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Abstract: The automotive industry has undergone significant advancements and changes over time,
resulting in the use of more complex parts in modern vehicles. As a consequence, the parts used
in the manufacturing process are subject to higher stress levels, which reduce their service life. To
mitigate this issue, surface treatments can be applied to improve the mechanical properties of the
tools. In this study, we examined the impact of surface treatments on reducing tool stress during a
cold forming process. The process involved reducing the thickness of a sheet from 6 mm to 2.5 mm,
which generated high stresses in the tooling. We used finite element stress calculations to analyze the
process and found that by reducing the friction coefficient to 0.1, tool stresses can be reduced by 20%,
leading to an increase in tool life. Moreover, the press force and tool wear were also reduced by 18%.
To validate the theoretical calculations, we performed field tests in a real manufacturing process.

Keywords: forming; finite element method; friction coefficient; coatings; wear

1. Introduction

One of the most important industrial sectors today is the automotive industry. It
generates a business volume that represents 7% of the GDP of the European continent and
employs almost 14 million people directly and indirectly, which represents 6.1% of total
employment. Only 2.6 million people work in the production chain. Approximately 20% of
the components of a car are manufactured by some type of forming process. This type of
process has become more and more important and has replaced slower and more expensive
manufacturing processes such as die casting. Stamping is a fast and reliable manufacturing
process, capable of producing complex and resistant parts. Because of that, it has been
chosen by many companies to manufacture their products [1].

The automotive industry lives in a continuous improvement process, it is one of the
most competitive industries, and because of the quantities of production, a small improve-
ment could make a huge impact on productivity. This has led to an increase in complexity
of the parts used in modern vehicles, which reflects the intricate nature of the advanced
automotive technology available today. However, this makes forming much more difficult
and complex. As a result, an increase in stress on tools during the forming processes has
been found [2]. The stress directly affects the tool behavior, where the wear or unexpected
break could appear [3]. These failures result in higher production costs; therefore, new tools
must be manufactured to replace the damaged ones, with the extra cost that this entails.
Furthermore, press machine downtimes also directly affect the manufacturing costs. In
addition, the issues derived from not satisfying the quality requirements demanded by the
customer must be addressed. In some cases, even reprocessing work is needed.

Cold forming tools can face various performance issues during the manufacturing
process. Some of the common issues include wear, cracking, chipping, and deformation of
the tool material. These issues can arise due to various factors such as high contact stresses,
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repetitive loading cycles, friction, and inadequate cooling. To address these issues, tool
materials are selected based on their ability to withstand high stress and wear resistance.
One area of focus is the study of new geometries for the tools, such as in the case of fine
blanking [4], where a new die design was investigated regarding trying to reduce the die roll
size. In this process, the geometry of the matrix was being carefully examined and modified
to achieve better results. The objective was to create a tool that can produce high-precision,
burr-free parts with excellent surface finish and dimensional accuracy. By exploring new
geometries for the tooling, researchers hoped to achieve significant improvements in the
efficiency, precision, and overall performance of the cold forming process. Similar to those
two studies, the objective was to enhance the surface quality of the fracture generated by
fine blanking [5,6].

In this way, the stamping industry has utilized surface treatments on tools with the
objective of reducing stress, and consequently, extending tool life. Surface treatments
change the mechanical properties of the tools, and that is why numerous researchers have
delved into this field and reported their findings on how the surface finish of a tool impacts
its wear development. Wu et al. studied the influence of the tool finishing on the wear
development and the tool life [7]. Grouche et al. [8] demonstrated the influence of these
two aspects, including the significance of tool roughness in this regard, while emphasizing
the need to consider factors such as gliding speed and contact pressure [9]. Additionally,
some authors have explored and created models for the relationship between load and
wear [10]; this reference proposes a new testing method which allows for a high resolution
of wear formation in time. In addition, one of the most involved properties is the friction
coefficient, which is largely responsible for the tool performance. Reference [11] evaluated
different surface modification techniques in terms of friction properties. To this end, how
the reduction of friction directly affects the stresses received by tools was studied [12].
Brathikan et al. [13] related the friction and the blank diameter with the forming force.

