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Abstract. Various complex decision making problems are related to air-
line planning. In the competitive airline industry, efficient crew schedul-
ing is hereby of major practical importance. This paper presents a meta-
heuristic approach based on biased randomization to tackle the chal-
lenging Crew Pairing Problem (CPP). The objective of the CPP is the
establishment of flight pairings allowing for cost minimizing crew-flight
assignments. Experiments are done using a real-life case with different
constraints. The results show that our easy-to-use and fast algorithm
reduces overall crew flying times and the necessary number of accompa-
nying crews compared to the pairings currently applied by the company.
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1 Introduction

The airline industry is highly competitive, leading to constant pressure on com-
mercial airlines to reduce costs wherever possible. After fuel, flight crew expenses
are hereby the second highest source of costs. Thus, efficient crew scheduling and
the resulting operational challenges are of major practical importance [6].

Airline planning consists of a number of consecutive steps, each related to
different operational challenges: (i) the schedule design, during which the com-
pany decides which airports to serve and the corresponding connections and
their frequencies, (ii) the fleet assignment problem in which the aircraft type
for each connection is defined, (iii) aircraft maintenance routing to ensure an
efficient flight schedule considering different maintenance requirements, and (iv)
crew scheduling [5]. Optimization problems concerning the efficient scheduling
of cockpit and cabin crews to reach cost minimizing crew-flight assignments can
be further divided. On the one hand, a sequence of flights (so called pairings)
to be served by a single crew is defined in the Crew Pairing Problem (CPP).
On the other hand, the Crew Assignment Problem arises in the so called roster-
ing process, during which individual crews are assigned to one of the established
pairings. This paper addresses the CPP, whose intermediate position in the com-
plete planning process can be seen in Figure 1.
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Fig. 1. Position of the CPP in the complete airline planning process

In this paper, a metaheuristic approach based on biased randomization to
solve the CPP is presented. The algorithm is tested using a real-life data set
provided by a commercial airline (which will not be named due to the existing
agreement with the company). Results show that the pairings established by the
applied metaheuristic decreases overall crew flying times as well as the necessary
number of crews to serve all scheduled flights. Hereby different solutions are
provided in only a few seconds, making the algorithm adaptable to short term
flight schedule changes and allowing for more decision making flexibility.

This work is structured as follows: the CPP and biased randomization are
reviewed and discussed in Section 2. Our solution approach is outlined in Section
3. In Section 4, the suggested algorithm (implemented as C++ application) is
tested on a set of real-life data. Finally, the work concludes and discusses possible
future work in Section 5.

2 Biased Randomization as solution approach for the
CPP

2.1 The Crew Pairing Problem

Given a set F of flights, the aim of the CPP is to establish sequences of flight
legs (or segments) from a set P of possible pairings in such a way that overall
flying times during a given planning horizon are minimized. Thereby it needs
to be ensured that each flight i ∈ F is included in exactly one pairing p ∈ P
[11]. On the one hand, the complexity of the CPP is driven by the problem size
which increases exponentially with a growing number of flight legs that need
to be scheduled [21]. On the other hand, various problem constraints need to
be considered. As such, established flight schedules defining the date and time
of flights need to be considered. Furthermore, labor regulations and internal
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company rules need to be adhered to: each pairing must start and end at the
same airport (the base location of the crew), a minimum transfer time between
flight connections must be met, and a limit in daily crew working hours as well
as consecutive working days cannot be breached.

Different solution approaches to the CPP have been presented in the liter-
ature. [4] combine large neighborhood search with exact enumeration methods
and integer programming to solve a large scale CPP over a monthly planning
horizon. Another hybrid approach is discussed by [1], who present three differ-
ent solution approaches based on genetic algorithms, column generation, and a
knowledge based random algorithm. Case studies in which the CPP is applied
in practical problem settings have also been investigated in the past. In [22], col-
umn generation for the improvement of crew pairings of a commercial Taiwanese
airline is proposed. Furthermore, [14] establish a robust CPP model considering
the short term integration of new flights for small local Turkish airlines. For an
extensive overview over the robust CPP, see [20]. While the CPP is discussed
as individual optimization issue in the works mentioned in this paragraph, some
approaches to integrate the CPP with other airline planning problems exist. An
integrated approach over all planning steps is discussed in [16, 18]. Furthermore,
[15] combine the aircraft routing problem with crew scheduling, while the CPP
and the crew assignment problem is solved globally by [13].

