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Abstract. Classification with imbalanced data-sets is one of the recent
challenging problems in Data Mining. In this framework, the class dis-
tribution is not uniform and the separability between the classes is often
difficult. From the available techniques in the Machine Learning field,
we focus on the use of Fuzzy Rule Based Classification Systems, as they
provide an interpretable model for the end user by means of linguistic
variables.

The aim of this work is to increase the performance of fuzzy modeling
by adding a higher degree of knowledge by means of the use of Interval-
valued Fuzzy Sets. Furthermore, we will contextualize the Interval-valued
Fuzzy Sets with a post-processing genetic tuning of the amplitude of
their upper bounds in order to enhance the global behaviour of this
methodology.

Key words: Fuzzy Rule-Based Classification Systems, Interval-valued
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1 Introduction

When facing a classification problem, the user can choose among many tech-
niques to solve it. One of them, known as Fuzzy Rule-Based Classification Sys-
tems (FRBCS)[1], is mostly employed because of its interpretability and the
possibility of mixing different kinds of information as the one given by experts
and the one that comes from mathematical models or empiric measures.

In this work, we will deal with one of the emergent challenging problems in
Data Mining [2], the classification with imbalanced data-sets [3]. Specifically, we
will focus in the two-class imbalanced problem which appears when one class
(known as positive class) is represented by only a few examples, whereas the
other (negative class) is described by many instances. Furthermore, it is common
that the positive class is the most interesting one from the point of view of the

* Corresponding author. Tel:+34-948169839. Fax:+34-948168924



2 J. Sanz et al.

learning task. We can find some recent works in the literature that study the
effect of imbalance between the classes in the framework of FRBCSs [4].

Standard classifier algorithms tend to be biased towards the negative class,
since the rules that predict the highest number of examples are rewarded by the
accuracy metric. Our aim here is to improve the performance of FRBCSs using
the model of Interval-valued Fuzzy Sets (IVFSs) [5]. Specifically, we consider
that the success of the use of fuzzy set theory depends on the choice of the
membership function (MF) but, when experts do not have precise knowledge of
the function to be taken, or it is defined ad-hoc, it can be appropriate to represent
the membership degree of each element by means of an interval. Hence, not only
vagueness (lack of sharp class boundaries) but also a feature of uncertainty (lack
of information) can be addressed intuitively.

We will apply a post-processing step for tuning the amplitude of the upper
bounds in the IVFSs, contextualizing the fuzzy partitions for the problem to
solve. This is necessary because the data distribution is not necessary uniform
and the amplitude of each label may be different.

To build the initial Knowledge Base (KB) we will employ the Chi et al.’s
method [6] and we will compare the IVFS methodology (with and without tun-
ing) against the results obtained with this initial KB. Furthermore, we will in-
clude the C4.5 decision tree in our experimental study, since it is an algorithm
of reference in the field of imbalanced data-sets [7,8]. To do so, we will em-
ploy forty four data-sets from UCI repository [9], where multi-class data sets are
modified to obtain two-class non-balanced problems, defining the joint of one
or more classes as positive and the joint of one or more classes as negative. To
evaluate our results we have applied the Area Under the Curve (AUC) metric
[10] carrying out some non-parametric tests [11,12] to show the significance in
the performance improvements obtained.

This work is organized as follows: in Section 2 we describe the problem of im-
balanced data-sets. In Section 3 we define the IVFS model. Section 4 introduces
our experimentation framework and shows the experimental study. In Section 5
we summarize the study carried out.

2 Imbalanced Data-Sets in Classification

The problem of imbalanced data-sets in classification [3] occurs when the class
distribution is not uniform. In this situation, the number of examples that rep-
resents one class of the data-set (usually the concept of interest) is much lower
than that of the other class. This situation has been recently identified as one
important problem in data mining, since it is implicit in most real applications
including telecommunications, finances, biology or medicine.

This scenario may suppose an added difficulty for the identification and dis-
covery of rules covering the under-represented samples. In [4], the authors stud-
ied different configurations for FRBCSs in order to determine the most suitable
model in this classification framework. Furthermore, it is shown the necessity
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to apply a re-sampling procedure; specifically, the “Synthetic Minority Over-
sampling Technique” (SMOTE) [13] obtains a very good behaviour.

As we stated before, most of proposals for automatic learning of classifiers use
some kind of accuracy measure as the classification percentage over the example
set. However, these measures can lead to erroneous conclusions over imbalanced
data-sets since they don’t take into account the proportion of examples for each
class. Therefore, in this work we use the AUC metric [10], defined as

1+ TProte — FPrate

AUC = 1
- : M

where T P,qt. and F P, 4. are the percentage of correctly and wrongly classified
cases belonging to the positive class respectively.