Friction is critical in cold forming as it impacts the forces, energy, and surface quality
of the product [14]. Different friction models used in cold forming include the Coulomb
friction model, Amonton’s friction model, Tresca friction model, and Tabor’s friction model.
The Coulomb model assumes that friction is proportional to the normal force [15], while
Amonton’s model adds a coefficient of friction. Tresca’s model is based on the maximum
shear stress and considers the frictional force proportional to the shear strength and contact
area [16,17]. Tabor’s model adds adhesion forces to the shear forces and is relevant for
high surface roughness and pressure situations. The shear friction model in cold forming
combines friction and shear deformation effects [18,19]. It considers the frictional force,
proportional to the normal force and coefficient of friction, and the shear stress induced by
deformation, proportional to the material’s shear strength and strain rate, and influenced
by the temperature and strain rate. The model predicts the deformation behavior and
energy requirements for cold forming with high levels of shear deformation and optimizes
process parameters for better mechanical properties and surface quality.

In this work, the forming process of some elements of the brake backing plate has been
analyzed. The stresses received by the tools have been calculated and simulations have
been effectuated using finite volume calculations, varying the friction coefficient, and using
the shear model. The simulation software SIMUFACT FORMING has been used to study
the stress. Different tests were also carried out in the laboratory to define the necessary
parameters required by the software. The simulations were performed with two different
friction coefficients, and it was possible to observe their effect on the load received by the tool.

In addition, to validate the results obtained in the simulations, field tests have been
performed with the tools under study. These tools have been tested in the real manufactur-
ing process. To test the same tools with different friction coefficients, an industrial PVD
(physical vapor deposition) coating of DLC (diamond-like carbon) was used for its excellent
tribological properties (friction coefficient < 0.1). Sulaiman et al. [20] analyzed the effects
of DLC/TiAlN-coated die on friction and wear in sheet metal forming. These coatings
offer friction coefficients around 0.1 and have already been studied for similar applications
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in previous works [21,22] with positive results in tool steels. Although DLC coatings are
known for their excellent tribological properties, they used to have an inadequate adhesion
to the substrate. This fact made their implementation in stamping processes difficult. A few
years ago, the HIPIMS [23] technique significantly improved their adhesion properties [24]
and the deposition rate [25]. In addition, the novel technique of using positive pulses in the
PVD discharge process [26] has made the adhesion good enough to be tested in industrial
processes. Because of all this, DLC coatings were used to reduce the friction coefficient of
die components in this study.

In conclusion, the study provides valuable insights into the impact of the friction
coefficient on the cold forming tool life and highlights the effectiveness of using a finite
element forming process simulation to study tool stresses. The findings of this research can
be used by manufacturers and engineers to optimize tool selection and design, leading to
improved performance and cost savings.

2. Simulation Model
2.1. Geometry

To fulfil the study, the forming process of a brake backing plate was analyzed Figure 1.
This stamping process forms a shape called a straight chamfer. It is a particularly de-
manding forming process due to the reduction of the sheet thickness (6 mm) by more than
50%. Consequently, the stresses generated in the tool during the stamping process are
exceptionally high, which can cause tool failures.

Metals 2023, 13, 960 3 of 20 
 

 

manufacturing process. To test the same tools with different friction coefficients, an in-
dustrial PVD (physical vapor deposition) coating of DLC (diamond-like carbon) was used 
for its excellent tribological properties (friction coefficient < 0.1). Sulaiman et al. [20] ana-
lyzed the effects of DLC/TiAlN-coated die on friction and wear in sheet metal forming. 
These coatings offer friction coefficients around 0.1 and have already been studied for 
similar applications in previous works [21,22] with positive results in tool steels. Although 
DLC coatings are known for their excellent tribological properties, they used to have an 
inadequate adhesion to the substrate. This fact made their implementation in stamping 
processes difficult. A few years ago, the HIPIMS [23] technique significantly improved 
their adhesion properties [24] and the deposition rate [25]. In addition, the novel technique 
of using positive pulses in the PVD discharge process [26] has made the adhesion good 
enough to be tested in industrial processes. Because of all this, DLC coatings were used to 
reduce the friction coefficient of die components in this study. 