To illustrate the CPP, a simple example with flight legs between three Cities
(A. B, C) on a three day planning horizon can be seen in Table 1. The proposed
solution (when considering airport A as crew base) shows that the scheduled
flights can be completed by two crews (see Table 2).

Table 1. Simple flight scheduling example

Day Day 1 Day 2 Day 3

Flight A-B A-C B-A A-B C-A B-A A-C C-A

Departure 10:00 10:00 13:00 8:00 15:00 16:00 9:00 13:00

Arrival 11:35 13:05 14:35 9:35 18:05 17:35 12:05 16:05

Table 2. Possible crew pairings

Pairing Day Flight Sequence

X
1 A-B, B-A
2 A-B, B-A

Y
1 A-C
2 C-A
3 A-C, C-A
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2.2 Metaheuristics based on biased randomization

By trading the guarantee for optimality against faster computation times, ap-
proximate metaheuristic methods are often the method of choice for large scale
optimization problems [19]. Hereby the use of randomization techniques in the
construction and/or local search phase is a common approach to tackle com-
binatorial optimization problems (COPs) [2, 3]. Randomization techniques are
often included in multi-start methods, which use multiple algorithm iterations
to increase the considered COP solution search space [12].

Biased randomization can be seen as extension of the well-known Greedy
Randomized Search Procedure (GRASP) introduced by [17]. A COP typically
consists of a finite ground set of elements E = {1, ..., n}, a set of feasible solutions
F ⊆ 2E , and an objective function f : 2E → R. GRASP uses various algorithm
iterations to build a feasible COP solution using a randomized construction pro-
cess. At each construction step a new solution element is added, according to
the myopic costs of including the element in the currently constructed solution.
However, instead of always choosing the element with the highest potential ben-
efits, a list with the most promising elements is created. In the original GRASP,
the element to add to the currently constructed solution is chosen from this list
according to a uniform distribution.

When using biased randomization, the elements are added according to a
skewed probability distribution. Hereby, all available solution elements are eli-
gible at each step. Their probability of being included in the current solution is
based on a bias function calculated according to some criteria (e.g., ranking in a
list, heuristic value, etc.) [9]. While the element on the first position of the list has
the highest chances of being included in the current COP solution, all elements
are potentially eligible. Note that the figure shows a geometric distribution, but
other theoretical (e.g. triangular) or empirical probability distributions could
also be used. For some application examples of biased randomized approaches
the reader is referred to [7, 8, 10]

3 Solution Approach for the CPP

To solve the CPP we suggest the use of a multi-start metaheuristic based on
biased randomization. A pseudo-code for the algorithm illustrating the following
descriptions can be seen in Algorithm 1.

Step 1: Given the flight schedule —i.e., the destinations, days, and exact
times of the flights— an initial solution (initSolution) is created by assigning
one crew per flight. This CPP solution (the worst solution possible) is set as
bestSolution found so far. Furthermore, the transfer times between any two
flights i and j are calculated. If the connection time for transferij does not
break any flight- or crew related constraints, the corresponding transfer is added
to the transferlist of possible flight connections. Once all possible flights have
been checked, the created list is ordered from lowest to highest transfer time.

