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Abstract: The application of BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2 infection
has constituted a determinant resource to control the COVID-19 pandemic. Since the beginning of
2021, millions of doses have been administered in several countries of North and South America
and Europe. Many studies have confirmed the efficacy of these vaccines in a wide range of ages
and in vulnerable groups of people against COVID-19. Nevertheless, the emergence and selection
of new variants have led to a progressive decay in vaccine efficacy. Pfizer–BioNTech and Moderna
developed updated bivalent vaccines—Comirnaty and Spikevax—to improve responses against the
SARS-CoV-2 Omicron variants. Frequent booster doses with monovalent or bivalent mRNA vaccines,
the emergence of some rare but serious adverse events and the activation of T-helper 17 responses
suggest the need for improved mRNA vaccine formulations or the use of other types of vaccines.
In this review, we discuss the advantages and limitations of mRNA vaccines targeting SARS-CoV-2
focusing on the most recent, related publications.

Keywords: SARS-CoV-2; mRNA vaccines; BNT162b2; mRNA-1273; Comirnaty; Spikevax; variants;
myocarditis; Th17 response

1. Introduction

Coronaviruses comprise a group of pathogens affecting many vertebrate species,
from birds to humans [1]. These viruses generally cause respiratory and enteric diseases,
but some coronavirus species can cause other diseases such as hepatitis or encephali-
tis in non-human vertebrates. Coronaviruses are single-stranded positive-sense RNA
(+ssRNA) viruses belonging to the Coronaviridae family [2]. Their genome encodes repli-
case/transcriptase proteins, structural proteins and a set of non-structural proteins linked
to their virulence and proofreading activities of the replicase complex [3,4]. The coronavirus
virion contains a helical nucleoprotein made of a single +ssRNA genome bound to the nucle-
ocapsid protein (N) [5]. This nucleoprotein is further organized into a packed internal core,
enveloped by the virus membrane which derives from the endoplasmic reticulum/Golgi.
The spike (S), membrane (M) and envelope (E) proteins are the main structural proteins
inserted into the virus envelope [6]. The spike protein is further organized into trimers,
forming the “corona” of peplomers that gives rise to the name of the family (Figure 1). In
2003, an outbreak of infectious pneumonia put the international community into high alert,
leading to the discovery of severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1),
the first human pathogen of the family to cause lethal disease [7,8]. That first outbreak
was controlled until a second one caused by a closely related coronavirus, SARS-CoV-2,
originated one of the most severe pandemics in human history. The global epidemic was so
dramatic that it accelerated the engineering of vaccines targeting SARS-CoV-2 at rates never
seen before. The previous experience with other coronaviruses, including SARS-CoV-1 and
MERS-CoV [9–11], prompted the selection of the spike protein as the main immunogen
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in most vaccines [12,13]. From the four main structural proteins, the S protein is one of
the most immunogenic, at least in raising neutralizing antibody responses. Among all the
potential types, mRNA vaccines soon became the primary candidates.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 2 of 17 
 

 

the S protein is one of the most immunogenic, at least in raising neutralizing antibody 
responses. Among all the potential types, mRNA vaccines soon became the primary can-
didates. 

 
Figure 1. SARS-CoV-2 structure with the localization of the main structural proteins (arrows). The 
coronavirion is spherical, of about 100 to 120 nm of diameter. +ssRNA, indicates the positive-sense 
single-stranded RNA genome. 

Vaccines based on antigen delivery through mRNA are produced by a simple and 
fast procedure which consists of the amplification of the RNA nucleotide sequence encod-
ing the open reading frame of the desired gene, plus further modifications to enhance 
stability and translation. The procedure is performed in automatized factories in which 
the risk of contamination with unrelated material is very low [14]. 

The first mRNA vaccine for infectious diseases was developed against influenza A in 
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ficacy of the vaccine was also proven in ferrets and pigs [15]. After that, various mRNA 
vaccines were tested in animal models to evaluate their efficacy against the Zika virus, 
Ebola virus, cytomegalovirus and human immunodeficiency virus (VIH), among others 
[16–21]. 

Several vaccines have been developed for SARS-CoV-2 to reduce its transmission and 
virulence. Among other adenoviral and protein-based vaccines, the European Medicines 
Agency (EMA) authorized two mRNA vaccines for human use, BNT162b2/Pfizer–BioN-
Tech and mRNA-1273/Moderna, in December 2020 and January 2021, respectively. 

