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Summary: In this paper we design and apply new embedded pairs of Frac-
tional Step Runge-Kutta methods to the efficient solution of multidimensional
parabolic problems. These time integrators are combined with a suitable split-
ting of the elliptic operator subordinated to a decomposition of the spatial
domain and a standard spatial discretization. With this technique we ob-
tain parallel algorithms which have the main advantages of classical domain
decomposition methods and, besides, avoid iterative processes like Schwarz
iterations, typical of them. The use of these embedded methods permits a
fast variable step time integration process.

1 Introduction

Let us consider a linear multidimensional parabolic problem with time depen-
dent coeflicients which we formulate in the following operational form: find
u: [to, T] — H such that

%t‘ =Au+ f(t) YVt e (to,T),

u(ty) =up € H, Bu(t) = g(t) € H°,

(1)

where (H,|.||) and (H?, ||.|[®) are two Hilbert spaces of functions defined on
a bounded open subset 2 C R? and on its boundary I', respectively. A(t) :
D C 'H — 'H is an unbounded elliptic differential operator which contains
the derivatives of the unknown w with respect to the spatial variables and
B :D CH — H’ is an abstract trace operator which determines the type of
boundary conditions considered. We assume that the source term f, the initial
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condition ug and the boundary data g are sufficiently smooth and mutually
compatible.

Numerical algorithms for the approximate solution of (1) can be designed
and analyzed by combining a standard spatial discretization (using, for exam-
ple, finite differences or finite elements) with an ODE solver as a time integra-
tor. It is well known that if we choose fine grids for the spatial discretization
and classical ODE solvers like Runge-Kutta (RK) or multistep methods, a
large computational cost is required to obtain the numerical solution. Thus,
the task of developing faster algorithms has been of great interest during the
last decades and many different ideas have arisen in order to reduce somehow
the computation time.

One alternative to obtain fast and robust algorithms is to discretize prob-
lem (1) first in time using an implicit Runge-Kutta scheme and then to use
domain decomposition techniques (see [QV99]) to solve numerically the el-
liptic boundary value problems which arise in each internal stage. In this
framework, where we consider the spatial domain {2 decomposed as the union
of certain subdomains, the solution of a large linear system per internal stage
is reduced to the solution of several sets of smaller linear systems. The main
advantage of this technique is that the linear systems of every set can be
solved in parallel. Nevertheless, the cost of an additional iterative process
(e.g. A Schwarz iteration) is required to adjust the boundary conditions on
the interior boundaries of the subdomains.

An interesting alternative to a classical ODE solver is to use a Fractional
Step Runge-Kutta (FSRK) method as time integrator. The key to the effi-
ciency of these schemes lies in splitting the original elliptic operator as the sum
of certain “simpler” operators (A =3 ", A;). This decomposition combined
with a FSRK method permits that only a part A; of the elliptic differential
operator A acts implicitly at each internal stage of the method in such a way
that the derived elliptic boundary value problems are easier to solve. In this
work we propose to decompose operator A into parts of the form A; = ¢, A,
where {¢;}", is a smooth partition of unity subordinated to a decomposi-
tion of the spatial domain in m suitable overlapped subdomains. Similarly to
what happens when classical domain decomposition techniques are used, in
this case the numerical solution of each fractional step consists of solving a
set of smaller linear systems whose solution can be parallelized. Besides, these
schemes have an advantage over the classical domain decomposition schemes
since they do not need any kind of Schwarz iterative processes to get the
numerical solution. This technique was first introduced by Mathew et als. in
[MPRWO98|, where they analyze this kind of splitting for certain low-order
classical fractional step methods applied to solving parabolic equations with
constant coefficients. The generalization of such a technique to the class of
FSRK schemes used to approximate the solution of parabolic equations with
time dependent coeflicients is developed in [PBJ04].

The aim of the current paper is to follow these ideas but to decrease the
computational cost even more by performing a variable time step integration.
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This will permit us to adapt the step sizes to the local behaviour of the
solution as long as we have an estimate of the local error. In order to obtain
a cheap estimate of such error we have developed some embedded pairs of
FSRK methods of different orders. As with other classical one-step methods,
the use of embedded formulas provides estimates of the local errors at a lower
computational cost than if we choose other classical options like extrapolation
methods or the use of two methods with different orders which do not share
the internal stages.

