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Abstract: The objective of this study is to explore and compare the mechanical response of AlCrSiN
coatings deposited on two different substrates, namely, WC-Co and cBN. Nano-indentation was used
to measure the hardness and elastic modulus of the coatings, and micro-indentation was used for
observing the contact damage under Hertzian contact with monotonic and cyclic (fatigue) loads.
Microscratch and contact damage tests were also used to evaluate the strength of adhesion between
the AlCrSiN coatings and the two substrates under progressive and constant loads, respectively.
The surface damages induced via different mechanical tests were observed using scanning electron
microscopy (SEM). A focused ion beam (FIB) was used to produce a cross-section of the coating–
substrate system in order to further detect the mode and extent of failure that was induced. The
results show that the AlCrSiN coating deposited on the WC-Co substrate performed better in regard
to adhesion strength and contact damage response than the same coating deposited on the cBN
substrate; this is attributed to the lower plasticity of the cBN substrate as well as its less powerful
adhesion to the coating.
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1. Introduction

Hard protective coatings are frequently used in the tool industry to improve wear and
corrosion resistance [1,2]. Based on traditional binary metal nitride ceramic coatings (such
as CrN and TiN), aluminum (Al) and silicon (Si) are introduced to form quaternary coating
systems (AlCrSiN and AlTiSiN) with enhanced mechanical properties, thermal stability, and
wear resistance [3,4]. By adding Al and Si, an oxide-rich layer is formed on top, contributing
to improved oxidation resistance and thermal stability of the coating [5,6]. In addition, the
amorphous Si3N4 phase formed in the grain boundary inhibits the neighboring grains from
sliding, which results in better hardness and thermal stability [7–9].

These coatings are normally deposited via physical vapor deposition (PVD) [10,11].
The crystalline phase coatings consist of a face-centered cubic lattice with high atomic
density formed via crystallization of a metastable amorphous phase after thermal treatment,
producing a coating with a columnar structure [12–14].

Although the mechanical properties of these coatings have been studied before [15],
information about mechanical behavior when the coatings are deposited on different
substrates is scarce. Performance of tool materials is governed by both the coating and the
substrate, which may result in very different performances even for the same coating if

Ceramics 2023, 6, 1238–1250. https://doi.org/10.3390/ceramics6020075 https://www.mdpi.com/journal/ceramics

https://doi.org/10.3390/ceramics6020075
https://doi.org/10.3390/ceramics6020075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ceramics
https://www.mdpi.com
https://orcid.org/0000-0002-8288-8466
https://orcid.org/0000-0002-0445-1656
https://orcid.org/0000-0002-7388-018X
https://orcid.org/0000-0003-1054-1073
https://orcid.org/0000-0002-6950-611X
https://doi.org/10.3390/ceramics6020075
https://www.mdpi.com/journal/ceramics
https://www.mdpi.com/article/10.3390/ceramics6020075?type=check_update&version=1


Ceramics 2023, 6 1239

the substrate is different. The two most used hard substrates in the coating industry are
hardmetals (also known as cemented carbides) and cubic boron nitride.

Hardmetals are composed of a hard WC phase bonded with a metal, usually cobalt
(WC-Co), presenting an outstanding combination of mechanical properties including
hardness, fracture toughness, and wear resistance [16,17]. Cubic boron nitride (cBN) is a
superhard material consisting of cBN particles bonded with a ceramic, with hardness only
second to diamond, with an extremely high hardness and wear resistance together with
exceptional thermal and chemical properties [18–24].

There are some examples of studies exploring the effects of different substrates on
quaternary coatings, but they focus mainly on metallic substrates. For example, Gao Y. et al.
focused on how the structure of AlCrSiN coating protected high-speed steel (HSS) [25],
and K. Tuchid et al. studied thermal oxidation on HastelloyX substrate [26]. These papers
studied just one substrate, so it is interesting to study the effect of different substrates in
the mechanical responses of TiAlSiN coatings under contact loads. Similar studies on other
types of coatings exist. Sveen et al. [27] studied the scratch adhesion of TIAlN on three
different substrates (high-speed steel, cBN, and cemented carbides), but no evidence exists
on quaternary AlCrSiN coatings.

Therefore, the present study focuses on comparing the mechanical responses of Al-
CrSiN quaternary coatings deposited on two different hard substrates, WC-Co and cBN,
with the objective of understanding the mechanical performances of the coated materials.