3 Interval-Valued Fuzzy Sets and Amplitude Tuning

In this work we want to improve the performance of FRBCSs applying IVFS to
represent the different fuzzy partitions. We will use the Chi et al.’s rule learning
algorithm [6], where we represent fuzzy rules as:

Rule R; : If 21 is Aj; and ... and z, is Aj, then Class = C; with RW;, (2)
where R; is the label of the jth rule, x = (x1,. .., z,) is an n-dimensional pattern
vector, A;; is an antecedent fuzzy set, C; is a class label, and RW; is the rule
weight. We represent the MFs by triangular functions.

In the remaining of this section, we will first describe the IVFSs model and
then we will present the genetic tuning of the amplitude for the fuzzy labels.

3.1 IVFSs Model

The IVFSs [5] are an extension of the theory of fuzzy sets which enables to
manage additional knowledge in the fuzzy partitions. In the following we define
this model with some detail:

We denote by L(]0, 1]) the set of all closed subintervals of the closed interval
[0,1]; that is:  L([0,1]) = {x = [z,7]|(z,Z) € [0,1]* and z < T} .
L([0,1]) is a partially ordered set with respect to the relation < defined in the
following way; given x, y € L([0,1]): x <pyifand onlyifz <yand 7 <7.
(L([0,1]), <p) is a complete lattice where the smallest element is 0y, = [0, 0] and
the largest is 17, = [1,1].

Definition 1. An Interval-valued fuzzy set (IVFS) A on the universe U # 0 is
a mapping A : U — L([0,1]).

Obviously, A(u) = [A(u), A(u)] € L([0,1]) is the membership degree of u € U.

We generate the initial KB following a simple rule learning algorithm (Chi
el al.’s method in this case) and, from this KB, we include the IVFSs model by
adding an upper bound for each fuzzy partition, centered in the maximum of
the MF and with a higher amplitude. In our initial model, the amplitude of the
upper bound will be 50% greater than that of the lower bound. We must remark
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that we note “upper” and “lower” bounds referring to the corresponding fuzzy
labels.

Now, we are working with an interval when computing the matching degree
between the antecedent of the rule and the example. In order to give a single
output value, we obtain the mean between the lower and the upper matching
degrees. Furthermore, the rule weight is composed by two numbers, associated
to the lower and the upper bound respectively, and the same procedure will
be employed in this case. Specifically, the rule weight is computed using the
Penalized Certainty Factor defined in [14] as:

Z i(wp) - Z i(wp)
CFLj _ LEpGClasst _ ngczasscj (3)
p=1

Note that for the rule weight computation of the upper bound, we may only
replace A;(x,) with A;(z,).

3.2 Genetic Tuning of the Amplitude of Upper Bound of the IVFS

To improve the performance of the initial IVFSs model, we have to contextualize
the fuzzy partitions for each problem. To do so, we propose a genetic tuning
approach to perform slight changes of the original upper bound amplitude.

The modification of the amplitude is given by a number within the interval [0,
1], that is, from the overlapping of both bounds (value 0) to twice the amplitude
of the upper with respect to the lower bound (value 1). The amplitude of the
upper bound will be uniformly increased according to intermediate values.

In order to apply the genetic tuning, we will consider the use of CHC algo-
rithm [15], which presents a good trade-off between diversity and convergence,
being a good choice in complex problems. The components needed to design this
process are explained below:

1. Coding Scheme: A real coding is considered, where each gene of the chromo-
some represents the amplitude modifier as defined above. Thus, there are as
many genes as fuzzy partitions in the Data Base.

2. Chromosome Evaluation: The fitness function is the AUC metric.

3. Initial Gene Pool: The initial pool is obtained with the first individual having
all genes with value ‘0.5’ (the initial FRBCS). The second and the third
individuals having all genes with values 0 and 1 respectively, whereas the
remaining individuals are generated at random in [0, 1].

4. Crossover Operator: We consider the Parent Centric BLX (PCBLX) op-
erator, which is based on the BLX-a. We consider the incest prevention
mechanism, checking and modifying an initial threshold, in order to apply
the PCBLX operator.

5. Restarting approach: When the threshold value is lower than zero, all the
chromosomes are regenerated at random within the interval [0, 1]. Further-
more, the best global solution found is included in the population to increase
the convergence of the algorithm.
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4 Experimental Study

In this study, our intention is to show the improvement achieved in FRBCSs
applying the IVFSs model. To do this we have to do a double analysis:

— We want to analyze whether the IVFSs model enhances the performance of
a simple KB.
— We want to determine the significance of the tuning step in the IVFSs model.
In the remaining of this section, we will first present the experimental frame-
work and all the parameters employed in this study and then we will show the
empirical study for the IVFSs model in imbalanced data-sets.