2 Time semidiscretization

Let us consider for A and f partitions of the form: A(t) = >, A;(¢), f(t) =
Sty fit), with A;(t) = ¥, A(), fi(t) = ¥if(t), where ¢;(Z) are sufficiently
smooth functions such that >, ¥;(z) = 1, VZ € £2. To settle the definition
of ¢;,i =1,...,m, we decompose {2 as the union of m overlapping subdomains
2 = UL, £2, each of them consisting of the union of a certain number of
connected components §2; = U;’Zl §2;; such that £2;; N 2, = 0 for all j,k €
{1,...,m;} with j # k. Then the partition of unity {t;}7; subordinated to
the previous domain decomposition is constructed in such a way that, for each
i =1,...,m, the function 1; vanishes outside subdomain (2;, takes the value
1 in every point which belongs only to {2; and some values between 0 and 1 in
the overlaps of {2; with the remaining subdomains. For domain decompositions
which have internal boundaries with simple geometries, 1;(z), i = 1,...,m,
can be easily constructed as products of dilations, translations, etc., of the
following C>° function (see section 5)

_1
hz)=1ifx <0, hiz)=e2* 5@ %T if0<z <1, h(z)=0ifz > 1.
(2)
Let us establish now the formulation of a variable time step integration using
an embedded pair of FSRK methods with m levels as follows

J
U™ =t + 70 Y alh, (Aiy (bn k) U™ + fi (k)
‘ k=1
B;,U™ = g; (tnj), forj=1,...,s,
S
- ~i - 3
Un41 = Un + Th Z b;J (Aij (tn,j)UnJ + flj (tn,])) ) ( )
3?1 |
st = tn £ 70 307 (A (b U™ + iy (b))
j=1
where i, € {1,...,m}, 7, is the variable time step, ¢, = t,—1 + 7, and
tnj =tn+tCjTns1. Bi : Dy — HY, i =1,...,m, are the abstract trace operators

which establish the type of boundary conditions required to calculate each
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internal stage and g; are the boundary data; in this case, B; = ¥; B, g; = g,
Vi=1,....,m

We assume that u,,+1 approximates u(t,+1) with order p and that u,,4+1 ap-
proximates the same semidiscrete solution also at t,, 1 but with a higher order
of approximation p > p. Consequently, est, 1 = ||tn+1 — Un+1]| estimates the
local error for the lower order method at ¢,,11. Notice that the most expensive
calculations done to obtain %, (i.e., the internal stages U™/, j =1,...,5)
are also used in obtaining w, 4.

In order to come to a more compact notation for FSRK schemes, (3) can
be formulated as an embedded pair of Additive RK schemes

Un’j:Un+TnZZa]k i(tnk) UnkJFfz(nk))

) i=1 k=1
BijUn’j = gz;(tn )7 fOI‘j = 1 cy S,

an+1:un"|'7—nzzbz z nj Un’]'i_fz(n ))a (4)

11]1

un+1—un+TnZZbl 1 n] Un)J""fz(n ))7

=1 j=1

if we extend the sums which appear in (3) by considering many additional
zero coefficients: aé-k =0 for £ > j and a;'-k = bl = bl =0 for i # iy.
Grouping the coefficients of the method into the following vectors and
matrices ¢ = (¢;) € R, b; = (b}) € R®, b; = (b)) € R®, A; = (afy) € RO we
can organize the coefficients of (4) in a table
c A Asf. . | A
order p [T [bL|...[bT
order p |b |bd']... | 0L

which is an extension of the Butcher’s notation for a classical RK scheme.
From now on, we will denote with (¢, (A;)™, (b;)";) and (¢, (A;)™, (b))
the FSRK schemes involved in the embedded pair (3).

3 Spatial discretization and convergence results

We have to complete the previous time semidiscretization with a suitable
spatial discretization to obtain a totally discrete scheme. Thus, we introduce
a spatial discretization parameter h which tends to zero and we consider
2, meshes of 2 which have been constructed taking into account the in-
terior boundaries of the m subdomains. Next we denote with (Hp,||.||») and
(Hé’, o ll- ||IZ’ 5) some finite dimensional Hilbert spaces of functions whose dimen-
sions grow to infinity as h tends to zero; e.g. Hj, consists of discrete functions
on {2, if we use finite differences or piecewise polynomial functions associated
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to the mesh (2}, if we use finite elements. In this framework we define operators

n: Hn — Hp and B;p, + Hy, — th as certain consistent approximations
of the operators A; and B; and we define rin(t) Dy CH — Hp,mh: H— Hp,
and 771 hiH— 7-[Z , as certain restriction or projection operators depending
on whether we consider a spatial discretization using finite differences or fi-
nite elements, respectively. Using the previous notation, the totally discrete
scheme can be expressed as follows