The BNT162b2 vaccine consists of a lipid nanoparticle, which contains an mRNA en-
coding the full-length spike protein with two proline substitutions (in positions 986 and 
987) in the S2 subunit to maintain the protein in the prefusion conformation [22,23]. Sim-
ilarly, the mRNA-1273 vaccine consists of a lipid nanoparticle capsule constituted by four 
lipids, which also carries an mRNA encoding the SARS-CoV-2 full-length spike glycopro-
tein with the intact furin cleavage site and the two proline substitutions in the S2 subunit 
[24,25]. Up to three doses of these vaccines have been allowed and even four doses in 
vulnerable people at risk [26–28]. 

The lipid nanoparticle (LNP) of BNT162b2 is composed of ALC-0159 (2[polyethylene 
glycol)-2000]-N,N-ditetradecylacetamide) and DSPC (1,2-distearoyl-sn-glycero-3-

Figure 1. SARS-CoV-2 structure with the localization of the main structural proteins (arrows). The
coronavirion is spherical, of about 100 to 120 nm of diameter. +ssRNA, indicates the positive-sense
single-stranded RNA genome.

Vaccines based on antigen delivery through mRNA are produced by a simple and fast
procedure which consists of the amplification of the RNA nucleotide sequence encoding
the open reading frame of the desired gene, plus further modifications to enhance stability
and translation. The procedure is performed in automatized factories in which the risk of
contamination with unrelated material is very low [14].

The first mRNA vaccine for infectious diseases was developed against influenza A
in 2012. In vivo experiments in mice showed specific B- and T-cell based protection. The
efficacy of the vaccine was also proven in ferrets and pigs [15]. After that, various mRNA
vaccines were tested in animal models to evaluate their efficacy against the Zika virus, Ebola
virus, cytomegalovirus and human immunodeficiency virus (VIH), among others [16–21].

Several vaccines have been developed for SARS-CoV-2 to reduce its transmission and
virulence. Among other adenoviral and protein-based vaccines, the European Medicines
Agency (EMA) authorized two mRNA vaccines for human use, BNT162b2/Pfizer–BioNTech
and mRNA-1273/Moderna, in December 2020 and January 2021, respectively.

The BNT162b2 vaccine consists of a lipid nanoparticle, which contains an mRNA
encoding the full-length spike protein with two proline substitutions (in positions 986
and 987) in the S2 subunit to maintain the protein in the prefusion conformation [22,23].
Similarly, the mRNA-1273 vaccine consists of a lipid nanoparticle capsule constituted
by four lipids, which also carries an mRNA encoding the SARS-CoV-2 full-length spike
glycoprotein with the intact furin cleavage site and the two proline substitutions in the S2
subunit [24,25]. Up to three doses of these vaccines have been allowed and even four doses
in vulnerable people at risk [26–28].

The lipid nanoparticle (LNP) of BNT162b2 is composed of ALC-0159 (2[polyethylene glycol)-
2000]-N,N-ditetradecylacetamide) and DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) which
play an important role in the formation of a stable lipid-bilayer nanoparticle. The LNP is
structurally supported by cholesterol. Finally, the ALC-0315 ((4-hydroxybutyl) azanediyl)-
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bis(hexane-6,1-diyl)-bis(2-hexyldecanoate)) is the fundamental component for mRNA de-
livery into the cell. In addition, the vaccine is supplemented with salt buffers in order to
balance the pH, and sucrose to protect the vaccine during freezing. Similarly, the mRNA-
1273 LNP is stabilized by polyethylene glycol (PEG) 2000 DMG and DSPC, which form
a lipid bilayer that is structurally supported by cholesterol. In contrast to BNT162b2
LNP, it carries lipid SM-102 in order to release the mRNA into the cell. This vaccine
is also supplemented with salt buffers to balance the pH and with sucrose that serves
as cryo-protectant.

LNP based-vaccines present a challenge due to the lack of thermostability and ultra-
cold storage requirements, a fact that has limited their use in resource-poor countries. In
addition, lipid and cholesterol excipients make the vaccines prone to oxidative degradation,
which could decrease the stability of the vaccines. Furthermore, these BNT162b2 and
mRNA-1273 mRNA vaccines, in particular, could pose a challenge in terms of delivery due
to the long ribonucleic acids (4284 and 4004 nucleotides, respectively) with a number of
modified nucleosides.

