
Information Fusion 99 (2023) 101893

A
1

F

G
N
I
F
a

b

G
c

d

4
e

A

K
C
G
P
I

1

r
r
i
v
t
t

(
t
a

h
R

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

ull Length Article

eneralizing max pooling via (𝑎, 𝑏)-grouping functions for Convolutional
eural Networks

osu Rodriguez-Martinez a, Tiago da Cruz Asmus b, Graçaliz Pereira Dimuro a,c,
rancisco Herrera d, Zdenko Takáč e, Humberto Bustince a,∗

Universidad Pública de Navarra, Departamento de Estadística, Informática y Matemáticas, Campus Arrosadia s/n, Pamplona, 31006, Navarra, Spain
Universidade Federal do Rio Grande, Instituto de Matemática, Estadística e Física, Av. Itália km 08, Campus Carreiros, Rio Grande, 96201-900, Rio
rande, Brazil
Universidade Federal do Rio Grande, Centro de ciencia Computacionais, Av. Itália km 08, Campus Carreiros, Rio Grande, 96201-900, Rio Grande, Brazil
Universidad de Granada, Instituto Andaluz Interuniversitario en Data Science and Computational Intelligence, Av. del Conocimiento
1, Granada, 18071, Granada, Spain
Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Jana Bottu 2781/25, Trnava, 917 24, Trnava, Slovakia

R T I C L E I N F O

eywords:
onvolutional neural networks
rouping functions
ooling functions
mage classification

A B S T R A C T

Due to their high adaptability to varied settings and effective optimization algorithm, Convolutional Neural
Networks (CNNs) have set the state-of-the-art on image processing jobs for the previous decade. CNNs work in
a sequential fashion, alternating between extracting significant features from an input image and aggregating
these features locally through ‘‘pooling" functions, in order to produce a more compact representation.

Functions like the arithmetic mean or, more typically, the maximum are commonly used to perform
this downsampling operation. Despite the fact that many studies have been devoted to the development of
alternative pooling algorithms, in practice, ‘‘max-pooling" still equals or exceeds most of these possibilities,
and has become the standard for CNN construction.

In this paper we focus on the properties that make the maximum such an efficient solution in the context
of CNN feature downsampling and propose its replacement by grouping functions, a family of functions that
share those desirable properties. In order to adapt these functions to the context of CNNs, we present (𝑎, 𝑏)-
grouping functions, an extension of grouping functions to work with real valued data. We present different
construction methods for (𝑎, 𝑏)-grouping functions, and demonstrate their empirical applicability for replacing
max-pooling by using them to replace the pooling function of many well-known CNN architectures, finding
promising results.
. Introduction

The irruption of Deep Learning [1] during the last decade has
evolutionized the field of machine learning research, with impressive
esults in fields as diverse as medicine [2,3], natural language process-
ng [4] or synthetic image generation [5]. In the field of computer
ision, Convolutional Neural Networks (CNNs) have been established as
he state-of-the-art technique for classification [6–8] and segmentation
asks [2,9], among others [10–12].

Unlike traditional Computer Vision methods such as Bag of Features
BoF) [13], the parameters of these models are automatically optimized
hrough gradient descent optimization in a supervised way, easing their
pplication and motivating their wide adoption. CNNs extract complex

∗ Corresponding author.
E-mail address: bustince@unavarra.es (H. Bustince).

visual features in a sequential process, generating feature vectors which
can be later fed to different algorithms.

If no feature reduction technique were applied, the dimensionality
of these feature vectors would be too high. Pooling layers take care of
this, performing image downsampling through the fusion of local areas
of the feature images the model works with, while trying to preserve
the most discriminative values. This data fusion process is usually
performed by simple operations such as the arithmetic mean or, more
commonly in practice, the maximum. Both theoretical studies [14,15]
as well as empirical claims seem to set maximum pooling as the default
pooling operator.

Even so, there are some problems with maximum pooling. While
providing some amount of shift invariance to the model, maximum
vailable online 21 June 2023
566-2535/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.inffus.2023.101893
eceived 28 February 2023; Received in revised form 13 June 2023; Accepted 15 J
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

une 2023

https://www.elsevier.com/locate/inffus
http://www.elsevier.com/locate/inffus
mailto:bustince@unavarra.es
https://doi.org/10.1016/j.inffus.2023.101893
https://doi.org/10.1016/j.inffus.2023.101893
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2023.101893&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Information Fusion 99 (2023) 101893I. Rodriguez-Martinez et al.

a
a
n
i

pooling discards many potentially discriminative information in favour
of prioritizing high activations. This, in turn, implies that the gradient
flow of the model gets truncated for all non maximum values of a neigh-
bourhood, which may slow convergence. Although some alternatives
have been proposed in order to try to address these problems [16–19],
max pooling remains the most commonly adapted strategy.

Previous work has demonstrated that other functions with simi-
lar properties to the maximum can act as powerful alternatives as
pooling functions. In [20], t-conorm functions, a family of functions
to which the maximum belongs, outperformed models which imple-
mented max pooling, despite requiring a suboptimal implementation.
Grouping functions [21,22] are a generalization of t-conorms which ig-
nore the associative property, avoiding those implementation mishaps.
They have been used with success in different domains such as decision
making [21] and image thresholding [23], and we consider them an
interesting family of functions to explore in search of a replacement
for the maximum as pooling operator.

In this work, we present (𝑎, 𝑏)-grouping functions, an adaptation of
the concept of grouping function to work with real valued data, which
makes them suitable to act as pooling the operator of a CNN. Several
construction methods are presented, and many examples of grouping
functions are explored, in search of the most interesting properties
for CNNs. In particular, we demonstrate that (𝑎, 𝑏)-grouping functions
can be constructed through the composition of (𝑎, 𝑏)-grouping functions
as well as through their convex combination, which offers a wide
spectrum of functions to apply.

We empirically test the suitability of these functions in a range of
CNN models of different depth and complexity, obtaining favourable
results with most options. We also analyse the activations and gradi-
ents produced by these functions, comparing them with the effect of
traditional pooling operators.

The paper is structured in the following way: Section 2 recalls some
important notions about CNNs and grouping functions; Section 3 intro-
duces (𝑎, 𝑏)-grouping functions, providing several construction methods
and examples of such functions, as well as exploring their suitability
as pooling candidates; Section 4 is dedicated to our new pooling
operators, as well as to reviewing some other recently introduced in
the literature pooling layers. Section 5 presents our experiments and
offers some insights into the challenges of replacing maximum pooling
by other functions; finally, Section 6 concludes the paper with some
final remarks and future lines of research.

2. Preliminaries

2.1. Convolutional Neural Networks

CNNs are a family of Neural Network specialized in the ‘‘automatic’’
extraction of local features from a given data source, such as an
image or video. We say that this process is ‘‘automatic’’ because the
backpropagation algorithm is used for finetuning the model parameters
through gradient descent optimization [1], instead of requiring careful
manual adjustments.

Similarly to other neural network models, CNNs are formed by a
series of ‘‘layers’’ which act sequentially over a given input. In partic-
ular, the feature extraction process is taken care of in ‘‘convolutional
layers’’, where a series of ‘‘feature filters’’ are convolved over different
regions of an input, before applying a non-linear activation function to
the result. This generates an output which represents the presence or
absence of a given feature along the different positions of the input.

In the case of image data, a convolutional layer counts with a series
of small two dimensional filters which represent visual characteristics.
After filtering the input image by 𝑛 such filters, 𝑛 different ‘‘feature im-
ges’’ are generated. Each of them is appended as a different channel of
n output matrix which the layer finally outputs. Given the sequential
ature of CNNs, future convolution layers act over the output of the
nitial layers. This implies that the features extracted at deeper levels
2

of the model are progressively more complex, since they combine the
simpler features obtained by previous layers.

The extracted features can be later fed as the input of several
algorithms, depending on the task at hand. In the case of image classi-
fication, a Multilayer Perceptron (MLP) is typically used, since it is an
efficient classifier which shares the same optimization procedure as the
rest of the model. Whatever the classifier, however, its behaviour can
be expected to improve the smaller the number of features fed to it is.
Unfortunately, in order to capture as rich descriptors as possible from
the input image, convolutional layers typically have many filters, which
increases the number of channels of the generated feature matrices.

Several strategies can be used in order to reduce the dimensionality
of the feature extractor output. One of the most common ones is the
addition of ‘‘pooling layers’’ along the feature extractor, in order to per-
form an image downsampling process to the obtained feature images. In
this way, each of these feature images is divided in small disjoint win-
dows whose values are aggregated into single representatives, through
functions such as the arithmetic mean or the maximum. This strategy is
based on the idea that much of the information represented by feature
images is redundant, and helps to provide the model with some amount
of invariance to slight displacement of the detected features.

Some authors have proposed replacing simple average and max-
imum pooling by other data fusion operations: in [16] Stochastic
pooling is proposed, which chooses one of the input values as output
according to a multinomial distribution based on their magnitudes;
Ordered Weighted Average aggregation operators (OWA) [24] were
proposed in [18] as another trial at replacing pooling functions by
learnable aggregation functions; in [25], another family of functions
based on the minimization of the distance among the input values and
the produced reduced output are proposed; in [17] authors propose
to combine both average and maximum pooling through a strategy
referred to as Mixed Pooling, via a convex combination with learnable
coefficients; in [19] we proposed a generalization of this approach in
which several increasing functions were combined obtaining increasing
pooling functions as a result.

A new pooling strategy is proposed in the remainder of this paper,
based on the concept of grouping functions, which we recall in the
following section.

2.2. Grouping functions

In this section, we recall some theoretical concepts which have
served as a basis for the new proposed pooling functions.

Let us denote 𝑥⃗ = (𝑥1,… , 𝑥𝑛) ∈ [0, 1]𝑛.

Definition 2.1 ([26]). A function 𝑁 ∶ [0, 1] → [0, 1] is a fuzzy negation
if the following conditions hold:

(N1) 𝑁(0) = 1 and 𝑁(1) = 0;

(N2) If 𝑥 ≤ 𝑦 then 𝑁(𝑦) ≤ 𝑁(𝑥), for all 𝑥, 𝑦 ∈ [0, 1].

If 𝑁 also satisfies the involutive property,

(N3) 𝑁(𝑁(𝑥)) = 𝑥, for all 𝑥 ∈ [0, 1],

then it is said to be a strong fuzzy negation.

Example 2.1. The Zadeh negation given, for all 𝑥 ∈ [0, 1], by

𝑁𝑍 (𝑥) = 1 − 𝑥,

is a strong fuzzy negation.

Example 2.2. The functions 𝑁1 = 1 − 𝑥2 and 𝑁2 =
√

1 − 𝑥 are
examples of non-strong fuzzy negations.



Information Fusion 99 (2023) 101893I. Rodriguez-Martinez et al.

d

𝐹

i

f
o

/
i

D
[

(

(

E
f
a

𝐴

i
c

(

o
s
h

a
[
t
w
j

[
f

D
𝐴

(

(

E

(

Definition 2.2 ([26]). Given a strong fuzzy negation 𝑁 ∶ [0, 1] → [0, 1]
and function 𝐹 ∶ [0, 1]𝑛 → [0, 1], then the function 𝐹𝑁 ∶ [0, 1]𝑛 → [0, 1]
efined, for all 𝑥⃗ ∈ [0, 1]𝑛, by
𝑁 (𝑥⃗) = 𝑁(𝐹 (𝑁(𝑥1),… , 𝑁(𝑥𝑛))), (1)

s the 𝑁-dual of 𝐹 .

Functions of the type 𝐹 ∶ [0, 1]𝑛 → [0, 1] are usually referred to as
usion functions [27]. An interesting subclass of fusion functions is that
f aggregation functions.

