is positively (min-)homogeneous for any (symmetric) fuzzy measure.

Proposition 23. An interval-valued Sugeno-like FG-functional SF,G
m is positively (min-)homogeneous for any m

whenever G is positively (min-)homogeneous and F(·, y) is positively (min-)homogeneous for every y ∈ L([0, 1]).

Proof. Easy to check. �

Corollary 24.

(i) An interval-valued Sugeno-like FG-functional SF,∨
m is positively (min-)homogeneous for any m whenever F(·, y)

is positively (min-)homogeneous for every y ∈ L([0, 1]).
(ii) An interval-valued Sugeno-like FG-functional S∧,G

m is min-homogeneous for any m whenever G is min-
homogeneous.

(iii) An interval-valued Sugeno-like FG-functional S∧,∨
m is min-homogeneous for any m.

4.4. Comonotone maxitivity

Recall that a function f : L([0, 1])n → L([0, 1]) is called comonotone maxitive if f (X ∨ Y)) = f (X) ∨ f (Y )

for all X = (X1, . . . , Xn) ∈ L([0, 1])n and Y = (Y1, . . . , Yn) ∈ L([0, 1])n which are comonotone, i.e., there exists a 
permutation σ on N with Xσ(1)  . . .  Xσ(n) and Yσ(1)  . . .  Yσ(n).

Proposition 25. An interval-valued Sugeno-like FG-functional SF,G
m is comonotone maxitive for any m whenever G

is comonotone maxitive and F(·, y) is comonotone maxitive for every y ∈ L([0, 1]).

Proof. Easy to check. �

Corollary 26.

(i) An interval-valued Sugeno-like FG-functional SF,∨
m is comonotone maxitive for any m whenever F(·, y) is 

comonotone maxitive for every y ∈ L([0, 1]).
(ii) An interval-valued Sugeno-like FG-functional S∧,G

m is comonotone maxitive for any m whenever G is comono-
tone maxitive.

(iii) An interval-valued Sugeno-like FG-functional S∧,∨
m is comonotone maxitive for any m.

4.5. Boundary conditions and monotonicity

Proposition 27. An interval-valued Sugeno-like FG-functional SF,G
m : (L([0, 1]))n → L([0, 1]) fulfills condition 

SF,G
m (0, . . . , 0) = 0 for any m whenever:

(i) F(0, 1) = 0, G = f ◦ Proj1 and f (0) = 0; or
(ii) F(0, Y) = 0 for all Y ∈ L([0, 1]) and G = f ◦ ∨ and f (0) = 0

Proof. By Proposition 13 the functional SF,G
m is well-defined in cases (i)-(ii). The fact that SF,G

m (0, . . . , 0) = 0 is easy 
to check. �
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Proposition 28. An interval-valued Sugeno-like FG-functional SF,G
m : (L([0, 1]))n → L([0, 1]) fulfills condition 

SF,G
m (0, . . . , 0) = 0 for any symmetric m whenever G(0, . . . , 0) = 0 and F(0, Y) = 0 for all Y ∈ L([0, 1]).

Proposition 29. An interval-valued Sugeno-like FG-functional SF,G
m : (L([0, 1]))n → L([0, 1]) fulfills condition 

SF,G
m (1, . . . , 1) = 1 for any m whenever:

(i) F(1, 1) = 1, G = f ◦ Proj1 and f (1) = 1; or
(ii) F(1, 1) = 1 and F is non-decreasing in the second variable, G = f ◦ ∨ and f (1) = 1.

Proposition 30. An interval-valued Sugeno-like FG-functional SF,G
m : (L([0, 1]))n → L([0, 1]) fulfills condition 

SF,G
m (1, . . . , 1) = 1 for any symmetric m whenever G(1, . . . , 1) = 1 and F(1, Y) = 1 for all Y ∈ L([0, 1]).

Proposition 31. An interval-valued Sugeno-like FG-functional SF,G
m : (L([0, 1]))n → L([0, 1]) is non-decreasing for 

any m whenever:

(i) F(·, 1) is non-decreasing, G = f ◦ Proj1 and f is non-decreasing; or
(ii) F is non-decreasing, G = f ◦ ∨ and f is non-decreasing.

Proposition 32. An interval-valued Sugeno-like FG-functional SF,G
m : (L([0, 1]))n → L([0, 1]) is non-decreasing for 

any symmetric m whenever G is non-decreasing and F is non-decreasing in the first variable.

Proof. By Proposition 13 the functional SF,G
m is well-defined. The claim is easy to check. �

Corollary 33. An interval-valued Sugeno-like FG-functional SF,G
m is an aggregation function for any m whenever

(i) F(·, 1) is non-decreasing, F(0, 1) = 0, F(1, 1) = 1, G = f ◦ Proj1 and f is non-decreasing with f (0) = 0, 
f (1) = 1; or

(ii) F(0, Y) = 0 for all Y ∈ L([0, 1]), F(1, 1) = 1 and F is non-decreasing, and G = f ◦ ∨ and f is non-decreasing 
with f (0) = 0, f (1) = 1.

Corollary 34. An interval-valued Sugeno-like FG-functional SF,G
m is an aggregation function for any symmetric m

whenever G is non-decreasing with G(0, . . . , 0) = 0, G(1, . . . , 1) = 1 and F is non-decreasing in the first variable 
with F(0, Y) = 0 and F(1, Y) = 1 for all Y ∈ L([0, 1]).

Example 4.1. Let G(X1, . . . , Xn) = 1
n

∑n
i=1 Xi ; F(X, Y) = X2 · Y + X · (1 − Y) and m(A) =

( |A|
n

)2
for A ⊆ N . 

Then SF,G
m (X1, . . . , Xn) = 1

n

∑n
i=1 Xi + 1

n

∑n
i=1

(
n−i
n

)2 (
X2

i − Xi

)
which is an aggregation function according to 

Corollary 34.

4.6. Giving back the fuzzy measure

Recall that one of the important properties of the standard Sugeno integral is that it gives back the fuzzy measure, 
i.e. Sum(1E) = m(E) for all E ⊆ N , where 1E is the indicator of the set E. A modification of this property for an 
interval-valued Sugeno-like FG-functional SF,G

m can be formulated as follows:
SF,G

m (1E) = F (1,m(E)) for all E ⊆ N , where 1E ∈ L([0, 1])n is the interval-valued indicator of the set E defined 
by 1E(i) = 1 if i ∈ E and 1E(i) = 0 otherwise.

Obviously, this property cannot be satisfied in the case of G = f ◦ Proj1 nor in the case when we consider only 
symmetric measures and general G’s. See Table 1.

Proposition 35. An interval-valued Sugeno-like FG-functional SF,∨
m gives back the fuzzy measure for any m whenever 

F(0, 1) = 0 and F is non-decreasing in the second variable.
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Table 1
Summary of sufficient conditions for particular properties of the Sugeno-like FG-functionals in three cases of Proposition 13. 
Symbol ↗ denotes non-decreasingness.

Property G = f ◦ ∨, F ↗ in sec.var. G = f ◦ Proj1 m symmetric

SF,G
m (0, . . . ,0) = 0 F(0, ·) = 0, f (0) = 0 F(0,1) = 0, f (0) = 0 F(0, ·) = 0, G(0, . . . ,0) = 0

SF,G
m (1, . . . ,1) = 1 F(1,1) = 1, f (1) = 1 F(1,1) = 1, f (1) = 1 F(1, ·) = 1, G(1, . . . ,1) = 1

Non-decreasingness f ↗ f ↗ G ↗, F ↗ in first var.
Aggregation function the above lines in this table the above lines in this table the above lines in this table
Idempotency f = id f = id G idempotent, F(X,Y ) = X

Internality f = id, F(X,1) = X f = id, F(X,1) = X –
Pos. homogeneity f pos. hom., F pos. hom. f pos. hom., F pos. hom. G pos. hom., F pos. hom.
Min-homogeneity f min-hom., F min-hom. G min-hom., F min-hom. G min-hom., F min-hom.
Comonotone maxitivity F com. maxitive F com. maxitive G com.max., F com. max.
Giving back the fuzzy measure f = id, F(0,1) = 0 – –

Proof. Let E be subset of N with card(E) = k. Then (1E)σ(i) = 0 for i = 1, . . . , n − k, (1E)σ(i) = 1 for i = n − k +
1, . . . , n and Eσ(n−k+1) = E, where σ is a permutation ordering the vector 1E non-decreasingly. Taking into account 
non-decreasingness of F in the second variable, we get

SF,∨
m (1E) =

n−k∨

i=1

F(0,m(Eσ(i))) ∨
n∨

i=n−k+1

F(1,m(Eσ(i))) = F(0,1) ∨ F(1,m(E)), (11)

and the claim follows. �

5. Construction of IV Sugeno-like FG-functional

In this section we construct IV Sugeno-like FG-functionals with respect to the orders ≤α+ and ≤α−. Since the 
width of the input intervals can be regarded as the measure of data uncertainty represented by them, it is desirable to 
take it into account in our construction. We use the similar approach as proposed in [29].

Definition 36 ([29]). Let c ∈ [0, 1], α ∈ [0, 1] and Z = [x, y] ∈ L([0, 1]). We denote by w(Z) = y − x and by dα(c)

the maximal possible width of an interval X ∈ L([0, 1]) such that Kα(X) = c. Moreover, we define

λα(Z) = w(Z)

dα(Kα(Z))
(12)

where we set 0
0 = 1.

Proposition 37 ([29]). For all α ∈ [0, 1] and X ∈ L([0, 1]) it holds that

dα(Kα(X)) = ∧
(

Kα(X)

α
,

1 − Kα(X)

1 − α

)

, (13)

where we set r
0 = 1 for all r ∈ [0, 1].

Let α ∈ [0, 1] and let M1, M2 : [0, 1]n → [0, 1] be n-ary functions. We define an interval function MIV :
(L([0, 1]))n → L([0, 1]) as follows:

MIV (X1, . . . ,Xn) = Y, where

{
Kα(Y ) = M1 (Kα(X1), . . . ,Kα(Xn)) ,

λα(Y ) = M2 (λα(X1), . . . , λα(Xn)) ,
(14)

for all X1, . . . , Xn ∈ L([0, 1]). It was proved in [29] that MIV is an IV aggregation function with respect to ≤α+ and 
≤α− whenever M1, M2 be aggregation functions where M1 is strictly increasing. Now we show that the obtained MIV

preserves some properties of the functions M1 and M2, in particular the properties of t -norms.
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Proposition 38. Let α ∈ [0, 1], let M1, M2 : [0, 1]n → [0, 1] be functions and let MIV : (L([0, 1]))n → L([0, 1]) be 
an interval function given by Equation (14). Then the following hold:

(i) MIV (0, . . . , 0) = 0 whenever M1(0, . . . , 0) = 0.
(ii) MIV (1, . . . , 1) = 1 whenever M1(1, . . . , 1) = 1.

(iii) For n = 2 MIV (0, Y) = 0 for all Y ∈ L([0, 1]) whenever M1(0, y) = 0 for all y ∈ [0, 1].
(iv) For n = 2 MIV (0, Y) = Y for all Y ∈ L([0, 1]) whenever M1(0, y) = y and M2(1, y) = y for all y ∈ [0, 1].
(v) For n = 2 MIV (1, Y) = Y for all Y ∈ L([0, 1]) whenever M1(1, y) = y for all y ∈ [0, 1].

(vi) MIV is symmetric whenever M1 and M2 are symmetric.
(vii) MIV is associative whenever M1 and M2 are associative.
(viii) MIV is non-decreasing whenever M1, M2 are non-decreasing and M1 is strictly increasing on

{(x1, . . . , xn) ∈ [0,1]n |M1(x1, . . . , xn) /∈ {0,1}}. (15)

(ix) Let k ∈ N , then MIV is non-decreasing in the k-th variable whenever M1, M2 are non-decreasing in the k-th 
variable and M1 is strictly increasing in the k-th variable on

{(x1, . . . , xn) ∈ [0,1]n |M1(x1, . . . , xn) /∈ {0,1}}. (16)

Proof. The items (i), (ii) and (viii) follow from [28, Theorem 3.16]. With respect to (iv) observe:

Kα

(
MIV (0, Y )

)= M1
(
Kα(0),Kα(Y )

)= M1
(
0,Kα(Y )

)= Kα(Y ) (17)

and

λα

(
MIV (0, Y )

)= M2
(
λα(0), λα(Y )

)= M1
(
1, λα(Y )

)= λα(Y ). (18)

The proofs of (iii) and (v) are similar to that of (iv) observing that if Kα(Y ) = 0 (or Kα(Y ) = 1), then Y = 0 (or 
Y = 1) regardless the value of λα(Y ). The items (vi) and (ix) are straightforward. Finally, with respect to (vii), let 
U = MIV

(
MIV (X, Y), Z

)
and V = MIV

(
X, MIV (Y, Z)

)
. Then, by the associativity of M1, we have

Kα(U) = M1

(
M1
(
Kα(X),Kα(Y )

)
,Kα(Z)

)
= M1

(
Kα(X),M1

(
Kα(Y ),Kα(Z)

))= Kα(V ) (19)

and similarly, by the associativity of M2, also λα(U) = λα(V ). �

Remark 39. It is worth to put out that, taking M1 = ∧ (i.e., minimum in [0, 1]), the induced MIV is not minimum 
in L([0, 1]) for any M2. In particular, it is easy to check that since minimum in [0, 1] is not strictly increasing, the 
monotonicity of MIV is violated. Hence, S∧,∨

m �= SMIV ,∨
m if MIV is induced by M1 = ∧.

Corollary 40. Under the assumptions of Proposition 38, if n = 2 then the following hold:

(i) MIV is an IV t -norm whenever M1 is a strictly increasing t -norm and M2 is a commutative, associative and 
non-decreasing function.

(ii) MIV is an IV t -conorm whenever M1 is a strictly increasing t -conorm and M2 is t -norm.

Example 5.1. We give examples of IV Sugeno-like FG-functionals SF,G
m obtained by the construction based on 

Proposition 13, Equation (14) and Proposition 38. The measure m need not be symmetric. The functional SF,G
m is 

well-defined if we take G = f ◦ ∨ where, for instance, f (X) = X or f (X) = X2 =
[
X2,X

2
]

or f (X) = √
X =

[√
X,
√

X
]
; and F induced by M1, M2 : [0, 1]2 → [0, 1] where, for instance:

(i) M1(x, y) = xy and M2 = M1.
(ii) M1(x, y) = xy and M2(x, y) = (1 − a2)x + a2y for some a2 ∈ [0, 1].

(iii) M1(x, y) =
{

0, if x = y = 0
xy

x+y−xy
, otherwise

and M2 = M1.
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Table 2
In the second column, the list of the Sugeno-like FG-functionals constructed in Exam-
ple 5.1 satisfying the property in the first column is given. In the third column, the justifi-
cation is indicated.

Property Sugeno-like FG-functionals Justification

Well-defined (i), (ii), (iii), (iv), (v) Proposition 13 (iii)

SF,G
m (0, . . . ,0) = 0 (i), (ii), (iii), (iv) Proposition 38 (iii)

SF,G
m (1, . . . ,1) = 1 (i), (ii), (iii), (iv), (v) Proposition 38 (ii)

Non-decreasingness (i), (ii), (iii), (iv), (v) Proposition 38 (viii)
Aggregation function (i), (ii), (iii), (iv) The above lines of this table
Idempotency (i), (iii), only for G = ∨ Proposition 17 (i)
Internality (i), (iii), only for G = ∨ Proposition 20 (iii) (b)

(iv) M1(x, y) =
{

0, if x = y = 0
xy

x+y−xy
, otherwise

and M2(x, y) = (1 − a2)x + a2y for some a2 ∈ [0, 1].
(v) M1(x, y) = (1 − a1)x + a1y and M2(x, y) = (1 − a2)x + a2y for some a1 ∈]0, 1[ and a2 ∈ [0, 1].

Note that:

• In all the relevant cases, (ii), (iv) and (v), by the parameters a1, a2 we can regulate the relative weight we put on 
inputs Xσ(i) and fuzzy measures m(Eσ(i)), in particular, taking a1 = 0.5 we put the same weight to Xσ(i) as to 
m(Eσ(i)); taking a1 = 0.25 we put the greater weight to Xσ(i) as to m(Eσ(i)) and vice versa for a1 = 0.75.

• The measure m need not to be symmetric in the above examples (i)-(v). For symmetric measures, there are no 
restrictions for F and G, see Proposition 13 (i), so we can apply any functions F : L([0, 1]) × L([0, 1]) →
L([0, 1]), G : (L([0, 1]))n → L([0, 1]).

• The function M1 in items (iii)-(iv) is the Hamacher product so it is possible to generalize the class of examples 
by taking M1(x, y) = xy

γ+(1−γ )(x+y−xy)
for any γ ≥ 0. In fact, we can apply as M1 any strict t -norm.

• In Table 2 the summary of the properties satisfied by the Sugeno-like FG-functionals constructed in the above 
examples (i)-(v) is given.

6. IV Sugeno-like FG-functional applied in a brain computer interface

In this section, we use the proposed IV Sugeno-like FG-functional in a BCI framework that uses interval-valued 
predictions. We detail this framework, how the interval-valued logits are constructed, and how different versions the 
proposed IV-Sugeno compare to other IV-aggregations, and to other BCI frameworks.

6.1. Motor imagery brain computer interface framework

BCI systems usually consist of four different modules. The initial step is the EEG data acquisition and conditioning 
(signal amplification and different filters to remove noise, high impedance sensors, etc.). The second block of pro-
cedures is related to extracting features. It often includes filtering the EEG signal in one or several frequency bands, 
which can be subject-specific or fixed for all participants [30,31]. This block might include some dimensionality 
reduction procedure such as Spatio-spectral decomposition (SSD) [32,33]. Another common step is the application 
of an optimized spatial filtering method such as common spatial patterns (CSP, [34–38]). In case of focusing on 
power-based features, they are usually gaussianized by applying the natural logarithm. Then, the classification step of 
the features is carried out, usually based on linear classifiers ([39–41]). Often classifier ensembles are implemented, 
where the final decision is performed combining the outputs of all classifiers [42,12]. The last module is related to the 
feedback to the user, which usually is in form of visual feedback, but can also be auditory or somatosensory [43–45].
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Fig. 1. Graphical depiction of the BCI framework. After measuring the EEG, SSD is computed in four different bands to reduce dimensions and 
increase the signal-to-noise ratio. Then CSP is applied.

6.2. Feature extraction and classification

Features from the EEG were extracted from four subject-independent and overlapped frequency bands which cover 
the range from low alpha to high beta in the following ranges: 6-10, 8-15, 14-28 and 24-35 Hz. The time interval where 
the features were extracted was optimized for each band and class-pair by analyzing the event-related desynchroniza-
tion/synchronization (ERD/ERS) time courses over the sensorimotor channels [46,47]. For that, the envelope of the 
EEG signals was estimated with the magnitude of the analytic band pass filtered EEG and averaged over trials of each 
class separately. The final time interval was chosen adding those time samples whose the pair-wise discriminability 
using the envelopes as features were higher. The selected time intervals were used to crop the EEG signals and then 
SSD was computed to reduce the number of dimensions in a specific band [32,33]. SSD decomposes multivariate 
data into sources of maximal signal-to-noise ratio (SNR) in a narrow-band. The selected sources with high SNR 
were then projected on to a few common spatial directions [46,48]. The power of the projected training signals was 
then computed for each trial and the natural logarithm applied. Finally, LDA classifiers were trained for subsequent 
classification, see Fig. 1.

Regarding the testing set, the features were extracted as follows: the EEG was filtered in the four narrow bands of 
interest and then projected onto the corresponding SSD and CSP filters (depending on the class pair and band). The 
data were cropped in the time intervals selected with the training set. Finally, the power of each trial and projection 
was estimated and the natural logarithm applied. These features were then classified using the LDA previously trained.

6.3. Interval-valued predictions using different classifiers

In order to generate interval-valued outputs from our system, we have opted to use the predictions from different 
classifiers. We use the variability between them in order to estimate the uncertainty related to each of our predictions. 
The process is the following:

1. We choose a set of n different kinds of classifiers. For our experimentation, we have chosen three different types: 
Support Vector Machine (SVM), Gaussian Process (GP) and K-Nearest Neighbors (KNN).

2. From the features obtained from each of the wave bands studied, we train a classifier of each kind. In our case, 
this means that we train a SVM, a GP and a KNN for each wave band.

3. For each wave band, we have n different predictions for each different class. We generate an interval for each 
wave band and class using the lowest and the maximum predictions respectively.

After the final step, we have obtained for each class one interval-valued prediction per wave band. Then, we 
aggregate the interval-valued predictions for each sample using a suitable aggregation function and a α,β order. 
Finally, we choose the maximum value according to the previously established order.
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Table 3
Results for the CBCIC dataset using different interval-valued ag-
gregations.

Aggregation function Accuracy F1-Score

IV-Sugeno1 0.8175 ± 0.1342 0.8149 ± 0.1366
IV-Sugeno2 0.8162 ± 0.1338 0.8138 ± 0.1359
IV-Sugeno3 0.7994 ± 0.1324 0.8014 ± 0.1313

IV-OWA1 0.8141 ± 0.1327 0.8127 ± 0.1340
IV-OWA2 0.8162 ± 0.1338 0.8138 ± 0.1359
IV-OWA3 0.8100 ± 0.1327 0.8073 ± 0.1352

IV-MD 0.8097 ± 0.1318 0.8085 ± 0.1315

Table 4
Results for the CBCIC dataset using different BCI frameworks.

Framework Accuracy F1-Score

IV-Sugeno1 0.8175 ± 0.1342 0.8149 ± 0.1366
EEG Net [50] 0.6562 ± 0.1232 0.5933 ± 0.1712
Shallow Net [51] 0.7453 ± 0.13289 0.7342 ± 0.1489
Deep Net [51] 0.5331 ± 0.1356 0.4218 ± 0.1282
Multiscale CSP [52] 0.7956 ± 0.1144 0.7911 ± 0.1175
Gradient Boosting [53] 0.5956 ± 0.1203 0.5354 ± 0.1169

6.4. Experimental results for a left/right hand BCI task

We have performed our experimentation in the Clinical BCI Challenge WCCI 2020 dataset (CBCIC) [49]. This 
dataset consists of brain imaging signals from 10 hemiparetic stroke patients with hand functional disability in a 
rehabilitation task. The data contains 80 different trials of left/right hand movements. Decoding motor cortical signals 
of brain-injured presents several challenges as the presence of irregular because of the altered neurodynamics.