The BNT162b2 vaccine has been approved in 85 countries from North and South
America and Europe; while mRNA-1273 has been distributed in 45 countries in Europe
and North America [29].

Millions of doses of these mRNA vaccines have been administered worldwide during
the pandemic. This has allowed the consolidation of the efficacy and safety data on these
vaccines, and confirmed the decay in efficacy associated with the relatively short duration
of protection. Data on protection against SARS-CoV-2 emerging variants have also been
obtained. Here, we discuss the advantages and limitations of these mRNA vaccines and
the recent adaptations approved for SARS-CoV-2 Omicron variants.

2. Advantages and Caveats of Efficacy and Safety of mRNA SARS-CoV-2 Vaccines

The advantages of the BNT162b2 and mRNA-1273 vaccines in terms of efficacy were
readily noticeable right at the beginning of their administration to the general population.
The application of these vaccines was quickly associated with a decrease in COVID-19
symptomatology and spread [30]. Their fast efficacy was caused by a combination of factors:
the induction of high titers of neutralizing antibodies, the activation of T-cell responses, and
a demonstrated efficacy within different population groups, including vulnerable people
such as the elderly.

In contrast, over the course of time, we have been aware of some of their limitations,
especially after the selection and propagation of variants. The most significant are the rare
but serious adverse events specifically associated with these mRNA vaccines, short-lived
protection, reduced efficacy towards variants of concern and the activation of Th17 immune
responses which can exacerbate inflammatory reactions.

2.1. Induction of Neutralising Antibodies and T-Cell Activation

In phase three of their respective clinical trials, vaccination with BNT162b2 and mRNA-
1273 vaccines provided protection against symptomatic COVID-19 in 95 and 94.1% of the
vaccinated participants, respectively. These trials were carried out in groups of subjects
with ages ranging from 16 to 55. Their efficacy was also proven in older adults comprising
the population most vulnerable to COVID-19 (>65 years of age) and also in adolescents
(<16 years of age) [23,24,31–33]. Further studies confirmed the efficacy of these vaccines
against the SARS-CoV-2 original strain by the fast induction of high titers of IgM and
IgG antibodies specific towards the S protein, and with potent neutralizing capacities.
These antibody titers remained detectable up to six months post-vaccination. Additionally,
some studies evaluated the generation of T-cell responses towards S-derived peptides,
demonstrating the presence of S-specific CD4 and CD8 T cells within 10 days to 9 weeks
following the first and second dose, or even up to 6 months post-vaccination in healthy
donors [29,34–42]. Furthermore, third and fourth doses led to improved immune responses
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compared to two doses of mRNA vaccines, leading to a peak in IgG titers in the fourth
week postvaccination [43–45].

2.2. Efficacy in Vulnerable Populations

However, it turned out that not all vulnerable groups of people benefit from the
current mRNA vaccines. This is specially the case for organ-transplanted patients or
patients suffering multiple sclerosis. These patients did not benefit from BNT162b2 and
mRNA-1273 vaccines due to their immunosuppressive treatments [46–53]. On the other
hand, the efficacy of these vaccines has been demonstrated in patients with several types
of cancers. Most studies highlight the induction of S-specific antibodies after mRNA
vaccination in solid-tumor patients and oncohematological patients. This is especially true
in the third week after the administration of the second dose, reaching similar numbers of
antibody titers as healthy donor groups [54–60]. Some studies also detected CD4 and CD8
T cells specific for the S protein in solid-tumor patients up to 6 months post-vaccination. In
these latter cases, the antibody titers were comparable to those achieved in healthy donors
vaccinated with the mRNA vaccines [42,61–63]. Nevertheless, patients with hematological
cancers and vaccinated with the mRNA vaccines presented decreased numbers of specific-
T cells compared to healthy individuals [63,64]. The specific studies are summarized
in Table 1.

Table 1. Detectable immune responses in different studies performed in either healthy or oncologic
participants after mRNA vaccination.