In conclusion, the study provides valuable insights into the impact of the friction co-
efficient on the cold forming tool life and highlights the effectiveness of using a finite ele-
ment forming process simulation to study tool stresses. The findings of this research can 
be used by manufacturers and engineers to optimize tool selection and design, leading to 
improved performance and cost savings. 

2. Simulation Model 
2.1. Geometry 

To fulfil the study, the forming process of a brake backing plate was analyzed Figure 
1. This stamping process forms a shape called a straight chamfer. It is a particularly de-
manding forming process due to the reduction of the sheet thickness (6 mm) by more than 
50%. Consequently, the stresses generated in the tool during the stamping process are 
exceptionally high, which can cause tool failures. 

  
(a) (b) 

Figure 1. Real part. (a) Before forming; (b) after forming. 

To carry out the forming process, five items are required. These include three static 
components—Stepchamfer, chamfer insert, and trim die—and two moving components—
the punch and the knockout. The punch is attached to the moving part of the press and 
moves vertically with a stroke of 3.5 mm and a constant velocity of 100 mm/s. Its role is to 
form the workpiece in conjunction with the fixed components chamfer insert and Step-
chamfer, which are the most stressed tools and therefore the focus of this study. Using 
finite elements and varying the friction coefficient, the stresses of these two components 
have been calculated. The knockout, which applies a constant force of 100 kN in the op-
posite direction to the punch movement, is responsible for clamping the part during the 
forming process. 

The objective of the simulation is to determine the stress levels experienced by the 
chamfer insert and Stepchamfer dies. The first simulation employs a friction coefficient of 

Figure 1. Real part. (a) Before forming; (b) after forming.

To carry out the forming process, five items are required. These include three static
components—Stepchamfer, chamfer insert, and trim die—and two moving components—
the punch and the knockout. The punch is attached to the moving part of the press and
moves vertically with a stroke of 3.5 mm and a constant velocity of 100 mm/s. Its role
is to form the workpiece in conjunction with the fixed components chamfer insert and
Stepchamfer, which are the most stressed tools and therefore the focus of this study. Using
finite elements and varying the friction coefficient, the stresses of these two components
have been calculated. The knockout, which applies a constant force of 100 kN in the
opposite direction to the punch movement, is responsible for clamping the part during the
forming process.

The objective of the simulation is to determine the stress levels experienced by the
chamfer insert and Stepchamfer dies. The first simulation employs a friction coefficient
of 0.3, which represents the friction between two steels lubricated with standard cutting
oil and is considered representative of the actual process. This value was used in other
works [27,28]. Subsequently, a second simulation is conducted with a friction coefficient
of 0.1, with the assumption that this modification will result in lower stress levels on both
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dies. The simulation model, as shown in Figures 2–4, features fixed dies and a punch stroke
of 3.5 mm.
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The part’s design considers the previous process steps that define the contour and
holes in earlier stages of the die. It is crucial to leave sufficient material for the forming
process. The part has a thickness of 6 mm.