Note that from now on, by the monotonicity (increasingness
decreasingness) of n-ary functions we understand the monotonicity
n each variable.

efinition 2.3 ([28]). An aggregation function is any function 𝐴 ∶
0, 1]𝑛 → [0, 1] that respects the following conditions:

A1) 𝐴 is increasing;

A2) 𝐴(0,… , 0) = 0 and 𝐴(1,… , 1) = 1.

xample 2.3. Consider 𝑤⃗ ∈ [0, 1]𝑛 such that ∑𝑛
𝑖=1 𝑤𝑖 = 1. Then, the

unction 𝐴𝑊 ∶ [0, 1]𝑛 → [0, 1] (weighted arithmetic mean), given, for
ll 𝑥⃗ ∈ [0, 1]𝑛, by

𝑊 (𝑥⃗) =
𝑛
∑

𝑖=1
𝑤𝑖 ⋅ 𝑥𝑖, (2)

s an aggregation function. When 𝑤𝑖 = 1∕𝑛 for every 𝑖 ∈ {1,… , 𝑛}, we
an rewrite Eq. (2) to express the usual arithmetic mean 𝐴𝑀 ∶ [0, 1]𝑛 →
[0, 1], given by

𝐴𝑀(𝑥⃗) =
∑𝑛

𝑖=1 𝑥𝑖
𝑛

, (3)

which is also an aggregation function.

There are many subclasses of aggregation functions defined in the
literature. Here we highlight some of them that are going to be of
importance to this work.

Definition 2.4 ([29,30]). A function 𝑂 ∶ [0, 1]𝑛 → [0, 1] is an 𝑛-
dimensional overlap function if, for all 𝑥⃗ ∈ [0, 1]𝑛, the following
conditions hold:

(O1) 𝑂 is symmetric;

(O2) 𝑂(𝑥⃗) = 0 if and only if ∏𝑛
𝑖=1 𝑥𝑖 = 0;

(O3) 𝑂(𝑥⃗) = 1 if and only if ∏𝑛
𝑖=1 𝑥𝑖 = 1;

(O4) 𝑂 is increasing;

(O5) 𝑂 is continuous.

A 2-dimensional overlap function is just called overlap function [22,
31].

Example 2.4.

(a) The function 𝑂𝑚𝑖𝑛 ∶ [0, 1]𝑛 → [0, 1] (minimum) given, for all
𝑥⃗ ∈ [0, 1]𝑛, by

𝑂𝑚𝑖𝑛(𝑥⃗) = min{𝑥1,… , 𝑥𝑛} (4)

is an 𝑛-dimensional overlap function.

b) The function 𝑂𝑔𝑒𝑜𝑚 ∶ [0, 1]𝑛 → [0, 1] (geometric mean), given, for
all 𝑥⃗ ∈ [0, 1]𝑛, by

𝑂𝑔𝑒𝑜𝑚(𝑥⃗) =
𝑛

√

√

√

√

𝑛
∏

𝑖=1
𝑥𝑖, (5)

is an 𝑛-dimensional overlap function.
3

Table 1
Examples of 𝑛-dimensional Grouping Functions.

𝐺𝑚𝑎𝑥(𝑥1 ,… , 𝑥𝑛) =
(

max{𝑥1 ,… , 𝑥𝑛}
)𝑝, with 𝑝 > 0

𝐺𝑝𝑟𝑜𝑑 (𝑥1 ,… , 𝑥𝑛) = 1 −
∏𝑛

𝑖=1(1 − 𝑥𝑖)𝑝, with 𝑝 > 0

𝐺𝑔𝑒𝑜𝑚(𝑥1 ,… , 𝑥𝑛) = 1 − 𝑛
√

∏𝑛
𝑖=1(1 − 𝑥𝑖)𝑝, with 𝑝 > 0

𝐺𝑜𝑏(𝑥1 ,… , 𝑥𝑛) = 1 −
(

√

(
∏𝑛

𝑖=1 1 − 𝑥𝑖
)

⋅min{1 − 𝑥1 ,… , 1 − 𝑥𝑛}
)

𝐺𝑢(𝑥1 ,… , 𝑥𝑛) =
max{𝑥1 ,…,𝑥𝑛}

max{𝑥1 ,…,𝑥𝑛}+
𝑛
√

∏𝑛
𝑖=1 (1−𝑥𝑖 )

Definition 2.5 ([29]). A function 𝐺 ∶ [0, 1]𝑛 → [0, 1] is said to be an
𝑛-dimensional grouping function if, for all 𝑥⃗ ∈ [0, 1]𝑛, the following
conditions hold:

(G1) 𝐺 is symmetric;

(G2) 𝐺(𝑥⃗) = 0 if and only if 𝑥𝑖 = 0 for all 𝑖 ∈ {1,… , 𝑛};

(G3) 𝐺(𝑥⃗) = 1 if and only if there exists 𝑖 ∈ {1,… , 𝑛} such that 𝑥𝑖 = 1;

(G4) 𝐺 is increasing;

(G5) 𝐺 is continuous.

By N-duality, one can obtain 𝑛-dimensional grouping functions from
𝑛-dimensional overlap functions, and vice-versa.

Example 2.5.

(a) The function 𝐺𝑚𝑎𝑥 ∶ [0, 1]𝑛 → [0, 1] (maximum), given, for all
𝑥⃗ ∈ [0, 1]𝑛, by

𝐺𝑚𝑎𝑥(𝑥⃗) = max{𝑥1,… , 𝑥𝑛}, (6)

is an 𝑛-dimensional grouping function.

(b) The function 𝐺𝑔𝑒𝑜𝑚 ∶ [0, 1]𝑛 → [0, 1] (dual of the geometric mean),
given, for all 𝑥⃗ ∈ [0, 1]𝑛, by

𝐺𝑔𝑒𝑜𝑚(𝑥⃗) = 1 − 𝑛

√

√

√

√

𝑛
∏

𝑖=1
1 − 𝑥𝑖, (7)

is an 𝑛-dimensional grouping function.

In Table 1, we show some other examples of 𝑛-dimensional grouping
functions.

2.3. (a, b)-aggregation functions

Grouping functions are restricted to the domain [0, 1], but CNNs
perate with real values. A strategy for adapting the definition of
everal aggregation functions to work with real valued data is recalled
ere.

Let 𝑎, 𝑏 ∈ R, such that 𝑎 < 𝑏. In [28], fusion functions, as well as
ggregation functions were already defined in the context of a domain
𝑎, 𝑏]. Here, to avoid confusion, we will call them fusion and aggrega-
ion functions only when 𝑎 = 0 and 𝑏 = 1 (Definition 2.3). Otherwise,
e will call them (𝑎, 𝑏)-fusion functions and (𝑎, 𝑏)-aggregation functions,

ust to standardize the notation.
(𝑎, 𝑏)-fusion functions are arbitrary functions of the type 𝐹 𝑎,𝑏 ∶

𝑎, 𝑏]𝑛 → [𝑎, 𝑏]. The definition of (𝑎, 𝑏)-aggregation function is given as
ollows:

efinition 2.6 ([28]). An (𝑎, 𝑏)-aggregation function is any function
𝑎,𝑏 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏] that respects the following conditions:

AB1) 𝐴𝑎,𝑏 is increasing;

AB2) 𝐴𝑎,𝑏(𝑎,… , 𝑎) = 𝑎 and 𝐴𝑎,𝑏(𝑏,… , 𝑏) = 𝑏.

xample 2.6.

a) The arithmetic mean 𝐴𝑀 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏], given by Eq. (3) is an
(𝑎, 𝑏)-aggregation function;



Information Fusion 99 (2023) 101893I. Rodriguez-Martinez et al.

l
f

D
a
h

(

(

(

(
a
c

(

𝐺

a

(b) If 𝑎 ≠ 0 or 𝑏 ≠ 1, then neither the geometric mean 𝑂𝑔𝑒𝑜𝑚 ∶ [𝑎, 𝑏]𝑛 →
[𝑎, 𝑏], given by Eq. (5), nor its dual 𝐺𝑔𝑒𝑜𝑚 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏], given
by Eq. (7), are (𝑎, 𝑏)-aggregation functions.

In [20], different (𝑎, 𝑏)-aggregation functions were defined in a simi-
ar manner as Definition 2.6. Let us recall the definition of (𝑎, 𝑏)-overlap
unctions:

efinition 2.7 ([20]). A function 𝑂𝑎,𝑏 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏] is said to be
n (𝑎, 𝑏)-overlap function if, for all 𝑥⃗ ∈ [𝑎, 𝑏]𝑛, the following conditions
old:

OAB1) 𝑂𝑎,𝑏 is symmetric;

OAB2) 𝑂𝑎,𝑏(𝑥1,… , 𝑥𝑛) = 𝑎 if and only if ∏𝑛
𝑖=1(𝑥𝑖 − 𝑎) = 0;

OAB3) 𝑂𝑎,𝑏(𝑥1,… , 𝑥𝑛) = 𝑏 if and only if ∏𝑛
𝑖=1(

𝑥𝑖−𝑎
𝑏−𝑎 ) = 1;

(OAB4) 𝑂𝑎,𝑏 is increasing;

(OAB5) 𝑂𝑎,𝑏 is continuous.

3. (𝒂, 𝒃)-grouping functions

Here, we introduce the concept of (𝑎, 𝑏)-grouping function as fol-
lows:

Definition 3.1. A function 𝐺𝑎,𝑏 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏] is said to be an
(𝑎, 𝑏)-grouping function if, for all 𝑥⃗ ∈ [𝑎, 𝑏]𝑛, the following conditions
hold:

(GAB1) 𝐺𝑎,𝑏 is symmetric;

(GAB2) 𝐺𝑎,𝑏(𝑥⃗) = 𝑎 if and only if 𝑥𝑖 = 𝑎 for all 𝑖 ∈ {1,… , 𝑛};

(GAB3) 𝐺𝑎,𝑏(𝑥⃗) = 𝑏 if and only if there exists 𝑖 ∈ {1,… , 𝑛} such that
𝑥𝑖 = 𝑏;

(GAB4) 𝐺𝑎,𝑏 is increasing;

(GAB5) 𝐺𝑎,𝑏 is continuous.

It is immediate that every (𝑎, 𝑏)-grouping function is also an (𝑎, 𝑏)-
aggregation function, but the converse does not hold.

Example 3.1. The function 𝐺𝑎,𝑏
𝑚𝑎𝑥 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏] (maximum), given,

for all 𝑥⃗ ∈ [0, 1]𝑛, by

𝐺𝑎,𝑏
𝑚𝑎𝑥(𝑥⃗) = max{𝑥1,… , 𝑥𝑛}, (8)

is an 𝑛-dimensional (𝑎, 𝑏)-grouping function.

3.1. Construction methods

Although Definition 3.1 seems intuitive and keeps the same proper-
ties of Definition 2.5 in the context of the domain [𝑎, 𝑏], it is not trivial
to obtain expressions for (𝑎, 𝑏)-grouping functions, since the expressions
of some known 𝑛-dimensional grouping functions (as the ones shown
in Table 1) do not respect the conditions from Definition 3.1. So, in the
following, we introduce some construction methods for (𝑎, 𝑏)-grouping
functions.

Theorem 3.1. Consider a fusion function 𝐺 ∶ [0, 1]𝑛 → [0, 1], an
increasing and bijective function 𝜙 ∶ [𝑎, 𝑏] → [0, 1] and an (𝑎, 𝑏)-fusion
function 𝐺𝑎,𝑏 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏] given, for all 𝑥1,… , 𝑥𝑛 ∈ [𝑎, 𝑏], by

𝐺𝑎,𝑏(𝑥1,… , 𝑥𝑛) = 𝜙−1 (𝐺
(

𝜙(𝑥1),… , 𝜙(𝑥𝑛)
))

, (9)

Then, 𝐺𝑎,𝑏 is an 𝑛-dimensional (𝑎, 𝑏)-grouping function if and only if 𝐺 is
an 𝑛-dimensional grouping function.