Participants Age Vaccine Detected Immune Responses Ref

Healthy 18–55 mRNA-1273 S-specific neutralizing IgGs
S-specific Th1 responses [24]

Healthy 18–55
65–85 BNT162b2 S-specific neutralizing IgGs [23]

Healthy 12–15 BNT162b2 S-specific neutralizing IgGs [31]
Healthy 12–17 mRNA-1273 S-specific neutralizing IgGs [32]

Healthy 18–83 BNT162b2-boost S-specific neutralizing IgGs
S-specific Th1 responses and CD8 T cells [34]

Healthy 18–55 BNT162b2 S-specific neutralizing IgGs
S-specific CD4 and CD8 T cells [38]

Healthy
Naïve and SARS-CoV-2

recovered
22–67 BNT162b2

mRNA-1273

S-specific neutralizing IgGs
S-specific CD4 and CD8 T cells

Memory B cells
[61]

Solid tumor and
oncohematological patients 64–80 BNT162b2 S-specific neutralizing IgGs

IFNg-secreting T cells [63]

Multiple myeloma (MM) and
chronic lymphocytic

leukemia (CLL) patients
35–81 BNT162b2

mRNA-1273
S-specific serological responses

Specific CD8-T-cell responses especially in MM patients [54]

CLL patients 37–93 BNT162b2
mRNA-1273 Treatment-dependent serological response [57]

CLL patients 41–88 BNT162b2-boost Treatment-dependent serological response [60]
Solid-tumor patients 35–87 BNT162b2 S-specific serological responses [59]

Solid-tumor patients
Naïve and SARS-CoV-2

recovered
40–85 BNT162b2

S-specific IgGs
S-specific CD4 and CD8 T cells

T-cell phenotypes
Myeloid subpopulations

[42]

2.3. Duration of Protection

As reported by several studies, S-specific IgGs induced by mRNA vaccines decrease
6 months after the second dose of mRNA vaccination [42,65]. As mentioned previously, the
third and fourth dose further significantly increase IgG titers compared to titers achieved
in subjects vaccinated with only two doses; however, IgG titers again decrease six months
after the booster dose [44,66]. It needs to be highlighted that in patients with cancer,
the persistence of antibody responses is generally shorter compared to healthy subjects
following vaccination [67,68].

According to the duration of T cell responses, some studies reported the expansion of
vaccine-specific T cells with a stem cell memory phenotype (TSMC). This is an important
observation, because these T cells could persist for decades, providing long-term protection
against SARS-CoV-2. However, in general terms, the specific CD4 and CD8 T cells are
generally lost 6 months post-vaccination [69]. T-cell responses can be studied in more detail
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by analysing the phenotype of T cells expanded following vaccination with the mRNA
vaccines. For example, CD62L and CD45RA expression in T cells was assessed by us in
a recent study [42]. CD62L and CD45RA surface markers are involved in lymphocyte
migration to inflammation sites and participate in T-cell receptor (TCR) signal transduction
during antigen recognition [70]. In human T cells, these markers can be used to identify
four types according to their differentiation degree: naïve (CD62L+ CD45RA+), central
memory (CD62L+ CD45RAneg), effector memory (CD62Lneg CD45RAneg) and effector T
cells (CD62Lneg CD45RAneg) [71,72]. Our study reported that both healthy individuals
and patients with cancer without previous SARS-CoV-2 infection showed an expansion
of effector T cells (CD62L- CD45RA+) after mRNA vaccination. However, importantly,
these mRNA vaccines did not expand T cells with an effector-memory phenotype (CD62L-
CD45RA-). This is in stark contrast to vaccination of individuals who had had a previous
SARS-CoV-2 infection. In these subjects, vaccination achieved the expansion of effector
memory T cells [42] (Figure 2).
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Figure 2. T-cell phenotype after mRNA vaccination and after SARS-CoV-2 infection in terms of CD62L
and CD45RA surface marker expression. N, E, EM and CM stand for naïve, effector, effector memory
and central memory T-cell subsets. Arrows indicate the differentiation pathways between the different
T-cell phenotypes. Within the green box, T-cell subsets differentiated following mRNA vaccination
only. Within the red box, T-cell subsets differentiated following infection with SARS-CoV-2.