2.2. Simulation Parameters

The simulations are performed using the software Simufact Forming 15.0 (v 15.0,
Hexagon, Hamburg, Germany). Different calculation strategies are utilized, using the finite
element method for the tooling stress and finite volume method for the part forming. The
FV mesh, also referred to as the volume mesh, comprises Eulerian elements that remain
stationary and do not undergo deformation or displacement. Their primary function is
to calculate and depict the flow of material. Furthermore, the FV solver is built upon the
explicit MSC Dytran solver. Initially, in the part forming simulation, 87,800 elements are
created Figure 5, a quantity that increases to 114,400 due to a consecutive remeshing. Over
the course of these simulations, the matrix’s constituents are confined to limited movement
across all axes, with the exception of the knockout that possesses mobility exclusively in
the z-axis and imposes a retention force as previously expounded. Furthermore, these
components are treated as rigid elements in the simulation. Both simulations have the
same characteristics except for the friction coefficients. For friction, the Shear model is
utilized, and different coefficients are defined for each simulation (0.1 and 0.3). Because
of the cold forming, the influence of temperature is discarded. For the finite volume
meshing, a size of 0.75 mm is used for each element and all dies have been defined as rigid.
A surface mesh is employed with triangles as elements. The minimum element size is
0.2 mm. Furthermore, 100◦ is defined for the vertex angle and 60◦ for the edge angle. In
addition, level 3 refinement boxes have been included in the area where plastic deformation
is performed. Parameters have also been defined to launch the remeshing process. This
remeshing is executed every 7% of the total stroke of the upper die, and if any element edge
length is deformed twice its initial size. Parallel computing with four cores (parallelization)
is used. The option of expensive check contact 3D to improve the accuracy of the simulation
and a Taylor-type adaptive step control to increase the computational increments when
complex contacts appear are used. The results are obtained every 0.25 mm.
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Considering the results of the previous simulations, finite element simulations of the
parts are performed using two friction coefficients. In these simulations, the pressures that
the material applies on these parts are imported as a boundary condition. The restriction of
movements is placed by a constraint plane. A mesh is made with four nodes tetrahedron-
type elements and a global size of 2.5 mm. In addition, the element size in critical areas is
reduced to 0.1 mm using local refinement boxes and adding the condition of increasing
the number of elements in areas of small curvature. The numbers of elements in the parts
are about 475,000 and 490,000. A material of the software library called Rigid (Young’s
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modulus of 210 GPa and yield strength of 20,000 MPa) is assigned to calculate the Von
Mises stresses. Multifrontal Sparse is used as the solver, and the simulation is calculated
for six specific increments of the forming process, including the end of stroke. Both tools
are constrained with the plane on the base, and the contact is defined as the glued type.

2.3. Modeling Materials’ Properties

An important parameter for the FE simulation is the flow curve of the material. The
steel used in this stamping process is the S235JR Table 1. It is a structural steel commonly
utilized in the industry and is known for its versatility. In this case, the thickness defined
for the study is 6 mm sheet steel.

Table 1. Elemental composition of the S235JR, provided by the supplier.

Steel C (%) Mn (%) Si (%) P (%) S (%)

S235JR 0.078 0.782 0.013 0.013 0.007

A compression test is effectuated to determine the stress/strain behavior of the
S235JR [29]. The tensile test is usually chosen to obtain the material properties, but in
this case, it is discarded. The tensile test only gives accurate results until necking, whereas
the compression test obtains precise results during a longer run of the trial. There are
five tests performed to ensure the results’ reliability. A universal test machine (MicroTest
EM2/200/FR) is used to obtain the flow curve of the steel. The equipment consists of two
flat grinded parallel platforms: one is fixed and the other is movable. This equipment
captures the force needed in each position (every 0.025 s) of the stroke (10 mm), maintaining
a constant velocity of 100 mm/min.

The specimens are cylindrical Ø8 × 16 mm and are compressed by 10 mm (final height
6 mm) Figure 6. Contacts between the specimen and platforms are lubricated with PTFE
spray to reduce the influence of friction as much as possible. Then, the results are obtained
and transformed according to the assumption of the material volume invariability [30].
First, engineering stress and strain are calculated.
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The FE simulation needs a material flow curve to model deformation during the
forming process, in particular, the plastic region of the curve. The collected data from the
compression experiment are insufficient. This is because the end of the curve is discarded,
eliminating the effect of friction. Consequently, the curve must be extrapolated for finite
element computations. This way, the FE simulation can run using the same material
properties obtained in the experimental test.
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As is well known, there are many mathematical functions to model the curve [31,32].
Some of the most used are Hollomon [33] and Voce [34], expressions (1) and (2), respectively.

σH = k·εn (1)

σV = B − (B − A)·em·ε (2)

To find a suitable adjustment among the experimental curve and the mathematical,
both models are studied [2]. The values of “k” and “n” from Hollomon’s model are analyzed
for each compression test. It is calculated by the least squares fit among the true stress–
strain plastic region. Additionally, test number two is discarded because of its deviation
from the other results. Table 2 shows the values of each test and the corresponding average
value and standard deviation.