Proof.→ Suppose that 𝐺𝑎,𝑏 is an 𝑛-dimensional (𝑎, 𝑏)-grouping function.
Then, it is immediate that 𝐺 is increasing, symmetric and continuous.
4

Let us prove that 𝐺 respects the remaining conditions of Definition 2.5: 𝐺
(G2)

𝐺(𝑥1,… , 𝑥𝑛) = 0

⇔ 𝐺(𝜙(𝜙−1(𝑥1)),… , 𝜙(𝜙−1(𝑥𝑛))) = 0,

since 𝜙 is bijective
⇔ 𝜙−1(𝐺(𝜙(𝜙−1(𝑥1)),… , 𝜙(𝜙−1(𝑥𝑛)))) = 𝜙−1(0)

⇔ 𝐺𝑎,𝑏(𝜙−1(𝑥1),… , 𝜙−1(𝑥𝑛)) = 𝑎,

by Eq. (9)
⇔ 𝜙−1(𝑥𝑖) = 𝑎, for all 𝑖 ∈ {1,… , 𝑛},

by (𝐆𝐀𝐁𝟐)
⇔ 𝑥𝑖 = 0, for all 𝑖 ∈ {1,… , 𝑛}.

(G3)

𝐺(𝑥1,… , 𝑥𝑛) = 1

⇔ 𝐺(𝜙(𝜙−1(𝑥1)),… , 𝜙(𝜙−1(𝑥𝑛))) = 1,

since 𝜙 is bijective
⇔ 𝜙−1(𝐺(𝜙(𝜙−1(𝑥1)),… , 𝜙(𝜙−1(𝑥𝑛)))) = 𝜙−1(1)

⇔ 𝐺𝑎,𝑏(𝜙−1(𝑥1),… , 𝜙−1(𝑥𝑛)) = 𝑏,

by Eq. (9)
⇔ 𝜙−1(𝑥𝑖) = 𝑏, for some 𝑖 ∈ {1,… , 𝑛},

by (𝐆𝐀𝐁𝟑)
⇔ 𝑥𝑖 = 1, for some 𝑖 ∈ {1,… , 𝑛}.

(⇐) Suppose that 𝐺 is an 𝑛-dimensional grouping function. From
G1), (G4) and (G5), we also have that 𝐺𝑎,𝑏 is symmetric, increasing
nd continuous. Now, let us prove that it respects the remaining
onditions of Definition 3.1:

GAB2) Suppose that 𝐺𝑎,𝑏(𝑥⃗) = 𝑎, for some 𝑥⃗ ∈ [𝑎, 𝑏]𝑛. Then,
from Eq. (9), we have that:

𝑎 = 𝜙−1 (𝐺
(

𝜙(𝑥1),… , 𝜙(𝑥𝑛)
))

if and only if
0 = 𝐺

(

𝜙(𝑥1),… , 𝜙(𝑥𝑛)
)

,

since 𝜙 is increasing and bijective. From (G2), it follows that:

𝜙(𝑥𝑖) = 0 for all 𝑖 ∈ {1,… , 𝑛} if and only if
𝑥𝑖 = 𝑎 for all 𝑖 ∈ {1,… , 𝑛}.

(GAB3) Suppose that 𝐺𝑎,𝑏(𝑥⃗) = 𝑏, for some 𝑥⃗ ∈ [𝑎, 𝑏]𝑛. Then,
from Eq. (9), we have that:

𝑏 = 𝜙−1 (𝐺
(

𝜙(𝑥1),… , 𝜙(𝑥𝑛)
))

if and only if
1 = 𝐺

(

𝜙(𝑥1),… , 𝜙(𝑥𝑛)
)

,

since 𝜙 is increasing and bijective. From (G3), it follows that:

𝜙(𝑥𝑖) = 1 for some 𝑖 ∈ {1,… , 𝑛} if and only if
𝑥𝑖 = 𝑏 for some 𝑖 ∈ {1,… , 𝑛}. □

Example 3.2. Consider the 𝑛-dimensional grouping functions 𝐺𝑝𝑟𝑜𝑑 ,
𝐺𝑔𝑒𝑜𝑚 ∶ [0, 1]𝑛 → [0, 1] defined in Table 1 and Example 2.5, respectively,
and the increasing and bijective function 𝜙 ∶ [𝑎, 𝑏] → [0, 1], defined, for
all 𝑥 ∈ [𝑎, 𝑏], by

𝜙(𝑥) =
(𝑥 − 𝑎
𝑏 − 𝑎

)𝑝
, 𝑝 > 0. (10)

Then, the functions 𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 , 𝐺

𝑎,𝑏
𝑔𝑒𝑜𝑚 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏], given, for all

𝑥⃗ ∈ [𝑎, 𝑏]𝑛, respectively, by
𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝑥⃗) = 𝜙−1 (𝐺𝑝𝑟𝑜𝑑

(

𝜙(𝑥1),… , 𝜙(𝑥𝑛)
))

(11)

nd
𝑎,𝑏 (𝑥⃗) = 𝜙−1 (𝐺

(

𝜙(𝑥 ),… , 𝜙(𝑥 )
))

(12)
𝑔𝑒𝑜𝑚 𝑔𝑒𝑜𝑚 1 𝑛



Information Fusion 99 (2023) 101893I. Rodriguez-Martinez et al.

(
o

(

C
[
f

𝐺

i

C
[
𝐺
𝐴

𝐴

i

R
o
t
t
𝑛
u
d
s
f
a
a
t

E

(

(

s

are 𝑛-dimensional (𝑎, 𝑏)-grouping functions. By taking 𝑝 = 1, we can
rewrite Eqs. (11) and (12), respectively as follows:

𝐺𝑝𝑟𝑜𝑑
𝑎,𝑏(𝑥1,… , 𝑥𝑛) =

𝐺𝑝𝑟𝑜𝑑

(𝑥1 − 𝑎
𝑏 − 𝑎

,… ,
𝑥𝑛 − 𝑎
𝑏 − 𝑎

)

⋅ (𝑏 − 𝑎) + 𝑎, (13)

and

𝐺𝑔𝑒𝑜𝑚
𝑎,𝑏(𝑥1,… , 𝑥𝑛) =

𝐺𝑔𝑒𝑜𝑚

(𝑥1 − 𝑎
𝑏 − 𝑎

,… ,
𝑥𝑛 − 𝑎
𝑏 − 𝑎

)

⋅ (𝑏 − 𝑎) + 𝑎, (14)

For 𝑝 = 1, the (𝑎, 𝑏)-grouping function 𝐺𝑎,𝑏
𝑔𝑒𝑜𝑚, can be simplified as

follows:

𝐺𝑔𝑒𝑜𝑚
𝑎,𝑏(𝑥1,… , 𝑥𝑛) =

𝐺𝑔𝑒𝑜𝑚

(𝑥1 − 𝑎
𝑏 − 𝑎

,… ,
𝑥𝑛 − 𝑎
𝑏 − 𝑎

)

⋅ (𝑏 − 𝑎) + 𝑎 =

⎛

⎜

⎜

⎝

1 − 𝑛

√

√

√

√

𝑛
∏

𝑖=1

(

1 −
𝑥𝑖 − 𝑎
𝑏 − 𝑎

)
⎞

⎟

⎟

⎠

⋅ (𝑏 − 𝑎) + 𝑎 =

𝑏 − 𝑛

√

√

√

√

𝑛
∏

𝑖=1
(𝑏 − 𝑥𝑖) (15)

Remark 3.1. Any 𝑛-dimensional grouping function (such as the ones
in Table 1) can be the core of the construction method presented
in Theorem 3.1. The constructed 𝑛-dimensional (𝑎, 𝑏)-grouping function
is a counterpart in [𝑎, 𝑏] for the core 𝑛-dimensional grouping function
defined in [0, 1].

The next construction method derives from the composition of
(𝑎, 𝑏)-grouping functions by an (𝑎, 𝑏)-aggregation function with some
conditions.

Theorem 3.2. Consider a continuous (𝑎, 𝑏)-aggregation function 𝐴𝑎,𝑏 ∶
[𝑎, 𝑏]𝑚 → [𝑎, 𝑏], such that

(PA*) 𝐴𝑎,𝑏(𝑥⃗) = 𝑎 if and only if 𝑥𝑖 = 𝑎 for some 𝑖 ∈ {1,… , 𝑚};

(PB*) 𝐴𝑎,𝑏(𝑥⃗) = 𝑏 if and only if 𝑥𝑖 = 𝑏 for some 𝑖 ∈ {1,… , 𝑚} and 𝑥𝑖 ≠ 𝑎
for all 𝑖 ∈ {1,… , 𝑚},

and a tuple ⃖⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏 = (𝐺𝑎,𝑏
1 ,… , 𝐺𝑎,𝑏

𝑚 ) of 𝑛-dimensional (𝑎, 𝑏)-grouping func-
tions. Then, the mapping 𝐴𝑎,𝑏

⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏
∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏], defined for all 𝑥⃗ ∈ [𝑎, 𝑏]𝑛,

by

𝐴𝑎,𝑏
⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏

(𝑥⃗) = 𝐴𝑎,𝑏(𝐺𝑎,𝑏
1 (𝑥⃗),… , 𝐺𝑎,𝑏

𝑚 (𝑥⃗)), (16)

is an 𝑛-dimensional (𝑎, 𝑏)-grouping function.

Proof. It is immediate that 𝐴𝑎,𝑏
⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏

is well defined. Then, by (G1), (G4)

and (G5), we have that 𝐴𝑎,𝑏
⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏

respects conditions (GAB1), (GAB4) and

GAB5). Now, let us prove that 𝐴𝑎,𝑏
⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏

respects the remaining conditions
f Definition 3.1:

GAB2) Suppose that 𝐴𝑎,𝑏
⃖⃖⃖⃖⃖⃗𝑂𝑎,𝑏

(𝑥⃗) = 𝑎, for some 𝑥⃗ ∈ [𝑎, 𝑏]𝑛. Then,
by Eq. (16) and (PA*), it follows that:

𝐺𝑎,𝑏
𝑗 (𝑥⃗) = 𝑎 for some 𝑗 ∈ {1,… , 𝑚} ⇔ 𝑥⃗ = (𝑎,… , 𝑎)

by (𝐆𝐀𝐁𝟐).