4.1 Experimental Set-Up

To carry out the different experiments we consider a 5-folder cross-validation
model, i.e., 5 random partitions of data with a 20%, and the combination of
4 of them (80%) as training and the remaining one as test. For each data-set
we consider the average results of the five partitions. Furthermore, a Wilcoxon’s
Signed-Ranks Test [16] is used for statistical comparison of our empirical results.
In all cases the level of confidence («) will be set at 0.05.

We have selected forty-four data-sets from UCI repository [9]. The data are
summarized in Table 1, showing the number of examples (#Ex.), and attributes
(#Atts.), class name (minority and majority) and class attribute distribution.

In order to reduce the effect of imbalance, we will employ the SMOTE pre-
processing method [13] for all our experiments balancing both classes to the 50%
distribution.

We will employ the following configuration for the FRBCS: 3 labels per fuzzy
partition, product T-norm as conjunction operator, together with the Penalized
Certainty Factor approach for the rule weight and Fuzzy Reasoning Method
of the winning rule. We have selected this fuzzy model as it achieved a good
performance in previous studies for FRBCS on imbalanced data-sets [4].

The specific parameters for the genetic tuning of the amplitude are listed
below:

— Number of evaluations: 5000 - number of variables.
— Population Size: 50 individuals.
— Number of Bits per Gene (for the gray codification): 30 bits.

4.2 Analysis of the IVFSs performance on imbalanced data-sets

In the first part of our study, our aim is to analyze whether the use of the IVFSs
improves the FRBCS performance by means of the comparison with the results
obtained by the Chi et al.’s method, considering two amplitude values in the
Data Base: using the standard MF (“lower bound” in IVFS) and a fuzzy label
with a higher amplitude ("upper bound”). These results are shown in Table 2.
We observe the good behaviour of the IVFSs model, since it obtains very good
results in most data-sets of the study. In order to check for significant differences
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Table 1. Summary Description for Imbalanced Data-Sets.

Data-set #Ex.|# Atts. Class (min., maj.) %Class(min.; maj.)
Glass1 214 9 (build-win-non_float-proc; remainder) (35.51, 64.49)
EcoliOvs1 220 7 (im; cp) (35.00, 65.00)
Wisconsin 683 9 (malignant; benign) (35.00, 65.00)
Pima 768 8 (tested-positive; tested-negative) (34.84, 66.16)
IrisO 150 4 (Iris-Setosa; remainder) (33.33, 66.67)
Glass0 214 9 (build-win-float-proc; remainder) (32.71, 67.29)
Yeast1 1484 8 (nuc; remainder) (28.91, 71.09)
Vehiclel 846 18 (Saab; remainder) (28.37, 71.63)
Vehicle2 846 18 (Bus; remainder) (28.37, 71.63)
Vehicle3 846 18 (Opel; remainder) (28.37, 71.63)
Haberman 306 3 (Die; Survive) (27.42, 73.58)
Glass0123vs456 214 9 (non-window glass; remainder) (23.83, 76.17)
VehicleO 846 18 (Van; remainder) (23.64, 76.36)
Ecolil 336 7 (im; remainder) (22.92, 77.08)
New-thyroid2 215 5 (hypo; remainder) (16.89, 83.11)
New-thyroid1l 215 5 (hyper; remainder) (16.28, 83.72)
Ecoli2 336 7 (pp; remainder) (15.48, 84.52)
Segment0 2308 19 (brickface; remainder) (14.26, 85.74)
Glass6 214 9 (headlamps; remainder) (13.55, 86.45)
Yeast3 1484 8 (me3; remainder) (10.98, 89.02)
Ecoli3 336 7 (imU; remainder) (10.88, 89.12)
Page-blocks0 5472 10 (remainder; text) (10.23, 89.77)
Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08)
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66, 90.34)
Vowel0 988 13 (hid; remainder) (9.01, 90.99)
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89, 91.11)
build-win-non_float-proc,headlamps)
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78, 91.22)
Ecolid 336 7 (om; remainder) (6.74, 93.26)
Yeast1vs7 459 8 (nuc; vac) (6.72, 93.28)
ShuttleOvsd 1829 9 (Rad Flow; Bypass) (6.72, 93.28)
Glass4 214 9 (containers; remainder) (6.07, 93.93)
Page-blocks13vs2| 472 10 (graphic; horiz.line,picture) (5.93, 94.07)
Abalone9vs18 731 8 (18; 9) (5.65, 94.25)
Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89, 95.11)
build-win-non_float-proc,headlamps)
Shuttle2vsd 129 9 (Fpv Open; Bypass) (4.65, 95.35)
Yeast1458vsT 693 8 (vac; nuc,me2,me3,pox) (4.33, 95.67)
Glass5 214 9 (tableware; remainder) (4.20, 95.80)
Yeast2vs8 482 8 (pox; cyt) (4.15, 95.85)
Yeast4 1484 8 (me2; remainder) (3.43, 96.57)
Yeast1289vsT7 947 8 (vac; nuc,cyt,pox,erl) (3.17, 96.83)
Yeast5 1484 8 (mel; remainder) (2.96, 97.04)
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49, 97.51)
Yeast6 1484 8 (exc; remainder) (2.49, 97.51)
Abalonel9 4174 8 (19; remainder) (0.77, 99.23)