Table 2. Hollomon model’s results for “k” and “n”.

Test Number n k

Test 1 0.18 763.78
Test 2 0.11 701.56
Test 3 0.16 730.87
Test 4 0.15 722.15
Test 5 0.18 705.33

X 0.16 724.74
Σ 0.03 24.91

A similar procedure is followed to calculate Voce’s model [35]. Equation (2) is derived
with respect to strain, and least squares are applied in order to obtain the values of “m”
and “B”. Finally, the value “A” is calculated by applying a natural logarithm on both sides
of the derived equation and least squares are used again. Table 3 shows the results of each
test. Furthermore, the results of test number five are discarded.

Table 3. Voce model’s results for “m”, “B”, and “A”.

Test Number m B A

Test 1 −10.04 659.44 416.78
Test 2 −11.14 661.04 413.78
Test 3 −11.90 650.65 445.39
Test 4 −10.22 654.20 429.08
Test 5 −8.38 624.06 275.33

X −10.34 649.88 396.07
σ 1.34 15.02 68.63

Both models fit properly with the experimental curve shown in Figures 7 and 8. However,
Voce’s model is selected due to a higher level of coincidence with the experimental data.
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2.4. DLC Coatings

On the side of the field tests, a surface treatment is applied to the tool. The objective of
this is to reduce the friction coefficient of tools in order to validate the results obtained in the
simulations. A PVD (physical vapor deposition) coating is applied, more specifically a DLC
coating. DLC (diamond-like carbon) coatings have been recognized as valuable coatings
in recent years due to their wear behavior, low friction coefficient, and high hardness or
inert behavior, among others. All of these characteristics make them an ideal candidate
for tribological and anticorrosive applications. On the other hand, the residual stresses
generated when applying DLC to the substrate cause the coating–substrate adhesion to
not be as good as it should be. However, this issue has been significantly reduced by
the HIPIMS technique and the innovative application of positive pulses in the unloading
phase [26].

The depositions are carried out by Magnetron Sputtering with a pumping rate of 600 L/s
and equipped with rectangular magnetrons (HS100400) from Gencoa. Graphite (99.95% C)
and WC:Co (6% Co) (both with an area of 400 cm2) and a circular Cr target (area of 20 cm2)
are used as the targets. During the coating deposition, the substrates are placed at distances
of 10 cm from the Cr target and 13 cm from the WC:C and graphite target. The vacuum
pressure is maintained at 10–4 Pa, while the argon working pressure is set at 0.5 Pa.

As a pre-treatment, argon sputtering is performed on the substrates for 15 min by
applying a DC voltage of −400 V with a frequency of 150 kHz. Then, a bonding layer is
applied using the Cr target, with a 6 kW HiPIMS power supply and a circular magnetron at
a voltage of −1000 V, with a pulse duration of 100 µs, frequency of 100 Hz, and maximum
discharge density of 1.5 A/cm2. The thickness of the Cr target is approximately 100 nm.
Then, the anchor layer is applied, which acts as a bonding layer between the coating and
the substrate. For this, the WC:C target is used with a voltage of −1050 V, pulse duration
2.7 µs, and a frequency of 150 kHz. The power density is 1.5 W/cm2, achieving a layer
thickness of 1.2 µm. Finally, the 6 kW Hi-PIMS power supply is connected to the graphite
target for a–C application.

To perform the tribomechanical tests, a Microtest MT series equipment (Microtest
S.A., Microtest S.A., Madrid, Spain) is utilized. Pin-on-disk tests are conducted with
6 mm alumina balls serving as pins. These balls have a surface maximum roughness of
Ramax = 0.050 µm and a hardness of about 1650 HV. The coated tool steels are used as
disks. The tests are performed under a 40 N load, 200 rpm, and 20,000 cycles, generating a
Hertzian contact stress of 2.6 GPa. The tests are repeated three times at 8, 10, and 12 mm
(track radii). The tool steels and coatings used in this study have excellent tribological
properties, so a high load and sufficient revolutions are necessary to produce a measurable
and homogeneous wear track. These testing conditions are more similar to actual industrial
applications such as cold stamping or forming, where high pressure is applied. The
experimental results are shown in Figures 9 and 10. As expected, the samples coated with
DLC layers show values around 0.10. The results of the friction coefficient are lower than
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those reported in Reference [36], where the friction coefficient of the nitrogen-doped DLC
coating increased steadily and finally reached a value of 0.2, whereas that for the DLC
sample reached a value of 0.3 at the end of the test. However, the friction coefficients are
very similar to those reported in Reference [37].
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3. Results
3.1. Plastic Strain