Conversely, if 𝑥⃗ = (𝑎,… , 𝑎), then, by (GAB2), (AB2) and Eq. (16),
we have that 𝐴𝑎,𝑏

⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏
(𝑥⃗) = 𝑎;

(OAB3) Suppose that 𝐴𝑎,𝑏
⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏

(𝑥⃗) = 𝑏, for some 𝑥⃗ ∈ [𝑎, 𝑏]𝑛. Then,
by Eq. (16) and (PB*), we have that:

𝐺𝑎,𝑏
𝑗 (𝑥⃗) = 𝑏 for some 𝑗 ∈ {1,… , 𝑚} ⇔ 𝑥𝑖 = 𝑏

for some 𝑖 ∈ {1,… , 𝑛} by (𝐆𝐀𝐁𝟑).
5

On the other hand, if we take 𝑥⃗ ∈ [𝑎, 𝑏]𝑛, such that 𝑥⃗ =
(𝑥1,… , 𝑥𝑖,… , 𝑥𝑛) with 𝑥𝑖 = 𝑏 for some 𝑖 ∈ {1,… , 𝑛}, then, by
(GAB3), (PB*) and Eq. (16), we have that 𝐴𝑎,𝑏

⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏
(𝑥⃗) = 𝑏. □

orollary 3.1. Consider an 𝑚-ary (𝑎, 𝑏)-grouping function 𝐺𝐶𝑎,𝑏 ∶
𝑎, 𝑏]𝑚 → [𝑎, 𝑏] and the tuple ⃖⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏 = (𝐺𝑎,𝑏

1 ,… , 𝐺𝑎,𝑏
𝑚 ) of 𝑛-ary (𝑎, 𝑏)-grouping

unctions. Then, the mapping 𝐺𝐶⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏], defined for all
𝑥⃗ ∈ [𝑎, 𝑏]𝑛, by

𝐶⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏 (𝑥⃗) = 𝐺𝐶𝑎,𝑏(𝐺𝑎,𝑏
1 (𝑥⃗),… , 𝐺𝑎,𝑏

𝑚 (𝑥⃗)),

s an 𝑛-ary (𝑎, 𝑏)-grouping function.

orollary 3.2. Consider the weighted arithmetic mean 𝐴𝑊 𝑎,𝑏 ∶ [𝑎, 𝑏]𝑚 →

𝑎, 𝑏] given by Eq. (2), with 𝑤⃗ ∈ [0, 1]𝑚 such that ∑𝑚
𝑖=1 𝑤𝑖 = 1 and the tuple

⃖⃖⃖⃖⃖⃖⃗𝑎,𝑏 = (𝐺𝑎,𝑏
1 ,… , 𝐺𝑎,𝑏

𝑚 ) of 𝑛-ary (𝑎, 𝑏)-grouping functions. Then, the mapping
𝑊⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏], defined for all 𝑥⃗ ∈ [𝑎, 𝑏]𝑛, by

𝑊⃖⃖⃖⃖⃖⃗𝐺𝑎,𝑏 (𝑥⃗) =𝐴𝑊
𝑎,𝑏(𝐺𝑎,𝑏

1 (𝑥⃗),… , 𝐺𝑎,𝑏
𝑚 (𝑥⃗))

=𝐺𝑎,𝑏
1 (𝑥⃗) ⋅𝑤1 +⋯ + 𝐺𝑎,𝑏

𝑚 (𝑥⃗) ⋅𝑤𝑚,

s an 𝑛-ary (𝑎, 𝑏)-grouping function.

emark 3.2. Notice that, by Corollary 3.1, one can state that the class
f 𝑛-dimensional (𝑎, 𝑏)-grouping functions is self closed with respect to
he generalized composition, and, by Corollary 3.2, one can observe
hat the convex sum of 𝑛-dimensional (𝑎, 𝑏)-grouping functions is also an
-dimensional (𝑎, 𝑏)-grouping function. These properties are especially
seful in practical applications, since one can combine different 𝑛-
imensional (𝑎, 𝑏)-grouping functions to obtain new functions with the
ame behaviour. This is to be expected, since 𝑛-dimensional grouping
unctions (and their dual, 𝑛-dimensional overlap functions), for having
nalogous properties, have been the preferred choice as 𝑛-dimensional
ggregation operators over the traditional t-conorms (and their dual,
-norms) on such applications [21,23,30,32].

xample 3.3.

a) Consider the bivariate (𝑎, 𝑏)-grouping function
𝐺𝑎,𝑏
𝑚𝑎𝑥 ∶ [𝑎, 𝑏]2 → [𝑎, 𝑏] given by 𝐺𝑎,𝑏

𝑚𝑎𝑥(𝑥, 𝑦) = max{𝑥, 𝑦}. Moreover,
take the (𝑎, 𝑏)-grouping functions 𝐺𝑎,𝑏

𝑔𝑒𝑜𝑚, 𝐺
𝑎,𝑏
𝑝𝑟𝑜𝑑 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏]

defined in Example 3.2. Then, the function 𝐺𝑎,𝑏
𝑚𝑎𝑥

(𝐺𝑎,𝑏
𝑔𝑒𝑜𝑚,𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 )
∶

[𝑎, 𝑏]𝑛 → [𝑎, 𝑏], given by

𝐺𝑎,𝑏
𝑚𝑎𝑥

(𝐺𝑎,𝑏
𝑔𝑒𝑜𝑚,𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 )
(𝑥⃗) = 𝐺𝑎,𝑏

𝑚𝑎𝑥(𝐺
𝑎,𝑏
𝑔𝑒𝑜𝑚(𝑥⃗), 𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝑥⃗)),

is an (𝑎, 𝑏)-grouping function.

b) Considering the same (𝑎, 𝑏)-grouping functions 𝐺𝑎,𝑏
𝑔𝑒𝑜𝑚, 𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 ∶

[𝑎, 𝑏]𝑛 → [𝑎, 𝑏], then, the function 𝐴𝑀𝑎,𝑏
(𝐺𝑎,𝑏

𝑔𝑒𝑜𝑚 ,𝐺
𝑎,𝑏
𝑝𝑟𝑜𝑑 )

∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏],

given by

𝐴𝑀𝑎,𝑏
(𝐺𝑎,𝑏

𝑔𝑒𝑜𝑚 ,𝐺
𝑎,𝑏
𝑝𝑟𝑜𝑑 )

(𝑥⃗) =
𝐺𝑎,𝑏
𝑔𝑒𝑜𝑚(𝑥⃗) + 𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 (𝑥⃗)

2
,

is also an (𝑎, 𝑏)-grouping function.

Theorem 3.3. The function 𝐺𝑎,𝑏 ∶ [𝑎, 𝑏]𝑛 → [𝑎, 𝑏] is an (𝑎, 𝑏)-grouping
function if and only if

𝐺𝑎,𝑏(𝑥1,… , 𝑥𝑛) =
𝑎 𝑓 (𝑥1,… , 𝑥𝑛) + 𝑏 𝑔(𝑥1,… , 𝑥𝑛)
𝑓 (𝑥1,… , 𝑥𝑛) + 𝑔(𝑥1,… , 𝑥𝑛)

(17)

for some continuous symmetric functions 𝑓, 𝑔 ∶ [𝑎, 𝑏]𝑛 → [0, 𝑏 − 𝑎]
uch that

• 𝑓 is non-increasing and satisfies: 𝑓 (𝑥1,… , 𝑥𝑛) = 0 if and only if
there exists 𝑖 ∈ {1,… , 𝑛} such that 𝑥 = 𝑏;
𝑖



Information Fusion 99 (2023) 101893I. Rodriguez-Martinez et al.

P

a

𝑔

i
(

r

m
a
l
p
f
i

i

4

t
a

• 𝑔 is non-decreasing and satisfies: 𝑔(𝑥1,… , 𝑥𝑛) = 0 if and only if
𝑥𝑖 = 𝑎 for all 𝑖 ∈ {1,… , 𝑛}.

roof. Observe that the function 𝐺𝑎,𝑏 is well defined since, for all
𝑥1,… , 𝑥𝑛 ∈ [𝑎, 𝑏], 𝐺𝑎,𝑏(𝑥1,… , 𝑥𝑛) ∈ [𝑎, 𝑏] and 𝑓 (𝑥1,… , 𝑥𝑛) + 𝑔(𝑥1,… , 𝑥𝑛)
> 0.

Necessity: Consider (𝑎, 𝑏)-grouping function 𝐺𝑎,𝑏, then the functions
𝑓 (𝑥1,… , 𝑥𝑛) = 𝑏 − 𝐺𝑎,𝑏(𝑥1,… , 𝑥𝑛) and 𝑔(𝑥1,… , 𝑥𝑛) = 𝐺𝑎,𝑏(𝑥1,… , 𝑥𝑛) − 𝑎
satisfy all the conditions imposed in theorem.

Sufficiency: Conditions (𝐺𝐴𝐵1) and (𝐺𝐴𝐵5) are straightforward.
The condition (𝐺𝐴𝐵2) follows from the observation: 𝐺𝑎,𝑏(𝑥1,… , 𝑥𝑛) = 𝑎
if and only if 𝑔(𝑥1,… , 𝑥𝑛) = 0; and the condition (𝐺𝐴𝐵3) follows from
the observation: 𝐺𝑎,𝑏(𝑥1,… , 𝑥𝑛) = 𝑏 if and only if 𝑓 (𝑥1,… , 𝑥𝑛) = 0. Fi-
nally, the condition (𝐺𝐴𝐵4) can be proved by reformulation of Eq. (17)
as follows:

𝐺𝑎,𝑏(𝑥1,… , 𝑥𝑛) =
𝑎 𝑓 (𝑥1,… , 𝑥𝑛) + 𝑏 𝑔(𝑥1,… , 𝑥𝑛)
𝑓 (𝑥1,… , 𝑥𝑛) + 𝑔(𝑥1,… , 𝑥𝑛)

=

𝑏 −
𝑓 (𝑥1,… , 𝑥𝑛)

𝑓 (𝑥1,… , 𝑥𝑛) + 𝑔(𝑥1,… , 𝑥𝑛)
⋅ (𝑏 − 𝑎) (18)

and the fact that 𝑓 is non-increasing and 𝑔 is non-decreasing. □

Example 3.4. The assumptions of Theorem 3.3 satisfy, for example,
the functions:

𝑓 (𝑥1,… , 𝑥𝑛) =
1

(𝑏 − 𝑎)𝑛−1
⋅

𝑛
∏

𝑖=1
(𝑏 − 𝑥𝑖)

nd

(𝑥1,… , 𝑥𝑛) =
1
𝑛

𝑛
∑

𝑖=1
𝑥𝑖 − 𝑎,

hence we obtain the following (𝑎, 𝑏)-grouping function:

𝐺𝑎,𝑏(𝑥1,… , 𝑥𝑛) =
𝑎

(𝑏−𝑎)𝑛−1 ⋅
∏𝑛

𝑖=1(𝑏 − 𝑥𝑖) +
𝑏
𝑛
∑𝑛

𝑖=1 𝑥𝑖 − 𝑎𝑏
1

(𝑏−𝑎)𝑛−1 ⋅
∏𝑛

𝑖=1(𝑏 − 𝑥𝑖) +
1
𝑛
∑𝑛

𝑖=1 𝑥𝑖 − 𝑎

4. Replacing the pooling operator of CNNs

4.1. (𝑎, 𝑏)-grouping functions as pooling operator

When a pooling layer receives a feature matrix 𝑋 ∈ R𝑚×𝑛×𝑐 as input,
t divides each of its 𝑐 feature channels in disjoint windows 𝑥⃗ ∈ R𝑘1×𝑘2

or vectors of values 𝑥⃗ ∈ R𝑘1⋅𝑘2 ), usually with 𝑘1 = 𝑘2 a small value.
Afterwards, the values of each of those windows is replaced by a single
representative computed through a function 𝐹 ∶ R𝑘1⋅𝑘2 → R. The output
of the layer, therefore, is a feature map 𝑌 ∈ R(𝑚∕𝑘1)×(𝑛∕𝑘2)×𝑐 , which
effectively reduces the dimensionality of the features extracted by the
convolutional layers of the CNN.

Although the first CNN models were presented using the arith-
metic mean as pooling function [33], more complex models tend to
default to maximum pooling [2,6], which usually yields better results
in practice. In previous works, maximum pooling has been replaced by
(𝑎, 𝑏)-t-conorms, a family of functions to which the maximum belongs,
obtaining favourable results [20]. This has motivated us to consider
other families of functions, such as grouping functions, as potential
replacement for the maximum.

One of the main drawbacks of the maximum is the fact that it
ignores the information from all values to be aggregated except for one
of them. On the one hand, this means that much of the information
provided by the neighbour values is discarded, which could be of
interest. On the other hand, the derivative of max(𝑥⃗) with respect to 𝑥𝑖
is 0 whenever there exists a value 𝑥𝑗 ∈ 𝑥⃗ such that 𝑥𝑗 > 𝑥𝑖. If we take
into account the fact that during training time, parameters are updated
according to the derivative of the loss function with respect to them,
6

then the gradient will not flow through those values which may slow
the training of the model.