We have tried different versions of the newly proposed IV Sugeno-like FG-functionals, using the cardinality fuzzy 
measure in all of them, i.e., m(A) = |A|

n
for A ⊆ N :

• IV-Sugeno1: G(X1, . . . , Xn) = 1
n

∑n
i=1 Xi , F(X, Y) = X2Y + X(1 − Y);

• IV-Sugeno2: G(X1, . . . , Xn) = 1
n

∑n
i=1 Xi , F(X, Y) = X(1 − Y);

• IV-Sugeno3: G(X1, . . . , Xn) = max(X1, . . . , Xn), F(X, Y) = min(X, Y),

for X1, . . . , Xn, X, Y ∈ L([0, 1]).
We have also studied other interval-valued aggregation functions: the interval-valued OWA operators and the 

interval-valued Moderate deviation functions. We have also compared with other BCI frameworks based on Deep 
Learning: the EEG net [50], and two other different Deep Learning architectures [51]; a different version of CSP 
using different temporal scales to extract features [52]; and Gradient Boosting [53].

In order to evaluate the performance of each different proposal in this dataset, each participant’s dataset was ran-
domly sampled in ten different partitions (each with 50% train and 50% test trials), resulting in a total of 80. The final 
performance of each configuration was obtained averaging each single dataset accuracy and F1-Score.

The results were obtained using different aggregation functions in the decision making phase and compared the 
newly proposed MCAs. Both the adaptive and the non-adaptive mixing parameter were employed with a set of stan-
dard aggregations and also with the already existing penalty-based aggregation functions.

Table 3 shows the results for each of the different interval-valued aggregations used in this BCI framework. IV-
Sugeno1 obtained the best result, followed by IV-Sugeno2 and IV-OWA2. Table 4 shows the comparison between the 
best interval-valued aggregation using our BCI framework and other BCI frameworks. The IV-Sugeno obtained the 
best results in this comparison, followed by the Multiscale CSP.
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7. IV Sugeno-like FG-functional applied in social network analysis

In this section we propose an interval-valued version of the affinity functions proposed in [26] to characterize the 
relationship between two actors in a network.

We start by recalling the notions of centrality measure and affinity function in social network analysis. Then we 
show how we construct the iv-affinity functions and propose new centrality measures based on them. These metrics 
characterize each actor based on the difference in commitment that has in its relationships.

7.1. Centrality measures in social network analysis

In social network analysis, centrality measures are metrics to ponder how relevant each node is in a structure 
[54,55]. Some very well known centrality measures are:

• Degree centrality: the number of edges incident upon an actor. In the case of directed networks, the degree is 
the sum of the number of edges incident to the actor (in-degree) and the number of edges salient to the actor 
(out-degree).

• Betweenness centrality: the betweenness of an actor is the number of times that node is in the shortest path of 
other two nodes. It measures the importance of the actor in the network’s information flow.

• Closeness centrality: the closeness centrality of an actor is the average length of the shortest path between that 
node and the rest of the nodes in the network. It establishes a center-periphery difference.

• Eigenvector centrality: it assigns a relative score to each actor in the network based on the idea that connections 
to well connected actors should ponder more than connections to poorly connected ones.

7.2. Affinity functions in social network analysis

Affinity functions were proposed in [26] as a way to measure the relationship between a pair of actors in a social 
network using their local information. We denote by V the set of all actors. “Affinities” are defined as functions over 
the set V 2 of all pairs of actors in a given social network assigning a number FC(x, y) ∈ [0, 1] to every pair of actors 
(x, y) ∈ V 2.

Usually, C is the adjacency matrix of the network. Each of the entries C(x, y) in C quantifies the strength of the 
relationship for the pair of actors x, y in a network V . The affinity between two actors shows how strongly they are 
connected according to different criteria, depending on which aspect of the relationship we are taking into account. 
A 0 affinity value means that no affinity has been found at all while an 1 value means that there is a perfect match 
according to the analyzed factors.

In the following, we recall the definition of two affinity functions (additional affinity functions can be found in [26]
and [56]):

• Best friend affinity: it measures the importance of a relationship with an agent y for the agent x, in relation to all 
the other relationships of x:

FBF
C (x, y) = C(x, y)

∑
a∈V C(x, a)

. (20)

• Best common friend affinity: it measures the importance of the relationship taking into account how important 
are the common connections between the connected nodes to x and y, in relation to all other relationships of x in 
the network:

FBCF
C (x, y) = maxa∈V {min{C(x, a),C(y, a)}}

∑
a∈V C(x, a)

. (21)

For example, in the case of Best common friend affinity, 0 value means that there is no common connections 
between the two actors and a high value means that their shared friends are important to both of them. Since affinities 
are not necessarily symmetrical, the strength of this interaction depends on who the sender and receiver are, as it 
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happens in human interactions e.g. unrequited love. So, it is possible that actor x has an affinity of value 1 with y, 
while y has a much lower value with x.

7.3. Interval-valued affinity functions

We define interval-valued affinity functions (IV-affinity functions) as functions that characterize the relationship 
between two actors, x, y with an interval in the [0, 1] range, where the width of that interval represents the difference 
in commitment between two parties. We construct an interval-valued affinity function using a previously computed 
numerical affinity function. Then, the interval is constructed as:

FC,IV (x, y) = [min{FC(x, y),FC(y, x)},max{FC(x, y),FC(y, x)}] (22)

Because FC(x, y) �= FC(y, x) in most relationships, this means that in most of them the actors give different levels of 
commitment than their counterparts. In real life, these kinds of situations are usually solved by finding a compromise 
between both parties. The IV-affinity function models this idea, representing the actual relationship that it is formed 
with an interval that ranges from both levels of commitment. The interval models the fact that we know that the final 
compromise achieved by both actors should be between both commitment levels, but we do not know exactly the final 
compromise.

One of the main differences between IV-affinity functions and their numerical counterpart is that they are symmet-
ric. This can be convenient, as it allows to represent the relationship between two parties with one interval instead of 
two numerical values. This also opens the possibility of using some of the existing methods that require symmetric 
matrices in social network analysis [55,57], while retaining the desirable properties of affinity functions, i.e. zeros-sum 
game philosophy or local-only interactions taken into account [58].

7.4. Using interval-valued affinity functions to construct centrality measures

In this section we present four different centrality measures using IV-affinity functions. Usually, centrality measures 
ponder the importance of each actor in the network. However, our proposed centrality measures characterize the 
tendency of each actor to form relationships that have very different levels of commitment, and if the actor tends to 
show more or less commitment than the other party in each of its relationships.

The proposed centrality measures are:

1. Asymmetry is the tendency of the actor to form relationships with different levels of commitment.
2. Altruism is the tendency of the actor to form relationships in which its level of commitment is bigger than the 

other party.
3. Egoism is the tendency of the actor to form relationships in which its level of commitment is lesser than the other 

party.
4. Generosity is the difference between altruism and egoism. A positive generosity means that overall, the actor 

tends to give more commitment in its relationships than the other part. A negative generosity means that the actor 
tends to give less commitment than the other part in a relationship.

We have considered two possibilities to compute these metrics: using the width of each IV-affinity function and 
aggregate those values, or aggregating the IV-affinity values using an IV-aggregation and then use the width of the 
aggregated interval. We have opted for the latter, because in this way we are taking into account that some intervals 
have the same width, but are different.

We are specially interested in this property in the case where two actors have the same average width for their 
respective IV-affinity values. In these occasions, we consider that the one that presents more variety in their IV-
affinities is more asymmetric than the other. For example, if an actor x has 3 different IV-affinities, and all of the are 
(0, 0.3), and we have other actor y that has as IV-affinities (0, 0.3), (0.4, 0.7) and (0.7, 1.0). We should assign the 
highest asymmetry value to y, because this actor presents this level of asymmetry in its relationships in all the [0, 1]
range.

Taking these considerations into account, we compute these centrality measures using the following expressions, 
with an IV-aggregation function I .
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1. Asymmetry:

A(x) = w
(
I (FC,IV (x, y1), . . . ,FC,IV (x, ym))

)
, (23)

where {y1, . . . , ym} = V \ {x}.
2. Altruism:

L(x) = w
(
I (FC,IV (x, y1), . . . ,FC,IV (x, yk))

)
, (24)

where {y1, . . . , yk} ⊆ V \ {x} is the set of all actors yj fulfilling FC(yj , x) ≤ FC(x, yj ) for each j = 1, . . . , k.
3. Egoism:

E(x) = w
(
I (FC,IV (x, y1), . . . ,FC,IV (x, yl))

)
, (25)

where {y1, . . . , yl} ⊆ V \ {x} is the set of all actors yj fulfilling FC(x, yj ) ≤ FC(yj , x) for each j = 1, . . . , l.
4. Generosity:

S(x) = L(x) − E(x) (26)

For our experiment, we have used as I the proposed IV Sugeno-like FG-functional, with G(X1, . . . , Xn) =
min{1, 

∑n
i=1 Xi}, F(X, y) = X · (1 − y) and the cardinality measure m(A) = |A|

n
as the fuzzy measure. Note that in 

the three respective cases of centrality measures defined above, the arity n of applied IV Sugeno-like FG-functional 
I is m, k, l, respectively.

7.5. Experimental results for a social network

In this section we have studied the proposed centrality measures in a word association network, constructed using 
The Younger Edda book. The Younger Edda is Old Norse textbook of mythical texts, written approximately in 1220 
by Snorri Sturluson. This book contains the tales of popular characters in the Nordic folklore, like Odin, Thor or Loki.

In order to extract the word association network from this text, we have followed the standard procedure to tokenize 
and lemmatize the text [59,60] and we have used a pre-trained multilayer perceptron in the Python Natural Language 
ToolKit [61] to purge every word that is not a noun, since we only want to model interaction between entities and 
concepts. Once we have extracted the nouns from the text, what we have is a series of stemmed tokens. To obtain a 
network, we need to determine its nodes and edges. In the case of the nodes, we make a bijective association, so that 
one noun corresponds to one node, and vice versa. There are different ways to compute the edges in terms of noun 
co-occurrence. We have decided to create an edge every time a word appears in a k-distance or less from another in 
the text, choosing k as 10. The text has been obtained from the Gutenberg Project [62].

We have computed the proposed centrality measures in this network: asymmetry, egoism, altruism and generosity. 
Fig. 2 shows the results in this network, coloring each node according the value of each metric. We found that the 
actors with highest degree tend to be less altruistic, like “Odin”, “Thor”, “Balder” or “Loki”. However, low values in 
altruism do not necessarily imply high egoism values, as these same actors only showed moderate egoism values. The 
highest egoism values were located in actors like “gold” or “gods”, that connected low degree actors with the ones 
with highest value. These actors also presented a moderate altruism value, that comes from their relationships with 
higher degree values. This means that the most egoist actors are willing to have a small number of connections where 
they are the “losing” part, because it allows them to have more relationships where they are the “favored” part.

Regarding generosity, most nodes have a negative value. The generous actors are low degree actors connected to 
higher degree actors, which in this case are concepts not very frequent in the original text. The less generous actors 
have small-medium degree values, generally connected to a small set of higher degree, high egoism actors, and a 
another set of very generous ones.

Table 5 shows the top values for each centrality measure. The highest asymmetry values correspond to actors like 
“Hammer”, mostly connected with “Thor”, a high degree actor; “Journey”, connected to individual characters; and 
other general concepts. Altruism presents a similar top 10 of values, but with the presence of two individuals: “Sigurd”, 
who is connected to one of the most egoist actors, “gold”; “Hermod”, connected almost exclusively to characters with 
negative generosity like “Balder”, “Odin” and “Æsir”; and “Hymir”, who is connected to a similar set of actors to 
“Hermod”. The most egoist actors are general concepts like ‘Name”, “Man”, “Land” or “Gold”. The only exception 
is “Atle” because he has only one relationship where he is the least committed part.
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Fig. 2. Altruism (a), Egoism (b), Asymmetry (c) and Generosity (d) for the Younger Edda network, marked with different colors. Node size is 
proportional to the node degree. We can see that most actors are more egoist than altruist. In fact, some of the most important actors in this network 
show no altruism at all. However, no altruism does not necessarily imply a high egoism. For example, “Odin” and “Thor” show no altruism (so all 
their in-affinities are higher or equal than their out-affinities), but their asymmetry value is also low.

8. Conclusions and future lines

In this work we have proposed a new version of the generalized Sugeno integral to aggregate interval-valued data 
(IV-Sugeno). This function is designed to aggregate intervals taking into account the coalitions between the input data, 
just as the numerical Sugeno integral. We have also proposed two applications in which we use interval-valued data: 
a brain computer interface framework where the intervals measure the uncertainty related to the output of different 
classifiers; and social network analysis, where the intervals measure the difference in commitment in a relationship, 
and how this can be used to construct a centrality measure to characterize each actor.

Our results show that the generalized IV-Sugeno aggregation performs better than other IV-aggregations for a 
brain computer interface classification network. We have also found that the functions used to construct the general-
ized IV-Sugeno are critical in its performance and its mathematical properties. Finally, we have also shown how the 
generalized IV-Sugeno can be used to successfully characterize each actor in a network depending on the asymmetry 
in its relationships.

Future research shall study the use of the proposed IV-Sugeno in other settings, like image processing; and the 
study of other fuzzy integrals in the interval-valued setting. We also intend to study the possibilities of using IV-
affinity functions with classical centrality measures in social network analysis and the possible correlations of the 
newly centrality measures proposed with classical ones.

338

185
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Table 5
Top 10 values for the different centrality measures pro-
posed: Asymmetry, Altruism, Egoism, Generosity. *We 
showed the generosity on the top 5 actors that showed > 0
altruism, because when altruism = 0 → generosity = ego-
ism, and the analogous thing for the least 5 ones with respect 
to egoism.

Asymmetry
Actor Value

Hammer 0.7808
Journey 0.7512
Drink 0.6451
Names 0.6402
Air 0.6391
Night 0.6312
River 0.62891
Jotunheim 0.6257
Head 0.6217
Giants 0.6188

Altruism
Actor Value

Drink 0.6451
Air 0.6391
Night 0.6312
River 0.6289
Hammer 0.6255
Giants 0.6154
Oath 0.6154
Hymir 0.5883
Sigurd 0.5865
Hermod 0.5818

Egoism
Actor Value

Atle 0.7875
Country 0.7777
Names 0.7678
Men 0.73320
Land 0.7103
Gold 0.6920
Vale 0.6748
Man 0.6443
Idun 0.6261
Geirrod 0.6124

Generosity*
Actor Value

Home 0.5226
Wife 0.3484
Journey 0.3277
Children 0.2550
Brother 0.2210
People -0.4730
Idun -0.4830
Land -0.4985
Gefjun -0.5414
Gold -0.6000
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5

the final result taking into account the original difference in
their semantic values S and the average affinity value in the
edges used to carry it.

Since some actors naturally have low affinity values, for
example when they have a lot of connections, the expected
value of the average affinity values of a path can be deceptively
low. In order to better compare the different semantic affinities
that originate from actor x, we rescale the result by the
maximum semantic affinity that x emits. This leads us to the
final expression of A(x, y):

A(x, y) =

(
1− |S(x)− S(y)|

max(S(x), S(y))

) ∑
P

|P | ·
1

∨z∈ZFC(x, z)

(10)

where P is the list of affinity values in the edges used in the
paths to carry the semantic value, S(x), from x to y, and Z
is the set of all actors connected to x.

The pseudo-code for the pipe comparison algorithm is in
Algorithm 1 and in Figure 1 we show a graphical example of
one execution of this algorithm.

In order to compute the semantic affinity in our experi-
mentation, we have used a combination of best friend and
Machiavelli affinities as the FC(x, y). Using this mix of
affinity functions we can characterize each edge based on the
importance of the pairwise relationship between x and y, and
also take into account the relative importance that both of their
social circles have in the network. This is important for two
reasons:

1) In high degree actors, the best friend affinity values
are necessarily low, which will result in artificially low
semantic values.

2) The Machiavelli affinity gives high affinity to actors that
play a similar role in the network. In the texts we are
studying, these results in high affinity values to concepts
that play a similar role in the tales.

So, it is natural to think that those actors are transmitting
information between them, even though the best friend affinity
value between them is not high. We have combined both
affinity functions using a convex combination, so the value
of each edge is 90% the best friend affinity value and 10%
the Machiavelli affinity, but we set to 0 all affinity values in
the edges where the original Best friend affinity was 0.

V. COMPARATIVE MYTHOLOGY ANALYSIS USING THE
SEMANTIC VALUE AND THE SEMANTIC AFFINITY

In this section we discuss the different steps to perform our
mythology analysis:

1) How we constructed the network for each mythology,
and how we fused them.

2) The results for the centrality measures and the semantic
value in each network.

3) The affinity values for the semantic, best friend and
Machiavelli affinities for important characters in their
respective mythologies.

Algorithm 1 Pipe Comparison Algorithm

function FILLPATH(c, x, y, edgesSeen, FC , M )
if M(c(0)) ≤ 0 then

return []
end if
lenPath = length(c)− 1
liquidCarried← 0
restingLiquid←M(x)
for i ∈ range(lenPath) do

afPath← FC(c(i), c(i+ 1))
carry ← min(m(c(i + 1), afPath ∗

restingLiquid)
M(c(i + 1)) ← max(0, capacities(c(i + 1)) −

afPath ∗ carry)
liquidCarried← liquidCarried+ carry
append(edgesSeen, ((c(i), c(i+ 1)))

end for
M(c(0))←M(c(0))− liquidCarried
return edgesSeen

end function
function PIPECOMPARISON(G, x , y)

FC ← buildAffinityNetwork(G)
M ← computeSemantics(G)
shortestPaths← allEfficientPaths(FC , x, y)
edgesSeen← []
for c ∈ allEfficientPaths do

append(edgesSeen,
fillPath(c, x, y, edgesSeen, FC ,M))

end for
return (1 − |M(x) − M(y)|/max(M(x),M(y))) ∗

average(edgesSeen)/max(Af(x, :))
end function

A. Building the mythology networks

In this section we show how we built the network for each
mythology. We discuss which books were used to form each
network, some statistics regarding word counts, and how we
processed the text to obtain the desired networks.

1) Processing the texts: We have chosen three of the
ancient mythologies to perform the comparative study: Greek,
Nordic, and Celtic. We have opted for these three due to
their well-known interest and the existence of available com-
pilations of tales translated to English, which makes the
text processing for each book much easier. We have chosen
selected the following books as a basis for our analysis:
• Celtic Wonder-Tales by Ella Young (1867-1956) [64].

Originally written in 1910, it is a collection of Celtic
traditional tales translated to modern English.

• Greek Myths by Olivia Collidge (1908-2006) [65]. Is
a compilation of various stories regarding the classical
Greek pantheon in modern English.

• The Younger Edda by Snorri Sturluson (1179-1241) [66].
The Prose Edda or The Younger Edda is a medieval
Icelandic compilation of mythical texts, made by Snorri
Sturluson, who was a historian, politician and poet in
Iceland [67]. The degree of originality that he added to
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Apolo

Sun

Virtue

Zeus

Power

1. We start with “Apollo” containing his full
semantic value, that will be propagated to ”Zeus”

  

Apolo

Sun

Virtue

Power

Zeus

1. Apolo→ Zeus

2. First, the semantic value is propagated using
the affinity function between the two actors. Since
it is not enough to carry all the semantic value,
we proceed to look for another path.

  

Apolo

Sun

Virtue

Power

Zeus
1. Apolo→ Sun 2. Sun→ Zeus1. Apolo→ Sun

3. We propagate all the possible semantic value
thorugh “Sun”, and then to “Zeus”. We have
saturated the capacity of this path, but not the
capacity of ‘Sun”.

  

Apolo

Sun

Virtue

Power

Zeus

1. Apolo→ Virtue

2. Virtue→ Sun

3. Sun→ Zeus

4. We use the affinity between “Apollo” and
“Virtue”, and between “Virtue” and “Sun” to fill the
rest of “Sun”. We have filled “Sun” completely, but
we can still propagate thorugh “Virtue”.

  

Apolo

Sun

Virtue

Power

Zeus

1. Apolo→ Virtue 2. Virtue→ Power
3. Power→ Zeus

5. We fill “Zeus” using the affinity between “Apollo”
and “Virtue”, “Virtue” and “Power” and “Power”
to “Zeus”. Some semantic value is still in Apollo,
but “Zeus” is already filled so we cannot propagate
more.

Fig. 1: Example for a simplified execution of the Pipe algorithm to compute the semantic affinity between “Apollo”
and “Zeus”. Each subfigure describes the multiples steps taken to carry the semantic value from one actor to another. In this
case we were able to fill “Zeus” completely, but we needed to use all the possible affinity values in the network, and some
semantic value from “Apollo” did not fit in “Zeus”.

this compilation is unclear but the original stories contain
material from traditional sources, reaching the Viking
Age.

Since we have the plain text files, it is easy to extract
each chapter/tale in each book. We then parse each of them
following the standard procedure [68], [69] using a pre-trained
multilayer perceptron in the Python Natural Language ToolKit
[70]. We purge every word that is not a noun, since we only
want to model interaction between entities and concepts. In
Table I we report the size of each book and the number
of entities found. All the texts have been obtained from the
Gutenberg Project [71].

2) Obtaining the networks: Once we have extracted the
nouns from the text, what we have is a series of stemmed
tokens. To obtain a network, we need the nodes and the edges
to form it. In the case of the nodes, we will make a bijective
association, so that one noun will correspond to one node, and

TABLE I: Report of the size of each mythology. Number of
words, chapters and entities for each book in this work.

Mythology Book Chapters Words Entities

Celt Celtic Wonder-Tales 13 41613 5114

Greek Greek Myths 27 61246 5985

Nordic The Younger Edda 21 65388 7521

vice versa. There are different ways to compute the edges in
terms of noun co-occurrence. We have decided to create an
edge every time a word appears in a k-distance or less from
another in the text, choosing k as 10.

3) Fusing the networks: Given the network for each tale,
we can fuse them to obtain a “global” network containing
the information from all the different networks referring to
each tale. Since many of these stories share a fair group of
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TABLE II: Entity intersection for the three cultures. Per-
centage of entities in each culture that also are present in
another one.