In this section, the deformation process of the part is analyzed. The chamfer insert
forms the central area of the part. The Stepchamfer, on the other hand, is the one which
facilitates the deformation on both sides by making a kind of step. Figure 11 shows the
deformation of the part when the deformation coefficient is 0.3. Figure 12 shows the
deformation of the part when the friction coefficient is 0.1. It could be considered that both
deformations are practically the same. There are some small differences, but in general
terms, the parts deform in the same way. Therefore, in this work, it is assumed that the
change of the friction coefficient does not significantly affect the deformation of the part.
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decreases. In Figure 13b, which represents the tool with a coefficient of 0.1, the color in-
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3.2. Die Stress

In this section, the stresses suffered by the selected tools are studied. For this purpose,
the Von Mises stress is utilized.

The images below demonstrate the impact of the forming process on the Stepchamfer.
The (a) image represents the tool with a friction coefficient of 0.3, while the (b) image shows
the coated tool (with a friction coefficient of 0.1). There are no red areas in either image,
which indicate that there are no critical zones. Despite the mechanical strength of the
steel being 2550 MPa, areas with stress levels above 2000 MPa are identified as conflictive.
The pictures illustrate that when reducing the friction coefficient, the stress also decreases.
In Figure 13b, which represents the tool with a coefficient of 0.1, the color intensity is
significantly reduced, indicating lower stress requirements. It can be stated that the tool
which has been coated has not exceeded the threshold of 1500 MPa, which implies that
its strength or durability has remained within the expected limits. On the other hand, the
uncoated version of the same tool has been subjected to a stress level of 1800 MPa, which is
higher than that of its coated counterpart. This difference in stress levels suggests that the
coating has had a positive effect on the tool’s ability to withstand external forces and has
helped to prevent its failure or breakdown under high pressure.
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Figure 14 corresponds to the stresses received in the chamfer insert. As in the previ-
ous case, a reduction in stress can be seen when the tool has a friction coefficient of 0.1. In 
addition, the 0.3 and 0.1 friction coefficients show red areas. This means that these areas 
are above the critical range of the material and are therefore subject to possible failures. 
Hence, these are areas where failures or ruptures could appear in the field tests. However, 
by reducing the coefficient to 0.1, there is also a significant reduction of the conflict zone. 
As was observed in the previous case, the tool which is equipped with a coating has un-
dergone a noteworthy decrease in its stress levels. This implies that the coating has had a 
positive impact on the tool’s ability to withstand external pressure and has effectively 
mitigated the damaging effects of stress. 
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ure 15 shows that the tool Stepchamfer with a friction coefficient of 0.3 achieves a reaction 
force of 980 kN. The same tool with a friction coefficient of 0.1 obtains 800 kN. This means 
that when reducing the friction coefficient of the tool Stepchamfer from 0.3 to 0.1, the ton-
nage is reduced by about 20%. In Figure 16, the force of the chamfer insert can be seen. 
This tool with a friction coefficient of 0.3 obtains 180 kN. If we reduce the friction coeffi-
cient on the same tool to 0.1, the amount of force is reduced to 145 kN. In this case, the 
reduction is about 20%. 

Figure 13. Von Mises stress on Stepchamfer. (a) Simulation with a friction coefficient of 0.3. (b) Simu-
lation with a friction coefficient of 0.1.