However, preserving high activations offers good empirical results,
which seems to justify the popularity of max pooling with respect to
average pooling. When combined with the ReLU activation function, e.
i. 𝑓 (𝑥) = max{0, 𝑥}, it makes sense to prioritize high values, since they
eflect the highest presence of a given feature on a feature image.

(𝑎, 𝑏)-grouping functions preserve the positive behaviour of maxi-
um pooling while addressing its main drawback. Notice that they

re defined in a closed interval [𝑎, 𝑏] ⊂ R instead of the whole real
ine, so we will set 𝑎 = min (𝑋) and 𝑏 = max (𝑋). In this way,
eak activation values would be preserved after applying the pooling
unction, as ensured by property (GAB3) of Definition 3.1, while taking
nto consideration the value of other elements of the pooling window.

We will test the suitability of (𝑎, 𝑏)-grouping function based pooling
n Section 5.1

.2. Related work

A number of alternative pooling methods have been proposed over
he last few years. We review several of the most notorious ones here,
nd will compare our results against some of them:

• ‘‘Mixed’’ pooling
Introduced in [17], ‘‘mixed’’ pooling presents the idea of com-
bining both maximum and average pooling by means of a convex
combination of both reductions. The authors propose the addition
of a learnable 𝛼 coefficient which can vary on number, depending
on if a different coefficient is learnt for each feature channel
or patch of the input. The authors find that ‘‘mixed’’ pooling
outperforms both maximum and average pooling individually.

• ‘‘Gated’’ pooling
Introduced in tandem with ‘‘mixed’’ pooling, gated pooling differs
with respect to the strategy to compute the 𝛼 coefficients of the
combination. Instead of directly learning 𝛼, a set of weights of
size 𝑘 × 𝑘, with 𝑘 being the size of the pooling window, are
learnt. Then, prior to aggregating the values of each window, a
linear transformation is applied to those same values, using the
previous weights. The output is treated as the 𝛼 coefficient of
the combination. Although it implies an increase in the number
of necessary parameters for the model, results obtained with this
strategy improve with respect to the simple ‘‘mixed’’ strategy.

• ‘‘Attention’’ pooling
In [34], the authors introduce ‘‘attention-based pooling’’ in the
context of an aerial image scene classification problem, as a mean
to capture the semantic information of the data being pooled. This
pooling layer uses a 1 × 1 convolution layer in order to compute
an ‘‘attention’’ matrix whose values represent the relevance of
a given pixel according to all feature maps. The values of each
pooled region are then weighted by the values of that ‘‘attention’’
matrix, so that the final pooling layer acts as a learnable weighted
mean pooling.

• Deep Generalized Max pooling
This method was presented in [35] as an adaptation of the
ideas of [36] to Deep Neural Networks. Unlike previous pooling
operators, this layer tries to generalize the Global Average pooling
layer common in many modern CNNs [37], which downsamples
all values of each feature image after the last convolution layer
of a CNN into a single representative value. It tries to utilize the
information of small patches of the image in the global pooling
process, balancing the frequency of frequent and rare features. To
this end, a system of linear equations is constructed with as many
unknowns as feature channels, and its solution acts as the output
of the layer.

1 Code is available at https://github.com/iosurodri/overlapsAndGroupings.

https://github.com/iosurodri/overlapsAndGroupings


Information Fusion 99 (2023) 101893I. Rodriguez-Martinez et al.

5

5

5

m
e
(
t
t

b
m
V
r
i

c
(
s
o

t
W
o

a
o
f

f
b
u
r
t

-
b
s
(
j
a

t
N
a
p
t
m

• ‘‘Strip’’ pooling
Designed for working with images on real scene parsing in [38],
strip pooling replaces the classic square pooling window of tradi-
tional methods for thin windows which span all the columns/rows
of the image. The main objective of this strategy is to capture
the anisotropy context common in real world images, rather than
reducing the size of images. In particular, for each position of a
feature channel, a horizontal stripe spanning all the columns of
the image and a vertical one spanning the rows are used to extract
two vectors of values. A 1D convolutional layer is applied to each
of those filters, whose outputs are later expanded and combined in
order to create a more informed new representative for the value.

. Experimental evaluation

.1. Experimental framework

.1.1. CNN models
We have tested grouping pooling in three different classic CNN

odels of varying ‘‘depth’’ and parameter count. Our intention is to
mpirically study if the replacement of classic pooling operators by
𝑎, 𝑏)-grouping functions is similar in all cases, or these factors influence
he behaviour of the new operators. The employed models have been
he following ones.

1. LeNet-5: Presented in [33], this model presents the classic struc-
ture of vanilla CNNs. It employs two sets of convolutional and
pooling layers as feature extractor followed by a 3 layer MLP
which takes charge of the classification task. Batch Normaliza-
tion layers [39] have been inserted after pooling layers and
each hidden layer of the MLP, and we use the ReLU function
as activation function.

2. VGG16: This architecture proposed in [6] can be understood as
a deeper, more sophisticated version of the first model. While it
is still composed of a feature extractor based on convolutions
and pooling operations, and a MLP classifier with 3 hidden
layers, the feature extractor has 13 convolution layers. Between
each reduction step performed by a pooling layer with kernel
size 2 × 2, several convolution layers are applied, all of them
composed by filters of size 3 × 3. In order to capture more
discriminative features, after performing a pooling operation,
the number of filters of successive convolution layers is doubled.
Furthermore, in order to ease the training of such a deep model,
both Dropout [40] and Batch Normalization layers are applied
after each convolution layer.

3. ResNet-56: Introduced in [7], ResNet models have become an
staple CNN architecture. They receive their name from the con-
cept of ‘‘residual’’ connections, a mechanism which adds the
values of the input of a layer to its produced activations. This
strategy improves the gradient flow during backpropagation,
since the partial derivative of each convolution layer with re-
spect to input activations is added a value of 1. Thus, ResNets
can incorporate tens of layers without incurring in vanishing
gradient problems. In our experiments, we work with a model
of 56 layers with reduced kernel filters of size 3 × 3, to account
for the fact that we will be working with small size images. We
have also replaced the convolution layers which took care of the
image downsampling process at the end of each step by pooling
layers, so that our strategy could be tested.

We follow a similar training regime for all models: They have
een trained along 100 epochs using Stochastic Gradient descent with
omentum, with initial learning rates of 0.001 for LeNet-5, 0.01 for
GG16, and 0.1 for ResNet. We control the evolution of the learning
ate through Cosine Annealing [41], progressively reducing it from its
7

nitial value to 0 on the last epoch. n
5.1.2. Datasets
• MNIST: Introduced in [33], it consists of gray-scale images repre-

senting handwritten numerical digits, which must be classified in
10 classes. Images are of size 28 × 28 and are divided in a 60,000
samples partition and a 10,000 test one.

• CIFAR-10/CIFAR-100: Presented in [42], both datasets share the
same 32 × 32 RGB images representing animals and objects of the
real world, as well as the same 50,000 train partition and 10,000
test partition. Classes are completely balanced. Both versions of
the dataset differ with respect of the number of classes in which
they need be classified, which are 10 or 100 respectively. The
same simple data augmentation procedure employed papers such
as [37,43] have been used. It consists of padding 4 rows and
columns on all sides of the images, taking a random crop of
size 32 × 32 and randomly flipping them horizontally with a
probability of 0.5.

Additionally, data sharing is not applicable to this article as no own
datasets were generated or analysed during the current study.

5.2. Experiments and results

We have organized the different experiments according to the pool-
ing function used. For each experiment, we have substituted the pooling
function of each of the presented CNN models by a different (𝑎, 𝑏)-
grouping function. We have tested examples of functions obtained
through each of the construction methods presented in Section 3.1.

In particular, we refer to functions constructed using Theorem 3.1 as
‘‘individual’’ functions. Corollary 3.2 presents a method for constructing
(𝑎, 𝑏)-grouping functions through a convex combination of any other
(𝑎, 𝑏)-grouping function. Similarly, Corollary 3.1 shows a method for the
onstruction of (𝑎, 𝑏)-grouping functions as the composition of a set of
𝑎, 𝑏)-grouping functions by another (𝑎, 𝑏)-grouping function. We have
et a series of individual functions which are useful to construct new
nes. All the considered functions are presented in Table 2.

Table 3 shows the obtained results for these initial tests. We report
he mean and standard deviation of 5 independent runs for each model.

e include tests using the average since it is another standard pooling
perator.

In the case of the MNIST dataset, most models achieve an accuracy
bove 0.99, with very slight changes between them. Therefore, results
n that dataset are not useful for analysis and we have ignored MNIST
or the remaining tests.

In the case of CIFAR-10 and CIFAR-100, groupings 𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 and 𝐺𝑎,𝑏

𝑜𝑏 of-
er well all-around results in most cases, with the latter one performing
est. Although their results do not differ too much from results obtained
sing average or maximum pooling (first two rows on Table 3), they are
esilient to changes on the base model, which makes them more reliable
o apply in any situation.

(𝑎, 𝑏)-groupings constructed through the combination of (𝑎, 𝑏)
grouping functions also offer comparable results, specially when com-
ining the maximum and groupings 𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 or 𝐺𝑎,𝑏
𝑜𝑏 , with some in-

tances offering the best all-around results. The same occurs with
𝑎, 𝑏)-grouping compositions. However, we consider that results do not
ustify their use above individual pooling operators, which are simpler
nd easier to implement.

Finally, in Table 4 we compare our proposed pooling functions with
hree notable pooling operators: mixed, gated and attention pooling.
otice how the best (𝑎, 𝑏)-grouping functions perform on par with
ll those alternative pooling layers, while introducing no additional
arameters to the model and having a more straight-forward implemen-
ation. Interestingly, attention pooling offers poor results for the VGG16
odel, which may suggest a difficulty for training the parameters

eeded for the attention mechanism.



Information Fusion 99 (2023) 101893I. Rodriguez-Martinez et al.

o

Table 2
(𝑎, 𝑏)-grouping functions used as pooling operator candidates. Presented divided according to the construction method used
for their definition.

