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Abstract. We study the problem of optimization of trajectories for a robotic 
manipulator, with two degrees of freedom, which is constrained to pass 
through a set of waypoints in the workspace. The aim is to determine the 
optimal sequence of points and continuous optimal system trajectory. The 
actual formulation involves an optimal control problem of a dynamic system 
within integer variables that model the waypoints constrains. The nature of 
this problem, highly nonlinear and combinatorial, makes it particularly 
difficult to solve. The proposed method combines a meta-heuristic algorithm 
to determine the promising sequence of discrete points with a collocation 
technique to optimize the continuous path of the system. This method does 
not guarantee the global optimum, but can solve instances of dozens of points 
in reasonable computation time. 

Keywords: robotics, optimal control, motion planning, meta-heuristics, biased-
randomization. 

1   Introduction 

A fundamental problem in robotics is the task planning problem. Given the models of 
the robot manipulator and the environment in which it operates, the problem is to 
generate a sequence of actions to accomplish a given task. For assembly, material 
handling, spot welding, measuring, testing, and inspecting one wants to generate a 
continuous intersection-free motion of the robot manipulator that connects several 
given configurations of the end-effector.  

In this work, the energy-optimal motion planning problem for planar robot 
manipulators with two revolute joints is studied. In addition, the end-effector of the 
robot manipulator is constrained to pass through a set of waypoints, whose sequence 
is not predefined. We propose a multi-start approach to solve the problem that 
determine the promising discrete path and evaluate the continuous dynamic trajectory. 
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The paper is organized as follows. The robot motion planning problem 
studied in this paper will be stated in Section 2. Our Multi-Start approach is described 
in Section 3, for which we previously motivate the basis. In Section 4 the results 
obtained applying our approach to several instances are reported. Finally, some 
conclusions will be drawn in Section 5. 

2   The Robot Motion Planning Problem  

The motion planning problem is an optimal control problem of a mechanical system. 
Each system comprises a dynamic model to take into account [1] and [2]. That is, 
besides geometrical feasibility, it is also important to ensure dynamical feasibility. 
Related to optimality, the motion planning must be executed with minimum energy 
consumption. Furthermore, being a dynamic system, the solution of the problem must 
provide the optimal scheme of accelerations and velocities during the motion. 

In particular, the mechanical system for which we attempt optimal control is 
a planar robot manipulator with two revolute joints, which we will denote as RR. The 
RR robot qualitatively corresponds to the model of the first two links of a SCARA 
(Selective Compliant Assembly Robot Arm) without taking into account the vertical 
one, see the left-hand side of Figure 1. And, however this simple robot manipulator 
can be, it has a very complex nonlinear dynamics and comprises most of the 
kinematical and dynamical properties of a typical industrial robot. So, the RR is 
composed by two homogeneous links and two actuated joints moving in a horizontal 
plane {x, y}, as shown in the right-hand side of Figure 1, where li is the length of link 
i, ri is the distance between joint i and the mass center of link i, and θi is the angular 
position of link i, for i = 1, 2. Finally, the vector τ = (τ1, τ2) defines the control inputs 
of the system, where τ1 is the torque applied by the actuator at joint 1 and τ2 is the 
torque applied by the actuator at joint 2.  
 

              
Figure 1.  A robot manipulator that moves in a horizontal plane 
 
In this work, the RR motion planning problem not only includes its correspondent 
dynamic model, but also constraints between the initial and final positions. In 
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particular, the robot manipulator is constrained to pass once through all the given 
points in the workspace, with no predefined sequence, when moving from an initial 
position pI to a final position pF. The presence of these waypoint constraints adds a 
combinatorial complexity to this optimal control problem and makes it particularly 
difficult to solve. In summary, the main features that make this problem especially 
complex: i) dynamic problem ii) non-linear problem and iii) combinatorial problem. 