Figure 14 corresponds to the stresses received in the chamfer insert. As in the previous
case, a reduction in stress can be seen when the tool has a friction coefficient of 0.1. In
addition, the 0.3 and 0.1 friction coefficients show red areas. This means that these areas
are above the critical range of the material and are therefore subject to possible failures.
Hence, these are areas where failures or ruptures could appear in the field tests. However,
by reducing the coefficient to 0.1, there is also a significant reduction of the conflict zone. As
was observed in the previous case, the tool which is equipped with a coating has undergone
a noteworthy decrease in its stress levels. This implies that the coating has had a positive
impact on the tool’s ability to withstand external pressure and has effectively mitigated the
damaging effects of stress.
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Figure 14. Von Mises stress on the chamfer insert. (a) Simulation with a friction coefficient of 0.3.
(b) Simulation with a friction coefficient of 0.1.

3.3. Die Load

In this section, the die loads of the chamfer insert and Stepchamfer are analyzed.
Figure 15 shows that the tool Stepchamfer with a friction coefficient of 0.3 achieves a
reaction force of 980 kN. The same tool with a friction coefficient of 0.1 obtains 800 kN. This
means that when reducing the friction coefficient of the tool Stepchamfer from 0.3 to 0.1,
the tonnage is reduced by about 20%. In Figure 16, the force of the chamfer insert can be
seen. This tool with a friction coefficient of 0.3 obtains 180 kN. If we reduce the friction
coefficient on the same tool to 0.1, the amount of force is reduced to 145 kN. In this case,
the reduction is about 20%.
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The graph presented provides a clear illustration of the relationship between friction
reduction and the corresponding decrease in the force required for forming a part. This is
because the total force required for forming can be separated into two different components.
The first is the force required to deform the material, while the second is the force required
to overcome friction between the tools and the sheet metal.

Consequently, when the friction coefficient is decreased, the force required for forming
is also reduced. This is because less force is needed to overcome the reduced friction,
resulting in a decrease in the total force required for the forming process. By understanding
this relationship between the friction reduction and force requirements for forming, it is
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possible to optimize the forming process to reduce costs associated with tool wear and tear,
while also improving the product quality.

3.4. Industrial Tests

In order to validate the theoretical results obtained in the finite volume simulations,
field tests are carried out in a real manufacturing process. Two different tests are completed,
one with the uncoated tool (friction coefficient of 0.3) and the other with a coated tool
(friction coefficient of 0.1). In both cases, the steel used is a tool steel 1.2379. This is a
high-carbon, high-chromium steel that is widely used in the production of cutting tools,
dies, and molds. It is also known by the names AISI D2 steel or DIN 1.2379 steel Table 4.
This steel has a high level of wear resistance, toughness, and compressive strength, which
makes it suitable for applications that require high durability and reliability. It has excellent
resistance to abrasion, chipping, and deformation at high temperatures, making it ideal for
use in cold work applications.

Table 4. Elemental composition of the 1.2379, provided by the supplier.

Steel C (%) Cr (%) Mo (%) Mn (%) Si (%)

1.2379 1.51 11.46 0.73 0.38 0.47

The experiments are conducted in a 600-ton PATEC press. These tests have made it
possible to study the consequences of reducing the friction coefficient in tools. Whether or
not the final geometry of the part changes significantly is analyzed.

The deformation suffered by the part is practically the same as in the models ob-
tained by simulation. In addition, a small geometrical deviation is found among the parts
produced by the coefficient 0.3 (Figure 17) and the part produced by the coefficient 0.1
(Figure 18). However, those differences could be discarded because they are irrelevant,
and in general terms, all models are similar. Consequently, the influence of friction in the
part could be ignored. This portion is considered scrap in subsequent processes, and these
variations can be ignored. Consequently, the modification does not have any impact on the
stamping production process.
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Additionally, the service life of tools has been studied, considering factors such as
wear or failures. To continue with the study, the tools are tested after 65,000 cycles. On
the one hand, there are the tools with a coefficient of 0.3, and on the other, there are those
with a coefficient of 0.1. By analyzing the tool Stepchamfer Figure 19, it could be seen that
neither of the two versions (0.3 and 0.1) has suffered any failure. This is in concordance
with the Von Mises stresses studied in the finite element simulations, where there was no
area in red with values above the yield strength of the steel. In addition, wear marks can
be seen on both tools. However, neither of them has suffered major wear. In the coated
version, traces could be seen which indicate that the coating has disappeared on the edge.
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Figure 19. Tool Stepchamfer after 65,000 cycles, (a) coefficient 0.3, (b) DLC coating applied, and
coefficient 0.1.