Step 2: Daily flight sequences are created in the following multi-start frame-
work during maxIter1 iterations (see Procedure 2). During each iteration, a crew
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Algorithm 1: MultiStart (allFlights, alpha, maxIter1, maxIter2)

// Create list of possible tranfers and initial solution

1 transferList ← readData(allFlights) // step 1

2 initSolution ← createInitialSol(allFlights) // step 1

3 bestSolution ← initSolution // step 1

// Generate daily parings

4 for (0 to maxIter1) do
5 dailyPairing ← initSolution
6 dailyPairing ← createDailyParing(dailyPairing, tranferList, alpha)

// step 2

// Create pairing over given time horizon

7 for (0 to maxIter2) do
8 newSolution ← combineDailyPairings(dailyPairings) // step 3

// Ensure that flights return to crew base location

9 newSolution ← complete(newSolution, allFlights) // step 4

10 solutionsList ← update(newSolution) // step 5

11 if (crewFlightHours(newSolution) < crewFlightHours(bestSolution))
then

12 bestSolution ← newSolution // step 5

end

end

end
13 return bestSolution

is assigned to each scheduled flight using biased randomization. That is, pairings
consisting of different flight legs are constructed using the sorted transferList.
According to a skewed probability distribution based on parameter α , the corre-
sponding flights and their associated pairings of the selected transfer are chosen.
While α defines the probability of first list entry (i.e. the transfer with the lowest
connection time) to be selected, all transfers on the list are potentially eligible.
Next, the algorithm checks if the flights are on the same day and that no further
constraints are broken. Once a transfer is selected, transferList is updated.
This step is repeated until the established list is empty.

Step 3: The daily crew pairings are merged in the next step to establish a
complete crew pairing solution over the considered time period (see Procedure
3). According to a uniform distribution, the daily pairings are hereby randomly
combined on a single crew duty period when feasible.

Step 4: Until now, constraints concerning the crew base location have not
been considered. For each constructed crew pairing solution the base location is
therefor included as the first and final destination of the flight sequence as de-
scribed in Procedure 4 to complete the crew pairings. In practice, this is referred
to as so called ’deadheading’. Note that this additional flight connection counts
as working time for the crew, leading to scheduled flights can appear more than
once in the final crew pairing solution.
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Procedure 2: createDailyPairings(dailyPairing, transferList, alpha)

1 transferList ← randomSelection (transferList, alpha)
2 while (transferList not empty) do
3 flighti ← select flighti of transferList[0]
4 flightj ← select flightj of transferList[0]
5 iP ← associatedPairing(dailyPairing, flighti)
6 jP ← associatedPairing(dailyPairing, flightj)
7 if ((time flighti + time flightj < max dailyTime) and (iP day = jP day)

and (iP 6= jP) and (flighti last in iP) and (flightj first in jP)) then
8 dailyPairings ← linkSequences(iP, jP)

end
9 updateList(transferList)

end
10 return dailyPairings

Procedure 3: combineDailyPairings(dailyPairings)

1 RandomSort(dailyPairings)
2 for posi = 0 to dailyPairings.size() do
3 iP ← dailyPairings[posi]
4 for posj = 0 to dailyPairings.size() do
5 jP ← dailyPairings[posj ]
6 if (iP destination airport = jP origin airport) and (last day iP + 1 =

first day jP) and (total days iP + total days jP < max pairing days)
then

7 currentPairings ← combinePairings(iP,jP)
8 posj ← 0

end

end

end
9 return currentPairings

Step 5: Finally, the constructed solution is included in the solution list (giv-
ing decision takers a range of solutions to choose from). The current bestSolution
is updated when necessary.

4 Computational Experiments

The real life case with which we show the potential of our algorithm consists
of 41 flight legs that have to be paired over a five day time period. According
to company regulations, the maximum daily flight time per crew is eight hours,
while the maximum consecutive working days is limited to three days. Further-
more the minimum transfer time between two flights is 45 minutes. The base
location of the flight crews is in Madrid (MAD). Note that deadheading is pos-
sible. The set of flights for which the pairings have to be established can be seen
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Procedure 4: complete(currentPairings, allFlights)

1 for (i = 0 to currentPairing.size()) do
2 iP ← currentPairings[i]
3 if (iP origin airport 6= crew base) then
4 flightj ← findFlight(iP origin flight)
5 if (flightj 6= NULL) then
6 jP ← createPairing(flightj)
7 iP ← combinePairings(iP, jP)

end

end
8 if (iP destination airport 6= crew base) then
9 flightj ← findFlight(iP destination flight)

10 if (flightj 6= NULL) then
11 jP ← createPairing(flightj)
12 iP ← combinePairings(iP, jP)

end

end
13 update(currentPairings, iP)

end
14 completePairings ← currentPairings
15 return completePairings

in Table 3. The current pairings used by the company to schedule their crews
on the flights is outlined in Table 4. With the current pairings, the scheduled
flights are accompanied by six crews, with an overall flight time of 69 hours 40
minutes. Moreover, there are three deadheading flights.