Name Function

Individual
groupings

𝐺𝑎,𝑏
𝑚𝑎𝑥 𝐺𝑚𝑎𝑥(𝐱) = max𝑛𝑖=1 𝑥𝑖

𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 𝐺𝑝𝑟𝑜𝑑 (𝐱) = 1 −

∏𝑛
𝑖=1(1 − 𝑥𝑖)

𝐺𝑎,𝑏
𝑔𝑒𝑜𝑚 𝐺𝑔𝑒𝑜𝑚(𝐱) = 1 − 𝑛

√

∏𝑛
𝑖=1(1 − 𝑥𝑖)

𝐺𝑎,𝑏
𝑜𝑏 𝐺𝑜𝑏(𝐱) = 1 −

√

min𝑛𝑖=1(1 − 𝑥𝑖) ⋅
∏𝑛

𝑖=1(1 − 𝑥𝑖)

𝐺𝑎,𝑏
𝑢 𝐺𝑢(𝐱) =

max𝑛𝑖=1 𝑥𝑖

max𝑛𝑖=1 𝑥𝑖+
𝑛
√

∏𝑛
𝑖=1 (1−𝑥𝑖 )

Convex
combinations

𝐴𝑊 𝑎,𝑏
(𝐺𝑎,𝑏

𝑚𝑎𝑥 ,𝐺
𝑎,𝑏
𝑜𝑏 )

𝐴𝑊 𝑎,𝑏
(𝐺𝑎,𝑏

𝑚𝑎𝑥 ,𝐺
𝑎,𝑏
𝑜𝑏 )

(𝐱) = 𝑤1𝐺𝑎,𝑏
𝑚𝑎𝑥(𝐱) +𝑤2𝐺

𝑎,𝑏
𝑜𝑏 (𝐱)

𝐴𝑊 𝑎,𝑏
(𝐺𝑎,𝑏

𝑚𝑎𝑥 ,𝐺
𝑎,𝑏
𝑝𝑟𝑜𝑑 )

𝐴𝑊 𝑎,𝑏
(𝐺𝑎,𝑏

𝑚𝑎𝑥 ,𝐺
𝑎,𝑏
𝑝𝑟𝑜𝑑 )

(𝐱) = 𝑤1𝐺𝑎,𝑏
𝑚𝑎𝑥(𝐱) +𝑤2𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝐱)

𝐴𝑊 𝑎,𝑏
(𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 ,𝐺
𝑎,𝑏
𝑜𝑏 )

𝐴𝑊 𝑎,𝑏
(𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 ,𝐺
𝑎,𝑏
𝑜𝑏 )

(𝐱) = 𝑤1𝐺
𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝐱) +𝑤2𝐺

𝑎,𝑏
𝑜𝑏 (𝐱)

𝐴𝑊 𝑎,𝑏
(𝐺𝑎,𝑏

𝑚𝑎𝑥 ,𝐺
𝑎,𝑏
𝑜𝑏 ,𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 )

𝐴𝑊 𝑎,𝑏
(𝐺𝑎,𝑏

𝑚𝑎𝑥 ,𝐺
𝑎,𝑏
𝑜𝑏 ,𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 )

(𝐱) = 𝑤1𝐺𝑎,𝑏
𝑚𝑎𝑥(𝐱) +𝑤2𝐺

𝑎,𝑏
𝑜𝑏 (𝐱) +𝑤3𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝐱)

Grouping
compositions

𝐺𝑎,𝑏
𝑚𝑎𝑥

(𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 ,𝐺

𝑎,𝑏
𝑜𝑏 )

𝐺𝑎,𝑏
𝑚𝑎𝑥

(𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 ,𝐺

𝑎,𝑏
𝑜𝑏 )

(𝐱) = 𝐺𝑎,𝑏
𝑚𝑎𝑥(𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝐱), 𝐺

𝑎,𝑏
𝑜𝑏 (𝐱))

𝐺𝑎,𝑏
𝑜𝑏

(𝐺𝑎,𝑏
𝑚𝑎𝑥 ,𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 )

𝐺𝑎,𝑏
𝑜𝑏

(𝐺𝑎,𝑏
𝑚𝑎𝑥 ,𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 )

(𝐱) = 𝐺𝑎,𝑏
𝑜𝑏 (𝐺

𝑎,𝑏
𝑚𝑎𝑥(𝐱), 𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝐱))

𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑

(𝐺𝑎,𝑏
𝑚𝑎𝑥 ,𝐺

𝑎,𝑏
𝑜𝑏 )

𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑

(𝐺𝑎,𝑏
𝑚𝑎𝑥 ,𝐺

𝑎,𝑏
𝑜𝑏 )

(𝐱) = 𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝐺

𝑎,𝑏
𝑚𝑎𝑥(𝐱), 𝐺

𝑎,𝑏
𝑜𝑏 (𝐱))

𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑

(𝐺𝑎,𝑏
𝑚𝑎𝑥 ,𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 )

𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑

(𝐺𝑎,𝑏
𝑚𝑎𝑥 ,𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 )

(𝐱) = 𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝐺

𝑎,𝑏
𝑚𝑎𝑥(𝐱), 𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝐱))

𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑

(𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 ,𝐺

𝑎,𝑏
𝑜𝑏 )

𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑

(𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 ,𝐺

𝑎,𝑏
𝑜𝑏 )

(𝐱) = 𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 (𝐱), 𝐺

𝑎,𝑏
𝑜𝑏 (𝐱))
Table 3
Accuracy rate obtained for pooling operators based on different (𝑎, 𝑏)-grouping construction methods for the datasets MNIST, CIFAR10 and CIFAR100. In the case of CIFAR-100,
top-5 accuracy has also been calculated, and is presented to the right of its top-1 accuracy value.

MNIST CIFAR-10 CIFAR-100

LeNet-5 VGG16 ResNet LeNet-5 VGG16 ResNet LeNet-5 VGG16 ResNet

𝐼𝑛
𝑑𝑖
𝑣𝑖
𝑑𝑢

𝑎𝑙

Avg 𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟏 0.825 ± 0.003 𝟎.𝟗𝟏𝟓 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟏𝟗 ± 𝟎.𝟎𝟎𝟒 0.558 ± 0.002∕0.826 ± 0.001 𝟎.𝟔𝟖𝟐 ± 𝟎.𝟎𝟎𝟐∕𝟎.𝟖𝟗𝟏 ± 𝟎.𝟎𝟎𝟒 0.681 ± 0.007∕0.902 ± 0.005
Max 𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟏 0.837 ± 0.003 0.911 ± 0.003 𝟎.𝟗𝟏𝟗 ± 𝟎.𝟎𝟎𝟑 0.561 ± 0.000∕0.832 ± 0.003 0.676 ± 0.003∕0.888 ± 0.004 0.681 ± 0.005∕0.898 ± 0.004
𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟖𝟑𝟗 ± 𝟎.𝟎𝟎𝟑 0.912 ± 0.003 0.918 ± 0.004 0.557 ± 0.000∕0.827 ± 0.006 0.678 ± 0.004∕0.889 ± 0.004 0.664 ± 0.014∕0.891 ± 0.010

𝐺𝑎,𝑏
𝑜𝑏 𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟏 0.830 ± 0.003 𝟎.𝟗𝟏𝟓 ± 𝟎.𝟎𝟎𝟐 0.918 ± 0.002 𝟎.𝟓𝟔𝟐 ± 𝟎.𝟎𝟎𝟑∕𝟎.𝟖𝟑𝟒 ± 𝟎.𝟎𝟎𝟐 0.680 ± 0.001∕0.891 ± 0.003 𝟎.𝟔𝟖𝟒 ± 𝟎.𝟎𝟏𝟖∕𝟎.𝟗𝟎𝟐 ± 𝟎.𝟎𝟎𝟒

𝐺𝑎,𝑏
𝑔𝑒𝑜𝑚 𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 0.824 ± 0.004 0.906 ± 0.010 0.916 ± 0.009 0.466 ± 0.019∕0.752 ± 0.022 0.639 ± 0.044∕0.864 ± 0.026 0.623 ± 0.046∕0.859 ± 0.047

𝐺𝑎,𝑏
𝑢 0.991 ± 0.001 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟏 0.995 ± 0.000 0.825 ± 0.002 0.911 ± 0.004 0.917 ± 0.005 0.559 ± 0.013∕0.829 ± 0.007 0.650 ± 0.037∕0.871 ± 0.027 0.653 ± 0.031∕0.887 ± 0.032

𝐶
𝑜𝑚

𝑏𝑖
𝑛𝑎
𝑡𝑖𝑜

𝑛𝑠 𝐴𝑊 𝑎.𝑏
(𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 ,𝐺
𝑎,𝑏
𝑜𝑏 )

𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟏 0.995 ± 0.001 0.829 ± 0.002 0.914 ± 0.002 0.914 ± 0.008 0.561 ± 0.001∕0.833 ± 0.004 0.679 ± 0.002∕0.890 ± 0.001 𝟎.𝟔𝟕𝟒 ± 𝟎.𝟎𝟏𝟔∕𝟎.𝟖𝟗𝟖 ± 𝟎.𝟎𝟎𝟗

𝐴𝑊 𝑎,𝑏
(𝐺𝑎,𝑏

𝑚𝑎𝑥.𝐺
𝑎,𝑏
𝑝𝑟𝑜𝑑 )

𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 0.828 ± 0.003 0.913 ± 0.002 0.920 ± 0.007 0.565 ± 0.004∕0.833 ± 0.002 0.679 ± 0.002∕0.890 ± 0.003 0.622 ± 0.051∕0.863 ± 0.052

𝐴𝑊 𝑎,𝑏
(𝐺𝑎,𝑏

𝑚𝑎𝑥,𝐺
𝑎,𝑏
𝑜𝑏 )

0.991 ± 0.001 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟖𝟑𝟏 ± 𝟎.𝟎𝟎𝟐 0.914 ± 0.001 𝟎.𝟗𝟐𝟑 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟓𝟔𝟕 ± 𝟎.𝟎𝟎𝟐∕𝟎.𝟖𝟑𝟑 ± 𝟎.𝟎𝟎𝟏 0.679 ± 0.004∕0.891 ± 0.002 0.671 ± 0.007∕0.898 ± 0.005

𝐴𝑊 𝑎,𝑏
(𝐺𝑎,𝑏

𝑚𝑎𝑥,𝐺
𝑎,𝑏
𝑜𝑏 ,𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 )
𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 0.995 ± 0.001 0.828 ± 0.002 𝟎.𝟗𝟏𝟔 ± 𝟎.𝟎𝟎𝟐 0.922 ± 0.002 0.563 ± 0.005∕0.832 ± 0.001 𝟎.𝟔𝟖𝟏 ± 𝟎.𝟎𝟎𝟓∕𝟎.𝟖𝟖𝟖 ± 𝟎.𝟎𝟎𝟐 𝟎.𝟔𝟕𝟒 ± 𝟎.𝟎𝟎𝟔∕𝟎.𝟖𝟗𝟖 ± 𝟎.𝟎𝟎𝟐

𝐶
𝑜𝑚

𝑝𝑜
𝑠𝑖
𝑡𝑖𝑜

𝑛𝑠 𝐺𝑎,𝑏
𝑚𝑎𝑥

(𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 ,𝐺

𝑎,𝑏
𝑜𝑏 )

𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 0.823 ± 0.006 0.913 ± 0.001 𝟎.𝟗𝟏𝟗 ± 𝟎.𝟎𝟎𝟒 0.561 ± 0.004∕0.831 ± 0.002 0.678 ± 0.003∕0.888 ± 0.002 0.665 ± 0.019∕0.890 ± 0.020

𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑

(𝐺𝑎,𝑏
𝑚𝑎𝑥,𝐺

𝑎,𝑏
𝑝𝑟𝑜𝑑 )

𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟖𝟐𝟒 ± 𝟎.𝟎𝟎𝟐 0.911 ± 0.003 0.891 ± 0.038 0.561 ± 0.003∕0.831 ± 0.001 0.679 ± 0.005∕0.890 ± 0.002 0.609 ± 0.093∕0.894 ± 0.006

𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑

(𝐺𝑎,𝑏
𝑚𝑎𝑥,𝐺

𝑎,𝑏
𝑜𝑏 )

𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟏 0.995 ± 0.001 0.824 ± 0.005 𝟎.𝟗𝟏𝟒 ± 𝟎.𝟎𝟎𝟏 0.900 ± 0.016 0.565 ± 0.002∕0.834 ± 0.001 𝟎.𝟔𝟖𝟏 ± 𝟎.𝟎𝟎𝟐∕𝟎.𝟖𝟖𝟗 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟔𝟔𝟗 ± 𝟎.𝟎𝟐𝟕∕𝟎.𝟖𝟗𝟒 ± 𝟎.𝟎𝟎𝟔

𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑

(𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 ,𝐺

𝑎,𝑏
𝑜𝑏 )

𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 0.995 ± 0.001 0.820 ± 0.004 0.910 ± 0.001 0.860 ± 0.066 0.562 ± 0.004∕0.830 ± 0.002 0.671 ± 0.006∕0.885 ± 0.003 0.456 ± 0.119∕0.728 ± 0.113

𝐺𝑎,𝑏
𝑜𝑏
(𝐺𝑎,𝑏

𝑚𝑎𝑥,𝐺
𝑎,𝑏
𝑝𝑟𝑜𝑑 )

𝟎.𝟗𝟗𝟐 ± 𝟎.𝟎𝟎𝟎 𝟎.𝟗𝟗𝟔 ± 𝟎.𝟎𝟎𝟎 0.995 ± 0.001 0.823 ± 0.002 0.912 ± 0.001 0.908 ± 0.013 𝟎.𝟓𝟔𝟕 ± 𝟎.𝟎𝟎𝟏∕𝟎.𝟖𝟑𝟒 ± 𝟎.𝟎𝟎𝟑 0.677 ± 0.003∕0.889 ± 0.002 0.683 ± 0.040∕0.898 ± 0.004
Table 4
Comparison with modern pooling operators ‘‘mixed’’, ‘‘gated’’ and ‘‘attention’’. Notice how (𝑎, 𝑏)-grouping functions perform in par with most of them, while avoiding the inclusion
f additional parameters to the base CNN architecture.