between this approach and the basic FRBCSs, we carry out a Wilcoxon test
(shown in Table 3) in which we observe that the rankings are very similar in all
cases, concluding that the different methods have a similar performance.

When we apply the genetic tuning step, the results are enhanced considerably,
obtaining the best mean result among all the algorithms of this study. The
statistical analysis (also shown in Table 3) shows the goodness of this approach,
since it have better behavior than the basic FRBCSs and the initial IVFSs
model. Regarding C4.5, we achieve a higher ranking in this case, which implies
that the IVFS with genetic tuning is a suitable methodology in order to deal
with imbalanced data-sets with fuzzy models.

5 Conclusions

In this work we have analyzed the behavior of the IVFSs in the context of
imbalanced data-sets. We start from an initial KB generated by a simple fuzzy
rule learning method and we add a new level of fuzzy partitions in order to
manage a higher knowledge for the problem.

Our experimental results have determined the goodness of this model, achiev-
ing better results than the base FRBCS. Furthermore, we have applied a post-
processing step to adapt the amplitude of the upper bounds in order to contex-
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Table 2. Results for FRBCSs and C4.5 in imbalanced data-sets. By columns we rep-
resent the Chi et al.’s algorithm with the lower bound (Chi-Low), Chi with the upper
bound (Chi_Up), IVFSs model (Chi_IVFS), IVFS with tuning (Chi-IVFS_tun) and
C4.5