Common entities Celt Greek Nordic

Celt - 19.59% 17.20%
Greek 19.59% - 23.08%
Nordic 17.20% 16.69% -

TABLE III: Centrality measures in Greek Myths network.
For the top 10 most repeated entities in the associated texts.

S E Freq. (I) Degree Betweenness Closeness Eigencentrality

Heracles 239.49 89.49 150 364 0.48 0.52 0.53
Theseus 84.69 29.69 55 118 0.10 0.44 0.21
King 84.15 27.15 57 55 0.03 0.42 0.13
Jason 76.93 27.93 49 88 0.06 0.37 0.13
Apollo 64.83 20.83 44 86 0.08 0.40 0.13
Psyche 64.72 15.72 49 91 0.07 0.39 0.13
Eurystheus 57.54 25.54 32 77 0.01 0.39 0.16
Zeus 57.27 21.27 36 75 0.09 0.43 0.14
Perseus 45.30 16.30 29 54 0.04 0.36 0.08
Pelias 43.76 21.76 22 48 0.02 0.37 0.09

topics, they all have a significant amount of common terms
with the others (Table II). There are no problems of scale
in this context, since all stories range from 2 to 7 pages long
only. So, we simply add up all the edges into a single network.
When an edge between two actors is repeated in various of
the networks, we take the highest value.

B. Analysis of the semantic value and centrality measures in
the myth networks

We computed the word association networks for each of
the mythologies studied and then we fused the networks into
a single one, which are shown in Figure 2. Then, we computed
the intrinsic, extrinsic and semantic value for each actor.
We also computed other common centrality measures social

TABLE IV: Centrality measures in Celtic Wonder-Tales net-
work. For the top 10 most repeated entities in the associated
texts.

S E Freq. (I) Degree Betweenness Closeness Eigencentrality

Lugh 130.73 55.73 75 258 0.13 0.51 0.27
Ireland 107.93 56.93 51 256 0.24 0.56 0.32
Conary 101.44 48.44 53 198 0.11 0.49 0.13
King 79.73 40.73 39 133 0.07 0.50 0.17
Son 78.22 41.22 37 176 0.06 0.49 0.18
Balor 73.10 38.10 35 186 0.08 0.49 0.20
Gobhaun 71.95 23.95 48 147 0.04 0.46 0.17
Ethaun 63.92 27.92 36 100 0.04 0.44 0.09
Fomor 56.07 24.07 32 100 0.03 0.47 0.17
Turann 54.17 22.17 32 105 0.03 0.44 0.11

TABLE V: Centrality measures in The Younger Edda net-
work. For the top 10 most repeated entities in the associated
texts.

S E Freq. (I) Degree Betweenness Closeness Eigencentrality

Odin 215.00 106.00 109 1113 0.47 0.75 0.37
Thor 176.63 44.63 132 508 0.14 0.61 0.26
Loki 100.58 34.58 66 291 0.06 0.56 0.22
King 53.63 13.63 40 79 0.02 0.49 0.07
Frey 51.01 20.01 31 167 0.02 0.53 0.17
Har 50.24 16.24 34 116 0.03 0.52 0.09
Sigurd 45.02 19.02 26 178 0.02 0.52 0.13
Balder 43.69 14.69 29 151 0.02 0.52 0.14
Freyja 28.78 10.78 18 154 0.01 0.51 0.16
Norse 24.06 4.06 20 37 0.00 0.46 0.04

TABLE VI: Centrality measures in the fusion network for
the 10 most repeated entities in every text analyzed.

S E Freq. (I) Degree Betweenness Closeness Eigencentrality

Heracles 244.33 94.33 150 368 0.15 0.43 0.07
Odin 227.31 118.31 109 1121 0.17 0.48 0.33
King 222.12 86.12 136 269 0.09 0.48 0.13
Thor 178.63 46.63 132 502 0.05 0.44 0.24
Lugh 131.88 56.88 75 259 0.04 0.41 0.08
Son 116.97 77.97 39 414 0.11 0.49 0.22
Ireland 116.43 65.43 51 261 0.08 0.43 0.10
Conary 104.54 51.54 53 196 0.03 0.40 0.05
Loki 103.06 37.06 66 293 0.02 0.43 0.20
Theseus 80.19 25.19 55 116 0.02 0.40 0.04

network analysis [73]. We showed these results for the top
most important actors according to semantic value in Tables
III, IV, V and VI.

We have found that “Heracles” is the most important actor
in the Greek Myths network, according to all the measures
taken. There are other important heroes in this list like
“Theseus”, “Jason”, and “Perseus”. All of them are somewhat
the embodiment of bravery and authority, so it is not surprising
that “King” has also a high semantic value. There are more
human characters than gods: “Apollo” and “Zeus” are the only
ones which appear at the top, with similar S values, but not
as high as the other Greek heroes here present. Regarding the
classical centrality measures studied, the betweenness gives
the highest value to “Hercules” by a large margin and penalizes
specially “King” compared to the other metrics. The closeness
does not show such a big gap between “Hercules” and the
other actors, and similarly to the betweenness prefers “Zeus”
over the human actors that posses more semantic value than
him. This also happens in a smaller scale in the eigencentrality,
that also preferred “Eurystheus” over the rest of the heroes.
In general terms, classic centrality measures preferred gods,
while the semantic value valued human and heroic figures
(Table III).

In the case of Celtic Wonder-Tales, we found “Lugh”, the
most prominent god of the Irish pantheon, to own the highest
S value followed by “Ireland”. The third actor in S value,
“Conary”, is an important mythical king of Ireland whose
reign ends when he breaks three sacred oaths. The concept
of “King” also has a high S, just as in the Greek tales
case. Regarding the classical centrality measures, all of the
them rated most highly “Ireland”. Betweenness and closeness
seem to be quite correlated in this case, showing the same
top 3, but the betweenness quickly decreases after that. The
eigencentrality values “Balor” significantly compared to the
other metrics computed as it ranks in the third position.
Contrary to most classical centrality measures, the semantic
value favored the mythical embodiments of kingship like
“Lugh”, “Conary”, “Balor”, and “Ethaun”. This fact, alongside
the high S value of “Ireland”, indicates a strong connection
in this compilation between these mythical figures and the
sovereign of the country (Table IV). Such bond was not found
in the other two mythologies.

In The Younger Edda we found “Odin”, one of the main
gods of the Germanic pantheon, to be the most important actor
in terms of S. Being the father of all the Æsir, but also wise
in the ways of magic and divination, the strength of these
two different attributions might be the origin of such high S
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(a) (b)

(c) (d)

Fig. 2: Word co-occurrence networks. Each network is formed using the 300 most repeated entities in each corpus. We
consider a connection between two words every time they appear less than 10 words apart from each other in one of the texts
analyzed. a. Greek Myths b. Celtic Wonder-Tales c. Younger Edda d. Fusion network of the three cultures. For the fusion
network, color is attributed to each node according to the frequency in each corpus. Red means majority of appearances in
Younger Edda, blue in Greek tales and green in Celtic Wonder-Tales. Node size is directly proportional to the in-degree measure
and the layout algorithm considered is Force Atlas 2 [72].
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Fig. 3: Semantic affinities in all the networks studied. We
chose the 10 most repeated entities in each text to compare
themselves. a Greek myths network. b Celtic Wonder-Tales
network. c Younger Edda network. d Fused myths network.

value. Following “Odin”, there is “Thor”, another character
with many attributions in his tales. A total of 6 gods populate
this ranking, which shows that the gods themselves are more
important in this mythology than in the other two. Regarding
the four classical centrality measures, the top 3 is the same
than in the semantic value. After the top 3, all the metrics
prefer characters rather than concepts, but the semantic value
puts “king” as the top 4 value, in consonance with the other
compilations, which is an important difference (Table V).

Finally, for the case of the fused network, we can see
how the three fused structures can be recognized in the
final structure but also numerous bridges have appeared to
join them. As expected, these bridges are mostly general
concepts, such as “Son”, “Gods” and “Father”, which connect
the specific deities for each mythology. When analyzing the
semantic values, “Odin” is again the one with the highest
value. However, in this case the correlation of I and S seems
to be less important. For example, “Son”, with an S = 78.12,
did not enter in the top 10 most frequent words, neither
“Earth” with S = 44.63. Comparing the semantic value to the
remaining classic centrality measures, “Odin” generally gets
the top value for them, which again reinforces the tendency of
the the semantic value to prefer human and heroic figures over
deities. The eigencentrality and the degree centrality generally
favored actors from the Younger Edda, probably because they
form a more densely connected structure. The closeness put
“Son” as the top value, since ‘Son” is an important bridge
between the Nordic and Celtic entities.

C. Semantic affinity analysis in the myth networks

In Fig. 3 we show how the 10 most repeated entities in
each text, ordered according to semantic value, relate to each
other in terms of semantic affinity and showcase some of the
most interesting actors to study. There are some relationships
to remark:
• “Psyche”, the impersonation of the human soul and lover

of “Eros”, receives significant semantic affinity from
“Persephone”, who is the wife of “Hades”, and “Jason”.
There is a direct connection between “Persephone” and
“Psyche”, as they both appear in the same story, and
both are the wife of a god and both are connected to
the underworld. However, there is not straightforward
connection with “Jason”.

• “Apollo” sends the most of his affinity to “Heracles”,
who is also a character related to many different virtues,
and receives the most from “Jason”. “Jason” is also an
important hero, so it is natural that he is connected to the
god of virtue. Besides, “Jason”’s mother was a lover of
“Apollo”, which might imply deeper connections between
these two characters.

• “Zeus” is connected more strongly to human characters
than other gods and its most important connection is with
“Psyche”, the personification of the human soul.

In Fig. 3(b) we show how the top 10 entities according to S
value in the Celtic mythology network relate to each other in
terms of semantic affinity. Some of the findings in this figure
are:
• “Dagda”, the sun god, emits most semantic affinity to

“King”and “Ireland”, which suggests a relationship be-
tween earthly and divine mandates. Besides, “Dagda” is
heavily entwined with “Ireland” but not with “Earth”,
which implies a negative connotation for “Earth”. This
might be in line with the idea that good things are
“heavenly” things and “bad” things are more “earthly”.

• “Earth” emits a lot of semantic value to “King”, reinforc-
ing again the bond between the earth and the ruler.

• “Balor”, the king of the Fomorians, emits most of his
affinity to “Conary Mór”, which is a prototype for a good
king. However, this king also breaks three sacred oaths
in his story and this might connect him with negative
characters such as “Balor”. “Balor” also emits significant
semantic value to its tribe, “Fomor”, which is expected,
but also to “Earth” and “Ireland”.

In Fig. 3(c) we show how the top 10 entities in S value in
the Nordic mythology network relate to each other in terms
of semantic affinity and remark some of the most interesting
actors to study. We can observe that:
• Both “Odin” and “Thor” have very high semantic affinity

values compared to other actors. This is probably due to
the fact that these gods have many attributions. In the case
of “Name”, which does not have neither high semantic
affinity values, it does have a higher semantic affinity to
“Odin”, probably for the high number of different names
that this god has in the texts.

• “Freyja” emits and receives significant affinity from
“Loki”. “Loki” is the responsible for the death of the
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almost invincible god “Baldr”, who is also “Freyja”’s
son. “Freyja” is considered the leader of the Valkyries and
takes half of the fallen to her own afterlife field. This high
affinity value here might indicate that the death theme is
in fact a very important bond between them.

• “Frey”, one of the most important Vanir gods, sends
the most affinity to the actor “Son”. “Frey” is usually
associated with sacral kingship and his name derived
phonetically from old Norse means “Lord”. This probably
says that the original sacramental attributions of this Vanir
god were abandoned in favor of the attributes of the more
popular Æsir.

• “Hvergelmer” is the fountain in Nifelheim, the reign of
the dead from which all rivers are born, and it is mostly
associated with chaos. “Hvergelmer” sends and receives a
significant amount of affinity from “Freyja” and “Loki”,
and both of them showed certain relationship with death.
Besides, just as in the case of “Heracles” and “Hydra”,
the most emitted semantic affinity is to “Thor”, which is
considered to be associated to order.

In Fig. 3(d) we did the analogous experiments for the
fusion network of the three mythologies. Among other possible
interesting relationships, it is notable that:

• The highest affinity of “Lugh” is “Loki”. This is a remark-
able result, as there have been many studies discussing a
possible a relationship between these two gods [74].

• A strong semantic affinity between “Ireland” and “Loki”,
in both directions, and between “Ireland” and “Thor”,
to a lesser extent. This might be due to “Ireland” being
notably close to “Lugh”, who is a god closely entwined
to both “Odin” and “Loki”, and because all of them are
symbols related to authority in their original stories.

• “Earth” is notably affine to “King”, which means that the
strong tie between the land and the ruler present in the
Celtic Wonder-Tales network is also present in the other
two.

D. Semantic affinity compared to other affinities in relevant
actors

To complete our analysis, we have focused on the affinity
study of a series of important characters in the original mate-
rial. We have decided to study three characters per mythology,
each one of them chosen according to their popularity and
cultural significance.

In Figure 4 we report the results for the best friend,
Machiavelli, and semantic affinities for “Zeus”, “Athene”, and
“Heracles”.

In the case of “Zeus”, we can see that the best friend
affinity includes mostly other Olympic gods. However, it is
interesting to note that the results for the Machiavelli and
semantic affinities do not show the same gods. This means
that although “Zeus” appears repeatedly with other gods in
his stories, he plays a very different role in the big picture.
His highest semantic values reveal that he is mostly affine
with general concepts, such as “Sun”, “Land”, “Nothing”, and
“Time”, which indicates a connection between the world state
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Fig. 4: Study of affinities for three key characters in Greek
myths. Top 10 affinity values for the best friend, Machiavelli,
and semantic affinity for “Zeus”, “Athene”, and “Heracles” in
the Greek Myths network.
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Fig. 5: Study of affinities for three key characters in
Celtic Wonder-Tales. Top 10 affinity values for the best friend,
Machiavelli, and semantic affinity for “Tuatha Dé Danann”,
“Ireland”, and “Lugh” in the Celtic Wonder-Tales network.

and this god. The high affinities to “Sun” and “King” reinstate
the connection of this god with the idea of authority.

For the case of “Athene”, her best friend affinity mostly
connects her to characters that share her stories. However, the
same thing happens as with “Zeus”. In the case of the semantic
affinity, “Phaeton”, son of the sun-god “Helios”, is her highest
affinity value, with no obvious connection between them. Fol-
lowing “Midas”, “Demeter”, is the goddess of agriculture and
the afterlife, while “Athene” is also connected to agriculture
through its association with olives and olive oil. Her top 4
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Fig. 6: Study of affinities for three key characters in The
Younger Edda. Top 10 affinity values for the best friend,
Machiavelli, and semantic affinity for “Odin”, “Thor”, and
“Loki” in The Younger Edda network.

semantic affinity value, “Epimethius”, is the titan that has not
foresight and he is only capable of pondering on what has
already happened, which seems to be similar to wisdom, the
most important attribute of “Athene”.

“Heracles” is the son of “Zeus” and “Alcmena”, a mortal
queen, and he is one of the most important heroes in the
Greek mythology. Many gods appear in his top best friend
affinities, as his stories are filled with Olympic deities. His top
Machiavelli affinities include “Weight” and “Labors”, which
shows that the hero himself is tightly identified with his
own narrative and his main characteristic: strength. The top 1
semantic affinity is “Ocean”. “Ocean” is a titan that guarded
the limitless-like waters that surrounded the known world.
The connection between “Heracles” and the differentiation
between known and uncharted waters is present in modern-day
symbology because of the Pillars of Hercules, a name that the
Greeks stated for the geographic formations that surrounded
the strait of Gibraltar. The top 2 semantic value, the “Hydra”, is
the embodiment of chaos while the “Heracles” is the epitome
of the Olympic order against it. This value shows us that these
two characters are both impersonations of antagonistic ideas,
so their connection is very strong.

We have also studied in Figure 5 the best friend, Machi-
avelli, and semantic affinity for three important actors in Celtic
Wonder-tales: “Tuatha Dé Danann”, “Ireland”, and “Lugh”.

The “Tuatha Dé Danann” is the pantheon of pre-Christian
gods in Gaelic Ireland that populate the stories in Celtic
Wonder-Tales. Its top best friend affinity value is “Strength”,
which reveals what is their most important attribution in these
tales. The second value in best friend affinity is “Fomor” which
is short for Fomorians. The Fomorians are the rival tribe of
gods that represent the destructive face of nature, so the high
affinity value reveals the importance of the conflict between

the two tribes of gods in the text.
The “Cauldron” is one of the four artifacts linked to the

“Tuatha Dé Danann”, alongside “Stone”, which also appears
in the top 10 of best friend values. For the Machiavelli affinity,
we can see that the top value is “Conary”, the mythical king
of the Irish, seconded by “Dagda”. In the case of the semantic
affinity, the greatest value is “Ogma”. “Ogma” is the god
brother of “Dagda” and it is usually associated with him and
with “Lugh”. He is considered to be the inventor of Ogham,
an ancient alphabet. This remarkable attribution, alongside the
relationships with these other two gods and with his strength,
makes him a very versatile god, which maybe explains why
the semantic value is so high. The “Stone” actor is referring
to the Stone of Destiny, that is the stone in which the Kings of
Ireland were crowned, which connects this tribe of gods with
the sovereign of the land.

“Ireland” is one of the most repeated concepts in these tales,
in contrast to the other two mythologies, where the origin
country is not so clearly stated. “Ireland” is being put in these
tales as one of the most important topics, always associated
with figures of political relevance in the mythical landscape
of these tales. If we look at the best friend and Machiavelli
affinities, in both cases “Lugh” is one of the highest affinity
values. The two most important semantic affinity values are
“Stone” and “Danaans”, which are clearly referring to key
actors in the designation of the ruler in that land as well.
The third value, “Nuada”, is the first king of the “Tuatha Dé
Danann”, which reinforces even more this idea.

Finally, “Lugh” is one of the most important gods in Irish
mythology and also a member of the “Tuatha Dé Danann”.
He is the maternal grandson of “Balor”, the leader of the
Fomorians, which makes him a descendant of both tribes
of gods in this mythology. His best friend affinity values
show that he is indeed tightly connected to the “Tuatha Dé
Danann” and other authoritarian symbols such as “Ireland”.
His Machiavelli affinities show that indeed the structure of
actors formed around him is similar to actors that wield
authority, such as “King” and “Balor”. The semantic affinity
reveals that the top value is “World”, which reveals how wide
the attributions and roles for this god are. “Ildana”, “Lauve”
and “Fauda” are other words to refer to “Lugh”.

In the Nordic mythology analysis, we have opted to show-
case the results for the three most popular characters of these
texts: “Odin”, “Loki”, and “Thor”. Their top 10 best friend,
Machiavelli, and semantic affinities are collected in Figure 6.

“Odin”’s most important best friend affinities are “Name”,
as he is introduced many times in The Younger Edda with
different titles, and “Dwarf”, as the tribes of dwarves also
appear repeatedly in the presence of “Odin” and share many
attributions. The two most important Machiavelli affinities
are his son “Thor” and “Loki”. The relationship of “Odin”
and “Loki” is very complex and they both take a central
role in the many stories of the corpus. We also found that
his highest semantic affinity is “Frode”. “Frode” is another
name for “Frey”, the leader of the other tribe of gods in The
Younger Edda, the Vanir. “Frode” is associated with authority
and sacral kingship, which explains why these gods are so
affine in this case. We also found that “Night” has a very high
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semantic affinity with “Odin”. This is indeed quite an abstract
connection but it is true that “Odin” is highly associated with
the Wild Hunt, a repeated folklorical motif in which a group
of supernatural hunters lead by a mythical figure chase the
skies in the night [75]. He is also considered to be a god of
the dead, as he greets fallen warriors in the Nordic afterlife,
and he is also capable to raise dead out of the earth. He is
also affine to “Fenris the wolf” and “Jotunheim”, which are
enemies to “Odin” and key characters in the developing of the
Ragnarök.

In the case of “Thor”, he has a high best friend affinity
for “Name”, similarly to “Odin”, and “Odin” and “Loki” also
appear in the top 10, as they are recurrent characters in his
stories. For the Machiavelli affinity, “Loki” is again the most
affine actor. In the semantic affinity, the top value is again a
Vanir god, “Njord”, god of navigation and fertility. The second
value is “Wife”. In one of The Younger Edda tales, “Thor”
dresses as a bride, instead of “Freyja”, to try to recover his
famous hammer, the “Mjolnir”. This tale could be the origin
of this relationship, as the semantic affinity to “Freyja” is also
high. “Ullr” is the stepson of “Thor”, associated with archery
and skillfulness among other attributes, and there are evidences
that he was a very important god in times before the cult of
the Æsir. There are many similarities in both of these gods
attributions, which is probably the reason for this high affinity
value.

For “Loki”, the top best friend affinity is “Odin”, followed
by “Dwarf”, because they appear repeatdly together in a set of
stories of The Younger Edda. The Machiavelli affinity values
are very similar to those of “Thor”, which emphasizes the fact
that these two gods play a very similar role in the texts. The
top semantic value of “Loki” is again “Njord”, followed by
“Ægir”, who is the personification of the ocean and member
of the Jötun tribe, just as “Thjasse”. “Tyr” is a member of the
Æsir and the god of war, whose hand is bitten by “Fenris the
wolf”, which is the next semantic value, and is also a son of
“Loki”. The presence of both Jötunn and Æsir in the top 10
values without a clear identification with one of the tribes is a
clear sign of the characteristic ambivalence of this character.

VI. DISCUSSION AND CONCLUSIONS

In this work we have studied the relationships between the
meaning of different characters and concepts in three classical
mythologies by extending Social Network Analysis to work
with the concept of “meaning” or “Noumenon” [2]. We have
done so by combining different affinity functions and some
ideas from fuzzy logic, in order to characterize the semantic
value in each actor. We have also proposed a new heuristic
search algorithm, the Pipe algorithm, to compute the affinity
between the semantic affinity of a pair of actors, that we called
the semantic affinity. This algorithm uses a combination of
affinity functions and a heuristic search in the network to
compute the semantic affinity in an efficient way.