3   How to solve the problem 

We use this section to highlight what it is expected to be a solution of the problem. 
According to that, we analyze the problem complexities and motivate our approach 
based on split and conquer strategy. In particular, we split as follows: first, elaborate a 
Multi-Start algorithm for the combinatorial problem and then, display the nonlinear 
problem formulation in the IPOPT solver to obtain the dynamic motion of the problem. 

3.1   Background and Motivation 

In P. Bonami et al. [3] they model the problem as a Mix Integer NonLinear 
Programming. Moreover, the problem is converted into a NonLinear Programming 
(NLP) problem, when the sequence of waypoints is fixed. So, Bonami et al. [3] solve 
the RR optimal control problem for 18 waypoints (see Figure 2) using BONMIN solver 
[4], which integrates a BB algorithm and the IPOPT solver [5] for NLP. It is important 
to point out that, since both the order in which the waypoints are visited and the 
corresponding velocities are not specified, they must be determined. As far as we 
know, for the latter it is necessary the use of optimization engines such as IPOPT to 
solve the NLP. 

             
 
      Figure 2. BONMIN pseudo-optimal trajectory and control variables within 18 waypoints. 
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On the other hand, we observe that the continuous path is strongly affected by the 
discrete path, i.e. the sequence of points. In particular, we experimentally checked that 
main energy consumption is due to changes in velocity which occur when there is a 
change in the direction of the motion. Therefore, the preferable sequence of 
waypoints for minimizing energy consumption will comprise straight paths within 
smooth turns.  
 So, in our approach will take advantage of that property and look for 
promising discrete paths, unlike the BB algorithm [3] which does not make distinction 
between them. In other words, our approach is based on finding these straight paths 
and avoiding sharp turns, taking into account the location of the waypoints. Once the 
promising discrete path have been found, the corresponding continuous optimal 
trajectories (i.e. continuous paths plus velocity profile along them) is found by solving 
the NLP problem. In fact, when the sequence of waypoints is fixed, IPOPT solver finds 
for the NLP problem good dynamic trajectories in short computational times.  

3.1   Multi-Start Approach 

In order to construct sequences of waypoints which include the minimum changes of 
direction as possible, we will look for straight segments and then join the segments 
and the isolated points. The pseudocode for this algorithm is depicted in Figure 3, and 
basically, this approach includes the procedures that follow: 
1. Search possible segments in the workspace. In this procedure we consider each 

edge from the workspace and compute one by one the acute angle respect to all 
the other waypoints. In case we obtain 180º the waypoint will be included. We 
find a segment when there are at least two more waypoints included in the edge.  

2. Use biased randomization. Once we obtain the list of segments, we sort that list 
using a skewed probability distribution. A skewed distribution is used here in 
order to assign higher probabilities of being in the top of the list by segments 
composed with a larger number of waypoints. In our case, a Geometric 
distribution with α = 0.25 was employed to induce this biased-randomization 
behavior [6]. So, we always select the segment in the top to be the discrete path 
solution. Next, we update the list of segments, since the waypoints from the 
segment selected must be removed from the other segments. Then, sort the list and 
pick the one in the top again. Step 2 ends when the list of segments is empty. 

3. Join segments and isolated waypoints. Once we have a “good” selection of 
segments to be in the discrete path, we compute Euclidean distance for all possible 
connections, i.e. ends of the segments and isolated waypoints. And we sort the list 
of possible connections using a biased-randomization of a geometric distribution 
with β = 0.25. So, we always join using the connection in the top of the Euclidean 
distance list. Next, we update the list of connections, since there would be 
connections that must be removed after we have joined. Then, sort the list and join 
using the one in the top again. Step 3 ends when all the waypoints are connected 
in a discrete path. 

4. Repeat step 2 and 3. After having studied the parameter analysis, the proper 
stopping criteria for this Multi-Start approach for RR problems with 12-18 
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waypoints, are maximum 10-15 iterations for step 2 and maximum 30 iterations 
for step 3. It means, for each group of selected lines in step 2, we will try 30 
different connections in step 3. So, the Multi-Start approach will create 10-15 X 30 
discrete paths, although in many cases we obtain a repeated one from previous 
iterations. 