2. Experimental Procedure
2.1. Sample Preparation

AlCrSiN coatings were deposited on two different commercially available hard sub-
strates of cemented carbide (WC-Co) and cubic boron nitride (cBN), making two different
coating–substrate systems: AlCrSiN/WC-Co and AlCrSiN/cBN. The WC-Co material
consisted in WC grains with 0.9 ± 0.4 µm grain size and 10% of cobalt content, while the
cBN material had a low cBN content with an average grain size of 1.5 microns and a TiN
ceramic binder.

Cathodic arc evaporation was used to deposit the AlCrSiN coatings. The process was
carried out using the industrial equipment Platit p80, in a vacuum chamber with an argon
atmosphere at 0.8–2 Pa and a negative bias voltage of −65 V. Cr, and Al+Si cathodes were
used as the material source. A description of the deposition process of the AlCrSiN coatings
with a Cr adhesion layer can be found in [28]. The composition of the coatings is presented
in Table 1.

Table 1. Element concentrations of AlCrSiN coating deposited on WC-Co substrate.

Element Al Cr Si N

Concentration (at.%) 41 13 8 38

The thicknesses of coatings were measured using the Calowear test, and calculations
for the coating thicknesses were performed using Equation (1).

t =
(R + r)(R − r)

d
(1)

where t is the thickness of coating, and d is the diameter of the hard steel sphere. R is the
outer edge radius of the ring depression, and r is the inner edge radius of the depression,
both of which were measured using electric scanning microscopy (Phenom XL Desktop
SEM, Phenom-World, Eindhoven, The Netherlands).

2.2. Characterization of Structure and Composition

The crystallographic phase of the coating was characterized using glancing incident
angle X-ray diffraction (GIXRD) with Cu X-ray tube radiation (D8 advance, Bruker, Billerica,
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MA, USA), and the test voltage and current went up to 40 kV and 40 mA. The incident
angle was fixed at 1◦. The scan speed was 10 s per step, and a 0.01◦ scan size was performed
from 20◦–70◦.

2.3. Nano-Indentation and Micro-Indentation

The hardness and elastic modulus were measured with a Nanoindenter XP, Oak Ridge,
TN, USA, with a continuous stiffness measurement. All surfaces of the coatings were
slightly polished using colloidal silica under the force of 1 N and cleaned using acetone to
lessen the effect caused by the roughness of the coatings during measurement [29]. Nano-
indentation tests were performed with a Berkovich diamond tip calibrated against a fused
silica standard. An array of 25 imprints was made for each sample with a constant strain
rate of 0.05 s−1. All indentations were performed with up to 2000 nm maximum penetration
depth. The calculations of the hardness (H) and elastic modulus (E) were obtained via
the Oliver–Pharr method, and the Poisson ratio was assumed to be ν = 0.25 [12]. The
hardness was measured at 10% penetration depth, and the elastic modulus was estimated
by extrapolating the results to null thickness.

The spherical contact response was assessed by means of spherical micro-indentation
with both monotonic and cyclic loads. Hertzian tests were carried out using a servo
hydraulic test machine (Instron 8500, Instron, Norwood, MA, USA) using a cemented
carbide sphere with a radius of 5 mm. Monotonic loads were conducted following a
trapezoidal waveform, at a loading rate of 500 N/s and holding 10 s at maximum load,
under seven equally spaced loads: 2000 N, 3000 N, 4000 N, 5000 N, 6000 N, 7000 N, and
8000 N. The same loading waveform was applied for the cyclic loading with a frequency of
3 Hz and 103 circles. At least three indentations were made at each load and loading mode.

2.4. Adhesion Test

Adhesion strength between coating and substrate was evaluated with scratch and
contact damage tests. Scratch tests were conducted using a Revetest Scratch tester (CSM
Revetest, Buchs, Switzerland) with a progressive load from 0 N to 90 N at a constant loading
rate of 10 N/min with a Rockwell C tip radius, and 120◦ apex angle, and length of 5 mm.
Contact damage tests were performed using the same tip geometry [30]: a Rockwell C
indenter was pressed against the surface of samples to generate deformation and cracking.
Nine loads were used for the two coated systems, 9.8 N, 49 N, 98 N, 196 N, 294 N, 392 N,
490 N, and 613 N, with the intention of producing different types of damage. Failure and
damage produced via scratch and contact damage tests were observed using scanning
electron microscopy (SEM).

2.5. Microscopy

A Phenom XL SEM and a Zeiss Neon 40 SEM-FIB coupled with an energy dispersive
X-ray detector (EDX) were used to observe the samples. The cross-section using FIB for
the coated systems was performed by using gallium ions accelerated up to 30 kV with a
decreasing ion current down to 500 pA. A protective layer of platinum was deposited on
the area of interest to avoid the waterfall effect.