Using our proposal, we intend to model the way in which
actors, words in our experimentation, enrich their own mean-
ings by connecting with others; we can also compare the
meanings of different actors or we can use them as adjectives

to describe another actor. We compute a network for each
culture studied, and another one obtained by fusing the three
individual ones. We show the words with a more relevant
meaning and the most important comparisons and similarities
found, recovering already-known parallelism and similarities
between them, and gaining new insights in the meaning and
connotations of some of the tales studied.

Results in the three networks showed a mix of both his-
torical and psychological relationships among the different
actors in the network. Generally speaking, we found that gods
are very close to kingship and authoritarian concepts, and
particularly in the case of the Celtic myths, also to the land.
We also found that gods serve as a common nexus between
the different topics that appeared in each of the compilation
tales, and the Nordics and Celts prefer to center their stories in
gods, while the Greeks did so on humanoid and heroic figures.

When fusing all the tales together, we also observed that
in the final networks three different structures, corresponding
to the original tales, could be easily identified. Each one
comprised mainly of the singular characters that appeared in
only in of the compilations. The two most important actors
that played a role of “bridge” between different mythologies
were “Son” and “Gods”. Other important actors in that sense
were “Man”, “Father” “Day”. Only “Son” appeared in the top
10 of semantic values. Contrary to our initial hypothesis, it
seems that individual characters have more semantic value
than general concepts. This might be explained by the high
number of attributions that many of these gods and heroes
have. Logically, it is easier to tell stories about humans or
human-like beings rather than essays about trades or arts,
which explains why these stories fill their characters with such
many different traits.

When comparing semantic affinities, we found a strong
bond between kingship and the earth. This has been previously
studied in many traditions thorough the world [23] and it
seems that it left its footprint in these tales as well. We also
found the traces of historical connections between the Nordic
gods “Loki” and “Odin” and the Celtic myths. This has been
hypothesized before in [74], and the connection is clear in this
analysis.

The main limit of this study has been the great amount
of culture and relevant information that is not present in
texts, but was important in the cult of each religion. This
is not a problem for our new techniques, as they can work
with information from outside the texts, as long as the initial
network is constructed. Indeed, it is possible to construct
affinity relationships using non-textual data, but it requires
choosing the correct information to study and ponder carefully
each source. Of course, adding more tales from different
cultures is also a promising direction, but we must take into
account dates, styles and original languages when doing so, or
else an important deal of the findings could be more related
to the translation than to the original material.

Semantic value can also be used to explore social in-
teractions in other domains where a significant part of the
information is outside the network itself, such as economic or
trading networks. It also possible to use the semantic value to
understand the interactions between actors in complex systems
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or how knowledge is propagated in networks of information
[76], [77].

CODE AND DATA AVAILABILITY

Further results and the code to replicate our experiments
can be found in this public repository: https://github.com/
Fuminides/noumenon project.

The original texts are freely available in Project Gutenberg
[71].
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A B S T R A C T

In this work we propose a new algorithm to train and optimize an ensemble of classifiers. We call this algorithm
the Krypteia ensemble, based on an ancient Spartan tradition designed to convert their most promising
individuals into future leaders of their society. We show how to adapt this ancient custom to optimize classifiers
by generating different variations of the same task, each one offering different hardships according to distinct
stochastic variables. This is thus applied to induce diversity in the set of individual weak learners. Then, we
use a set of agents designed to select those subjects who excel in their assignments, and whose interaction
minimizes excessive redundancies in the resulting population. We also study how different Krypteia ensembles
can be stacked together, so that more complex classifiers can be built using the same procedure. Besides, we
consider a wide range of different aggregation functions in the decision making phase to find the optimal
performance for the different Krypteia ensemble variations tested. Finally, we study how different Krypteia
ensembles perform for a wide range of classification datasets and we compare them with other state-of-the-art
design techniques of classifier ensembles, obtaining favourable results to our proposal.

1. Introduction

Data analysis is one of the most popular disciplines in computer
science in the present day [1,2]. There are many problems related to
data processing that have been heavily studied due to their academic
and economic interest, like data visualization [3], pattern discovery [4–
6], and image processing [7] among others. One of the most common
tasks in data analysis is to discriminate a series of inputs into a desired
category, which is commonly called a classification task [8]. Some of
the most popular classification algorithms are those based on neural
networks [9], the family of Bayes classifiers [10,11], the K-Nearest
neighbours [12], and the Support vector machines [13].

Due to the limitations of these models, a very popular approach
to improve classification performance is to form an ‘‘ensemble’’ of
classifiers [14–16], which consists of a set of classifiers trained under
different configurations that make a decision together [17]. Usually,
this consensus is formed by taking the average or the majority vote
of these classifiers [18]. There are many classifier ensemble design
approaches in the literature. E.g. the random forest trains a set of
different decision trees under distinct subsampling conditions and then
computes the final decision as the majority vote [19]; Bagging classi-
fiers are formed by training many different subsamples with repeated

∗ Corresponding author.
E-mail addresses: javier.fumanal@unavarra.es (J. Fumanal-Idocin), ocordon@decsai.ugr.es (O. Cordón), bustince@unavarra.es (H. Bustince).

samples from the original dataset [20]; and AdaBoost iteratively trains
different classifiers, each one especially focused on the errors made by
the previous classifiers [21]. Of course, since the development of these
ensemble construction techniques there has been many research aimed
at improving them [22–25]. Some of the most common techniques to
improve the performance of an ensemble include using only a subset
of the trained classifiers, which is called overproduce-and-choose [26],
and using different kinds of classifiers, which is called an heterogeneous
ensemble [27].

One of the most researched topics in classification ensembles is the
decision making phase, where the majority vote or the arithmetic mean
are substituted by another aggregation function [28]. Some of the most
popular ones are the Choquet Integral [29], the Sugeno Integral [30],
the Ordered Weighted Aggregation operators [31], and the Overlap
functions [32]. It is also possible to use other aggregation functions
obtained by means of the so-called penalty functions [33].

There are also some interesting research lines in classifier ensemble
design focusing on the influence of diversity in the ensemble accu-
racy [34], and on the trade-off between accuracy and complexity
(i.e. selecting the optimal number of classifiers) [35].

Bearing in mind the issues above, the objectives of this work are:

https://doi.org/10.1016/j.inffus.2022.09.021
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• To create a new algorithm to train an heterogeneous ensemble
using stochastic conditions to adapt the original task to different
difficulty settings.

• To study different hierarchical decision making schemes and
different aggregation functions to obtain the final solution.

In order to do so, we propose a new approach to train an ensemble
of classifiers based on an ancient Spartan ritual called the Krypteia [36].
In this ritual the young noble Spartans would be promoted to adulthood
by proving themselves worthy through surviving alone in a hostile land
for an unknown period of time. This situation made the participants
act in situations of high uncertainty and lack or resources, which spurs
heterodox thinking and smart use of resources. Due to the natural
ever-changing conditions of real life, not two Krypteia rituals were the
same, which also favoured diversity in the way subjects survived the
trial, warranting individual fitness and compatible traits for the higher
ranks of the Spartan society. This kind of training custom seems to
tackle in real-life population some of the problems that are present
in modern day classifier ensembles, such as ensemble diversity and
accuracy [37], and the trade-off between them [38,39], or robustness
against adversarial examples [40].

Following the same idea as in the original Krypteia, our proposed
algorithm trains a heterogeneous ensemble using stochastic conditions
to adapt the original task to different difficulty settings. Then, we use
a novel technique to perform overproduce-and-choose to minimize re-
dundancies in the system. We also study different hierarchical decision
making schemes and different aggregation functions to perform the
final solution.

Following this strategy, we expect the resulting population to learn
different and intelligent solutions, according to each individual sub-
ject’s situation, and to find good collective solutions when all the sub-
jects’ outputs are combined. The goodness of our proposal is shown in a
large series of experiments in real-world datasets, comparing the results
obtained using different Krypteia ensembles to other state-of-the-art
classifier ensemble design methods.

The rest of this paper goes as follows: first, in Section 2 we discuss
some relevant works in ensemble design. In Section 3 we recall some
concepts of aggregation functions. In Section 4 we explain the ancient
ritual of the Krypteia and our proposal to emulate it in a computational
environment. Next, in Section 5 we detail the specifics of each step
in the design process. Then, in Section 6 we describe the experiments
we performed using Krypteia ensembles, and in Section 7 we compare
the obtained results to those generated using other types of ensembles.
Finally, in Section 9 we give our final remarks and future lines for this
work.

2. Related work

Due to their massive popularity and numerous applications, many
works have been devoted to enhance performance in classifier ensemble
systems. Some of the main lines of research in this topic are model
generation for the classifier, model selection for the classifier, and
combining the output from the classifiers.

2.1. Individual classifier generation and diversity induction

Ensemble generation is based on learning individual classifiers,
weak learners, whose outputs can be combined then into one final
output for the global system [41]. The ideal set of classifiers for an
ensemble are both accurate and complementary, so that the errors
committed by the individual models are corrected in the collective
decisions taken.

The most popular ways to generate classifiers are bagging [20],
in which each model is trained using a random subsample from the
original data; boosting [42], where classifiers are iteratively trained
based on the previous errors obtained by the ensemble; and clustering-
based approaches [43], where data are clustered according to the

different patterns found in the original data and a dedicated classifier
is used to classify the samples for each cluster. From this classical
approaches, bagging is usually preferred to boosting, as bagging can be
computed in a parallelized setting, while boosting requires an iterative
process. Clustering based approaches can be very effective when the
decision boundaries in the dataset are not constant. However, they are
limited by the structures found by the clustering algorithm used. For
example, if we used the popular K-Means algorithm, we can only detect
convex structures, so complex regions will still be problematic.

Depending on the kind of classifiers used, we denote a homogeneous
ensemble, if all the classifiers are of the same type, and a heterogeneous
ensemble, if they are different. Many approaches have been studied in
both paradigms. In [44] the authors proposed a homogeneous ensemble
of neural networks for word classification and a heterogeneous one was
used in [45] for a similar problem, using deep learning and classical
algorithms as well. Also, in [46] the authors studied heterogeneous
ensembles applied to online data streams. Heterogeneous ensembles
offer more diversity than their homogeneous counterpart. Nevertheless,
the proportions in which the different classifiers should form the en-
semble design involves another problem [47]. In [48] the performance
of heterogeneous ensembles is compared to homogeneous ones to deal
with imbalanced classification problems, finding favourable results to
the former ones.

2.2. Classifier selection

As the usefulness of each of the trained classifiers can vary signif-
icantly [49], one popular approach in ensemble design is to choose
only a subset of classifiers, or to purge a percentage of the classifiers
generated [50], which is commonly called overproduce-and-choose
(OCS) [26].

Recent works regarding classifier selection and pruning include the
proposal in [51] where the authors prune a pool of ensembles based on
the indecision region of each classifier. Meanwhile, the proposal in [52]
uses the K-means algorithm to cluster the candidates and find the ones
that minimize redundancies. Another successful approach to purge clas-
sifiers is using meta-features [53]. Meta-features are features extracted
from the original data that are used to train meta-classifiers that dis-
criminate between good and bad candidates. Selecting classifiers can be
useful when there is a lot of redundancy in their outputs. However, this
redundancy can sometimes be useful to minimize the impact of outlier
predictions and underperforming classifiers. Meta-feature methods can
also tackle this problem by determining which classifiers are good for
each sample. However, they also impose additional design problems,
like determining which meta-features are good for this task and the
boundary conditions to determine if a classifier is competent or not.

Finally, it is also possible to use optimization algorithms to choose
the most effective subset of classifiers [54,55] or features [56]. Op-
timization approaches can lead to good results both in the case of
classifier and feature selection. However, they require a proper mod-
elling and a suitable algorithm for this task. Besides, as the validation
set used to optimize each configuration is usually only a fraction of the
training set, there is also the risk of overfitting.

2.3. Classifier combination

The classifier fusion is commonly performed using functions such as
the maximum, the arithmetic mean, and the majority vote [24,57,58].
These functions work best when there is independence between the
errors among the classifiers. However, that condition is usually not
guaranteed [38].

A common solution to this problem is to ponder each classifier
according to its importance [59]. Other relevant approaches include
the use of fuzzy aggregations to model uncertainty and coalitions
of the inputs to fuse. Some popular operators in this phase include
the Choquet and Sugeno integrals [60–62]. These operators can learn
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the interaction among the features and take them into account when
aggregating the data. They are also simpler to use compared to other
pruning or feature selection mechanisms. However, they also require
to learn a suitable fuzzy measure to capture these coalitions, which is
not straightforward [63]. Another successful strategy consist of using
fuzzy linguistic rule-based classification system as the fusion process,
so that it can be interpretable for the user [64].

It is also possible to fuse the classifiers in different phases, using a
hierarchical fusion phase [18,27], which can also include different ag-
gregation operators [60]. This procedure can achieve higher accuracy
results than fusing all the classifiers in one phase. However, it requires a
sensitive hierarchy system among the classifiers and a suitable aggrega-
tion operator in each phase. Choosing the best aggregation operator for
one vector can be solved using a penalty or a moderate deviation [65],
but the interaction among aggregations in a hierarchical fashion has
not been studied.

3. Preliminaries

In this section we shall recall some of the concepts related to the
most common aggregation functions, the formulation of the Choquet
and Sugeno integrals, and some of their generalizations, the Overlap
functions and the Ordered Weighted Aggregation operators.

3.1. Properties of aggregation functions

Aggregation functions are used to fuse information from 𝑛 sources
into one single output. A function 𝐴: [0, 1]𝑛 → [0, 1] is said to be a 𝑛-ary
aggregation function if the following conditions hold:

• 𝐴 is increasing in each argument: ∀𝑖 ∈ {1,… , 𝑛}, if 𝑥𝑖 < 𝑥𝑗 ,
𝐴(𝑥1,… ., 𝑥𝑖,… 𝑥𝑛) ≤ 𝐴(𝑥1,… , 𝑥𝑗 ,… 𝑥𝑛). For example, consider the
vectors 𝐱 = {0.3, 0.9, 0.1, 0.8} and 𝐳 = {0.3, 0.9, 0.6, 0.8}. If 𝐴 is an
aggregation function, it must hold that 𝐴(𝐱) ≤ 𝐴(𝐳), because all
elements of in 𝐱 are equal than those in 𝐳, except for the case of
𝑥3 and 𝑧3, where 0.1 < 0.6.

• 𝐴(0,… , 0) = 0
• 𝐴(1,… , 1) = 1

Some examples of classical 𝑛-ary aggregation functions are:

• Arithmetic mean: 𝐴(𝐱) = 1
𝑛
∑𝑛

𝑖=1 𝑥𝑖.
• Max: 𝐴(𝐱) = 𝑚𝑎𝑥(𝑥1,… , 𝑥𝑛).
• Min: 𝐴(𝐱) = 𝑚𝑖𝑛(𝑥1,… , 𝑥𝑛).

3.2. T-norm

A T-norm is an aggregation function [0, 1]2 → [0, 1] that satisfies the
following properties for 𝑥, 𝑦, 𝑧 ∈ [0, 1] [66]:

• 𝑇 (𝑥, 𝑦) = 𝑇 (𝑦, 𝑥)
• 𝑇 (𝑥, 𝑇 (𝑦, 𝑧)) = 𝑇 (𝑇 (𝑥, 𝑦), 𝑧)
• 𝑇 (𝑥, 1) = 𝑥

Some examples of T-norms are the product, the minimum and the
Łukasiewicz T-norm:

𝐿𝑙𝑢𝑘(𝑥, 𝑦) = max(0, 𝑥 + 𝑦 − 1) (1)

3.2.1. Overlap functions
An n-dimensional overlap is an aggregation function 𝐺 ∶ [0, 1]𝑛 →

[0, 1] such that [32]:

• 𝐺 is commutative.
• ∏

𝑖=1 𝑥𝑖 = 0 if and only if 𝐺(𝐱) = 0.
• ∏

𝑖=1 𝑥𝑖 = 1 if and only if 𝐺(𝐱) = 1
• 𝐺 is increasing.
• 𝐺 is continuous.

Some examples of overlap functions are:

• Minimum: 𝐺(𝐱) = min(𝐱)
• Harmonic Mean (HM): 𝐺(𝐱) = 𝑛∑𝑛

𝑖=1
1
𝑥𝑖

• Sinus Overlap (SO): 𝐺(𝐱) = sin( 𝜋2𝛱
𝑛
𝑖=1𝑥𝑖)

• Geometric Mean (GM): 𝐺(𝐱) = 𝑛
√∏

𝑥𝑖

3.3. Ordered Weighted Averaging operators (OWA)

𝐰 = (𝑤1,… , 𝑤𝑛) ∈ [0, 1]𝑛 is called a weighting vector if ∑𝑛
𝑖=1 𝑤𝑖 = 1.

The OWA operator associated to 𝐰 is the mapping OWA𝐰 ∶ [0, 1]𝑛 →
[0, 1] defined for every 𝐱 = (𝑥1,… , 𝑥𝑛) ∈ [0, 1]𝑛 by [67]:

𝑂𝑊𝐴(𝐱) = 𝑤1𝑥𝛾(1) +⋯ +𝑤𝑛𝑥𝛾(𝑛) (2)

where 𝛾 ∶ {1,… , 𝑛} → {1,… , 𝑛} is a permutation such that: 𝑥𝛾(1) ≥
𝑥𝛾(2) ≥ ⋯ ≥ 𝑥𝛾(𝑛).

The weighting vector can be computed used a quantifier function,
Q. For this study, we have used the following one:

𝑤𝑖 = 𝑄𝑎,𝑏(
𝑖
𝑛
) −𝑄𝑎,𝑏(

𝑖 − 1
𝑛

) (3)

𝑄𝑎,𝑏(𝑥) =

⎧
⎪⎪⎨⎪⎪⎩

0, if 𝑥 < 𝑎

1, if 𝑥 > 𝑏
𝑥−𝑎
𝑏−𝑎 , otherwise

(4)

where 𝑎, 𝑏 ∈ [0, 1] and 𝑎 < 𝑏. Depending on the value of the parameters
𝑎 and 𝑏, different weight vectors can be obtained. We have considered
three different ones:

• OWA1: 𝑎 = 0.1, 𝑏 = 0.5
• OWA2: 𝑎 = 0.5, 𝑏 = 1
• OWA3: 𝑎 = 0.3, 𝑏 = 0.8

3.4. Choquet integral

Having 𝑁 = {1,… , 𝑛}, a function 𝑚 ∶ 2𝑁 → [0, 1] is a fuzzy measure
if, for all 𝑋, 𝑌 ⊆ 𝑁 , it satisfies the following properties [28]:

(𝑚1) Increasingness: if 𝑋 ⊆ 𝑌 , then 𝑚(𝑋) ≤ 𝑚(𝑌 ).
(𝑚2) Boundary conditions: 𝑚(∅) = 0 and 𝑚(𝑁) = 1.

The discrete Choquet integral with respect to 𝑚 is defined as the
function 𝐶𝑚 ∶ [0, 1]𝑛 → [0, 1] given for every 𝐱 = (𝑥1,… , 𝑥𝑛) ∈ [0, 1]𝑛,
by:

𝐶𝑚(𝐱) =
𝑛∑
𝑖=1

(𝑥𝜎(𝑖) − 𝑥𝜎(𝑖−1)) ⋅ 𝑚(𝐴𝑖) (5)

where 𝐱𝜎 is an increasing permutation of x such that 0 ≤ 𝑥𝜎(1) ≤ ⋯ ≤
𝑥𝜎(𝑛). With the convention that 𝑥𝜎(0) = 0, and 𝐴𝑖 = {(𝑖), (𝑖 + 1),… , (𝑛)}.

Two important generalizations of the Choquet integral are the
CF [61] the C𝐹1,𝐹2 [68] integrals, and the d-Choquet integrals, in
which the difference between the inputs in Eq. (5) is changed by a
dissimilarity [69].

3.4.1. CF integral
The CF is a generalization of the Choquet integral that replaces

the product used in Eq. (5) for a more general function 𝐹 . In [70]
the authors detail the required properties for 𝐹 so that the 𝐶𝐹 is an
aggregation or a pre-aggregation function, and conclude that the best
𝐹 in their experimental results is the Hamacher T-norm. For this reason,
we have chosen it for our experimentation, as detailed in the following
expressions:

𝑇𝐻 (𝑥, 𝑦) =
⎧
⎪⎨⎪⎩

0, if 𝑥 = 𝑦 = 0
𝑥𝑦

𝑥+𝑦−𝑥𝑦 , otherwise
(6)
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𝐶𝐹𝑚(𝐱) =
𝑛∑
𝑖=1

𝑇𝐻 (𝑥𝜎(𝑖) − 𝑥𝜎(𝑖−1), 𝑚(𝐴𝑖)) (7)

3.4.2. C𝐹1,𝐹2 integral
The original product of the Choquet Integral can be decomposed on

two product functions using the distributive property of the product.
Therefore, the Choquet integral can be written as:

𝐶𝑚(𝐱) =
𝑛∑
𝑖=1

𝑥𝜎(𝑖)𝑚(𝐴𝑖) − 𝑥𝜎(𝑖−1)𝑚(𝐴𝑖) (8)

Then, the product functions are substituted for two more generic func-
tions: 𝐹1 and 𝐹2. In [68] the authors explain the properties that must
hold 𝐹1 and 𝐹2 so that the C𝐹1,𝐹2 is an aggregation or a pre-aggregation
function. Consequently, the expression for the 𝐶𝐹1,𝐹2 is the following:

𝐶𝐹1,𝐹2(𝐱) =
𝑛∑
𝑖=1

𝐹1((𝑥𝜎(𝑖)), 𝑚(𝐴𝑖)) − 𝐹2((𝑥𝜎(𝑖−1)), 𝑚(𝐴𝑖)) (9)

For our experimentation, we take 𝐹1 =
√
𝑥𝑦 and 𝐹2 is the

Łukasiewicz T-norm.

3.5. Sugeno integral

Let 𝑚 ∶ 2𝑁 → [0, 1] be a fuzzy measure. The discrete Sugeno integral
with respect to 𝑚 is defined as a function 𝑆𝑚 ∶ [0, 1]𝑛 → [0, 1], given
for every 𝐱 = (𝑥1,… , 𝑥𝑛) [71], following the same notation as in the
Choquet integral in Eq. (5):

𝑆𝑚(𝐱) = max{𝑚𝑖𝑛(𝑥𝜎(𝑖), 𝑚(𝐴𝑖))|𝑖 = 1,… , 𝑛} (10)

Two generalizations of the Sugeno Integral are the Hamacher-based
Sugeno integral and the FG-Sugeno.