5. Sort discrete paths. We calculate the total acute angle in every distinguished 
discrete path. The total acute angle is the addition of each acute angle, i.e. acute 
angle of each 3 consecutive waypoints in the discrete path. And, we sort the 
discrete path from the lowest to the highest total angle computed. 

6. Solution of the RR. We call IPOPT through the correspondent .nl file within the 
NLP problem formulation. Because the discrete path will be fixed according to the 
list of path, the IPOPT solver provides trajectories quickly. In RR problems with 
12-18 waypoints, it will be enough checking the first 30 paths from the list. 
 

 
Multi-StartApproach (waypoints, alpha, beta, maxIter2, maxIter3, maxIpopt, nlfile) 
 
% Searching for good discrete paths 
edges <- read(waypoints) 
segments <- findSegments (edges, waypoints) % step 1 
for { 0 to maxIter2 } do  
    while { segments list is not empty } do 
        randomSelection (segments, alfa) % step 2 
        update(segments) 
    end while 
    distanceList <- calcDist(waypoints isolated & end segments)  
    for { 0 to maxIter3 } do 
        while { all waypoints not in discrete path} do 
            randomSelection(distanceList, beta) % step 3 
            update (distanceList) 
        end while 
        pathList <- save (currentPath) % sorted list of new solutions 
    end for % step 4   
end for % step 4 
 
% Evaluating the obtained discrete path 
calcTotalAngle(pathList) 
sortDiscretePaths(pathList) % step 5 
energy(bestTrajectory) <- infinite 
for { it = 0 to maxIpopt } do 
    Trajectory [it] <- solutionIpopt(pathList[it], nlfile) % step 6 
    if {energy(Trajectory [it]) < energy(bestTrajectory)} then 
        bestTrajectory <- Trajectoty[it] 
    end if 
end for 
return bestTrajectory 

      Figure 3. Pseudocode for the RR pseudo-optimal solution, i.e. continuous trajectory 

Finally, to mention that in step 1 the allowable acute angle could be variable. In this 
case we have considered 180º, i.e. completely straight segments, since the waypoints 
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in the workspace would be somehow aligned. However, in case that the waypoints are 
not absolutely aligned we just need smoothly decrease the acute angle in order to 
enable quasi-straight segments. 

3.3   Problem Formulation for IPOPT solver 

In this section we summarize the problem formulation of the optimal control problem 
and the fundamental characteristics studied in [3]. First of all, we present the 
continuous optimal control problem formulation: 
 

Min J [x(t), u(t), s] := E [x(tF),s] + ʃ  L [x(t), u(t), s] dt (1) 
 
subject to: 
ẋ(t) = f [x(t), u(t), s],  t ∈ [tI , tF]   (2) 
0 = g [x(t), u(t), s],  t ∈ [tI , tF]   (3) 
0 ≤ c [x(t), u(t), s],  t ∈ [tI , tF]   (4)  
rineq [x(t1), x(t2), . . . , x(tnrineq ), s] ≤ 0   (5) 
req [x(t1), x(t2), . . . , x(tnreq ), s] = 0   (6) 
x(tI) = xI       (7) 
ψ [x(tF)] = 0      (8) 
 

The objective functional in (1) is given in Bolza form and it is expressed as the sum of 
the Mayer term, which is assumed to be twice differentiable, and the Lagrange term. 
Variable t ∈ [tI , tF] represents time, where tI and tF are the initial and final time, 
respectively. x(t) represents the state variables within both, differential and algebraic 
variables and u(t) represents the control functions, also referred to as control inputs, 
which are assumed to be measurable. The vector s contains all the time-independent 
variables of the problem. Equation (2) and (3) represents a Differential Algebraic 
Equations (DAE) system. The function f is assumed to be piecewise Lipschitz 
continuous to ensure existence and uniqueness of a solution. The system must satisfy 
the algebraic path constraints c in (4) and the interior point inequality and equality 
constraints rineq and req in constraints (5) and (6), respectively, which are assumed to 
be twice differentiable. Finally, xI in (7) represents the vector of initial conditions 
given at the initial time tI and the function ψ in (8) provides the terminal conditions at 
the final time tF, which is assumed to be twice differentiable. 