3. Results and Discussion
3.1. Coating Composition and Coating Thickness

To confirm crystallographic structure and composition, XRD patterns were created
and are presented in Figure 1. The phase detected for the coatings on both substrates was
(Cr,Al)N solid solution, which was the main phase of the AlCrSiN coating. The (111), (200),
and (220) of peaks were shifted about 0.2 degrees due to the lattice expansion produced by
the substitution of Cr atoms with Al atoms [31,32]. The WC-Co substrate was also detected,
as shown in Figure 1a. In Figure 1b, indexing of the cBN substrate is also presented.
The binder phase TiN of the cBN substrate was clearly identified as a cubic phase. The
diffraction peak at 42.6 degrees was assigned to the face-centered cubic cBN [33].
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Figure 1. XRD patterns of AlCrSiN coatings deposited on (a) WC-Co and (b) cBN substrates. The
coatings present a (Cr,Al)N crystallographic phase.

The deposited AlCrSiN coatings were uniform and dense both on WC-Co and cBN
substrates, as seen in Figure 2a,b. Based on the EDX composition maps, elements of
chromium (Cr), aluminum (Al), and nitrogen (N) were detected in the coatings. Elements
of wolfram (W), cobalt (Co), titanium (Ti), boron (B), and nitrogen (N) were detected on the
substrates. The results are consistent with the compositions of coatings and substrates.
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Figure 2. SEM micrograph of the cross-section and the EDX composition maps for corresponding
areas. (a) AlCrSiN coating deposited on WC-Co substrate, (b) AlCrSiN coating deposited on cBN
substrate together with the platinum layer to avoid the waterfall effect during milling procedure, and
the crack in the coating and substrate was caused by the scratch test.

The measured thicknesses of the coatings are presented Table 2, showing similar
values for both substrates. Consequently, the geometry is similar, and the results of the
mechanical testing can be compared for both substrates.
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Table 2. Thickness of coating–substrate systems.

Coating AlCrSiN

Substrate WC-Co cBN
Thickness (µm) 3.6 ± 0.4 3.5 ± 0.3

3.2. Mechanical Properties of the Coating–Substrate Systems

The results of nano-indentation are presented in Table 3, and the images of nano-
indentation imprints are presented in Figure 3. According to Table 3, the AlCrSiN coatings
exhibited similar values when deposited on different substrates, WC-Co and cBN, which
means the mechanical properties of the coatings were not altered by the substrates. Some cir-
cumferential cracks, shown in Figure 3c, appeared at the inner edge of the nano-indentation
and indicated that the cracking resistance of the AlCrSiN coating deposited on the cBN
substrate may be lower than the sample with the WC-Co substrate, probably due to the
higher stiffness of the substrate.

Table 3. Mechanical properties of coating–substrate systems.

Material Hardness
(GPa)

Elastic Modulus
(GPa)

H/E H3/E2

Coating AlCrSiN on WC-Co 40 ± 5 553 ± 60 0.073 0.211
AlCrSiN on cBN 39 ± 4 508 ± 52 0.076 0.225

Substrate
WC-Co 31 ± 3 574 ± 54 0.054 0.091

cBN 36 ± 5 510 ± 90 0.071 0.179
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Figure 3. SEM images of nano-indentation, (a) AlCrSiN coating deposited on WC-Co substrate,
(b) AlCrSiN coating deposited on cBN substrate, (c) magnification of the circumferential cracks
highlighted with dotted circle on the image (b).

3.3. Adhesion Tests

Figure 4 presents the scratch tracks of the two coating–substrate systems obtained via
optical microscopy together with the magnification of failure events via SEM. It is seen how
plastic deformation, microcracking, and delamination occurred as the load was increased.
First, cracking of the coating (indicated as LC1) was present in both samples. For the WC-Co
substrate, stick–slip deformation was induced via compressive stress and appeared at the
contour. As the load increased, transverse cracks, which were induced by tensile stress,
appeared until spallation of the coating occurred; this load is defined as the second critical
load (LC2), implying failure of the interface between coating and substrate [34]. Interfacial
failure occurred much earlier in the cBN substrate (seen in Figure 4b,c) with clear spallation
of the coating [35,36]. Fracture features were also different, with more substrate exposure
in the case of cBN.
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Figure 4. The optical profile and SEM images of failure after scratch tests of AlCrSiN coatings
deposited on WC-Co and cBN, two different substrates. The second critical loads (LC2) are magnified
in the images of (a,b), respectively. (c) shows the scenario in which cBN substrate was totally exposed
after receiving more of the second critical load. The first critical loads (LC1) are magnified in the
images of (d,e), respectively.