2.4. Activation of the T-Helper 17 Responses

In many cases, SARS-CoV-2 leads to the death of the patient by exerting an exacerbated
inflammatory response within the lungs of infected patients. Some studies have linked the
establishment of a Th17-type of T-cell response during COVID-19 with the activation of a
pro-inflammatory cytokine cascade (cytokine storm) [73,74]. For most vaccines targeting
infectious agents, it would be desirable to elicit immune responses of the Th1 and Th2 types.
These responses are efficacious in raising antiviral immunity while activating antibody re-
sponses. Th1 responses are regulated by T cells which mainly express IFN-gamma and IL-2,
and they have a key role in attracting immune cells to the site of infection and in mediating
the T-cell cytotoxicity of infected cells; Th2 responses are regulated by T cells expressing
mainly IL-4 and IL-10, and they are involved in efficacious antibody production and air-
way inflammation observed in some respiratory diseases [75]. On the other hand, Th17
responses are regulated by T cells expressing IL-17, IL-6 and IFN-gamma. Th17 responses
are fast, strong inflammatory reactions which can be critical in situations of high immuno-
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logical stress. However, Th17 responses imbalance Th1-Th2 immunity, contributing to the
exacerbation of inflammation, and in the case of SARS-CoV-2, its pathogenesis [73,75–77].
Recent studies have reported the induction of elevated concentrations of IL-17 after mRNA
vaccination, indicating that mRNA vaccines trigger this strong inflammatory response [78]
(Figure 3). Indeed, our study described an enhancement of this response in vaccinated
oncologic patients without previous SARS-CoV-2 infection [42]. These results indicated
that mRNA vaccination in patients with cancer can potentiate their chronic inflammatory
status often originated and exacerbated by solid tumors, or their treatments [79–85].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 17 
 

 

2.4. Activation of the T-Helper 17 Responses 
In many cases, SARS-CoV-2 leads to the death of the patient by exerting an exacer-

bated inflammatory response within the lungs of infected patients. Some studies have 
linked the establishment of a Th17-type of T-cell response during COVID-19 with the ac-
tivation of a pro-inflammatory cytokine cascade (cytokine storm) [73,74]. For most vac-
cines targeting infectious agents, it would be desirable to elicit immune responses of the 
Th1 and Th2 types. These responses are efficacious in raising antiviral immunity while 
activating antibody responses. Th1 responses are regulated by T cells which mainly ex-
press IFN-gamma and IL-2, and they have a key role in attracting immune cells to the site 
of infection and in mediating the T-cell cytotoxicity of infected cells; Th2 responses are 
regulated by T cells expressing mainly IL-4 and IL-10, and they are involved in efficacious 
antibody production and airway inflammation observed in some respiratory diseases [75]. 
On the other hand, Th17 responses are regulated by T cells expressing IL-17, IL-6 and IFN-
gamma. Th17 responses are fast, strong inflammatory reactions which can be critical in 
situations of high immunological stress. However, Th17 responses imbalance Th1-Th2 im-
munity, contributing to the exacerbation of inflammation, and in the case of SARS-CoV-
2, its pathogenesis [73,75–77]. Recent studies have reported the induction of elevated con-
centrations of IL-17 after mRNA vaccination, indicating that mRNA vaccines trigger this 
strong inflammatory response [78] (Figure 3). Indeed, our study described an enhance-
ment of this response in vaccinated oncologic patients without previous SARS-CoV-2 in-
fection [42]. These results indicated that mRNA vaccination in patients with cancer can 
potentiate their chronic inflammatory status often originated and exacerbated by solid 
tumors, or their treatments [79–85]. 

 
Figure 3. Representation of the main T-helper responses after antigen presentation to CD4 T cells 
and the role of Th17 response in generating exacerbated inflammation. Naïve CD4 and CD8 T cells 
recognize antigenic peptides presented by dendritic cells through the T-cell receptor (TCR). Differ-
ent T-helper pathways can be activated, but the main responses observed in infectious diseases and 
vaccination are represented here. The Th1 response is characterized by T cells expressing IFN-
gamma and IL-2, and regulate antiviral cytotoxic responses. The Th2 response is characterized by T 
cells expressing mainly IL-4 and IL-10, and regulated B-cell maturation to plasma cells, leading to 
antibody responses and airway inflammation. T-regulatory cells express mainly IL-10 and IL-15, 
and inhibit autoreactive damage. Finally, the Th17 response is characterized by T cells expressing 
mainly IL-17, IL-6, IL-21, IL-10 and IFNgamma. Th17 responses are strong inflammatory reactions 
caused by an immunological stress, and can lead to cytokine storms and imbalance in Th1-Th2 re-
sponses. 