In addition, we can introduce integer variables to obtain a multi-phase 
problem, and therefore, the so-called mixed integer optimal control problem appears. 
Moreover, we can convert the mixed-integer optimal control problem into a mixed 
integer nonlinear programming problem including these transformations: i) making 
unknown passage times through the waypoints part of the state, ii) introducing binary 
variables to enforce the constraint of passing once through each waypoint, and iii) 
applying a fifth-degree Gauss-Lobatto direct collocation method to tackle the 
dynamic constraints. High degree interpolation polynomials allow the number of 
variables of the problem to be reduced for a given numerical precision. Finally, the 
problem will became a NLP problem with non-convex feasible region as far as we fix 
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the sequence of waypoints. And the solution for this NLP problem is achieved in 
IPOPT solver in a short time. Further explanation about the optimal control problem 
transformations are in [3]. 

4   Numerical experiments 

In this section, the results of several numerical experiments where the robot is 
constraint to pass through the waypoints listed in Table 1 for the testbed lines (LIN) 
and listed in Table 2 for the testbed lattice (LAT).  

 
p1 = (0.455718, 0.660622) p2 = (0.472266, 0.616427) p3 = (0.510878, 0.513305) 
p4 = (0.538458, 0.439647) p5 = (0.571554, 0.351256) p6 = (0.610167, 0.248135) 
p7 = (0.335096, 0.591699) p8 = (0.450359, 0.571340) p9 = (0.536806, 0.556071) 
p10 = (0.623253, 0.540801) p11 = (0.767332, 0.515353) p12 = (0.911410, 0.489904) 
p13 = (0.331795, 0.685981) p14 = (0.397159, 0.636696) p15 = (0.527889, 0.538125) 
p16 = (0.658618, 0.439554) p17 = (0.789347, 0.340984) p18 = (0.854711, 0.291699) 
Table 1. Coordinates of the waypoints used in the experiments LIN 

 
p1 = (-0.181751, 0.581213) p2 = (-0.111041, 0.510503) p3 = (-0.0403301, 0.439792) 
p4 = (0.0303806, 0.369081) p5 = (0.101091, 0.29837) p6 = (0.171802, 0.22766) 
p7 = (-0.111041, 0.651924) p8 = (-0.0403301, 0.581213) p9 = (0.0303806, 0.510503) 
p10 = (0.101091, 0.439792) p11 = (0.171802, 0.369081) p12 = (0.242513, 0.29837) 
p13 = (-0.04033, 0.722635) p14 = (0.0303806, 0.651924) p15 = (0.101091, 0.581213) 
p16 = (0.171802, 0.510503) p17 = (0.242513, 0.439792) p18 = (0.313223, 0.369081) 
Table 2. Coordinates of the waypoints used in the experiments LAT 

 
In Table 3 we report the results obtained while using the biased randomization in the 
RR problem. It has been implemented in a C++ code which generates a set of good 
discrete path where those with minimum total angle are evaluated in IPOPT 
optimization engine. For each instance we indicate the correspondent testbed and the 
number of waypoints considered. In all the experiments we use the initial time tI = 0 
[s] and the final times tF = 4 [s] and tF = 6 [s] for instances of 12 and 18 waypoints, 
respectively. Also, instances with cases A, B and C differ in the location of the final 
point pF which will be specified in each instance case.  

Finally, Figure 4 shows the lines (LIN) and lattice (LAT) configurations. 
Also, depicts the continuous path of minimum energy consumption in couple of 
instances, according to our Multi-Start approach.  
 