The scratch crack propagation resistance (CPRs) was calculated to rationalize the
scratch resistance of the coatings in the coating–substrate systems, calculated using
Equation (2) [37,38].

CPRs = Lc1(Lc2 − Lc1) (2)

where LC1 is the first critical load and the start of lateral crack, and LC2 is the second critical
load and the start of the coating delamination or spallation. The results are presented in
Figure 4.

The critical stress σc was calculated using Equation (3).

σc =

(
2Lc2

πd2
c

)
(

4 + ν f

)
3πµ

8
− 1 + 2ν f

 (3)

where dc is the track width at LC2, µ is the friction coefficient calculated using the friction
force, and νf is the Poisson ratio of the coatings [39]. The surface energy of the known
interfacial crack (adhesion energy) is then defined using Equation (4) [39–42].

Gc =
πd2

c
2E

(4)
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where t and E are the thickness and elastic modulus of coatings, respectively. The experi-
mental values of t and E are presented in Tables 1 and 2, respectively.

The results of CPR and adhesion energy are presented in Table 4. The AlCrSiN coating
deposited on the WC-Co substrate presents higher CPR values, which means better scratch
resistance. The adhesion energy between the AlCrSiN coating and WC-Co substrate was
higher than for the cBN substrate, which illustrates better adhesion strength between the
coating and WC-Co substrate. Calculation of adhesion energy followed the method from
the previous study by S. J. Bull et al., and the values of Gc were similar to previous research
on similar coatings such as CrAlN and AlCrSiN [34,40,43,44].

Table 4. Scratch crack propagation resistance and adhesion energy of both coated samples.

Coating Substrate CPR (N2) GC (J/m2)

AlCrSiN
WC-Co 1244 ± 87 357 ± 36

cBN 48 ± 7 210 ± 20

Figure 5 presents the SEM images after the contact damage tests at a series of normal
loads of 98 N, 196 N, and 294 N. For the sample of AlCrSiN coating deposited on the WC-Co
substrate, the coating does not show any cracking. At loads of 196 N and higher, radial
cracking and delamination can be observed. In the case of the cBN substrate, delamination
is clearly present even for the smaller loads. As the load increases, more spalling of the
coating is observed, similar to previous research on similar materials [34,45,46].
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Figure 5. SEM images of the contact damage tests of AlCrSiN coatings at 98 N, 196 N, and 294 N with
a Rockwell C tip for both substrates. Contact area of the coating on WC-Co for 98 N is indicated.

In order to further inspect the mechanisms of this delamination, lower loads of 9.8 N
and 29.4 N were conducted on the cBN substrate sample, and the surface was observed
using SEM, as presented in Figure 6. Under a lower normal load, delamination of the
AlCrSiN coating appeared on the surface. Cohesive failure of the coating was evident with
normal load of 9.8 N, as seen in Figure 6(a2), where it can be seen that the coating had
fractured, without exposing the substrate. However, when the normal load was increased to
29.4 N, the coating was totally delaminated from the cBN substrate, as seen in Figure 6(b2).
This conclusion is xposure of the cBN substrate indicates that adhesion failure between the
AlCrSiN coating and cBN substrate was produced at that load. In any case, this illustrates
worse mechanical performance as compared to the WC-Co substrate.
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3.4. Mechanical Response under Contact Loading

Both materials were indented using a spherical indenter with a monotonic load and
cyclic load to investigate the contact mechanical response under different conditions [47–49].
Figure 7 shows the SEM images of the damage failure induced via spherical indentation
under monotonic loads. The surface of the cBN substrate sample presented discontinuous
cracks under the monotonic loads of 2000 N. When the load increased up to 3000 N, the
edge of the indentation formed a complete crack circle. However, for the samples deposited
on the WC-Co, the discontinuous cracks and complete ring cracks appeared at larger loads
of 5000 N and 6000 N, respectively, which shows the form and shape of the cracks over
the load of the first damage. In agreement with previous results, the contact resistance
of the coatings deposited on the WC-Co is larger than for the coatings deposited on the
cBN substrates.