3.5.1. Hamacher-based Sugeno integral
If we consider using the Hamacher T-norm instead of the minimum

in Eq. (10), we obtain the following expression [72]:

𝑆𝑇𝐻
𝑚 (𝐱) = max{𝑇𝐻 (𝑥𝜎(𝑖), 𝑚(𝐴𝑖))|𝑖 = 1,… , 𝑛} (11)

3.5.2. FG-Sugeno
If we replace the minimum for the product, and the maximum for

the sum in Eq. (10), we obtain the following expression [62]:

𝑆𝐹𝐺
𝑚 (𝐱) =

𝑛∑
𝑖=1

(𝑥𝜎(𝑖)𝑚(𝐴𝑖)) (12)

4. The Krypteia ensemble

The Krypteia ensemble is a novel classifier ensemble algorithm
designed to maximize the effectiveness of each individual subject and
the variability and performance of their outputs when combined. It
does so by mimicking the ancient rite of Krypteia in the ancient Sparta,
designed to train the future elites of the Spartan army and government.

This algorithm consists of three main steps:

1. Survival ordeal: in this phase we train each classifier individ-
ually. In order to induce diversity in the training process, we
modify the training task for each one in a stochastic process, so
that some of them have a easier or harder task than the original
classification task. We discard all the classifiers that did not meet
the expected accuracy rate in their own task.

2. Social ordeal: this second phase follows an OCS scheme in which
we discard those classifiers that have a very similar output to
other classifiers with higher accuracy rate. The aim is to avoid
having samples with much more weak learners classifying them
correctly than others.

3. Aggregation learning: we learn which is the most appropriate
function to combine the output of all the surviving classifiers.

The resulting population from this process is called a Krypteia Unit.
A general scheme of the Krypteia algorithm is displayed in Fig. 1.

The following subsection briefly describes the Krypteia ritual in an-
cient Sparta design method and Section 4.2 describes each step of the
Krypteia ensemble in detail.

4.1. Krypteia in the ancient Sparta

The Krypteia was a particularly brutal initiation rite in the Spartan
society for the young men of the higher ranks of the state [36].
According to Plutarch [73], each year the young noblemen of Sparta
would declare war to the Helot population of Sparta, so that any killing
or robbery committed was not considered crime. Armed with nothing
but a knife, the young Spartans were left alone and sent out in the
night to the Helot settlements. They were supposed to obtain their own
methods of survival by stealing and killing in their circumvent area.

The origins and exact purpose of the Krypteia are still under debate.
This ritual was supposed to be a form of terrorizing and subjugating
the Helot population, alongside training the next generation of Spartan
leaders, as no young man could aspire to hold positions of power if he
had not passed through this ordeal. It is also believed that the Krypteia
participants could have been organized as a unit in the Spartan army. In
any case, such brutal practices seemed to be effective, as Sparta made
a place for itself in history thanks to is great military capacity, and as
long as the Krypteia took place, the Helot population stayed under their
rule.

It is believed that the Krypteia was disbanded in the battle of
Sellasia, in 222 BC, where Sparta lost against the Macedonian army
commanded by Antigonus III [74]. This resulted in the emancipation
of many helots and without a Helot population, it was impossible to
organize the Krypteia.

4.2. Krypteia ensemble: bringing the ancient ritual to modern computational
systems

In this section we detail both the Survival and Social ordeals, and
how to combine their outputs.

4.2.1. Survival ordeal (Fig. 1-Step 2)
The Survival ordeal is a diversity induction process that consists

of randomly modifying the original task in order to obtain a different
version of the weak learner. The aim is that this new task should be
more difficult than the original most of the times, so that the result-
ing Krypteia Unit will have classifiers adapted to harder or extreme
situations compared to the original, single classifier.

We alter the tasks using two different techniques: sampling modi-
fications, denoted as ‘‘Data ordeal’’, and prediction alterations, which
we called ‘‘Bias ordeal’’. The Data ordeal consists of performing an
undersampling, data augmentation, or oversampling technique of one
or various classes in the classification task. The Bias ordeal consists of
adding an artificial bias to one or more classes to the actual output of
the classifier. Whether or not a classifier is affected by the Data ordeal
or the Bias ordeal, the extent of that ordeal and the number of classes
affected, is all decided randomly.

Once the Data ordeal and Bias ordeal have been completed we
evaluate the performance of the altered classifier. If this performance is
less than a survival threshold, we discard that classifier. Following the
Krypteia metaphor, this means that the soldier was not strong enough
to survive the ritual and was killed by the Helots or the environment.

The ordeals can be too hard, so that all classifiers fail. It might
also happen that the number of surviving classifiers is higher than the
expected value. So, it is important to take into consideration the natural
difficulty of the original classification task in order to establish the
survival threshold, or to establish additional measures to guarantee that
a reasonable number of weak learners survive the Survival ordeal.
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Fig. 1. Visual scheme of the Krypteia algorithm. 1. We generate random sets of parameters. 2. Each of these parameter settings creates a different Survival ordeal, where the
weak learners need to correctly solve a stochastically modified version of the original classification task. The modification includes the Data ordeal (2.1), where we manipulate
the training data, and the Bias ordeal (2.2), where we compute a random vector that we will add as an artificial bias to each of the classifiers predictions. 3. If they pass the
Survival ordeal, a selection of the surviving classifiers is performed by 𝑘 Variability Guarantors in the Social ordeal to minimize redundancies. 4. We choose the best aggregation
function for the decision making phase of the ensemble. 5. The output of the Social ordeal is the Krypteia Unit. Section 4.2 contains a detailed description of each component
behaviour.

4.2.2. Social ordeal (Fig. 1-Step 3)
Once the individual classifiers have been proved by the Survival

ordeal, we make the population of classifiers pass through the Social
ordeal, which is an OCS scheme that measures how diverse is the
‘‘society’’ formed by these classifiers and removes those that produce
redundant results with respect to the rest of the population.

The idea is that, although the variability within the Survival ordeal
itself makes the classifiers different, there could be redundancies, espe-
cially if the survival rate is high. For example, given 0 as a complete
failure and 1 as a total success in the Survival ordeal, if we set
the survival threshold to 0.95, then we are forcing all the surviving
classifiers to present very similar outputs.

To solve this problem, in the Social ordeal we create a set of 𝑛
Variability Guarantors (VGs), whose aim is to guarantee the diversity
in the output of each classifier in the final Krypteia Unit. To do so, each
VG subsamples a very small fraction of the input data for each subject
(1%, for example) and then checks how each classifier performs for this
data split.

Each VG marks as ‘‘good’’ the subjects that correctly classified its
subsampled data. Since each VG takes only a small fraction of the input
data, the intersection of the data chosen among the VGs will be virtually
null. In this way, we avoid having in the final Krypteia Unit a long
list of classifiers that performed very well in the same subset of data,
whilst performed very poorly on other. Besides, since the VGs uniformly
sample the dataset, their subsampled data can contain both easy and
hard to correctly classify observations. In this way, VGs reject those
classifiers that performed well only on the easy set of observations, even
if they obtained a higher accuracy rate than the classifiers marked as
good by the VGs.

4.2.3. Decision making
The most straightforward way to make a decision with a Krypteia

Unit is to fuse the output of each weak learner using any of the aggre-
gation functions presented in Section 3. However, although a Krypteia
Unit can obtain good results on its own, the stochastic nature of the
training process can result in many different outcomes. This is one of
the strengths of the Krypteia, but it can also result in poor performance
in some cases. To minimize the negative impact of the possible faulty
units, we propose to stack different Krypteia Units in different decision
making phases, in a hierarchical decision making scheme. This proposal

has another benefit: we can use different aggregation functions in each
level, which can result in better performance.

The different hierarchical schemes that can be used are illustrated
in Fig. 2. A decision from a set of 𝑁 Krypteia units can be obtained in
three different ways:

1. Unit-all: we fuse the output from all weak learners within the
Krypteia units in one phase, using just one aggregation function.

2. Division-all: we denote as a Krypteia Division the appending
of the output of different Krypteia Units. Then, the Division-all
scheme consists of fusing the output of various Krypteia Divi-
sions obtained from the 𝑁 Krypteia units, using one aggregation
function in each Krypteia Unit and another for the Krypteia divi-
sions. Krypteia units are assigned to different Krypteia divisions
randomly.

3. Krypteia army: consists of obtaining the output for every
Krypteia Division individually and then fusing their outputs,
using a total of three aggregation functions.

5. Training a Krypteia Unit for a classification problem

In this section we focus on how to implement the following stages
of a Krypteia Unit training process:

1. How to setup the parameters.
2. How to perform the Survival ordeal, and how difficult it should

be.
3. How to configure the Social ordeal.
4. How to choose the aggregation function to make the decision.

5.1. Parameter setup

For the case of a classification system, a Krypteia consists of a set
of weak learners. However, we do not specify each one individually;
instead, we set a list of parameters for the whole Krypteia Unit (see
Table 1 for example) in order to induce diversity within each unit.
These parameters are:

1. The number of subjects wanted in the Krypteia Unit.
2. The proportion of each type of classifiers.
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Fig. 2. Visual scheme showing the algorithm proposed in Section 4.2.3 to generate and combine the output of multiple Krypteia Units. A Krypteia Division is obtained by appending
the output from 𝑁 Krypteia Units and a Krypteia Army by appending and fusing the output of 𝑀 Krypteia Divisions. A decision from a set of 𝑁 Krypteia Units can be obtained
in three different ways: Decision 1: consists of fusing all the weak learners within the Krypteia Units in one phase, using just one aggregation function. This scheme is denoted
‘‘Unit-all’’. Decision 2: consists of appending the output of the Krypteia Divisions, using one aggregation function to fuse each Krypteia Unit and another for the Divisions. This
scheme is called ‘‘Division-all’’. Decision 3: consists of fusing every Krypteia Division individually and the fusing the output from all of them, using a total of three different
aggregation functions. This scheme is the Krypteia Army. Images taken from [75].

Table 1
Example of two Krypteia Unit configurations. For each unit, we specify the number of
classifiers wanted in the final population and the proportion of each kind, the number
of VGs, the minimum accuracy needed to pass the Survival ordeal, and the ordeals
performed in this unit.

N KNN LDA QDA SVM Tree VGs Survival Thr. Ordeal

24 0.08 0.12 0.20 0.12 0.25 6 0.5067 Survival and Social
7 0.14 0.14 0.14 0.28 0.28 – 0.9266 Survival

3. The number of VGs in the Social ordeal.
4. The initial Survival Threshold.
5. Which Ordeals to perform.

By setting different parameters for each unit, we can maximize the
diversity between various Krypteia Units trained for the same task. This
can be of use, for example, if we want to train different Krypteia Units
and then choose the best one, or if we want to use the Krypteia Division
or a Krypteia Army decision schemes.

For our tests, we have worked with five different types of classifiers:

• K-Nearest Neighbours (KNN) (K = 6 for this experimentation)
[12].

• Linear Discriminant Analysis (LDA) [76].
• Quadratic Discriminant Analysis (QDA) [77].
• Support Vector Machines (SVM) [13].
• Decision trees [78].

We choose a random proportion for each type of classifier, a random
number between 1 and 10 for the number of VGs, and a random number
between 0 and 1 for the Survival Threshold. The type of Ordeal can be:
Survival only, Social only, or both, each of the possibilities with the
same probability.

5.2. Designing the Survival ordeal

The Survival ordeal consists of two complementary ordeals: the Data
ordeal and the Bias ordeal, in which we artificially modify the weak
learner behaviour. Once both ordeals have been stated, we also need

to adjust the Survival Threshold so that the survival rate is within
acceptable boundaries.

5.2.1. Data ordeal
The Data ordeal consists of modifying the training data for a weak

learner. We can do so by subsampling the data, which theoretically
makes the problem harder, by using oversampling techniques, which
should make the problem easier for the classifier, or by using both. In
that case we can also differ in which order both procedures are applied.
The idea is not to necessarily obtain a stratified dataset, which is not
guaranteed to happen, but to obtain maximum variation in the different
synthetic training sets generated.

We have used the following techniques to perform the sampling
manipulations:

• Random undersampling: which consists of randomly sampling a
percentage of the original data.

• Centroid Undersampling (CU): we use the K-means algorithm to
compute 𝑘 centroids, being 𝑘 the number of samples wanted from
the original data.

• Synthetic Minority Over-sampling TEchnique [79] (SMOTE): gen-
erates new samples by interpolating examples from the same
class.

• SMOTE + Tomek Links (SMOTETomek) [80]: combines the over-
sampling of SMOTE and Tomek Links to delete overlapping ob-
servations between classes.

• SMOTE + Wilson’s Edited Nearest Neighbour Rule (SMOTEEN)
[80]: combines the oversampling of SMOTE with undersampling
based on the Edited Nearest Neighbour Rule [81].

In order to determine how much each event is going to happen,
we set a parameter 𝑝. The lower this 𝑝, the more likely is that a data
manipulation happens.

The scheme the followed by the Data ordeal is:

1. Draw a random number. If this number is bigger than 𝑝, then the
Data ordeal takes place (step 2); if not, then there are no data
manipulations (step 3).
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2. Draw a random number. If this number is bigger than 0.5,
then we proceed to subsample the data and then oversample it
(step 2.1). If not, first we perform the oversampling and then
undersampling (step 2.2).

2.1. Draw a random number. If this number is bigger than
𝑝, then we perform the undersampling (Alg. 2). Draw a
random number again, and if is bigger than 𝑝, we perform
the oversampling (Alg. 1).

2.2. Draw a random number. If this number is bigger than
𝑝, then we perform the oversampling (Alg. 1). Draw a
random number again, and if is bigger than 𝑝, we perform
the undersampling (Alg. 2).

3. We train the weak learner on the resulting data.

Algorithm 1: Generating Data Advantage in the Data ordeal
Result: 𝑛𝑒𝑤_𝑑𝑎𝑡𝑎
Input: 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎, 𝑝
𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚()
if 𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 > 𝑝 then

if 𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑝 + 1∕3 ∗ (1 − 𝑝) then
𝑛𝑒𝑤_𝑑𝑎𝑡𝑎 = 𝑆𝑀𝑂𝑇𝐸𝑇𝑜𝑚𝑒𝑘(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎)

else if 𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑝 + 2∕3 ∗ (1 − 𝑝) then
𝑛𝑒𝑤_𝑑𝑎𝑡𝑎 = 𝑆𝑀𝑂𝑇𝐸𝐸𝑁(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎)

else
𝑛𝑒𝑤_𝑑𝑎𝑡𝑎 = 𝑆𝑀𝑂𝑇𝐸(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎)

end
end

Algorithm 2: Undersampling in the Data ordeal
Result: 𝑛𝑒𝑤_𝑑𝑎𝑡𝑎
Input: 𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎, 𝑝
𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚()
if 𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 > 𝑝 then

if 𝑙𝑢𝑐𝑘𝑦_𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑝 + 1∕2 ∗ (1 − 𝑝) then
𝑛𝑒𝑤_𝑑𝑎𝑡𝑎 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑢𝑛𝑑𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎)

else
𝑛𝑒𝑤_𝑑𝑎𝑡𝑎 = 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑_𝑢𝑛𝑑𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒(𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎)

end
end

5.2.2. Bias ordeal
The Bias ordeal consists of inducing an artificial bias in the weak

learners predictions. The process follows a similar procure to the Data
ordeal. We draw a random number, if that number is higher than 𝑝, the
Bias ordeal takes place, if not, no bias is induced.

To perform the bias induction we draw 𝐶 random numbers from
a uniform distribution in the [0, 1] interval, where 𝐶 is the number
of classes in the classification task, obtaining the vector 𝑟𝐶 . When the
classifier predicts the probability for each class for a sample, we add
the 𝑟𝐶 vector to those probabilities.

Although the aim of this ordeal is to augment the variance among
weak learners by reducing the individual accuracy of each one, we also
have found cases where this artificial bias also improved the perfor-
mance of individual weak learners. This might be because under the
right circumstances, like a very imbalanced training set, this artificial
bias can work as a regularization factor.

5.2.3. Setting the Survival Threshold
The Survival Threshold quantifies the level of exigence that we

impose to the weak learners after they passed their Survival ordeal
in order to accept them as valid weak learners. It is expressed as the
minimum accuracy rate required to obtain in the original training set

after passing the Data and Bias ordeals. It is a very important factor
for the final Krypteia Unit: if it is too low, the resulting classifiers
can output almost random predictions; if it is too hard, no classifier
will come out. However, this value cannot be interpreted as the ordeal
difficulty or the percentage of survival rate. A Survival Threshold of 0.9
can be too easy for a classification task that any individual classifier can
perform almost perfectly, and a Survival Threshold of 0.5 can be too
much if the learning task is very difficult.

The solution to this problem is an adaptative threshold, i.e to start
with a random Survival Threshold, and then decrease it if the death
rate is too high. We reduce the Survival Threshold by 0.05 each time
we register as many deaths as twice the number of classifiers in the
Unit until the desired number of classifiers is obtained. That mimics
the robust approaches followed by metaheuristics to adapt their main
diversification–intensification trade-off parameter [82].

5.3. Configuring the Social ordeal

The VGs compose the Social ordeal. They are supposed to convert a
pack of good individual classifiers into a truly functional ensemble of
classifiers. Two parameters are important to form a collective of VGs
that perform a meaningful Social ordeal:

• VG exigence: this is the percentage of the original data that the VG
will use to evaluate each weak learner. The lower this parameter
is, the more strict each VG will be. This might present a problem
if the VGs are too strict, because if the number of test samples is
too low, then many of the classifiers might get all of them right,
or on the contrary, fail them all. If we choose a value that is
too high, then the VGs will have a significant intersection among
them, which would also make the diversity search futile. We have
chosen value 1% as it seems to correctly balance both issues and
avoids oversaturation of one VG.

• Number of VGs: the more VGs, the more subjects will be marked
as ‘‘good’’. We have opted to draw a distribution between 1 and
10, so that with a exigence of 1%, the VGs will sample around
1−10% of the original data.

5.4. Choosing the aggregation function

Once all the subjects have passed through all the ordeals, the final
population forms a Krypteia Unit ensemble. This ensemble of classifiers
needs to fuse the output of each individual weak learner to reach a final
decision. We have studied the functions mentioned in Section 3.1 as
possible aggregation functions for the Krypteia.

In order to discriminate the best aggregation function, we have
opted for performing a 5-fold validation in the training set for each
one of them, and choose the aggregation that resulted in a best accuracy
according to this evaluation criteria. In the case of the Krypteia Division
and the Krypteia Army, we have tested using all possible combinations
of aggregation functions in each phase.

6. Experimental results for different Krypteia ensembles

In this section we study the performance of the Krypteia ensem-
ble for a wide range of classification datasets. We show the perfor-
mance for different decision making strategies, a study of the im-
portance of the different parameters of a Krypteia Unit, and how
the Krypteia ensembles compare to other kinds of classifier ensemble
design approaches.

6.1. Datasets studied in the experimentation

For our experimentation, we used a large set of 52 different classi-
fication datasets, obtained from the Keel database [83]. The number of
samples and attributes for each one are reported in Table 2. We take a
standard 80∕20 training-test partition for each dataset. The metric used
to measure the performance is the standard classification accuracy.
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Table 2
Datasets used for our experimental results.
Dataset Instances Features Classes Dataset Instances Features Classes

abalone 4173 8 28 nursery 12 959 8 5
appendicitis 105 7 2 optdigits 5619 64 10
australian 689 14 2 page-blocks 5471 10 5
balance 624 4 3 penbased 10 991 16 10
banana 5299 2 2 phoneme 5403 5 2
bands 364 19 2 pima 767 8 2
breast 276 9 2 post-operative 86 8 3
bupa 344 6 2 ring 7399 20 2
car 1727 6 4 saheart 461 9 2
chess 3195 36 2 satimage 6434 36 6
coil2000 9821 85 2 segment 2309 19 7
contraceptive 1472 9 3 sonar 207 60 2
crx 652 15 2 spambase 4596 57 2
dermatology 357 34 6 spectfheart 266 44 2
ecoli 335 7 8 splice 3189 60 3
flare 1065 11 6 texture 5499 40 11
german 999 20 2 thyroid 7199 21 3
haberman 305 3 2 tic-tac-toe 957 9 2
housevotes 231 16 2 titanic 2200 3 2
ionosphere 350 33 2 twonorm 7399 20 2
iris 149 4 3 vehicle 845 18 4
letter 19 999 16 26 vowel 989 13 11
magic 19 019 10 2 wdbc 568 30 2
mammographic 829 5 2 wine 177 13 3
mushroom 5643 22 2 wisconsin 682 9 2
newthyroid 214 5 3 yeast 1483 8 10

6.2. Results for the Krypteia Unit

In this section we have studied the results using 300 Krypteia Units
for each dataset, trained using the procedures in Section 5. We chose
that number to honour the famous Battle of Thermopylae between
Spartans and Persians [84].

Table 3 collects the results for the Krypteia Units in each one of the
datasets considered, divided into three columns. In the first column, we
show the average of all the Krypteia Units’ performance. In the second
column, we show the results that the best Krypteia Unit obtained (the
one with better average accuracy for all the datasets), and finally in the
third column we show the best results obtained by a Krypteia Unit in
that particular dataset.

In most of them, the difference between the average result and the
best Krypteia Unit is not significant, which shows that the Krypteia
training process is indeed capable of generally generate good results.
However, in some datasets, for example in ‘‘letter’’, there is a +30%
accuracy difference between the average and the best unit. This shows
that the Krypteia training process is also capable to create vastly
superior subjects than the average Krypteia Unit.

In Table 4 we show the average for each column in Table 3, in order
to obtain the average performance for all Krypteia Units, the average
performance for the best Krypteia Unit, and the average best result
over all the datasets considered. We can see here that the best unit
generated is clearly superior to the average performance of the rest of
the units, and that there is still an average of 2% of difference between
the optimal result and the best unit obtained.

6.3. Feature importance in the Krypteia ensemble

As many parameters as the Krypteia Unit has, it is natural to think
that some of them are more important than others. In order to compute
the importance of each feature, we built a classification and regression
tree (CART). The CART model have been used widely in medicine as a
way to measure the effects of different treatments in the outcome of a
patient. This algorithm trains a random forest with the parameters of
a model as inputs and the final outcome of the model as labels [85]. It
predicts the performance of a model based on its parameters. Then, we
can study the coefficients that the CART model applied to each factor

to make its prediction, to learn how they affect the performance of the
studied system.