Figure 3. Representation of the main T-helper responses after antigen presentation to CD4 T cells
and the role of Th17 response in generating exacerbated inflammation. Naïve CD4 and CD8 T cells
recognize antigenic peptides presented by dendritic cells through the T-cell receptor (TCR). Different
T-helper pathways can be activated, but the main responses observed in infectious diseases and
vaccination are represented here. The Th1 response is characterized by T cells expressing IFN-gamma
and IL-2, and regulate antiviral cytotoxic responses. The Th2 response is characterized by T cells
expressing mainly IL-4 and IL-10, and regulated B-cell maturation to plasma cells, leading to antibody
responses and airway inflammation. T-regulatory cells express mainly IL-10 and IL-15, and inhibit
autoreactive damage. Finally, the Th17 response is characterized by T cells expressing mainly IL-17,
IL-6, IL-21, IL-10 and IFNgamma. Th17 responses are strong inflammatory reactions caused by an
immunological stress, and can lead to cytokine storms and imbalance in Th1-Th2 responses.

2.5. Loss of Efficacy towards Variants of Concern

The coronavirus S protein is the largest and most exposed antigen of the viral particle.
Three molecules of the S protein form the coronavirion peplomer, which confers entry to the
cell and tissue tropism [4,86]. For SARS-CoV-2, the receptor for the S protein is the ACE2
surface protein [87]. This fact makes the S gene subject to strong selective pressure from
the immune system, which leads to viral escape mechanisms by increasing the number of
mutations, specially concentrated in the proximities of the receptor-binding domain (RBD)
(Figure 4). As most SARS-CoV-2 vaccines utilize the S protein sequence from the original
Wuhan strain, these escape mutants can also escape from immune responses caused by the
vaccines. This, in turn, results in a subsequent decrease in efficacy for all vaccines which
use the original S protein sequence.
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The first dominant D614G substitution in the spike protein arose in the B.1.1.7 variant,
more commonly known as Alpha SARS-CoV-2 variant (Figure 4). It has to be noted that this
mutation is outside the RBD, but it nevertheless increased viral replication and transmission.
Several studies later demonstrated that the D614G mutation did not decrease the protection
conferred by mRNA-vaccines, which was maintained at a 94–95% of efficacy and generating
comparable titers of neutralizing antibodies compared to the efficacy towards the original
Wuhan strain [88,89]. Several other mutations were selected. For example, E484K, N501Y
and K417N mutations in the B.1.351 variant, also known as Beta (Figure 4). These mutations
were reported to cause a decline in efficacy of mRNA vaccines. The neutralizing capaci-
ties of sera from mRNA-1273- and BNT162b2-vaccinated individuals was approximately
10-fold lower towards this variant compared to the original strain [90,91]. Even so, mRNA
vaccines continued to be effective against the spreading and pathogenesis of SARS-CoV-2.
This was in contrast to the adenoviral-vectored ChAdOx1 vaccine, which was associated
with a significant decrease in efficacy against this variant [92].

The COVID-19 strain B.1.617.2 (Delta) contained 18 novel mutations compared to the
original strain [93] (Figure 4). These changes increased the transmission rate of the virus and
increased its affinity to lung epithelial cells [94]. In particular, E484Q and L452R mutations
enhanced immunological evasion and resistance to neutralizing antibodies from vaccinated
individuals and convalescent people [95]. The protective efficacy of mRNA vaccines
decreased to 88% for this variant [96], with a subsequent decrease in protection against
infection six months post-vaccination [97]. In addition, the B.1.617.2 + AY sub-variants
(Delta plus) selected an extra mutation (K417N) which potentiated escape from neutralizing
antibodies generated by the original vaccines [94,98]. Moreover, a recent comparative study
of S mutations in Alpha, Beta and Delta variants highlighted the progressive capacity of
the virus strains to enter cells independently of S protein–ACE2 interactions. This fact
augments transmissibility of the virus as the number of mutations increases [99]. This
situation is not novel with coronaviruses, as it is likely that some coronavirus species can
use a co-receptor to modulate the in vivo tissue tropism [86,100–102].
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A variant of high interest was selected in regions with a high percentage of vaccinated
population, suggesting that this variant was an escape mutant from the vaccines themselves.
This variant was termed B.1.1.529, or Omicron, and its S gene accumulated more than
30 mutations compared to the original strain [98,103] (Figure 4). T478K, Q293K, Q498R
and E484A contributed to an elevated transmission rate and evasion from neutralizing
antibodies [104]. Due to this enhanced escaping capacity, the protection achieved with
BNT162b2 and mRNA-1273 vaccines decreased to 30% after three doses, and to 47.2% in
older adults [93,105–112]. This variant is still evolving, leading to Omicron sub-variants
such as BQ, XBB and BF.7, with high capacities to avoid neutralizing antibodies elicited by
the original vaccines [108,113].