Data-set Chi-Low Chi-Up Chi-IVFS Chi-IVFS_tun C4.5
AUCT, . [AUCT 4 ||AUC T, . [AUCT 4 [[AUC [AUC T 4 [|[AUC T [AUC 4 ||AUCT . [AUC o
Glassl 75.54 65.53 69.28 67.76 72.06 66.31 80.37 71.75 89.78 75.77
EcoliOvs1 95.61 92.71 98.05 96.04 96.42 94.04 98.54 95.38 99.27 97.96
Wisconsin 98.07 89.19 97.08 96.03 97.32 96.03 98.24 96.43 98.32 95.45
Pima 72.64 67.66 67.23 65.93 70.03 67.69 76.04 70.80 84.11 71.45
IrisO 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00
Glass0 71.68 69.74 72.18 72.18 72.01 71.83 73.92 71.81 94.33 78.56
Yeast1l 70.12 69.44 67.57 67.81 68.55 68.71 72.96 70.97 80.49 71.09
Vehiclel 76.86 71.40 71.71 69.34 72.55 69.26 78.87 71.80 95.51 70.30
Vehicle2 88.13 85.55 83.30 81.45 83.83 82.29 93.56 88.28 98.95 94.92
Vehicle3 75.96 69.51 71.66 67.28 71.72 67.19 77.49 69.34 94.93 74.44
Haberman 66.98 60.60 65.79 55.06 67.13 59.89 70.75 61.06 74.26 63.09
Glass0123vs456 94.08 86.42 93.18 90.09 94.13 92.02 96.29 92.33 99.08 90.32
Vehicle0 88.75 86.96 80.82 80.07 82.27 81.62 90.98 87.13 98.97 91.18
Ecolil 87.95 85.88 90.35 88.51 90.31 87.91 91.84 85.72 96.31 77.55
New-Thyroid2 94.80 90.60 96.73 96.31 97.15 90.87 99.51 98.02 99.57 96.59
New-Thyroidl 92.60 88.33 97.73 96.31 95.16 90.04 99.30 96.31 99.22 98.02
Ecoli2 89.68 88.26 89.09 87.68 89.14 88.34 91.54 87.44 95.17 91.62
Segment0 95.53 95.07 86.39 86.31 91.37 91.38 97.69 96.64 99.85 99.27
Glass6 95.07 84.69 92.14 84.74 93.99 85.01 97.33 84.42 99.59 84.50
Yeast3 91.43 90.22 85.35 84.55 88.21 86.69 93.15 91.21 95.65 88.76
Ecoli3 89.38 87.84 88.17 86.60 88.19 86.95 91.98 90.30 98.15 89.21
Page-Blocks0 81.89 81.40 80.34 80.32 81.22 80.95 84.35 83.68 98.46 94.85
Yeast2vs4 89.68 87.36 89.39 88.28 90.12 88.25 91.04 88.15 98.14 85.88
Yeast05679vs4 82.65 79.07 81.48 78.75 82.18 78.59 85.58 77.80 95.26 76.02
VowelO 98.57 98.39 97.95 97.77 98.19 98.16 99.21 98.83 99.67 94.94
Glass016vs2 62.71 54.17 63.93 61.50 64.00 60.93 66.50 55.98 97.16 60.62
Glass2 66.54 55.30 67.50 68.28 67.43 67.76 70.16 60.38 95.71 54.24
Ecoli4 94.06 91.51 94.58 91.17 92.60 89.77 95.82 91.20 97.69 83.10
yeastlvsT 82.00 80.63 78.67 78.61 80.89 78.84 83.44 80.39 93.51 70.03
shuttleOvs4 100.00 99.12 100.00 99.57 100.00 99.57 100.00 99.57 99.99 99.97
Glass4 95.27 85.70 92.29 84.79 93.35 86.80 96.33 89.54 98.44 85.08
Page-Blocks13vs4| 93.68 92.05 86.60 83.30 85.96 82.62 97.19 94.95 99.75 99.55
Abalone9-18 70.23 64.70 65.32 63.77 65.72 63.99 72.41 68.51 95.31 62.15
Glass016vs5 90.57 79.71 75.93 75.71 79.00 78.00 93.79 92.29 99.21 81.29
shuttle2vs4 95.00 90.78 100.00 98.78 98.88 95.58 98.98 96.38 99.90 99.17
Yeast1458vsT 71.25 64.65 68.25 62.76 68.63 66.10 74.80 60.78 91.58 53.67
Glassb 94.33 83.17 77.13 75.85 83.17 80.49 95.30 94.15 99.76 88.29
Yeast2vs8 78.61 77.28 77.39 77.39 77.39 77.39 79.24 77.39 91.25 80.66
Yeast4 83.58 83.15 85.42 84.34 85.65 83.53 87.15 82.18 91.01 70.04
Yeast1289vs7 74.70 77.12 76.18 75.75 76.71 76.79 80.27 78.24 94.65 68.32
Yeast5 94.68 93.58 96.48 96.49 96.70 96.63 97.46 96.01 97.77 92.33
Ecoli0137vs26 93.96 81.90 86.80 83.18 91.81 82.63 96.60 82.27 96.78 81.36
Yeast6 88.48 88.09 87.84 87.63 89.28 89.43 90.58 87.41 92.42 82.80
Abalonel9 71.44 63.94 66.58 65.29 68.35 65.73 73.59 61.45 85.44 52.02
Global 85.56 81.33 83.18 81.35 84.06 81.65 88.18 83.51 95.46 82.17

Table 3. Wilcoxon’s test to compare the IVFSs model (R™), with and without tuning,
against the Chi et al. method and C4.5 (R™) in imbalanced data-sets

Comparison [R+ [R_[ Hypothesis (o = 0.05) [p—value
Base IVFS

Chi_IVFS vs. Chi_Low 506|440 Not Rejected 0.690

Chi_IVFS vs. Chi_Up 511|309 Not Rejected 0.175

Chi_IVFS vs. C4.5 435(555 Not Rejected 0.484

IVFS with Genetic Tuning of the Amplitude
Chi_IVFS_tun vs. Chi_Low [798|148|Rejected for Chi_-IVFS_tun| 0.000
Chi_-IVFS_tun vs. Chi_Up |596|224|Rejected for Chi_IVFS_tun| 0.012
Chi_IVFS_tun vs. Chi_IVFS|642|149|Rejected for Chi_IVFS_tun| 0.006
Chi_IVFS_tun vs. C4.5 611(379 Not Rejected 0.176

tualize this knowledge for each specific data-set by means of a genetic tuning. We
have determined empirically that this methodology enhances our initial IVFSs
model, outperforming the initial FRBCS and being highly competitive with the
well-known C4.5 decision tree.
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