In Table 5 we displayed the results for this analysis, illustrating the
Krypteia Units performance. From this table we can infer that the most
important factor is the Survival Threshold by a large margin, followed
by the Unit size. The proportion of different classifiers seems to be
equally important, although using trees seemed to be less important
than the rest. The kind of ordeal performed seems not to have much
effect.

6.4. Results for the Krypteia Division

In this case, we used the same Krypteia Units as in Section 6.2, but
instead of studying the performance of each individual Spartan unit, we
followed the process detailed in Section 4.2.3 to stack different Krypteia
Units. Table 6 collects the results for each dataset for the average of
all Krypteia Divisions, the best Krypteia Division, and the best result
obtained by a Krypteia Division for each one.

In Table 7 we show the average of all columns in Table 6. In this
case, we obtained a lesser difference between the best and the average
result compared to the unit results. This seems to indicate that stacking
the units in this way mitigates the impact of bad units, although the
best possible result is inferior to that obtained using Krypteia Units.

6.5. Results for the Krypteia Army

In this case we have stacked the Krypteia Units forming one Krypteia
Army. We used the same Krypteia Divisions as in Section 6.4 in order
to directly compare the effect of an additional level of complexity.

We display the results obtained with the Krypteia Army in Ta-
ble 8 and the correspondent aggregation trio that achieved that re-
sult. We can observe that even though the arithmetic mean is most
of the times the chosen aggregation, studying additional aggregation
functions allows in many cases to improve the result.

6.6. Comparison of the different Krypteia ensembles

In Table 9 we show the comparison for the average performance
of the different Krypteia ensembles: the best Krypteia Unit generated,
the best Krypteia Division generated, and the Krypteia Army. We found
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Table 3
Results for the Krypteia Units.
Dataset Avg. Best unit Best Res. Dataset Avg. Best unit Best Res.

abalone 99.73 100.00 100.00 nursery 89.83 99.96 100.00
appendicitis 94.67 95.24 100.00 optdigits 93.80 93.51 98.84
australian 81.57 87.68 88.41 page-blocks 38.61 96.99 97.44
balance 99.78 100.00 100.00 penbased 87.53 97.31 99.49
banana 88.02 90.09 90.47 phoneme 88.54 88.90 90.56
bands 99.34 94.52 100.00 pima 99.64 100.00 100.00
breast 99.44 100.00 100.00 post-operative 39.69 100.00 100.00
bupa 67.35 68.12 78.26 ring 91.11 93.72 98.51
car 99.77 100.00 100.00 saheart 99.97 100.00 100.00
chess 99.96 100.00 100.00 satimage 89.55 90.37 92.15
coil2000 93.54 94.50 94.66 segment 97.29 97.40 98.92
contraceptive 53.22 54.92 58.64 sonar 99.85 100.00 100.00
crx 99.62 100.00 100.00 spambase 92.11 92.72 93.80
dermatology 86.84 98.61 100.00 spectfheart 74.93 79.63 85.19
ecoli 96.68 98.51 100.00 splice 98.41 100.00 100.00
flare 99.77 100.00 100.00 texture 94.31 94.55 99.91
german 89.91 100.00 100.00 thyroid 98.60 99.79 100.00
haberman 99.99 100.00 100.00 tic-tac-toe 99.99 100.00 100.00
housevotes 99.72 100.00 100.00 titanic 72.44 80.45 82.27
ionosphere 99.94 100.00 100.00 twonorm 91.11 86.01 98.37
iris 100.00 100.00 100.00 vehicle 99.39 99.41 100.00
letter 69.81 99.72 100.00 vowel 88.92 90.40 97.98
magic 100.00 100.00 100.00 wdbc 99.97 100.00 100.00
mammographic 80.06 81.33 85.54 wine 99.01 100.00 100.00
mushroom 100.00 99.82 100.00 wisconsin 93.34 93.43 97.08
newthyroid 97.88 100.00 100.00 yeast 98.77 99.33 100.00

Table 4
Performance summary for the Krypteia Units.

Average units Best unit Best result

Average Acc. 87.48 94.09 𝟗𝟔.𝟎𝟐

Table 5
Feature importance for the Krypteia ensemble computed using a CART model.

Feature % of importance

No of KNN 7.47%
No of LDA 7.61%
No of QDA 7.40%
No of SVM 8.19%
No of trees 5.13%
Unit size 11.55%
VG sample size 7.02%
Survival threshold 39.95%
Full ordeal 2.00%
Survival-only ordeal 1.57%
Social-only ordeal 2.08%

the Krypteia Army to beat the other two by a 1.5% points margin.
We have also computed a homogeneous version of the Krypteia army
using only SVM classifiers and the arithmetical mean as the aggre-
gation function. This version of the Krypteia performed worst than
the rest of the Krypteia configurations, reinforcing the idea that both
the heterogeneity and the aggregation functions improve the ensemble
performance.

6.7. Results for unit-all and division-all fusion schemes

Instead of performing the decision making scheme of the Krypteia
Army, we can fuse all the 300 units using the unit-all or the division-all
fusion schemes.

In Fig. 3 we studied the expected performance for the 300 units in
the Krypteia Army studied in Section 6.5 using the division-all fusion
scheme (fusing 𝑛 different units as if they were just one division). To do
so, we have computed the average accuracy for all the datasets using
up to 300 Krypteia Units. These Krypteia Units are the same as those
used in previous sections, selected randomly. There we can see that
this system seems to reduce performance beyond 𝑛 = 10, and drops

significantly when 𝑛 > 50, stabilizing around 92.40%. In no case this
scheme performed better than the Krypteia Army.

In Fig. 4 we performed the same experiment using the unit-all
(fusing 𝑛 different subjects as if they were just one unit) decision
making phase. A similar situation happens in this case, where a 20−30%
of the original army seems to perform greatly when fused in this way,
but then stabilizes in an inferior performance. Again, in no case the
average accuracy obtained was better than the Krypteia Army.

6.8. Performance for each aggregation function

Each time we use a Krypteia ensemble, we need to choose among
one of many aggregation functions. Based on the results from our
experiments, we counted the number of times each one of them was the
best performing aggregation. By profiling each one the aggregations,
we hope to discard the worst ones in future trainings and to reduce the
number of possible candidates.

In Fig. 5 we show the times that each of the different aggregations
provided the best result in an experiment. We found the classical
arithmetic mean to be the one that won most of the times, but with
only a very small margin with respect to the maximum, the minimum,
the OWA operators, the n-overlap functions, and the Choquet integral.
Sugeno integrals performed poorly and the generalizations of the Cho-
quet integral never won in any case. However, it is worth pointing
out that the performance of the fuzzy integrals depends on the fuzzy
measure used.

7. Comparing the Krypteia ensemble with other ensemble classi-
fiers

In this section we compared the results obtained with the Krypteia
ensemble with seven very diverse types of classifier ensembles [86].
Three of them are classical ensemble algorithms: adaboost, bagging,
and majority vote using SVMs and random forests. The hyperparame-
ters for these algorithms were fixed according to the parameter values
reported in [86]. The other four schemes perform OCS, using oracles,
synthetic data, a reference classifier, and meta-features to discard faulty
subjects:
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Fig. 3. Average accuracy for all the studied datasets using ensembles of 𝑛 randomly chosen Krypteia Units in the Krypteia Army studied in Section 6.5.

Fig. 4. Average accuracy for all the studied datasets using ensembles of 𝑛 random weak learners from the original Krypteia Army studied in Section 6.5.

Fig. 5. Number of times each aggregation yielded the best results in all the experiments performed with Krypteia ensembles.
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Table 6
Results for the Krypteia divisions.
Dataset Average Best division Best result Dataset Average Best division Best result

abalone 100.00 100.00 100.00 nursery 89.97 99.96 99.96
appendicitis 85.71 85.71 85.71 optdigits 94.76 95.28 95.37
australian 81.30 81.88 81.88 page-blocks 38.88 97.26 97.26
balance 100.00 100.00 100.00 phoneme 89.64 89.64 89.82
banana 88.61 89.81 89.81 penbased 98.99 99.04 99.40
bands 100.00 100.00 100.00 pima 100.00 100.00 100.00
breast 100.00 100.00 100.00 post-operative 40.00 100.00 100.00
bupa 67.25 66.67 69.57 ring 91.86 90.88 92.57
car 100.00 100.00 100.00 saheart 100.00 100.00 100.00
chess 100.00 100.00 100.00 satimage 91.10 90.83 91.30
coil2000 92.04 92.16 92.47 segment 98.46 98.48 98.70
contraceptive 52.81 52.54 53.56 sonar 100.00 100.00 100.00
crx 100.00 100.00 100.00 spambase 92.74 92.72 93.26
dermatology 86.67 95.83 98.61 spectfheart 75.00 77.78 77.78
ecoli 97.01 97.01 97.01 splice 100.00 100.00 100.00
flare 100.00 100.00 100.00 texture 94.35 94.36 94.91
german 90.00 100.00 100.00 thyroid 99.82 99.86 99.86
haberman 100.00 100.00 100.00 tic-tac-toe 100.00 100.00 100.00
housevotes 100.00 100.00 100.00 titanic 72.41 80.45 80.45
ionosphere 100.00 100.00 100.00 twonorm 92.24 92.57 93.11
iris 100.00 100.00 100.00 vehicle 99.41 99.41 99.41
letter 69.81 99.72 100.00 vowel 90.81 90.91 91.92
magic 100.00 100.00 100.00 wdbc 100.00 100.00 100.00
mammographic 78.98 79.52 80.12 wine 100.00 100.00 100.00
mushroom 100.00 100.00 100.00 wisconsin 93.14 92.70 93.43
newthyroid 97.67 97.67 97.67 yeast 99.73 100.00 100.00

Table 7
Performance summary for the Krypteia divisions.

Average division Best division Best result

Average Acc. 94.09 94.49 𝟗𝟒.𝟓𝟖

• Adaboost [21]: it serially trains each classifier. In each iteration,
it weights each instance according to its difficulty to be clas-
sified, aiming to correctly classify it in the next iteration. For
our experimentation, we have used 50 decision trees to form the
Adaboost.

• Bagging (Bootstrap Aggregation) [20]: it aims to increase accu-
racy by combining the outputs of the classifiers in the ensemble
that were trained using different subsamples of the original data.
Sampling with replacement is used to train all the classifiers in
the ensemble and thus some of the instances may appear more
than once in the training set. For our experimentation, we have
used 10 decision trees to form the Bagging classifier.

• Majority vote SVM: it consists of different SVM classifiers trained
with a different kernel. For our case, we have trained 5 different
RBF kernels classifiers with five different 𝜎 parameters evenly
spaced such as: [0.5, 1.5]∕(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠).

• Random Forest [87]: it combines the output of many different
decision trees computed from different subsamples of the original
data. The final decision is taken as the majority vote of all of
the trees outputs’. We have set as 100 the number of trees in the
Random Forest for our experimentation.

• K-Nearest Oracles Eliminate (K-NORAE) [88]: it selects the clas-
sifiers that correctly classify all the samples in their region of
competence.

• Dynamic Ensemble Selection Multiclass Imbalance (DES-MI) [89]:
it generates artificial training sets of randomly balanced data
and then chooses the classifiers that correctly discriminated the
minority class samples.

• Randomized Reference Classifier (DES-RRC) [90]: it combines
Dynamic Ensemble Selection with a measure to evaluate each pos-
sible classifier in the final ensemble using a reference classifier.

• META-DES [53]: it selects a set of classifiers from a list, using five
different meta-features to test each classifier’s competence.

• Extreme Gradient Boosting (XGBoost) [91]: gradient boosting is
a generalization of Adaboost that consist of using a differentiable
loss function. This function is optimized using a gradient descent
procedure, so that in each step a new weak learner is included to
reduce the loss of the system. Gradient boosting is considered to
be the state-of-the-art in classification of tabular data [92].

We computed the analogous experiments with these ensemble clas-
sifiers as in the Krypteia ensembles. Table 9 collects the average ac-
curacy for all the datasets for the different ensemble classifiers. We
found the Krypteia Army to be the most effective classifier, followed
by the Best Krypteia Division and the Best Krypteia Unit. All of them
outperform the best performing of the seven classifier ensembles tested,
DES-MI. In Table 10 we have computed how many times each algo-
rithm performed best (counting ties as winnings for both). We found
that most of the times the Krypteia Army showed the best result and
that every Krypteia variant again outperform all the benchmarking
classifier ensembles.

In Table 11 we show the 𝑃 -values obtained using a Wilcoxon
statistical test, comparing all the ensembles used with the Krypteia
Army, which was the ensemble with the highest average accuracy. We
found statistical differences favouring the Krypteia Army compared to
any of the other classifiers tested.

Finally, we have tested the performance of the Krypteia algorithm
in a setting with higher dimensionality and more samples. In order to
do so, we have used a dataset that is very popular in the deep learning
literature: CIFAR10 [93]. This dataset consists of 600 000 images that
belong to 10 different classes, 50 000 used for training and 10 000 for
test. In order to apply our proposal to this dataset, we used a LeNet
convolutional network architecture [94]. Once the network is trained,
we discard the last layer of this network and compute its output for
each sample. We use this output as the features to train the different
classification algorithms.

In Table 12 we show the accuracy results in the test set for the
Krypteia Army and two benchmarking classical ensemble approaches
that performed better, Random Forest and Extreme Gradient boosting.
We can see that both the Random Forest and the Extreme Gradient
Boosting performed worse than the original performance of this LeNet
architecture for this dataset, that achieved an accuracy rate of 65.84,
while the Krypteia army performed slightly better (65.87) and per-
formed the best overall. This is an interesting result keeping in mind
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Table 8
Performance for the Krypteia army, with the corresponding aggregations that obtained that result.
Dataset Ag1 Ag2 Ag3 Acc. Dataset Ag1 Ag2 Ag3 Acc.

abalone Mean Mean Mean 100 nursery Mean Min Min 100
appendicitis Median Min Median 90.4 optdigits Min Max S-Ham. 98.1
australian Min Max S-Ham. 86.9 page-blocks Choquet Max Min 97.5
balance Mean Mean Mean 100 penbased Min Max Min 99.0
banana Min Mean Max 90.5 phoneme Max Median Sugeno 90.6
bands Mean Mean Mean 100 pima Mean Mean Mean 100
breast Mean Mean Mean 100 post-operative Mean Mean Mean 100
bupa Min Mean Max 72.4 ring Min Max S-Ham. 97.7
car Mean Mean Mean 100 saheart Mean Mean Mean 100
chess Mean Mean Mean 100 satimage GM Max Median 91.9
coil2000 OWA1 Max Max 94.5 segment S-Ham. Min OWA3 99.1
contraceptive Min Max Min 55.9 sonar Mean Mean Mean 100
crx Mean Mean Mean 100 spambase OWA2 Min OWA2 93.8
dermatology Mean Min Max 98.6 spectfheart HM Min Median 81.4
ecoli Mean Min Max 100 splice Mean Mean Mean 100
flare Mean Mean Mean 100 texture HM Max Max 98.5
german Mean Mean Mean 100 thyroid Mean Mean Mean 99.8
haberman Mean Mean Mean 100 tic-tac-toe Mean Mean Mean 100
housevotes Mean Mean Mean 100 titanic Mean Mean Mean 80.4
ionosphere Mean Mean Mean 100 twonorm Max Choquet OWA1 97.7
iris Mean Mean Mean 100 vehicle Mean Min Mean 100
letter OWA3 Min OWA3 100 vowel Min Max Mean 94.9
magic Mean Mean Mean 100 wdbc Mean Mean Mean 100
mammographic Min Max Sugeno 83.1 wine Mean Mean Mean 100
mushroom Mean Mean Mean 100 wisconsin Min Mean Max 94.8
newthyroid Min Max Min 100 yeast Min Median Median 100

Table 9
Average performance for different ensemble classifiers and the best instance of Krypteia
ensemble classifiers used.

Algorithm Accuracy

Adaboost 83.84 ± 19.65
Bagging 90.99 ± 9.81
Majority vote SVM 68.90 ± 21.84
Random forest 92.61 ± 8.53

K-NORAE 90.05 ± 11.00
DES-MI 93.87 ± 10.59
DES-RRC 92.74 ± 10.72
META-DES 93.60 ± 10.70
XGBoost 95.14 ± 9.81

SVM-Krypteia mean 93.30 ± 10.34
Krypteia Unit 94.09 ± 14.36
Krypteia division 94.49 ± 12.85
Krypteia army 𝟗𝟓.𝟖𝟑 ± 𝟖.𝟑𝟓

that the Krypteia approach was not initially designed to handle such
high dimensional classification problems. In fact, we aim to extend our
approach to deal with these kinds of problems in the short future.

8. Discussion of the empirical results obtained

In the results presented in this the Krypteia ensemble obtained
favourable results compared to the rest of the ensemble classifiers
tested. The best proposal, the Krypteia Army, also presented the lowest
standard deviation compared to the rest of its competitors and Krypteia
schemes.

The SVM-only mean-only Krypteia performed well, but not better
than the XGBoost, DES-MI, and META-DES approaches. This might
help explain why the other Krypteia schemes performed better: adding
more variability in the aggregation process and the classifiers did
significantly improve the performance of the system. The CART analysis
collected in Table 5 showed that the unit size and specially the survival
threshold were instrumental for a unit performance, which can also

Table 10
Number of times each ensemble beat the others in the different datasets. Ties are
considered as wins for both.

Algorithm No of times that won

Adaboost 5
Bagging 24
Majority vote SVM 24
Random forest 25

K-NORAE 23
DES-MI 22
DES-RRC 22
META-DES 21
XGBoost 𝟐𝟔

Krypteia Unit 25
Krypteia division 𝟑𝟓
Krypteia army 𝟑𝟗

Table 11
𝑃 -values for all the ensembles compared to the Krypteia army.

Algorithm 𝑃 -value

Adaboost 𝑃 < .001
Bagging 𝑃 < .001
Majority vote SVM 𝑃 < .001
Random forest 𝑃 < .001

K-NORAE 𝑃 < .001
DES-MI 𝑃 < .001
DES-RRC 𝑃 < .001
META-DES 𝑃 < .001
XGBoost 𝑃 < .001

Krypteia Unit 𝑃 < .001
Krypteia division 𝑃 < .001

explain the advantages in performance with respect to the models that
used OCS based on their individual accuracy: the Krypteia not only
discards subjects, but keeps generating more that are potentially useful.
Those that are redundant can be then discarded by the VGs in the social
ordeal.

One of the main advantages of the Krypteia scheme over its com-
petitors, is that it does not really have any hyperparameter to be tuned,
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Table 12
Accuracy values for the CIFAR10 dataset. A LeNet model is considered to compute the
features for each image.

Algorithm Accuracy

LeNet base performance 65.84

Extreme Gradient boosting 64.09
Random forest 65.37

Krypteia army 65.87

as almost every parameter is sampled from a random distribution. The
only parameters that cannot be stochastically fixed are the number of
units in the Krypteia Army and the aggregation functions used, that we
chose using a five-fold validation on the training set. On the contrary,
it has quite different steps, which makes its computation more complex
than its rivals. The CART analysis performed in this study could be a
good starting point to choose those elements that could be simplified
without affecting performance.

Although there is not a theoretical limit for the size of the problems
the Krypteia scheme can tackle, this scheme is designed for data that
can fit completely in memory. When using other paradigms for datasets
of bigger sizes, we must take into account further consideration to
fully support and exploit mini-batches or map-reduce approaches. For
example, it is possible to use classifiers that perform some kind of
online-learning, or it is also possible to use dedicated classifiers for each
batch. Besides, the use of VGs can be focused in keeping the classifiers
that performed best on the data that is significantly different to what
the system has already processed. The performance of all these options
needs to be tested properly in order to determine which is the best
option to scale the Krypteia scheme to large databases and will be a
subject of study in future works.

9. Conclusions and future lines

In this paper we presented the Krypteia ensemble: a new form
to generate classifier ensembles based on an ancient Spartan ritual
to train the future elites of their society. We detailed the process
needed to compute these classifiers and we explained how they relate
to this ancient tradition, by exposing each different subject to distinct
hardships. Then, we studied how different aggregation functions work
in different Krypteia ensembles.

We tested the different Krypteia ensembles on a large experimen-
tal study including 52 datasets. We have studied the performance
of different forms of the Krypteia ensemble, and the effect of the
various parameters that define the Krypteia training process. Then, we
compared the results obtained by the Krypteia against 7 other ensemble
design algorithms, obtaining significantly better results.

Future research shall aim to improve the way in which Krypteia
Units are assembled to form Krypteia Divisions. We are also interested
in expanding the Krypteia scheme to support environments where the
data size is too big to fit in memory, like in deep learning, where
the dataset is loaded in mini-batches, and big data. Refining the per-
formance of the different ordeals, i.e. adding label perturbation and
different loss functions to the survival ordeal, will also be explored. Fi-
nally, we also intend to study the application of the Krypteia and other
social phenomena to other domains different from classification [95].
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Abstract

Automatic art analysis consists of using different image processing techniques
to classify and categorise works of art. When working with these kinds of
images we need to take into account further considerations compared to classical
image processing, because paintings change drastically depending on the author,
the scene depicted and their artistic style. This can result in features that
perform very well in a given task, but do not grasp the whole of the visual and
symbolic information contained in a painting. In this paper we use study how the
features obtained from different tasks in artistic image classification are suitable
to solve other ones of similar nature. We also study different methods to improve
its generalisation capabilities and how they can improve the performance of a
classification system. We also propose a method to map known visual traits of
an image with the features used by the deep learning model. Our results show
that context aware features can achieve more accurate results than the solutions
that do not take into account the context of an image, and that some of the
features used by those models can be more clearly correlated to visual traits in
the image than others.

Keywords: Automatic art analysis, Image Classification, Clustering, Deep
Learning.

1. Introduction

The digitalization of numerous paintings and collections all over the world
has made possible the use of popular techniques of computer vision and image
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processing on artistic data [4]. One of the most promising topics in this direction
is the automatic analysis of paintings, in which these techniques are applied in
creative tasks historically performed on most of the galleries and museums.
Some of these are author verification [20], style analysis [39] and restoration
[66].