CIFAR-10 CIFAR-100

LeNet-5 VGG16 ResNet LeNet-5 VGG16 ResNet

Avg 0.825 ± 0.003 0.915 ± 0.001 0.919 ± 0.004 0.558 ± 0.002∕0.826 ± 0.001 0.682 ± 0.002∕0.891 ± 0.004 0.681 ± 0.007∕0.902 ± 0.005
Max 0.837 ± 0.003 0.911 ± 0.003 0.919 ± 0.003 0.561 ± 0.000∕0.832 ± 0.003 0.676 ± 0.003∕0.888 ± 0.004 0.681 ± 0.005∕0.898 ± 0.004
Best grouping 0.839 ± 0.003 𝟎.𝟗𝟏𝟔 ± 𝟎.𝟎𝟎𝟐 𝟎.𝟗𝟐𝟑 ± 𝟎.𝟎𝟎𝟏 0.567 ± 0.001∕0.834 ± 0.003 0.681 ± 0.002∕0.889 ± 0.001 0.684 ± 0.018∕0.902 ± 0.004

Mixed pooling 𝟎.𝟖𝟒𝟐 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟏𝟔 ± 𝟎.𝟎𝟎𝟐 0.922 ± 0.002 0.561 ± 0.002∕0.830 ± 0.001 𝟎.𝟔𝟖𝟑 ± 𝟎.𝟎𝟎𝟐∕𝟎.𝟖𝟗𝟐 ± 𝟎.𝟎𝟎𝟐 0.680 ± 0.002∕0.901 ± 0.001
Gated pooling 𝟎.𝟖𝟒𝟐 ± 𝟎.𝟎𝟎𝟑 0.913 ± 0.003 0.922 ± 0.002 𝟎.𝟓𝟕𝟐 ± 𝟎.𝟎𝟎𝟒∕𝟎.𝟖𝟑𝟔 ± 𝟎.𝟎𝟎𝟏 0.682 ± 0.003∕0.892 ± 0.001 0.686 ± 0.003∕0.901 ± 0.003
Attention pooling 0.836 ± 0.002 0.884 ± 0.008 𝟎.𝟗𝟐𝟑 ± 𝟎.𝟎𝟎𝟑 0.563 ± 0.003∕0.830 ± 0.003 0.614 ± 0.006∕0.850 ± 0.008 𝟎.𝟔𝟖𝟏 ± 𝟎.𝟎𝟎𝟓∕𝟎.𝟗𝟎𝟑 ± 𝟎.𝟎𝟎𝟒
8



Information Fusion 99 (2023) 101893I. Rodriguez-Martinez et al.

p

d
i
i
a
o

Fig. 1. (a) Distribution of activations generated for 10, 000 random tuples of 4 values sampled from a uniform distribution on [0, 1]. Notice how 𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 and 𝐺𝑎,𝑏

𝑜𝑏 act as a more
extreme version of max pooling, while 𝐺𝑎,𝑏

𝑔𝑒𝑜𝑚 and 𝐺𝑎,𝑏
𝑢 output slightly higher values than average pooling. (b) Gradients generated during backward pass for those same activations.

Unlike max pooling, 𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 and 𝐺𝑎,𝑏

𝑜𝑏 return non-zero gradients for values other than the maximum, which may benefit the gradient flow of the model. By contrast, notice how for
grouping functions 𝐺𝑎,𝑏

𝑔𝑒𝑜𝑚 and 𝐺𝑎,𝑏
𝑢 gradients have been clipped to an upmost value of 2. Very high outliers can be generated on those functions, leading to exploding gradient

roblems and difficulties on training, which may explain their subpar behaviour.
Table 5
Results offered by combinations of (𝑎, 𝑏)-grouping functions with the arithmetic mean. Mixed pooling corresponds to the combination of average pooling and maximum pooling.

CIFAR-10 CIFAR-100

LeNet-5 VGG16 ResNet LeNet-5 VGG16 ResNet

Avg 0.825 ± 0.003 0.915 ± 0.001 0.919 ± 0.004 0.558 ± 0.002∕0.826 ± 0.001 0.682 ± 0.002∕0.891 ± 0.004 0.681 ± 0.007∕0.902 ± 0.005
Max 0.837 ± 0.003 0.911 ± 0.003 0.919 ± 0.003 0.561 ± 0.000∕0.832 ± 0.003 0.676 ± 0.003∕0.888 ± 0.004 0.681 ± 0.005∕0.898 ± 0.004
Best grouping 0.839 ± 0.003 𝟎.𝟗𝟏𝟔 ± 𝟎.𝟎𝟎𝟐 𝟎.𝟗𝟐𝟑 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟓𝟔𝟕 ± 𝟎.𝟎𝟎𝟏∕𝟎.𝟖𝟑𝟒 ± 𝟎.𝟎𝟎𝟑 0.681 ± 0.002∕0.889 ± 0.001 0.684 ± 0.018∕0.902 ± 0.004

Mixed pooling 𝟎.𝟖𝟒𝟐 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟗𝟏𝟔 ± 𝟎.𝟎𝟎𝟐 0.922 ± 0.002 0.561 ± 0.002∕0.830 ± 0.001 0.683 ± 0.002∕0.892 ± 0.002 0.680 ± 0.002∕0.901 ± 0.001
𝐴𝑊 𝑎,𝑏

(𝐴𝑣𝑔,𝐺𝑎,𝑏
𝑜𝑏 )

0.841 ± 0.001 0.914 ± 0.001 0.921 ± 0.002 0.561 ± 0.001∕0.831 ± 0.001 𝟎.𝟔𝟖𝟏 ± 𝟎.𝟎𝟎𝟏∕𝟎.𝟖𝟗𝟑 ± 𝟎.𝟎𝟎𝟏 𝟎.𝟔𝟖𝟒 ± 𝟎.𝟎𝟎𝟐∕𝟎.𝟗𝟎𝟒 ± 𝟎.𝟎𝟎𝟓

𝐴𝑊 𝑎,𝑏
(𝐴𝑣𝑔,𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 )
0.837 ± 0.002 0.915 ± 0.001 𝟎.𝟗𝟐𝟑 ± 𝟎.𝟎𝟎𝟐 0.560 ± 0.004∕0.830 ± 0.001 0.681 ± 0.003∕0.892 ± 0.001 0.677 ± 0.012∕0.900 ± 0.006
b
b
o
p
f
r
t
s

6

5.3. Feature visualization

In order to further understand the impact of (𝑎, 𝑏)-grouping func-
tions as pooling operator, we have studied the activation and gradient
values they produce, both during forward pass and backward pass.
In Fig. 1, we show the results obtained through a simulation in which
10,000 random tuples of 4 values sampled from a random uniform
istribution on [0, 1] have been reduced through several different pool-
ng functions. We have used max pooling, average pooling, and the
ndividual (𝑎, 𝑏)-grouping functions. Interestingly, while 𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 and 𝐺𝑎,𝑏
𝑜𝑏

ct as a more extreme case of max pooling, with a higher proportion
f high activitations being generated, 𝐺𝑎,𝑏

𝑔𝑒𝑜𝑚 and 𝐺𝑎,𝑏
𝑢 behave similarly

to average pooling, with a skew with respect to higher activations.
After generating the resulting activations, the gradients of the out-

put of each pooling function with respect to its input have also been
graphed. An important detail of max pooling is the fact that it outputs a
gradient of zero for non-maximal elements of a pooling window, block-
ing the flow of the gradient through those values. By contrast, 𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑
and specially 𝐺𝑎,𝑏

𝑜𝑏 return non-zero gradients for plenty of elements,
which may explain its good performance. In the case of 𝐺𝑎,𝑏

𝑔𝑒𝑜𝑚 and 𝐺𝑎,𝑏
𝑢 ,

gradients have been clipped to a value of 2, but very high outlier values
could be generated, producing exploding gradient problems. Therefore,
we suggest avoiding their use.

In order to further visualize the effect of 𝐺𝑎,𝑏
𝑝𝑟𝑜𝑑 and 𝐺𝑎,𝑏

𝑜𝑏 functions,
in Fig. 2, three feature maps extracted from the first block of our
ResNet-56 model have been reduced with both functions, together with
9

maximum and average pooling. While both maximum and average m
pooling output fairly similar feature maps, (𝑎, 𝑏)-grouping functions ac-
centuate high intensity activations, amplifying their result for following
layers, with 𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 acting in a more extreme way.

5.4. Combinations of (𝑎, 𝑏)-grouping functions with the arithmetic mean

As a final study, motivated by the good results offered by both
average and mixed pooling layers, we also study the possibility of
combining the arithmetic mean with (𝑎, 𝑏)-grouping functions. Table 5
summarize the accuracy rates offered by the different methods.

Once again, although good results are obtained, they do not differ
much from the ones offered by 𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 and 𝐺𝑎,𝑏
𝑜𝑏 . The same happens with

mixed pooling, which in this case does outperform maximum pooling
in most situations.

A similar study to that of Fig. 1 has been performed in this case,
which we present in Fig. 3. If we compare distributions generated by
combinations with the (𝑎, 𝑏)-grouping functions with the ones outputted
y their individual versions, we find that their activation distributions
ehaves as a skewed version of average pooling. However, the gradients
f both functions retain the distribution of their individual counter-
arts. On the contrary, mixed pooling solves the problem on gradient
low of max pooling, with previous gradient values of zero having been
eplaced by a factor of the derivative of average pooling. We believe
hat this is the case for mixed pooling outperforming max pooling,
imilarly to (𝑎, 𝑏)-grouping functions.

. Conclusions and future work

In this paper we have proven that better alternatives to the maxi-

um as a pooling function exist. In particular, (𝑎, 𝑏)-grouping functions



Information Fusion 99 (2023) 101893I. Rodriguez-Martinez et al.
Fig. 2. Comparison on the effect performed by four different pooling functions among three different feature maps. Namely, we compare max pooling (𝑀𝑎𝑥), average pooling
(𝐴𝑣𝑔) and the (𝑎, 𝑏)-grouping functions 𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 and 𝐺𝑎,𝑏
𝑜𝑏 . The grouping functions present a distinctive behaviour which produces high activation values, with 𝐺𝑎,𝑏

𝑝𝑟𝑜𝑑 being the most
extreme of the pair.
Fig. 3. (a) Distribution of activations generated for 10, 000 random tuples of 4 values sampled from a uniform distribution on [0, 1] when using combinations of functions with
the arithmetic mean. ‘‘Mixed’’ pooling equals to the combination of average and max pooling. As expected, activations are fairly similar among all combinations. (b) Gradients
generated during backward pass for those same activations. Unlike the gradient of max pooling in 1(b) which generated loads of zeros, ‘‘mixed’’ pooling returns non-zero values
for those same reductions, which may justify its improved results. Combinations with other grouping functions are very similar to their individual versions.
share some of the same interesting properties, while taking into consid-
eration more of the available information in the feature images. How-
ever, we have also seen that some expressions must be avoided since
they may incur in exploding gradient problems, and that analysing their
differentiability is key.