Based on the results, fatigue tests were conducted at the loads causing first damage,
that is 5000 N and 2000 N for the samples on WC-Co and cBN substrates, respectively,
as presented in Figure 8. For the cBN substrate, the ring crack was fully developed, and
partial delamination could be observed, as seen in Figure 8(b1). However, for the WC-Co
substrate, the ring crack was not fully developed, even after 103 cycles under 5000 N, the
same load that appeared for first damage, as seen in Figure 8(a1). The results indicate that
the AlCrSiN coatings deposited on the WC-Co substrate performed better under contact
fatigue than the same coatings deposited on the cBN substrates.
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In order to further explore the direction of crack development caused by fatigue tests,
the cross-section at the complete circle crack were performed using FIB, as shown in Figure 9.
The ring cracks of the surface penetrated both the AlCrSiN coatings and both substrates.
For the cBN substrate, a part of each coating was removed from the surface, as seen in
Figure 9(b1), with a delaminated area of coating forming a valley shape. However, as seen
in Figure 8(b1), the coatings were completely spalled from the cBN substrate, indicating that
cohesive and adhesive failure of the coatings coexisted under contact fatigue loading. As
seen in Figure 9(b2), the ceramic binder of the cBN substrate suffered microcracking due to
the cyclic loads. For the samples deposited on the WC-Co substrate, only some transverse
cracks appeared in the coating and substrate, which kept their original morphologies,
as seen in Figure 9(a1,a2); the overall shape of coating–substrate system remained intact,
and transverse cracks only appeared inside the coatings but not at the interfaces. Another
interesting phenomenon can be observed in Figure 9(b1,b2), where the interface between the
AlCrSiN coatings and cBN substrate was not flat but rather kept the tortuous morphology
of the surface of the cBN substrate. Multiple cracks were observed in the ceramic binder of
the cBN substrate, and the substrate appeared to be crushed along with the periphery of
the boron nitride particles.
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Figure 9. Cross-section SEM images of indentations and morphologies of fatigue cracks. (a1,a2)
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4. Discussion

From the results presented above, it is clear that coatings deposited on cBN have a
lower mechanical performance as compared with the same coatings deposited on WC-Co
substrates. Adhesion strength, as measured by scratch testing, is lower, implying that the
coating delamination is easier in this substrate. In addition, different fracture features are
evident for both substrates.

This lower adhesion can be partially attributed to the difference in chemical nature
of each substrate. However, it is also seen that the structural integrity of the coating is
also more affected when deposited on the cBN substrate under contact loadings, albeit
having the same composition and intrinsic mechanical properties such as hardness and
elastic modulus. In this sense, the differences in mechanical properties of the two substrates
induce different contact damage responses and damage evolutions with increasing loads
(as seen in Figures 7 and 8). As seen in Table 2, cBN is harder than WC-Co. If the contact
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loading is performed at relatively high loads (such as the contact damage and scratch
tests) deformation will be a combined response of both coating and substrate. Because
of the cBN substrate’s higher hardness, its deformation will be concentrated close to the
surface, which will lead to a larger amount of microcracking in order to accommodate the
deformation [50]. These results are in agreement with Sveen et al. [27], who also observed
much lower scratch resistance and different damage mechanisms for the cBN substrate.
In the case of contact loads, the results are also in agreement with the work of S. Gordon
et al. [21]. who studied TiN/TiAlN-coated cBN under contact loads and found that failure
appears near the interface between the AlCrSiN coating and the cBN substrate. In Figure 9,
in the FIB cross-section, one can see the existence of microcracking of the substrate, which
can explain the failure of the substrate observed by these authors and in this work as well.

From the above results, it is clear that the contact resistance of coated hard materials is
a multifaceted issue, in which the microstructures of both coating and substrate, as well as
interfacial adhesion, play a key role.

5. Conclusions

The mechanical performances of the AlCrSiN coatings deposited on WC-Co and cBN,
two different substrates, have been comparatively characterized. Our main conclusions
can be summarized as:

(1) Nano-indentation results show the same value of mechanical properties and thick-
nesses of the coatings when deposited on both substrates as well as chemical compositions.
The crystal structure of AlCrSiN coatings deposited on different substrates was mainly
(Cr,Al)N solid solution. Si was not detected using XRD due to its relatively small amounts
or the formation of an amorphous phase. Therefore, the coating structure is not affected by
the substrate.

(2) Through microscratch tests, AlCrSiN coatings deposited on the WC-Co substrate
presented better adhesion than those deposited on the cBN substrate. This is further
evidenced by the contact damage tests, during which a part of an AlCrSiN coating totally
detached from the cBN substrate at 29.4 N, but the delamination of the AlCrSiN coating on
the cBN substrate appeared at 294 N.

(3) The results of mechanical response under contact Hertzian loads presented that
AlCrSiN coatings deposited on the WC-Co substrate perform better resistance to monotonic
loads and cyclic loads than those coatings deposited on the cBN substrate. Using SEM and
FIB, cohesive and adhesive failures of AlCrSiN coatings were observed under cyclic loads
when deposited on the WC-Co and cBN substrates, respectively.

The differences in mechanical performances of the same coating deposited on differ-
ent substrates depend on both adhesion strengths and distinct mechanical properties of
the substrates.
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