Artistic image processing was traditionally performed using hand-crafted or
ad-hoc features [11]. However, the advent of deep learning and convolutional
neural networks has made automatically extracted features very popular [34,
58, 21]. Usually, these models are pre-trained and then fine-tuned for each
specific task [3, 2, 50]. This is specially important for the case of artistic images
[14].One of the actual limitations of these models is that human experts perform
their analysis based not only on the visual cues, but they also rely on their
knowledge on the historical context, other paintings, materials, etc. [40]. The
addition of contextual and historical information to visual cues has been studied
to perform different classification tasks in artistic image analysis [29, 27, 62].
However, there is not a standard procedure to extract the contextual information
associated to each artistic work. Besides, sometimes context is not encoded in
well defined labels. When the information is not well structured, like in a textual
commentary, it is also necessary to discriminate those parts relevant to the task.

One of the most popular approaches to encode this kind of information are
knowledge graphs [29, 27, 62]. A knowledge graph captures the relationships
between different concepts and attributions using the structure of a network [57,
16]. Indeed, graphs are a popular form of representing information [43] and they
have been used to solve a myriad of problems in different areas of knowledge,
like computer science [44, 7, 23], biology [45] and the social sciences [8, 25].
However, when using a knowledge graph, a continuous space representation must
be constructed from the nodes in the graph. This process is usually performed
using deep learning models like node2vec [33, 32]. Another possibility consists
of using multi-task learning, in which a set of different related tasks are trained
together so that the information obtained from one is also used in the others
[61].

Capturing a painting context is also useful to improve the features obtained
with a CNN. ResNet50 has proven to have good generalisation capabilities when
trained on the extensively used Imagenet dataset. This generalisation capability
is specially important in tasks where there is an significant domain shift, and
when visual information must be interpreted correctly in order to detect abstract
concepts in the image [31]. The focus of the current paper is to study how
general are the features used in an artistic image classification problem, and
how useful they are when applied in other similar tasks (i.e. how useful they
are to develop transfer learning). Doing so, we also measure if the network is
learning “shortcuts” to solve the task instead of finding significant patterns,
which can constitute a significant performance metric of deep learning models
[60]. We also want to test if the features of obtained from a black box model
can be correlated to known characteristics in the original image.

In order to achieve these aims, we study different ways to obtain such fea-
tures, using only visual cues of the image and when additional information is
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also available. We also propose a new way to represent the contextual embed-
dings from different paintings using fuzzy memberships that expands previous
approaches in this sense [28, 26]. We shall study how the Fuzzy C-Means clus-
tering algorithm [6] and an adapted version of a fuzzy-rule based fuzzy clustering
algorithm can be used to construct an embedding space, and how this embed-
ding captures relevant information from the original texts. We shall also study
the use of Contrastive Language-Image Pre-Training (CLIP) features [17, 49].
In order to map the deep features obtained with these models to known visual
cues, we will use approximate reasoning through the means of fuzzy rules.

The rest of the paper is organized as follows: in Section 2 we recall some
of the previous concepts required to understand this work and review some
relevant literature. In Section 3 we introduce the framework for artistic image
classification using contextual embeddings and the different methods proposed
to obtain contextual embeddings from textual annotations. Then, in Section
4 we design the experimental setup and discuss the results obtained using the
different contextual-aware and non-contextual aware-methods. Subsequently, in
Section 5 we describe our method to explain deep features. Finally, in Section
6 we give some final conclusions and future lines for this work.

2. Background

In this section we review some previous works regarding the Fuzzy C-Means
clustering algorithm, clustering using fuzzy rules, representation learning and
artistic artwork classification.

2.1. Fuzzy C-Means

Fuzzy C-Means (FCM) is a well known fuzzy clustering algorithm, in which
each element is assigned not only to one group, but rather presents a fuzzy
membership to each of the groups considered [18].

FCM aims to minimise the following objective function:

arg min
n∑

i=1

c∑

j=1

wij‖xi − cj‖2 (1)

where n is the number of observations, c is the number of different clusters,
m is a constant, cj is a cluster, and xi is an observation. Finally, wij is the
membership of the i − th observation to the j − th cluster, that follows this
expression:

wij =
1

∑c
k=1

(
||xi−cj ||
||xi−ck||

)2 . (2)

The algorithm assigns randomly a coefficient for each observation to each
cluster. Then, it computes the centroid for each cluster, and computes each
membership again. The process is repeated until convergence. There is a need
to provide a cluster number c as input to the method.
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2.2. Fuzzy rule-based classification and clustering

Fuzzy rule-based classification consists of discriminate observations into dif-
ferent categories using rules that follow this structure [56]:

IF x1 is aj1 . . .xn is ajn THEN class j for j = 1, . . . , c (3)

where x is a multidimensional vector, j is the consequent class, aj is an
antecedent linguistic value for class j, and c is the number of different classes.
For this purpose, each attribute is reescalated into the [0, 1] unit interval, and
then, the n different attributes are partitioned into different fuzzy subpartitions.

There are different ways in which these fuzzy subpartitions can be generated
[19]. Given them, there are also different algorithms to generate a set of fuzzy
rules to classify the samples [52]. It is also possible to use fuzzy rules to perform
clustering [42].

2.3. Representation learning

Representation learning consists of automatically extracting and computing
features suitable for machine learning tasks from unstructured data like text,
videos, or images [5]. Deep learning is one of the most popular fields in which
feature learning is performed. Convolutional neural networks have been mas-
sively popular tools to embed images and video into vector spaces [35] as well
as text [46].

Just as images, videos and text, networks can also be embedded into vector
spaces using deep learning models [33, 53, 64]. Deep learning models can be
combined with other classical methods in text processing, using term frequency-
inverse document frequency (TF-IDF) indexing or Latent Dirichlet Allocation
(LDA) [9, 38]. Deep feature extraction has been very succesful in classical
machine learning approaches, but some problems still remain, like the the lack
of a clear geometrical intuition in the latent space. This problem was partially
solved using Variational autoencoders [47], which instead of learning directly to
encode the samples, they learn the data a priori distribution. Unfortunately,
these approaches still present some problems [65].

2.4. Artistic artwork classification

Historically, automatic art analysis has been performed using handcrafted
features that relied on colour, brushwork, and scale-invariant features [11, 36].
Then, once the features were extracted they were used to train different kinds
of classifiers. The most popular tasks include identifying the author, the style,
and the theme of a painting [28].

The advent of deep learning has substituted the use of manual features by
automatically extracted ones [12]. These features have been extracted using
different networks, like the Residual Network (ResNet) [59] and the VGG16
[55]. Pre-trained networks can be used to recognize different shapes and entities
in images, and they have been extensively used in art analysis as well. It is also
possible to fine-tune these networks to those tasks [12, 28].
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The painting was originally

in the church of Corpus

Domini in Venice, where the

body of the saint is

preserved.

Painting
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Context
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Visual Feature extraction

FCM/FRBC

Contextual Feature extraction

Visual 

features

Contextual 

features

Style

Year
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Type

Classifier

(A) Contextual Features
to Regularize Training

(B) Append Contextual
and Visual Features

Figure 1: Scheme of the two proposed classification frameworks using contextual
features. Option (a) uses the contextual features to regularise the training of the CNN.
The last layer of the network is replaced to fit the number of classes in the task. Option (b)
appends the visual and contextual features in a single vector that is fed to a final classification
layer.

To further study art from a semantic perspective, visual information can be
combined with contextual information from the art pieces. There are different
ways in which this information can be incorporated into the classification frame-
work. One possibility is to train simultaneously different classification tasks in
a multi-task setting [28]. In this way, features learnt to classify one image can
help learning in other tasks and vice versa. It is also possible to use knowledge
graphs constructed from the dataset itself [27] or from external information [13].

Although these successes, some of these methods still present some short-
comings. It is difficult to tell when the predictions are based on meaningful
artistic knowledge of shortcuts. Besides, the categorisation of specific parts of
an image (like a cat, a dog, etc.) is different from aspects like an author, which
cannot be necessarily correlated only to specific parts of the image. This makes
some explainability models like Grad-CAM [54] less useful for this task.

3. Artistic Image Classification Framework

Our proposed framework consists of two different parts (see Figure 1). On
the one hand, we use a ResNet 50 [59] to extract visual features for each im-
age. The last layer of the ResNet is substituted by a linear classifier with the
appropriate number of classes as the output.

On the other hand, we compute the contextual embeddings using one of the
methods proposed:
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1. Node2vec in a knowledge graph that connects the paintings according to
their shared attributes [28].

2. Fuzzy memberships over the contextual annotations for each painting
(More details about this in Section 3.1).

3. Features obtained with a CLIP autoencoder on the contextual annota-
tions.

All of these methods result in a contextual vector representation for each
painting. In order to combine the visual and contextual features, we opted for
two different approaches:

� We use the contextual information vector in order to “regularise” the vi-
sual features. To do so, we have two “final” layers: one encoder that
transforms the final feature vector of the network into the contextual fea-
tures, and another one that performs the classification. These encoders
are single full connected layers with a Rectified Linear Unit activation
function (Figure 1a).

� We append the contextual information vector to the visual characteristics
vector. Then, we use a full connected layer to learn from the resulting
vector (Figure 1b).

The loss for each class c is the standard cross-entropy:

lc(y, ŷ) = − 1

n

n∑

i=1

yci log ŷci + (1− yci) log(1− ŷci) (4)

Given r, the final embedding obtained from the ResNet, and m the number
of clusters obtained with the fuzzy clustering, the loss function for the recon-
struction of the fuzzy memberships vector is the Smooth L1:

δemb(a, b) =

{
1
2 (a− b), if |a− b| ≤ 1

|a− b| − 1
2 , otherwise

(5)

lemb =

n∑

i=1

m∑

j=1

δemb(wij , rij) (6)

3.1. Fuzzy context encoding

The idea of using fuzzy clustering for this task is that the space formed
using a word embedding method can be a faithful representation of the original
domain, but it might not be useful to solve the task at hand. Since we are
interested in using these features to discriminate between classes, we are more
interested in the topology of the representation obtained and the groups that
are naturally present in them.
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We expect that these groups agglomerate categories that are not mutually
exclusive. For example, in the case of artistic representation, style and year can
be very correlated because of artistic movements. There are many more possible
examples in this case: e.g. landscapes can be grouped together but belong to
different authors, etc. Fuzzy clustering is the most suitable clustering tool for
this task, since we intend to express the membership to different, not mutually
exclusive groups. For each observation, we have a fuzzy membership degree for
each of the pertinent groups.

Besides, fuzzy clustering is much more convenient than the traditional K-
means algorithm for this task since fuzzy memberships are all in the same [0, 1]
range. This means that the resulting vector will be a real-valued vector, with
more information than a one-hot encoding corresponding to a unique cluster.
Besides, memberships to clusters that are far away can be modelled with a 0 in
both cases, while distances in the K-means can be very different in magnitude
but represent the same thing: the observation is not in this cluster. Thus,
fuzzy memberships are also more suitable than Euclidean distances in a hard
clustering approach for this task.

In order to compute the fuzzy memberships, we first encode the text anno-
tations using BoW or TF-IDF encodings.Once this codification is computed, we
run a fuzzy clustering algorithm to obtained the desired number of memberships.

The most popular fuzzy clustering algorithm is the FCM [6], which consist
of an adaption of the popular K-Means that obtains a fuzzy clustering config-
uration. Fuzzy rules have also been intensively used to perform classification
and data mining. However, according to our knowledge, no algorithm to ob-
tain a fuzzy clustering configuration using rules exists. In order to use a fuzzy
rule-based algorithm to compute fuzzy clustering, we have adapted the algo-
rithm proposed by Mansoori et al. in [42]. This algorithm results in a crisp
clustering configuration, so we changed it in order to obtain the desired fuzzy
memberships. More details about this can be found in Appendix B.

4. Classification results

In this section we evaluate the performance of the different proposed method
in the artistic image classification problem, using the visual embeddings from
the ResNet and the context aware embeddings. We also compare which solution
offers the best result in its original application. We also measure how effective
these features are when solving other similar but different tasks.

We have first evaluated the accuracy for the four different tasks (type, school,
timeframe and author identification) classification methods:

1. The ResNet50 and the VGG16 networks using their correspondent pre-
trained weights. We adapt the last layer to match the number of target
classes. These solutions only consider the visual information for each
image.

2. The ResNet50 and the VGG16 fine-tuned in a multi-task setting (MTL)
setting for all the different classes, so that context is captured by the
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shared information between tasks. We retrained all the weights for each
network.

3. The ResNet50 with information captured from contextual annotations
and metadata, using node2vec representations represented by a knowl-
edge graph (KGM) [27].

4. Our proposed classification framework in Figure 1 using the ResNet50 to
extract visual features and BoW/TF-IDF and FCM to encode the textual
annotations. We use the contextual features as a regularising element in
the training process, and appending both vectors of features (marked as
“append” in Table 1). For the case of the BoW codification, we also test
a lighter model that uses only the top 100 most popular words.

5. Our proposed classification framework in Figure 1 using the ResNet50 to
extract visual features and BoW/TF-IDF and FRBC to encode the textual
annotations. We use the contextual features as a regularising element in
the training process, and appending both vectors of features (marked as
“append” in Table 1).

6. Our proposed classification framework in Figure 1 using the ResNet50
to extract visual features and a CLIP autoencoder to encode the textual
annotations.

4.1. Datasets

For our experimentation we have used the SemArt dataset [29]. This dataset
consists of 21,384 painting images. Following the original data partition in [29],
19,244 images are used for training (i.e. a 90%), 1, 069 for validation, and
1, 069 for test (i.e. a 5% each). Each painting has associated a textual artistic
comment. In this dataset four different classification tasks are proposed:

� Type: each painting is classified according to 10 different common types
of paintings: portrait, landscape, religious, etc.

� School: each painting is identified with different schools of art: Italian,
Dutch, French, Spanish, etc. There are a total of 25 classes of this kind.

� Timeframe: The attribute Timeframe, which corresponds to periods of 50
years evenly distributed between 801 and 1900, is used to classify each
painting according to its creation date. We consider only the timeframes
where at least 10 paintings are present. This corresponds to 18 classes.

� Author: corresponds to the author of each paintings. We consider a to-
tal of 350 painters, that comprise the set of authors with more than 10
paintings in the dataset.

A in-depth analysis of the contextual annotations of the SemArt dataset can
be found in Appendix A.
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We have also used the WikiArt dataset. This dataset is a collection of high-
resolution images of artworks, along with their associated metadata, that were
scraped from Wikipedia [51].

The WikiArt dataset contains over 81,000 images of fine-art paintings, rep-
resenting a wide range of artistic styles and historical periods, from the 11th
century to the present day. Each image in the dataset is accompanied by a set
of metadata, including the title of the artwork, the artist, the year of creation,
the medium used and the dimensions of the artwork, among other attributes.

4.2. Results for the classification tasks

Table 1 shows the results each of the tasks and models. We can see that
the MTL methods performed worst than those that used a KGM or FCM to
capture contextual information. Comparing the KGM and FCM encodings,
the BoW-FCM performed better in all tasks but “Author”. When taking into
account contextual information using MTL, KGM and FCM-based methods,
the performance improved substantially for all classes.

The best result for each different task was obtained using an FCM-based
model. However, those that used most words for the contextual embedding
performed poorly on the Author task, in which the BoW model with only 100
words performed significantly better than the rest of the FCM-based models.
It was also the best performing method for this class compared to the KGM
and MTL-based proposals. This could be due to the fact that the “Author”
classification is the most complicated task, with only a few learning examples
per class, and the available contextual vectors are not specific enough to help
discriminate in those cases. Appending the contextual vector instead of using it
to regularise the gradient seems to have a similar effect in the final performance
of the system. Since we are not guaranteed to have textual annotations, it is
preferable to use those that only required them in the training process.

Finally, we have also joined both paradigms using a MTL model with the two
different contextual vectors as a regularising element. This model outperformed
the rest of the models, as they could access more information than the rest.

4.3. Results for reusing deep features with a SVM

In order to study how general are features obtained in these frameworks we
measure how useful they are to solve the other tasks by extracting the features
for each image and then traning a SVM classifier for the rest of the tasks studied.
For example, to test how good the features obtained for the author task using
the BoW+FCM model are for the type task, we extract the features obtained
with this model for the former task, and then we trained a SVM that uses these
features to solve the latter. We do this for two of the context-aware models. We
also test a new approach which consists of using the features obtained using a
CLIP autoencoder for both the text annotation and the image.

Table 2 shows the results of training each SVM model for each pair of possible
source and target class. In this case the deep features vector obtained consists
of 20 different features and performing feature selection. Results in this case
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Table 1: Correct Classification Ratio results for the different attributes on SemArt Dataset.

Method Type School TimeFrame Author

VGG16 0.706 0.502 0.418 0.482
ResNet50 0.726 0.557 0.456 0.500

VGG16 MTL 0.732 0.585 0.497 0.513
ResNet50 MTL 0.763 0.565 0.464 0.431

ContextNet 0.786 0.647 0.597 0.548

BoW + FCM 0.794 0.655 0.604 0.238
BoW + FCM-apppend 0.802 0.654 0.584 0.230

TF-IDF + FCM 0.786 0.645 0.604 0.229
TF-IDF + FCM-append 0.778 0.654 0.589 0.226

BoW100 + FCM 0.792 0.630 0.586 0.559

TF-IDF + FRBC 0.785 0.643 0.597 0.233
TF-IDF + FRBC-append 0.759 0.623 0.533 0.154

CLIP-context 0.784 0.649 0.601 0.215

MTL-FCM 0.804 0.691 0.618 0.531
MTL-CLIP 0.790 0.677 0.630 0.551

show similar results for any pair of source and target tasks. Results in training
set differs considerably in some cases. For example, for the Author class in some
cases we can obtain up to 0.540 of accuracy in training set, which evidences an
important overfit in the training set. The CLIP-only features did not perform
as good as the deep features from the Resnet except in the Timeframe task.
However, they did not overfit so much as training and test performance is much
more similar. This means that from the general dataset that trained the CLIP
model it is impossible to solve these specific tasks. On the other hand, the deep
features generated specifically form a space too complex to exploit using the
geometrical intuitions of the SVM [47].

5. Explaining Deep Features

In previous section we discussed the importance of the different features used
for different tasks, and which ones were more general and relied less on shortcuts.
However, the interpretation of such features is still unknown, as they are the
output from a large number of matrix operations. It is possible to grasp a better
understanding of their behaviour if we correlate them to known characteristics
in the original image.

In order to do so, we propose to use a Fuzzy Rule Based Classifier (FRBC)
that will map known features to the degree of activation of the deep features
used to classify the paintings in each task. This will allow us to understand
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Table 2: Results for a SVM trained on the features computed originally for another task
using feature selection over vectors of originally 20 features. Each row shows the original task
and each column the target one.

Framework Original task Type School TimeFrame Author

BoW+FCM

Type 0.167 0.382 0.001 0.152
School 0.167 0.160 0.001 0.369

TimeFrame 0.031 0.385 0.001 0.369
Author 0.174 0.392 0.009 0.378

CLIP-context

Type 0.149 0.166 0.000 0.383
School 0.366 0.167 0.000 0.381

TimeFrame 0.366 0.053 0.009 0.385
Author 0.369 0.168 0.000 0.384

CLIP-SVM - 0.227 0.268 0.120 0.247

the predictions done by the network using abstract concepts and Grad-CAM
heatmaps [54].

5.1. Extracting style info for SemArt paintings

To extract known features we first use another ResNet50 model trained to
recognise artistic movements in a painting. The output of this model will be
a vector containing the score for all possible styles considered. This model
is trained on the WikiArt dataset, on 100, 000 paintings belonging to 2, 300
different authors, and that contains 27 different artistic styles. We trained the
ResNet for a maximum of 300 epochs with a limit of 50 iterations without a
tangible improve in the model performance. It obtained an overall 53% accuracy
overall in the Wikiart dataset.

Once we have trained this model, we use it to characterise the sytle of the
SemArt paintings. We do not expect a significant domain shift between both
datasets as the SemArt dataset was not collected with a particular bias in the
selection process. However, in order to check how good the performance was in
this dataset, we compared the results using the painters that have paintings in
both datasets.

We computed the percentage of times that a painting was classified in Se-
mart with a style in which the author did not have any in Wikiart (Table 3).
We found a total 8 common artists in both datasets, with different degrees of
missclasification. Of course, some errors are more important than others i. e.
it is not the same to incorrectly classify a puntillism painting as impressionist
rather than puntillist. However, the whole complexity of this problem is left
open in this work.

We found the results satisfactory, as only one painter found significant miss-
clasification: Albert Durer. The rest of the presented an error of less than 0.10
or very few paintings (Singer Sargent).
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Table 3: Results for author and style correlation in Semart. Predictions for each style are
generated on a resnet fine tuned in the Wikiart dataset. Incorrect style indicates how many
times a painting was assigned to a style that does not correspond to the author by the model.

Artist Number of paintings in Semart Incorrect style

Albrecht Durer 79 0.25
Camille Pissarro 22 0.00
Childe Hassam 8 0.00
Claude Monet 92 0.03
Edgar Degas 64 0.03

John Singer Sargent 6 0.16
Paul Cezanne 76 0.07

Vincent Van Gogh 291 0.04

5.2. Characterizing visual focus

In order to join conceptual and visual concepts, we have studied the gradient
maps of the SemArt models using Grad-CAM [54], which shows the regions
which contributed significantly to the network prediction. Since we are studying
four different tasks, we obtain for each image not one, but four different Grad-
CAM heatmaps. To get an overall information we fuse them using the average
of those values. Once we reduced the different Grad-CAM maps to only one,
we characterise each of them focusing on three different properties:

1. Percentage of the image with significant attention values.

2. The magnitude of the biggest gradient in the heatmap.

3. The number of connected parts in the heatmap.

In order to discriminate between significant and not significant pixels, we
have studied the distribution of the heatmap values studied. We discarded a
normal distribution, and instead considered that the data followed a power law
(Figure 2). So, in order to consider a pixel relevant we just compare it against
the average value for that image. Those bigger than the average are considered
relevant.

In order to compute the maximum gradient in the image we compute the
Sobel filter, both in the horizontal and vertical axis. Once we have the gradient
for each direction we compute the gradient magnitude in each point using those
vectors using the Pythagorean theorem. Then, we choose the biggest one as a
result.