Additionally, we have shown that several of these functions result
competitive with modern pooling operators such as ‘‘mixed’’, ‘‘gated’’
and ‘‘attention’’ pooling, without the expense of including additional
parameters to the model. Further, they can be applied to different ar-
chitectures of different complexities, without additional considerations,
unlike ‘‘attention’’ pooling.
10
In the future, we would like to explore other feature aggregation
processes such as Global Average Pooling layers and bottleneck convo-
lutions, and present alternatives which ease the discrimination among
features.

CRediT authorship contribution statement

Iosu Rodriguez-Martinez: Investigation, Methodology, Software,
Writing – original draft. Tiago da Cruz Asmus: Conceptualization, For-
mal analysis. Graçaliz Pereira Dimuro: Supervision, Formal analysis,
Writing – review & editing. Francisco Herrera: Validation, Writing –



Information Fusion 99 (2023) 101893I. Rodriguez-Martinez et al.

i
–

D

c
i

D

i

A

c
D
a
1
P
p
F
4
f

R

review & editing. Zdenko Takáč: Validation, Writing – review & edit-
ng. Humberto Bustince: Project administration, Supervision, Writing
review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Code has been made available through github. A link is provided
nside the paper’s body

cknowledgements

The authors gratefully acknowledge the financial support of Tra-
asa Instrumental (iTRACASA) and of the Gobierno de Navarra -
epartamento de Universidad, Innovación y Transformación Digital,
s well as that of the Spanish Ministry of Science (project PID2019-
08392GB-I00 (AEI/10.13039/501100011033)) and the project
C095-096 FUSIPROD. T. Asmus and G.P. Dimuro are supported by the
rojects CNPq (301618/2019-4) and FAPERGS (19/2551-0001279-9).
. Herrera is supported by the Andalusian Excellence project P18-FR-
961. Z. Takáč is supported by grant VEGA 1/0267/21. Open access
unding provided by Universidad Pública de Navarra

eferences

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–444.

[2] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical Image
Computing and Computer-Assisted Intervention, Springer, 2015, pp. 234–241.

[3] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.
Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, et al., Highly accurate
protein structure prediction with alphafold, Nature 596 (7873) (2021) 583–589.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J.D. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot
learners, Adv. Neural Inf. Process. Syst. 33 (2020) 1877–1901.

[5] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, M. Chen, Hierarchical text-conditional
image generation with clip latents, 2022, arXiv preprint arXiv:2204.06125.

[6] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, in: International Conference on Learning Representations,
2015.

[7] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[8] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected
convolutional networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4700–4708.

[9] V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convolutional encoder–
decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach.
Intell. 39 (12) (2017) 2481–2495.

[10] J. Pan, D. Sun, J. Zhang, J. Tang, J. Yang, Y.-W. Tai, M.-H. Yang, Dual
convolutional neural networks for low-level vision, Int. J. Comput. Vis. 130 (6)
(2022) 1440–1458.

[11] W. Bao, W.-S. Lai, C. Ma, X. Zhang, Z. Gao, M.-H. Yang, Depth-aware video
frame interpolation, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 3703–3712.

[12] Y. Zhang, Y. Liu, P. Sun, H. Yan, X. Zhao, L. Zhang, Ifcnn: A general image
fusion framework based on convolutional neural network, Inf. Fusion 54 (2020)
99–118.

[13] Y. Cao, C. Wang, Z. Li, L. Zhang, L. Zhang, Spatial-bag-of-features, in: 2010 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, IEEE,
2010, pp. 3352–3359.

[14] Y.-L. Boureau, F. Bach, Y. LeCun, J. Ponce, Learning mid-level features for
recognition, in: 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, IEEE, 2010, pp. 2559–2566.
11
[15] Y.-L. Boureau, J. Ponce, Y. LeCun, A theoretical analysis of feature pooling
in visual recognition, in: Proceedings of the 27th International Conference on
Machine Learning, ICML-10, 2010, pp. 111–118.

[16] M. Zeiler, R. Fergus, Stochastic pooling for regularization of deep convolutional
neural networks, in: 1st International Conference on Learning Representations,
ICLR 2013, Scottsdale, Arizona, USA, May (2013) 2-4, Conference Track
Proceedings, 2013.

[17] C.-Y. Lee, P. Gallagher, Z. Tu, Generalizing pooling functions in CNNS: Mixed,
gated, and tree, IEEE Trans. Pattern Anal. Mach. Intell. 40 (4) (2018) 863–875,
http://dx.doi.org/10.1109/TPAMI.2017.2703082.

[18] J.I. Forcen, M. Pagola, E. Barrenechea, H. Bustince, Learning ordered pooling
weights in image classification, Neurocomputing 411 (2020) 45–53.

[19] I. Rodriguez-Martinez, J. Lafuente, R.H. Santiago, G.P. Dimuro, F. Herrera, H.
Bustince, Replacing pooling functions in convolutional neural networks by linear
combinations of increasing functions, Neural Netw. 152 (2022) 380–393.

[20] T.d.C. Asmus, G.P. Dimuro, B. Bedregal, J.A. Sanz, J. Fernandez, I. Rodriguez-
Martinez, R. Mesiar, H. Bustince, A construtive framework to define fusion
functions with floating domains in arbitrary closed real intervals, Inform. Sci.
610 (2022) 800–829.

[21] H. Bustince, M. Pagola, R. Mesiar, E. Hullermeier, F. Herrera, Grouping, overlap,
and generalized bientropic functions for fuzzy modeling of pairwise comparisons,
IEEE Trans. Fuzzy Syst. 20 (3) (2011) 405–415.

[22] B. Bedregal, G.P. Dimuro, H. Bustince, E. Barrenechea, New results on overlap
and grouping functions, Inform. Sci. 249 (2013) 148–170.

[23] A. Jurio, H. Bustince, M. Pagola, A. Pradera, R.R. Yager, Some properties of
overlap and grouping functions and their application to image thresholding,
Fuzzy Sets and Systems 229 (2013) 69–90.

[24] R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria
decisionmaking, IEEE Trans. Syst. Man Cybern. 18 (1) (1988) 183–190.

[25] M. Papčo, I. Rodríguez-Martínez, J. Fumanal-Idocin, A.H. Altalhi, H. Bustince, A
fusion method for multi-valued data, Inf. Fusion 71 (2021) 1–10.

[26] E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Vol. 8, Springer Science &
Business Media, 2013.

[27] R. Mesiar, A. Kolesárová, H. Bustince, G.P. Dimuro, B. Bedregal, Fusion functions
based discrete choquet-like integrals, European J. Oper. Res. 252 (2) (2016)
601–609.

[28] G. Beliakov, H.B. Sola, T.C. Sánchez, A Practical Guide to Averaging Functions,
Springer, 2016.

[29] D. Gómez, J.T. Rodriguez, J. Montero, H. Bustince, E. Barrenechea,
N-dimensional overlap functions, Fuzzy Sets and Systems 287 (2016) 57–75.

[30] M. Elkano, M. Galar, J.A. Sanz, A. Fernández, E. Barrenechea, F. Herrera, H.
Bustince, Enhancing multiclass classification in farc-hd fuzzy classifier: On the
synergy between 𝑛-dimensional overlap functions and decomposition strategies,
IEEE Trans. Fuzzy Syst. 23 (5) (2014) 1562–1580.

[31] H. Bustince, J. Fernandez, R. Mesiar, J. Montero, R. Orduna, Overlap functions,
Nonlinear Anal. TMA 72 (3–4) (2010) 1488–1499.

[32] T. Batista, B. Bedregal, R. Moraes, Constructing multi-layer classifier ensem-
bles using the choquet integral based on overlap and quasi-overlap functions,
Neurocomputing (2022).

[33] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[34] Q. Bi, K. Qin, H. Zhang, J. Xie, Z. Li, K. Xu, Apdc-net: Attention pooling-based
convolutional network for aerial scene classification, IEEE Geosci. Remote Sens.
Lett. 17 (9) (2019) 1603–1607.

[35] V. Christlein, L. Spranger, M. Seuret, A. Nicolaou, P. Král, A. Maier, Deep gen-
eralized max pooling, in: 2019 International Conference on Document Analysis
and Recognition, ICDAR, IEEE, 2019, pp. 1090–1096.

[36] N. Murray, F. Perronnin, Generalized max pooling, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 2473–2480.

[37] M. Lin, Q. Chen, S. Yan, Network in network, in: International Conference on
Learning Representations, ICLR, 2014.

[38] Q. Hou, L. Zhang, M.-M. Cheng, J. Feng, Strip pooling: Rethinking spatial pooling
for scene parsing, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 4003–4012.

[39] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, in: International Conference on Machine
Learning, PMLR, 2015, pp. 448–456.

[40] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout:
A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.
15 (1) (2014) 1929–1958.

[41] I. Loshchilov, F. Hutter, Sgdr: Stochastic gradient descent with warm restarts,
in: International Conference on Learning Representations, ICLR 2017, 2017.

[42] A. Krizhevsky, G. Hinton, Learning Multiple Layers of Features from Tiny Images,
Tech. Rep. 0, University of Toronto, Toronto, Ontario, 2009.

[43] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, Z. Tu, Deeply-supervised nets, in:
Artificial Intelligence and Statistics, PMLR, 2015, pp. 562–570.

http://refhub.elsevier.com/S1566-2535(23)00209-9/sb1
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb1
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb1
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb2
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb2
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb2
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb2
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb2
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb3
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb3
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb3
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb3
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb3
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb4
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb4
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb4
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb4
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb4
http://arxiv.org/abs/2204.06125
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb6
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb6
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb6
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb6
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb6
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb7
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb7
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb7
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb7
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb7
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb8
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb8
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb8
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb8
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb8
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb9
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb9
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb9
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb9
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb9
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb10
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb10
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb10
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb10
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb10
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb11
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb11
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb11
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb11
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb11
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb12
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb12
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb12
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb12
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb12
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb13
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb13
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb13
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb13
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb13
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb14
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb14
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb14
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb14
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb14
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb15
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb15
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb15
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb15
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb15
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb16
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb16
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb16
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb16
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb16
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb16
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb16
http://dx.doi.org/10.1109/TPAMI.2017.2703082
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb18
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb18
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb18
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb19
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb19
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb19
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb19
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb19
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb20
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb20
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb20
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb20
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb20
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb20
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb20
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb21
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb21
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb21
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb21
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb21
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb22
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb22
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb22
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb23
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb23
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb23
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb23
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb23
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb24
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb24
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb24
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb25
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb25
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb25
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb26
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb26
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb26
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb27
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb27
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb27
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb27
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb27
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb28
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb28
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb28
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb29
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb29
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb29
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb30
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb30
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb30
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb30
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb30
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb30
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb30
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb31
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb31
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb31
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb32
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb32
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb32
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb32
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb32
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb33
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb33
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb33
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb34
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb34
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb34
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb34
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb34
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb35
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb35
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb35
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb35
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb35
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb36
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb36
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb36
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb37
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb37
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb37
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb38
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb38
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb38
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb38
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb38
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb39
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb39
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb39
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb39
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb39
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb40
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb40
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb40
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb40
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb40
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb41
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb41
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb41
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb42
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb42
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb42
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb43
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb43
http://refhub.elsevier.com/S1566-2535(23)00209-9/sb43

	Generalizing max pooling via (a,b)-grouping functions for Convolutional Neural Networks
	Introduction
	Preliminaries
	Convolutional Neural Networks
	Grouping functions
	(a, b)-aggregation functions

	(a,b)-grouping functions
	Construction methods

	Replacing the pooling operator of CNNs
	(a, b)-grouping functions as pooling operator
	Related work

	Experimental evaluation
	Experimental framework
	CNN models
	Datasets

	Experiments and results
	Feature visualization
	Combinations of (a, b)-grouping functions with the arithmetic mean

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