Un-’j = Un,h JrT”Za ( ik,h tn k)ng +7Thfixc(tn,k)) )
lth"” = 7TZJ hglj (t ), forj=1,...,s,

un+1,h:unh+7_nzb]( i;,h n])U J+7Thf11( ,j))a (5)

Un41,h = Un,h + Tn Z by ( Zjvh n, )Ui?’j + 7 fi (t"vj)) :

We can now take est, , = ||tn,n — Unnlln as an approximation of est, and
use the same ideas of time step adaptation as for classical variable step ODE
solver codes in order to keep est, ; below the value of a tolerance but close
to it.

The solution of each internal stage in (5) consists of solving a linear system
of the form (Zj, — 7 af; Agn(tn ;)Uy") = F?, (k = i;), which can be decom-
posed into my, independent linear subsystems that can be solved in parallel.
Each one of these subsystems has a number of unknowns proportional to the
number of mesh points on each component (2;; of 2. It is also important to
notice that no Schwarz iterations are required to obtain wup n11.

Let us now give a brief review of the hypotheses assumed in order
to guarantee an unconditional convergence result for the totally discrete
scheme (5). The local errors of the time semidiscretization are ppy1 =
[u(tni1) — uns1ltn, u(tn)]ll and pnir = [[ultns1) — Unta[tn, u(tn)]||, where
Unt1[tn, u(ty)] and Upiq[tn, u(ty)] are the approx1mat10ns to u(tn,t+1) ob-
tained after one step of scheme (3) starting from u, = u(t,). We as-
sume that the embedded pair of FSRK methods (3) has orders p(p), i.e.,
Py < OTBYL po 1 < O7PFL) where 7 = max 7y, and C is a constant

independent of 7. With the aim of obtaining a convergence result for the
semidiscrete scheme (3), we combine the consistency with a suitable stabil-
ity property. We say that the FSRK method (¢, (A;)™, (b;)7,) is A-stable
iff |R(z1,...,2m)] <1, Vz1,...,2m € C~ = {2z € C: Re(z) < 0}, where
R(z1, .. zm) =1+ 300 2 b1 (T — 27:1 z; Aj)~le is the amplification func-
tion associated to the FSRK method. In [BJ01] it is proven that, under suitable
hypotheses on operators A;(t) the use of an FSRK scheme which is consistent
and A-stable guarantees the convergence of the time discretization process.
Regarding the spatial discretization, we must assume typical order r proper-
ties of consistency as well as suitable stability properties.
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Combining all these properties, the following unconditional convergence
results are obtained for the totally discrete scheme (5) ||rp, (tn)u(tn) —Upnlln <
C(h" + 78), |lrp(tn)u(tn) — unnlln < C(R" + 7P), where C' is a constant
independent of 7 and h (see [PBJ04]).

4 Design of two embedded pairs of FSRK methods

We start with the design of a simple pair of orders 1(2). Let us consider the
Fractionary Implicit Euler scheme with two levels

111 |0
111 0[0 1 (6)
10/0 1

as the lower order method of the pair; it is first order consistent and A-
stable. Now we want to construct a second order scheme whose two first
stages coincide with the two first stages of (6). The sufficient and necessary
conditions which a FSRK scheme should satisfy to have order p are shown in
[BJO3]; in this case (p = m = 2) such order conditions are ble = 1, blc =
5, bfAje=3 Vi, j€{1,2}, wheree=(1,...,1) € R".

We need to add two implicit stages to (6) in order to obtain a second order
method; in such a case we come to a system of 8 non linear equations which
depend on 13 unknowns. After solving it we obtain a family of embedded pairs
of FSRK methods of orders 1(2) with 5 free parameters (b3, b3, als, als, a,).

Next we impose the property of A-stability. To simplify th? study, we
%
a nearly L-stable behaviour (i.e., R(co,00) ~ 0). By means of a numerical
swept we obtain that a > 2.35 is a necessary requirement in order to have an
A-stable FSRK scheme of order 2. We still have three parameters: a, b3, b3,
which we fix in such a way that the method has simple rational coefficients and
also that the main term of the local error of the second order FSRK method
is almost minimized. Using these ideas we have chosen the values by = %,
bz = %, a = 2 and the resulting pair is

assume that al; = a3, = a and then we impose that aj; = to permit

10° 5
1 1 0
1 1 0 0 1
A N
BEREE RIIERE.
order 1 1 0 0 010 1 0 0
order 2 %0 0 1% 010 i 0 %