We divide the image in N squares of equal size to designate the number of
connected components in the image. Then, we denote which of these regions
was relevant in the classification. We designate as relevant those regions whose
average value is bigger than the average value of the whole image. Then, we
connect the regions regarded as relevant that are adjacent, which results in a
series of “super” regions. The number of connected components obtained is the
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Figure 2: Histogram of the heatmap intensities obtained using Grad-CAM for the SemArt
dataset.

Table 4: Statistics of the Grad-CAM heatmap descriptors for the SemArt datase.

Descriptor Average value Standard deviation

Maximum gradient 2.27 0.49
Relevant area 0.37 0.08

Number of super regions 2.90 1.39

same as the number of the “super” regions formed in the image. Figure 3 shows
an example of the results for this characterisation for one image.

Finally, Table 4 shows a summary of the statistics of these descriptors. We
can see that the average value of the relevant parts of the image is about a third,
and that there is an average of 3 connected components in each painting.

5.3. Mapping known features to deep features

Here, we discuss how we constructed the FRBC and the results obtained in
the SemArt dataset discriminating deep features and authors.

5.3.1. Fuzzy rule based classifier used

In order to design the FRBC, we set as 30 the maximum number of rules,
4 the maximum number of antecedents. The linguistic labels are three: low,
medium and high. To compute the prediction for a sample, we need to compute
the dominance score of each rule r [37]. The dominance score for each rule is
the product of their support:

sr(Antsr → Consr) =

∑
x∈(Antsr→Consr)

wr(x)

|R| , (7)
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Painting Grad-CAM Heatmap
(c)

(a)

(b)

Descriptor Value

Maximum gradient 1.8
Relevant area 0.53

Number of super regions 3

Figure 3: Example of the extraction of the different descriptors for a Grad-CAM
heatmap. (a) Shows the gradient magnitude for each pixel. We choose the highest value
from that image as the descriptor. (b) Shows the pixels denoted as relevant because their
value was higher than the average value in the image. (c) Shows the division into different
regions and those designed as relevant. Then, we can generate the “super” regions. In the
adjacent table, we can find the numeric values for each descriptor in this image.
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where wp(x) is the degree of truth of the antecedents of rule r for the sample x
and R is the set of all rules in the FRBC. We are using Mamdani inference, so the
firing strength of the rule is the product of the truth degrees of all antecedents
of the rule. Confidence is defined as:

cr(Antsr → Consr) =

∑
x∈(Antsr→Consr)

wr(x)
∑

r=1,x∈(Antsr)
wr(x)

(8)

.
So, the dominance score (DS) of each rule, dsr, is defined as:

dsr = sr ∗ cr (9)

Finally, we compute the association degree, asr(x), using wr(x) and dsr:

asr(x) = wr(x) ∗ dsr. (10)

Each sample is classified according to the consequent class of the rule with
the highest association degree for that sample:

P (x) = Consargmax(asr(x)∀r∈R) (11)

For our experimentation, we have focused on the performance of a standard
fuzzy rules based classifier. In order to train one, we used a genetic algorithm
that optimises the fuzzy partitions and the antecedents and consequent for each
rule. The metric to optimise is the Matthew correlation coefficient:

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(12)

where TP is true positive, TN means true negative, FP is false positive and FN
is false negative.

We also add another condition: in case two subjects performed equally on
the fitness metric, we prefer those that did so using less rules.

5.3.2. Mapping known characteristics to deep features

Our aim is to obtain rules that map known characteristics to a relevant ac-
tivation in a deep feature, like this:

Antecedents Consequent (Dominant feature)
IF Expressionism IS High AND Relevant area IS Small Deep Feature 1

Our first step to construct such rules is to designate which features are for each
sample, and how useful are in the classification task. In order to so, we have
computed the average value and the number of times each feature presented the
biggest value in a sample (Figure 4). Some features are clearly more dominant
than others i.e. 17 and 19, while others are remarkably low i.e. 12. Although
it would be possible to designate more than one feature as dominant for one
sample, we have simplified this task as chose as dominant for one sample the
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deep feature with biggest activation. We have checked the feasibility of this task
by visualizing using PCA for each deep feature studied (Figure 5).

Then, we used a Gradient boosting classifier (GBC) [15] to solve the classi-
fication task resulted in a 0.22 accuracy. Since Gradient boosting is considered
state-of-the-art in the standard tabular classification [24] we can interpret this
0.22 as a upper bound of accuracy in a FRBC. However, we can convert this
problem using a One-versus-All scheme. In this way, instead of one multi-class
problem we have 20 binary classification problems. As these problems are heav-
ily imbalanced, we use the MCC to evaluate the results for each feature. These
are shown in Table 5.

The lack of positive samples for each feature in comparison with the nega-
tive ones affects deeply the performance of the GBC. In order to give a more
reliable estimation of the performance of the system we subsampled randomly
a balanced partition for each feature (i.e. we perform random oversampling,
Table 5, column 2). Using these models, we checked the importance that they
gave to each style for their predictions. Based on the relevant ones (when the
importance value is bigger than the average), we use a FRBC that learns the
correspondent rules to map from the input data to the desired class for each
deep feature.

Using this model and fuzzy linguistic variables, we can characterise each
painting according to their expressiveness of their visual traits. Table 6 shows
the MCC for each of the features classification using a FRBC. As expected from
Figure 8 visualisations, the performance is very different among the features.
Finally, in Table 7 we show the resulting obtained for some of the features were
the classification was most successful and in Figure 6 we show an example image
for each dominant feature studied where those rules fired.
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Figure 4: Study of deep features activations. (a)Average value of the 20 deep features
used in MTL-FCM predictions.(b) Histogram containing the number of times that each feature
presented the biggest value for each sample in the train set.

5.3.3. Mapping known features to discriminate particular authors

Author identification is one of the most relevant tasks artistic curation. Not
only to properly identify the original painter of one artistic piece, but also to
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Table 5: Performance measured using MCC for a GBC in the original and a balanced
partition obtain by subsampling the original dataset.

MCC performance
Feature Original partition Balanced partition

1 0.08 0.26
2 0.00 0.52
3 0.10 0.30
4 0.03 0.43
5 0.23 0.48
6 0.02 0.25
7 0.05 0.25
8 0.06 0.54
9 0.10 0.40
10 0.07 0.21
11 0.07 0.37
12 0.00 0.34
13 0.00 0.18
14 0.20 0.56
15 0.00 0.19
16 0.00 0.60
17 0.22 0.42
18 0.05 0.34
19 0.06 0.20
20 0.00 0.56

Table 6: MCC obtained for each features using a FRBC.

Feature MCC Feature MCC

1 0.2369 11 0.0000
2 0.5001 12 0.0000
3 0.2076 13 0.0954
4 0.2076 14 0.4666
5 0.4440 15 0.6888
6 0.1611 16 0.4714
7 0.1941 17 0.3708
8 0.4512 18 0.1478
9 0.3612 19 -0.2377
10 0.2432 20 0.4552
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(a) Feature 1 (b) Feature 2 (c) Feature 3 (d) Feature 4

(e) Feature 5 (f) Feature 6 (g) Feature 7 (h) Feature 8

(i) Feature 9 (j) Feature 10 (k) Feature 11 (l) Feature 12

(m) Feature 13 (n) Feature 14 (o) Feature 15 (p) Feature 16

(q) Feature 17 (r) Feature 18 (s) Feature 19 (t) Feature 20

Figure 5: PCA projections for the deep features. Blue dots mark samples where the feature
is dominant.
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(a) Feature 2 (b) Feature 8

(a) Feature 15 (a) Feature 16

Figure 6: Example paintings for four of the dominant features studied. (a) “The
behead of Saint John Baptist”, Caravaggio. (b) “The Annunciation and view from a Cell”,
Fra Angelico. (c) “Annunciation to Mary”, Bocaccio (d) “The blind musician”, Ramón Bayeu
y Sub́ıas.
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Feature 2 DS

IF Early Renaissance IS High AND Northern Renaissance IS High 0.4968

Feature 8

IF Early Renaissance IS High 0.4332

Feature 15

IF Cubism IS Low AND Early Renaissance IS High AND Pointillism IS Low 0.1065
IF Early Renaissance IS High AND Rococo IS Low 0.3906

Feature 16

IF Analytical Cubism IS Low AND Naive Art Primitivism IS Medium AND Pointillism IS Medium 0.2199
IF Contemporary Realism IS High AND Cubism IS Low AND High Renaissance IS Low 0.2932
IF Analytical Cubism IS Low AND Color Field Painting IS Medium AND Pop Art IS Low 0.1334

Table 7: Most important rules (DS >0.1) that identify some of the deep features studied.

detect possible forgeries or false attributions. Our previous deep learning models
can output the likelihood of a paintings authorship, but these predictions tend
to be overconfident and not realistic. In order to solve this problem, we use a a
FRBC to distinguish between particular authors of interest, and output a more
trustworthy estimation of the reliability of such prediction [22].

As a way of illustration of this application, we shall construct a FRBC
to distinguish two painters that were acquainted in real life: Paul Gauguin
and Vincent Van Gogh. Its is specially interesting to see if the resulting rules
match the actual knowledge that we have of both of them. They are considered
postimpresionist painters, with strong similarities and differences in their style
(Figure 7).

The SemArt contains 291 paintings from Van Gogh and 81 from Gauguin.
Figure 8 shows a PCA and a TSN visualisation of the paintings for each class
using our style and Grad-CAM characterization. We construct the rules using
in the same way as in the previous section, but in this case the consequent class
will be one of the two authors. Table 8 shows the performance for both the
GBC and the FRBC. As the number of antecedents is too high for the genetic
algorithm (see Section 5.3.1) to obtain a good result, we used the features that
were more important using the GBC classifier to train the FRBC, which is also
shown in Table 8. We obtained good results for both approaches, which again
proves that the style and Grad-CAM heatmap characterisation was successful.
Indeed, we even obtained better results with the FRBC compared to the GBC
in the reduced set of features.

Figure 9 shows the rules obtained to differentiate both authors and the domi-
nance score and individual accuracy for each rule in all the training samples they
fired. We obtained three successful rules for Van Gogh and one for Gauiguin.
From those rules we can see that Synthetic Cubism is a very good feature to
identify Van Gogh paintings compared to Gauguin, and Early Renaissance style
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(a) “Starry Night” (b) “Visions after the Sermon”

Figure 7: Vincent Van Gogh and Paul Gauguin. Van Gogh and Gauguin were both
considered exceptional postimpresionist painters. Stetically, they both used a non-realistic
style, brilliant colors and both were inspired by the compositions of japaneses stamps. How-
ever, they also present important differences in the content of their paintings. For example,
Gauguin was interested profoundly in symbolism and was one of the pioneers that gave birth
to this movement [30].

(a) (b)

Figure 8: Visualisation of Van Gogh and Gauguin samples using PCA (a) and TSNE
(b). The features reduces are the style and Grad-CAM features.

the second best. We only found one relevant pattern for Gauguin. One interest-
ing issue is that the best features to discriminate both artist are styles that did
not exist in the actual time of the painters. This can indicate that these painters
already started some of the traits that characterised those artistic movements.

6. Conclusions and future lines

In this paper we have proposed a new method to combine visual features and
contextual annotations, using a BoW based on a fuzzy membership encoding, a
FRBC approach and CLIP features. We used these methods in a classification
framework, that considers a fine-tuned ResNet 50 enriched to extract the visual
features from a dataset of artistic images. This network learns to solve a classi-
fication problem and to reconstruct the features extracted from the contextual
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Table 8: Performance for a GBC and a FRBC in the Van Gogh/Gauguin identification task.

GBC GBC-reduced features FRBC
Accuracy MCC Accuracy MCC Accuracy MCC

1.00 1.00 0.88 0.53 0.88 0.62

Author Antecedents DS Train Acc Test Acc

1 IF New Realism IS Low AND Post Impressionism IS Medium 0.0076 0.5000 0.0000
2 IF Early Renaissance IS Medium AND New Realism IS Medium AND Synthetic Cubism IS Medium 0.0740 0.7777 1.0000
3 IF Early Renaissance IS Low AND Synthetic Cubism IS High 0.2517 0.9390 0.8888
4 IF Synthetic Cubism IS Low 0.4624 0.9097 0.925
5 IF Contemporary Realism IS Medium AND Synthetic Cubism IS Low AND Relevant area IS Low 0.0092 0.0000 0.0000

6 IF Contemporary Realism IS Medium AND Minimalism IS Low 0.3389 0.7586 0.7692
7 IF Early Renaissance IS Medium AND Minimalism IS Medium AND Synthetic Cubism IS Medium 0.0124 0.0000 0.0000

Figure 9: Rules that differentiate Van Gogh from Gauguin paintings.

information for each image, which helps the network generalise better, as it does
not need to rely only on visual cues to classify each sample. We have also studied
how CLIP auto-encoder features compare in performance with models. Besides,
we have proposed different alternatives to interpret the features obtained with
these methods.

The comparison between contextual-aware models with some similar visual-
only classification frameworks show favourable results for the latter ones. We
obtained the best results overall using a MTL paradigm with contextual in-
formation. We also showed how some of the deep features used by the best
model can be characterized according to the relevant parts of the image and
the style of painting. Finally, we showed that some painters can be successfully
characterised likewise and distinguish one from another also using interpretable
patterns.

Future lines of our research shall study more expressive features in which to
represent some of the images characteristics [41] and apply methods to improve
the performance of the FRBC in imbalanced datasets. We also intend to develop
a metric that can compute how good is a commentary that describes an image,
so that the additional information present in it the text can be quantified.
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St Veneranda Enthroned

Cattle and Goats in a Meadow

The painting was originally in the
church of Corpus Domini in Venice,
where the body of the saint is pre-
served.

The painting represents cattle and
goats by a pollarded tree in a meadow,
shepherd boys approaching beyond.

Figure A.10: Example of two contextual annotations in the dataset. The first one
(a) talks about the context but does not mention anything about the contents of the painting
itself. The other one (b) describes its contents.

Appendix A. SemArt Dataset and Context annotation study

For our experimentation we have used the SemArt dataset [29]. This dataset
consists of 21,384 painting images. Following the original data partition in [29],
19,244 images are used for training (i.e. a 90%), 1, 069 for validation, and
1, 069 for test (i.e. a 5% each). Each painting has associated a textual artistic
comment, alongside the following attributes: Author, Title, Date, Technique,
Type, School, and Timeframe.

In this experimentation four different classification tasks are proposed:

� Type: each painting is classified according to 10 different common types
of paintings: portrait, landscape, religious, etc.

� School: each painting is identified with different schools of art: Italian,
Dutch, French, Spanish, etc. There are a total of 25 classes of this kind.

� Timeframe: The attribute Timeframe, which corresponds to periods of 50
years evenly distributed between 801 and 1900, is used to classify each
painting according to its creation date. We consider only the timeframes
where at least 10 paintings are present. This corresponds to 18 classes.

� Author: corresponds to the author of each paintings. We consider a to-
tal of 350 painters, that comprise the set of authors with more than 10
paintings in the dataset.

Appendix A.1. Encoding text annotations using Bag of Words and TF-IDF

The text annotation present in each of the paintings can be encoded in
different ways. The most classical one is the Bag of Words model in which
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Most Popular Words

Painting Right
Painted Century

St Life
Work Scene

Picture Christ
Figures Painter

Left Scenes
Portrait Shows

Paintings Panel
Artist Church

Table A.9: Top 20 most common words found in the paintings contextual annotations.

0 100 200 300 400 500

0.5

0.6

0.7

0.8

0.9

1.0

Figure A.11: Proportion of paintings where at least one of the values in the encoding vector
is not 0 using the top-k most popular words in the dataset contextual annotations. The x axis
represents the value of k.
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Crucifix
Still-Life with Fruit

This famous Crucifix was partially
destroyed by the flood in 1966

These peaches, grapes, and figs may
be identified as products of the Medici
estates

Self-Portrait with Straw Hat Portrait of a Lady

Catalogue numbers: F 526, JH 0309 The lady beside a fountain, three-
quarter length, is said to be the Mar-
chioness of Montchevreuil

Figure A.12: Examples of 4 paintings with contextual annotations that did not contain any
of the 100 most common words in the dataset.

0.0

0.1

0.2

0.3

0.4

0.5

(a) 100 size encoding vector.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(b) 10445 size encoding vector.

Figure A.13: Proportion of values in the encoding vectors that are not 0 for each painting.
Paintings sorted in the x axis according to a increasing permutation in this sense.
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each phrase is represented as a vector of numbers in the [0, 1] range where each
position is associated with one word. Another popular representation is based
on the TF-IDF metric representing each word [1], which weights the power of
discrimination of each word in the whole document collection (artistic image
database in our case). TF-IDF indexing has been very popular in other artistic
image processing tasks [29] and in natural language processing and text mining
tasks [48, 63].

TF-IDF metric indexing is more popular than BoW in modern applications.
However, this representation presents some issues for our task. TF-IDF ponders
most words that are frequent in a description but absent in others. The idea is
that those words are most discriminative than others, but this is not necessarily
true in our case. “Landscape”, for example, is a word that appears in many
descriptions but is also very discriminative. This also happens with other words
such as “Portrait”.

We have opted to compute both representations and compare their be-
haviour. In order to do so, we use as a vocabulary the list of words that appear
more than 10 times in the contextual annotation and titles. We compute the
encoding vectors using these words. We have also considered a simpler repre-
sentation vector using BoW with only the 100 most popular words.

Most descriptions in the SemArt dataset contain contextual information
about the painter and the painting, although some comments can be more de-
scriptive than others about the actual visual information present in the canvas
(Figure A.10). Table A.9 shows the most common words found in the paintings
descriptions. Some of them are very general, like “painting” or “picture”. How-
ever, there are some religious words in the top too, like “Church” and “Christ”,
suggesting that this theme is actually a popular topic in the whole collection of
paintings.

Figure A.11 shows the percentage of the paintings that contain at least one
of the most popular 500 words. Using the 100 most popular ones leaves all
but 342 paintings with at least one word contained in that top. If we used the
codification with the words that appeared more than 10 times, this results in
the 100% with at least one symbol, as we are taking a total of 10, 445 words.
If we wanted to use the top-k most popular words and we wanted all paintings
to have at least one word contained in their description, we would need to use
3060 words.

Figure A.12 shows three contextual annotations that did not contained any
of the considered words. We can see that these annotations are short, and
contain specific words about the painting itself, like “peaches”, “Crucifix”, and
“lady”, which are not as frequent as to appear in the 100 most common words.
In other cases like in Self-Portrait with Straw Hat the contextual annotation is
just an identifier in a catalogue.

The size of the 10, 445-word encoding vector might present a problem, be-
cause most of the entries will be 0, as the painting descriptions in this dataset
are not long enough to present an important percentage of the 10, 445 possible
words. Figure A.13 shows the percentage of words that appeared with respect
to the vector size for both the 100-word vector encoding and the 10445-word

26

246



(a) (b) (c)

Figure A.14: PCA representation of the features computed using FCM on the BoW (a) and
TF-IDF (b) using all the words that appear 10 times or more, and using BoW on the top 100
most common words (c).

Figure A.15: PCA representation of the 40 fuzzy memberships computed using TF-IDF and
FRBC fuzzy memberships, using the top 30 most common words.

one. For the latter one, there is no painting with more than a 3.5% of the vector
with values of 1. For the case of the 100-word encoding, we do not have the
same problem.

Appendix A.2. Clustering structure on the extracted features

We tested both BoW and TF-IDF representations of the contextual anno-
tations. For the number of clusters, we opted for 128 as it gave good results in
the contextual embeddings of the ContextNet [28] and other works related to
this net [13].

Figure A.14 illustrates the resulting FCM memberships using PCA with two
components for the 10, 445-word and 100-word encodings. In this figure we can
observe that the BoW features seem to have a more clear structure than TF-
IDF representations, which should perform better in the classification task. In
Figure A.15 we show the same result for the FRBC fuzzy memberships, which
showed a very different structure from the FCM memberships.

Figure A.16 shows the fuzzy memberships using some of the different al-
ternatives explored: using different BoW/TF-IDF models and using FCM or
FRBC. We can see that the FCM has the problem that all the memberships
must add 1, while the FRBC can surpass these limitation. We can also see that
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(a) (b)

Figure A.16: Fuzzy memberships visualization for and FRBC with TF-IDF on the top 100
words.

in both cases most of the samples have high memberships to the same groups,
which means that there is a big overlap between them.

Appendix B. Fuzzy rules based clustering

The modification of the original clustering algorithm includes two main
changes:

1. The original algorithm gave as a result a crisp clustering. In order to
return fuzzy memberships to the distinct groups, we use the value of the
consequent for each rule selected in the algorithm.

2. The original algorithm had a stopping condition based on a stopping pa-
rameter, so that when a percentage of the original data was assigned to
a group, it stopped. Since there is not a proper criteria to choose this
parameter, we stop when all the original samples have been removed from
the dataset.

The resulting algorithm is the following:

1. We designate the existing observations as the main data, X = {x1, . . . ,xm}.

2. z = 1.

3. Generate a set of synthetic samples X ′.

4. Compute the distance of the main data to their centroid, q, and the same
for the synthetic data, q′.

5. If q′ < q return to step 3.

6. Generate a set of rules to discriminate between X and X ′.

7. Select the rule with more data compatibility (Eq. ?? and Eq. ??).
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8. The membership of each observation to cluster z is the consequent of the
chosen rule.

9. Remove the observations from X and X ′ that belonged to cluster z with
more than 0.5 degree.

10. z = z + 1

11. If ‖X‖ > 0, return to step 3.

This approach has a advantage over the FCM. In the FCM the sum of all
memberships must sum 1. This means that the bigger the contextual vector is,
the lesser value each membership will be. In the case of the FRBC, there is
not such restriction. Besides, we do not need to specify the number of clusters,
as the process has a natural way to finish when all the observations have been
assigned to a group.

In order to apply this algorithm, we need to use an algorithm to generate the
set of rules for the classification problem (step 7 in Section 2.2). We have used
the the LFL R package [10] to search for rules with 0.5 of minimum confidence,
0.02 of minimum support and a maximum number of 4 antecedents.
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JAVIER MONTERO, HUMBERTO BUSTINCE, GRAÇALIZ P DIMURO,
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