To test our algorithm, we use a geometric distribution algorithm α of 0.25.
Furthermore, we apply 250 iterations for the daily pairing construction phase
(maxIter1). Each time a daily solution is constructed, they are then combined
in an iterative process using 25 iterations (maxIter2). The algorithm was imple-
mented with C++ on a personal computer with a Intel Core i5-2400 (3,1GHz)
processor and 3GB RAM. Results show that our biased randomization meta-
heuristic is able to reduce total flight time by two hours to 67 hours and 40
minutes, as only one deadheading flight is necessary. Moreover, the proposed so-
lution only needs five crews to serve all flights in the considered period (instead
of the six in the current solution).

Another important attribute of our metaheuristic are the short calculation
times. As the complete process can be completed in only a few seconds (ap-
proximately 20 seconds considering the parameters and CPU used to obtain
the presented results), the algorithm is adaptable to short term flight schedule
changes as they regularly occur in the airline industry. Moreover, the multi-start
procedure leads to a list of promising solutions, enabling decision takers to choose
from more than one option according to individual preferences and necessities.
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Table 3. Set of scheduled flights

Day 1 Day 2 Day 3 Day 4 Day 5

Flight Time Flight Time Flight Time Flight Time Flight Time

MAD-BCN 7.00-8.00 BCN-ORY 6.25-8.05 BCN-PMI 5.50-6.30 BRU-MAD 7.15-9.35 LPA-MAD 11.20-13.50

BCN-FCO 8.45-10.25 ORY-BCN 8.55-10.30 MAD-BCN 7.00-8.00 BCN-FCO 8.45-10.25 MAD-FRA 15.05-17.35

FCO-BCN 11.40-13.20 MAD-SCQ 17.45-18.55 PMI-BCN 7.15-8.00 BCN-MAD 8.55-9.55 BCN-MUC 15.15-17.15

SCQ-MAD 8.10-9.15 MAD-NCE 10.50-12.30 MUC-MAD 18.00-20.35

BCN-FCO 8.45-10.25 FCO-BCN 11.40-13.20 FRA-MAD 18.25-20.55

BCN-MAD 8.55-9.55 BCN-ORY 13.15-14.55 AMS-MAD 18.40-21.05

BCN-BRU 9.00-11.05 NCE-MAD 13.20-15.05

MAD-NCE 10.50-12.30 MAD-SCQ 15.05-16.15

MAD-BCN 11.30-12.30 BCN-MXP 15.10-16.40

FCO-BCN 11.40-13.20 ORY-BCN 15.45-17.20

NCE-MAD 13.20-15.05 MAD-LPA 16.35-19.25

BCN-SCQ 15.05-16.40 SCQ-MAD 17.05-18.10

MAD-BCN 16.00-17.00 MXP-BCN 17.35-19.20

SCQ-BCN 17.35-19.05 BCN-MAD 18.45-19.45

MAD-AMS 19.10-21.30

Table 4. Currently used pairings (*deadheading flights)

Pairing Day Flight Sequence Transfer Time Total Time

A
4 MAD-SCQ SCQ-MAD MAD-AMS 1h30m 6h25m
5 AMS-MAD 0h00m 2h25m

B
2 MAD-SCQ 0h00m 1h10m
3 SCQ-MAD MAD-BCN BCN-SCQ SCQ-BCN 5h45m 10h55m
4 BCN-ORY ORY-BCN BCN-MAD 1h55m 6h30m

C
3 MAD-BCN BCN-FCO FCO-BCN 2h00m 6h20m
4 BCN-FCO FCO-BCN BCN-MXP MXP-BCN 4h00m 10h35m
5 BCN-MUC MUC-MAD 0h45m 5h20m

D
3 MAD-BCN* BCN-MAD MAD-NCE NCE-MAD MAD-BCN 3h35m 10h00m
4 BCN-MAD MAD-NCE NCE-MAD MAD-LPA 3h15m 10h30m
5 LPA-MAD MAD-FRA FRA-MAD 2h05m 9h35m