    Instance     initial point and final point                                              

                  sequence of waypoints from Multi-Start 
 

       
   LIN-12A    pI = (1.0843, 0.459365)    pF = (0.637747, 0.174476)   

                 (pI, p12, p11, p10, p9, p8, p7, p1, p2, p3, p4, p5, p6, pF ) 
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    LIN-12B    pI = (1.0843, 0.459365)    pF = (0.2027, 0.6151)   
                (pI, p12, p11, p1, p2, p3, p4, p5, p6, p10, p9, p8, p7, pF ) 
 

    LIN-18A    pI = (0.2664, 0.7353)    pF = (0.637747, 0.174476) 
         (pI, p13, p14, p15, p16, p17, p18, p12, p11, p10, p9, p8, p7, p1,p2, p3,p4, p5,p6, pF) 
 

    LIN-18B    pI = (0.2664, 0.7353)    pF = (0.933149, 0.232556)  
               (pI, p13, p7, p9, p10, p11, p12, p6, p5, p4, p3, p2, p1, p14, p8, p15,p16, p17,p18, pF) 
 

    LIN-18C    pI = (0.2664, 0.7353)    pF = (1.0843, 0.459365) 
         (pI, p13, p14, p15, p16, p17, p18, p6, p5, p4, p3, p2, p1, p7, p8, p9,p10, p11,p12, pF) 

 
    LAT-12      pI = (1.0843, 0.459365)    pF = (0.637747, 0.174476) 

         (pI, p1, p8, p9, p10, p11, p12, p6, p5, p4, p3, p2, p7, pF ) 
 

    LAT-18      pI = (1.0843, 0.459365)    pF = (0.637747, 0.174476) 
         (pI, p1, p8, p9, p10, p11, p17, p16, p15, p14, p13, p7, p2, p3, p4, p5,p6, p12,p18, pF) 

 Table 3. Multi-Start approach pseudo-optimal discrete paths 

 

 

Figure 4. Continuous path for instances LIN-18B and LAT-18 using biased randomization 

In order to compare the previous work with the BONMIN solver and our 
Multi-Start approach we applied both methods in each of the instances in Table 3. 
Notice that any of these methodologies is an exact method, the first one is based on 
BB algorithm and ours is meta-heuristics approach, so the optimal solution not 
guarantee in any case.  

Regarding to optimality, in both procedures we have obtained the same 
discrete path, except for LIN-18B and LAT-12A. And therefore, the same continuous 
trajectory and energy consumption returned from IPOPT, except for LIN-18B and 
LAT-12A. In LIN-18B the discrete path obtained in BONMIN is (pI, p13, p1, p3, p4, p5, 
p6, p12, p11, p10, p9, p8, p7, p14, p2, p15, p16, p17, p18, pF) were the energy consumption is 
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reduced from our solution 2,29%. However, in LAT-12A the discrete path obtained in 
BONMIN is (pI, p1, p2, p7, p3, p4, p5, p6, p12, p11, p10, p9, p8, pF) were the energy 
consumption has increased from our solution more than 5%. 
 Regarding to computational times, our Multi-Start approach provides us the 
solution in few minutes. In a similar CPU, the BONMIN solver is also able to solve 
lines instances (LIN) in few minutes, but dozen of hours for the lattice configuration.  
However, the latter is the realistic configuration that often occurs in the industrial 
robots. 

5   Conclusions 

This paper we study the motion planning problem where to face high complexities. In 
one hand the combinatorial problem, on the other hand the dynamic model. For the 
latter, most of the methods interpolation to determine velocity profile along the path, 
however the resulting trajectory can be dynamically unfeasible due to physical 
limitations of the actuators. In this work we proposed a Multi-Start approach which 
provides not only the discrete path but also ensure the dynamical feasibility of the 
trajectory. Therefore, we apply biased randomization to obtain a set of good discrete 
paths and the NLP problem to be displayed in IPOPT solver to obtain the dynamicity of 
the trajectory. And, since we evaluate continuous trajectories only if the discrete path 
is promising, the numerical experiments in terms of computational times are much 
lower than those in [3] where there is no discrimination in the use of IPOPT solver. 
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