The decline in the protection of the population against SARS-CoV-2 caused by the
selection of new variants has prompted the redesign of mRNA vaccines. This is the ad-
vantage of mRNA vaccines, which allow fast modifications by just changing the immuno-
genic transgene to target variants. Pfizer–BioNTech and Moderna brought to the market
two bivalent vaccines—Comirnaty and Spikevax—containing mRNAs encoding the spike
protein of the original variant together with BA.4-5 Omicron variants [114,115]. Booster
doses with these vaccines seem to offer increased protection against new Omicron subvari-
ants, generating higher titers of Omicron-specific neutralizing antibodies than monovalent
vaccines [115,116]. Nevertheless, long-term follow-up studies should be carried out to
obtain more solid and robust data on the impact on the protection and spreading of the
virus in the human population.

2.6. Adverse Events Caused by mRNA Vaccines

It has to be remarked that no serious adverse effects were described in the clinical trials
assessing mRNA vaccines BNT162b2 and mRNA-1273 which led to their approval [22,33].
However, the administration of millions of vaccine doses has uncovered rare adverse
events and complications, characterized by a diversity of symptoms. In general terms,
complications from SARS-CoV-2 infection outweigh the risk of suffering these rare adverse
effects following vaccination. Nevertheless, it is necessary to follow the evolution of the
affected population to identify causal agents of adverse events to either improve vaccine
formulations, or to better allocate the populations that need vaccination.

Two large-scale studies were carried out in the United Kingdom in about 40 million
people vaccinated with sequential doses of the adenovirus-based ChAdOx1 vaccine or
mRNA vaccines to evaluate cardiac adverse events. The results showed the occurrence
of myocarditis in 0.004 and 0.007% of the vaccinated people with ChAdOx1 and mRNA
vaccines, respectively. A statistical analysis of the data in both studies uncovered an
increased risk of suffering myocarditis after the first dose of ChAdOx1 and BNT162b2
vaccine than after the further booster doses of the mRNA-1273 vaccine [117,118]. These
studies indicated that especially males under 40 years of age had an elevated risk [119]. A
study carried out in the USA over large-scale databases reported an elevated occurrence
of myocarditis or pericarditis in mRNA-vaccinated people between 18 and 25 years of
age following the second dose, without significant differences between BNT162b2 and
mRNA-1273 vaccine formulations [120]. On the other hand, no clear association between
vaccination and cardiac arrhythmia has been demonstrated, as most cases occurred after
SARS-CoV-2 infection and this can be a confounding factor [117]. These adverse events
have been therefore stated in the official websites of Comirnaty and Spikevax and by the
European Medicine Agency (EMA), more specifically occurrence of myocarditis and peri-
carditis in some vaccinated people (https://www.comirnaty.com/, https://spikevax.com
/, https://www.ema.europa.eu/en/documents/prac-recommendation/signal-assessment
-report-myocarditis-pericarditis-spikevax-previously-covid-19-vaccine-moderna-covid_en
.pdf, https://www.ema.europa.eu/en/documents/prac-recommendation/signal-assess
ment-report-myocarditis-pericarditis-spikevax-previously-covid-19-vaccine-moderna-co
vid_en.pdf; accessed on 20 March 2023). Isolated cases of vasospastic angina and Takotsubo
cardiomyopathy have also been observed after mRNA vaccination. In addition, there are

https://www.comirnaty.com/
https://spikevax.com/
https://spikevax.com/
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https://www.ema.europa.eu/en/documents/prac-recommendation/signal-assessment-report-myocarditis-pericarditis-spikevax-previously-covid-19-vaccine-moderna-covid_en.pdf
www.ema.europa.eu/en/documents/prac-recommendation/signal-assessment-report-myocarditis-pericarditis-spikevax-previously-covid-19-vaccine-moderna-covid_en.pdf
www.ema.europa.eu/en/documents/prac-recommendation/signal-assessment-report-myocarditis-pericarditis-spikevax-previously-covid-19-vaccine-moderna-covid_en.pdf
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reported cases of myocardial infarction, stroke and pulmonary embolism in people older
than 75 years of age after BNT162b2.