E
3 MAD-BCN* BCN-BRU 1h00m 4h05m
4 BRU-MAD 0h00m 2h20m

F
1 MAD-BCN BCN-FCO FCO-BCN 2h00m 6h20m
2 BCN-ORY ORY-BCN 0h50m 4h05m
3 BCN-PMI PMI-BCN BCN-MAD* 1h40m 4h05m

5 Conclusion

In this paper a multi-start metaheuristic based on biased randomization to tackle
the complex CPP is presented. Computational results on a real-life scenario show
that our approach leads to improvements concerning overall flying times due to
less necessary deadheading and the overall number of crews to accompany the
scheduled flights. The very fast calculation times make the algorithm applicable
to short term schedule changes. Furthermore, the range of solutions created in
the mutli-start procedure gives decision takers more flexibility in the decision
taking process.

Future research will include a more detailed analysis of the algorithm’s ro-
bustness. Furthermore, an integrated approach together with other decision mak-
ing problems in the airline planing phase (e.g. concerning aircraft routing) could
be done.
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Table 5. Our solution (*deadheading flights)

Pairing Day Flight Sequence Transfer Time Total Time

A
2 MAD-SCQ 0h00m 1h10m
3 SCQ-MAD MAD-BCN 2h05m 6h45m
4 BCN-ORY ORY-BCN BCN-MAD 2h15m 4h15m

B
3 MAD-BCN BCN-SCQ SCQ-BCN 3h30m 4h05m
4 BCN-FCO FCO-BCN BCN-MXP MXP-BCN 4h00m 6h35m
5 BCN-MUC MUC-MAD 0h45m 4h35m

C
3 MAD-BCN BCN-FCO FCO-BCN 2h00m 4h20m
4 BCN-MAD MAD-NCE NCE-MAD MAD-LPA 3h15m 7h20m
5 LPA-MAD MAD-FRA FRA-MAD 2h05m 7h20m

D
3 MAD-BCN* BCN-BRU 1h00m 3h05m
4 BRU-MAD MAD-SCQ SCQ-MAD MAD-AMS 7h20m 6h55m
5 AMS-MAD 0h00m 2h25m

E
1 MAD-BCN BCN-FCO FCO-BCN 2h00m 4h20m
2 BCN-ORY ORY-BCN 0h50m 3h15m
3 BCN-PMI PMI-BCN BCN-MAD MAD-NCE NCE-MAD 3h25m 5h50m
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in Quantitative Problem Solving Methods in the Airline Industry, C. Barnhart and
B. Smith, Eds. Springer US, 2012, pp. 237–282.

12. R. Mart́ı, M. Resende, and C. C. Ribeiro, “Multi-start methods for combinatorial
optimization,” European Journal of Operational Research, vol. 226, no. 1, pp. 1–8,
2013.

13. C. P. Medard and N. Sawhney, “Airline crew scheduling from planning to opera-
tions,” European Journal of Operational Research, vol. 38, no. 3, pp. 1013–1027,
2007.
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“Solving a robust airline crew pairing problem with column generation,” Computers
& Operations Research, vol. 40, no. 3, pp. 815–830, 2013.

15. F. M. Nurul, M. Z. Zaitul, S. Said, N. H. M., M. Huda, and A. M. Nurual, “A
heuristic and exact method: Integrated aircraft routing and crew pairing problem,”
Modern Applied Science, vol. 10, no. 4, pp. 128–136, 2016.

16. N. Papadakos, “Integrated airline scheduling,” Computers and Operations Re-
search, vol. 36, pp. 176–195, 2009.

17. M. G. C. Resende and C. C. Ribeiro, “GRASP : Greedy Randomized Adaptive
Search Procedures,” in Handbook of Metaheuristics, F. Glover and G. Kochen-
berger, Eds. Springer New York, 2003, pp. 219–249.
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