Following a similar technique, we have designed an embedded pair of FSRK
schemes of orders 2(3). In this case we have chosen as the second order method
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the time integrator involved in the classical Peaceman & Rachford scheme and,
by adding 4 suitable implicit stages, we have obtained the following pair

0 |o 0
1 1 1

3 |0 3 3 0

1 0 1 0 i 0 1

7 3 1 7

L Jo - o 1 = 0 00

1 1 7 1

2 |0 -1z 0 g3 0 s 0-5 0 3

13 27 18 1 113 108
210 -2 0 0o 1 2o 00 B0

208 289 289 1 1 2 1

1 |0 -22 o 2 o 2 g 1 o -1 0 2 0 1
order 2/0 1 0 0 0 O O[22 0 3 0 0 00
order 3/0 —22 0 2% 0 29 0| ¢ 0 -2 0 2 0 3

5 Numerical examples

We consider the following diffusion-reaction problem

% = (1+e HaydAu —u+ f(t,x,y), (t,2,y) € (0,500] x §2,
u((),x,y) = ’U;o(l‘,y), (ZE, y) € ﬁ,
u(t,,y) =0, (t,z,y) € (0,500] x I,

where 2 = (0,1) x (0,1) and data f and ug are chosen in such a way that
u(t, ) = 3te 3"+l sin(mz) sin(my) is its exact solution.

We have decomposed domain (2 as the union of two overlapped subdo-
mains 2, = ((0, ) U (15, 12)) x (0,1), 22 = ((Z, %) U (15,1)) x (0,1);
each subdomain has two disjoint components. The partition of unity cho-
sen subordinated to this decomposition is: ¢1(z,y) = h(8z — 2), ifz €
(0,2), ¥1(z,y) =hBz—1), ifw € [2,2), v1(z,y) =hBz—Y), ifx € [2,1),
where h(z) is given in (2), and ¥a(x,y) = 1 — 91 (z,y). Finally, we decom-
pose the elliptic operator and the source term into two parts as follows:

Ai(tv €T, y) = %(% y) ((1+€_t)$yA—I) ) fi(tv €T, y) = 1/%(% y)f(t7 €T, y)7 i=1,2.

We show in the following table the results obtained with the designed
embedded pairs of orders 1(2) and 2(3), respectively. The spatial discretization
chosen in both cases is central differences on a uniform rectangular mesh of
N x N points which is convergent of second order; that is the reason why we
have chosen a tolerance equal to ﬁ to control the sizes of the time steps with
the aim of having errors of the same size in space and time.

For different values of N, we show in the table the total number of steps
(including the accepted and rejected ones), the efficacy, which is the percent-
age of accepted steps compared with the total number of steps, the average
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[12)[2B3) ][ nwr || efficacy % [ 7 | global error

N =16 71 | 34 ||91.55|88.24 || 7.6923 | 16.6667 || 3.4636E-2 | 3.8192E-2
N =32 234 | 52 |195.30(90.38 || 2.2422 | 10.6383 || 1.3269E-2 | 1.3289E-2
N =64 || 630 | 81 ||97.46[93.83/0.8143 | 6.5789 || 4.5409E-3 | 4.5367E-3
N =128 |[ 1532|128 || 98.63 | 96.09 || 0.3309 | 4.0650 || 1.4294E-3 | 1.4173E-3
N =256 |[2017|211]99.90|95.73 || 0.2481 | 2.4752 || 4.3804E-4 | 4.7210E-4

size of the accepted time steps and the maximum global errors committed
along the whole integration interval. Note that the efficacy is very high and
it improves for smaller tolerances and that the global errors obtained show
a reduction according to the reduction of the tolerance (%) chosen when N
doubles. As the exact solutions of these problems decay exponentially (in t)
to the stationary state (0 in this case), the sizes of the time steps 7, tend to
grow along the integration in time from a certain point which provides a time
integration which requires much fewer steps than when using constant time
step integrators. Notice also that the same tolerance (ﬁ) has been used in
both pairs for every value of N and that for these tolerances the embedded
pair 1(2) needs many more time steps than the pair 2(3) to realize the in-
tegration. This implies that, although the pair 2(3) has two internal implicit
stages more than the pair 1(2), the total computational cost of the integration
for the same tolerance is much smaller for the embedded pair of orders 2(3),
as expected. On the basis of this comparison, we think that the design of
embedded pairs of FSRK schemes of higher orders is a very interesting task
which we plan to pursue in the near future.
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