To date, although with less solid data, other consequences associated with the vaccines
have been detected and reported. For example, alterations in the menstrual cycle such as
abnormal bleeding and delayed menstruation following the second booster dose of the
BNT162b2 vaccine [121,122]. Studies reporting the main adverse events are summarized
in Table 2.

Table 2. Adverse effects and the associated risk factors observed after mRNA vaccination in different
studies.

Vaccine Adverse Effect Higher Risk Associations Observed Ref

BNT162b2, mRNA-1273, ChAdOx1 Myocarditis (in 0.004% of vaccinated participants) After first dose of BNT162b2 or ChAdOx1.
After second dose of mRNA-1273. [117]

BNT162b2, mRNA-1273, ChAdOx1 Myocarditis (in 0.007% of vaccinated participants)
After first dose of BNT162b2 or ChAdOx1

After second dose of mRNA-1273.
In males under 40 years of age.

[118]

BNT162b2, mRNA-1273 Myocarditis or pericarditis (rates/million doses: 12.59 and 35.5) After second dose of mRNA-1273.
In males from 18 to 39 years of age. [119]

BNT162b2, mRNA-1273 Myocarditis and/or pericarditis (in 0.003% of vaccinated participants) After second dose of mRNA-1273.
In males from 18 to 25 years of age. [120]

Spikevax Myocarditis and pericarditis (cases/million doses: 253 and 533) In males from 18 to 29 years of age.

BNT162b2
Menstrual cycle symptoms: irregular bleeding (in 23.3% of vaccinated
participants), dysmenorrhea (in 68% of vaccinated participants), mood

changes (in 9.6% of vaccinated participants)
- [121]

Interestingly, recent data have reported that consuming alcohol, tobacco or drugs,
apart from decreasing the humoral response generated by BNT162b2 mRNA vaccine, also
activates the ACE2 receptor enhancing the “spike effect” of COVID-19 vaccines. The “spike
effect” refers to the interaction of the endogenous spike protein with the ACE2 receptor,
resembling the COVID-19 pathology and leading to rare neurological complication, such
as Guillain–Barre syndrome and Bell’s palsy.

3. Conclusions

The use of mRNA vaccines targeting the spike protein of SARS-CoV-2 has constituted
one of the main barriers in the battle against this pandemic. It is estimated that SARS-CoV-2
vaccines, including those based on adenovirus vectors, protein-based vaccines and mRNA
vaccines have saved the lives of around 20 million people worldwide [123]. Even so, it is
necessary to review all the updated information on the efficacy and safety of these vaccines
during the development and evolution of the pandemic. It is also important to evaluate the
changes in vaccine policy, now that a very large number of people have been infected with
SARS-CoV-2 and present a degree of protection. Indeed, the frequent administration of
booster doses due to the loss of post-vaccination immunity is causing some experts to warn
about a possible link between immune exhaustion and frequent vaccination [124]. There is
some experimental evidence pointing towards this direction, as observed in a recent study
of cancer patients following three doses of BNT162b2 [125].

In addition, the increasing number of mutations within the S protein of emerging
variants and the progressive decrease in efficacy of mRNA vaccines suggest that vaccine
formulations should be changed by including additional viral targets. For example, some
studies including our own have highlighted the role of the N and M proteins of the
SARS-CoV-2 virus in the generation of notable antibody and cellular responses [42]. The
advantage of incorporating these viral immunogens is that they are subject to lower selective
pressure compared to the S protein. Their mutational burden is by comparison much lower
than that of the S protein. Hence, using these virus structural proteins could lead to more
robust and durable immune responses without the need for regularly changing the S
protein strain in vaccine formulations [126].

It also needs to be stressed that improved vaccine formulations should lead to activa-
tion of Th1 and Th2 responses to the detriment of Th17 responses. This could circumvent
the exacerbated inflammation caused after vaccination which could be linked to serious
adverse effects. In addition to vaccine formulation, the fact that these vaccines contain long
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ribonucleic acids with a number of modified nucleosides, could result in the preparation of
batches with identical properties. This, together with the lack of thermostability, suggests
that protein-based vaccines are a preferable option to avoid these challenges.

Using other types of vaccines, such as viral-vectored vaccines or protein-based vac-
cines, or forgoing booster doses, should be considered for people who are predisposed to
suffer cardiac adverse effects, especially during periods of the active spread of new variants
of the SARS-CoV-2 virus.
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