The chamfer insert, Figure 20, with a coefficient of 0.3 has suffered irreparable damage.
The rear part of the tool has been damaged and the tool has become unusable. Regarding
the simulations, red areas could be seen on the chamfer insert, which are susceptible to
possible failures. Moreover, the field test has confirmed these results. However, it is
certainly clear from the simulations that there is another area with a higher probability of
failure. The version with a coefficient of 0.1 is not damaged and is able to continue working.
Finally, it should be mentioned that wear marks are found in both versions.
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In the direction of quantifying the wear of each tool in the industrial test, the roughness
of each tool has been studied. The study is carried out using a confocal microscope and
advanced analysis software (SENSOMAP). The value of the arithmetic mean deviation of
the roughness profile (Sa) is obtained for each tool before and after working (65,000 cycles).
This is a parameter commonly used to quantify the surface roughness of a material or
component, particularly in engineering and manufacturing industries.

Tables 5 and 6 show the results of roughness (Sa) obtained using the confocal micro-
scope. The tools have obtained higher Sa values after 65,000 cycles, and roughness has
increased after the tools work. Figure 21 shows the behavior of each tool depending on the
friction coefficient. Tools with a friction coefficient of 0.3 have increased their Sa by 0.5 µm.
The coated tools with a friction coefficient of 0.1 have increased their Sa by 0.25 µm.

Table 5. Sa (µm) values for the tool Stepchamfer, before and after working (65,000 cycles).

Friction Coefficient 0 Cycles 65,000 Cycles

0.3 0.71 ± 0.03 1.20 ± 0.29
0.1 0.52 ± 0.05 0.74 ± 0.12

Table 6. Sa (µm) values for the chamfer insert, before and after working (65,000 cycles).

Friction Coefficient 0 Cycles 65,000 Cycles

0.3 0.38 ± 0.05 0.86 ± 0.29
0.1 0.39 ± 0.05 0.64 ± 0.12
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Figure 22 shows the points where the confocal analysis is conducted. The following
figures (Figures 23–26) show the confocal microscope images of the different tools with
each friction coefficient before and after 65,000 cycles. In image (a), the grooves made by
the grinding machine can be seen, either in the coated tools or in the uncoated ones. This
indicates that the coating copies the surface below it. In image (b), it can be seen how after
65,000 cycles, the initial surface is altered depending on the flow of the material in the
forming operation.
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This paragraph points out an important issue that has not been discussed, which is
the generation of grooves during the tool finishing process. When tools are manufactured
using machining processes, they typically undergo a finishing process that results in the
creation of grooves. These grooves are formed in a particular direction, and it is critical that
they are aligned with the direction of material flow. This alignment is important because it
facilitates the forming process and improves the overall quality of the final product.

The generation of grooves in the tool finishing process is a common occurrence, and
it is typically caused by the cutting action of the machining tool. The direction of these
grooves is determined by the direction in which the tool is moved along the surface of the
material. It is essential that these grooves are aligned with the direction of material flow
because they play a crucial role in facilitating the forming process. If the grooves are not
aligned with the material flow direction, they can impede the flow of material and cause
defects in the final product.
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4. Conclusions

This section discusses the article’s conclusions regarding the impact of reducing the
friction coefficient on tool performance. By reducing the coefficient of friction, the stresses
on tools can be minimized, which can lead to a longer tool life. This effect can be observed
in two ways: it can help in preventing total tool breakage, and it also reduces tool wear.
While the reduction of the friction coefficient can also impact the formation of the final part,
this is not a significant concern in this context.

• Finite volume simulations demonstrate that changing the friction coefficient directly
affects the stresses suffered by tools. When the friction coefficient is reduced, the stress
is also reduced by 20%.

• Changing the friction coefficient of the tools does not affect the forming of the part.
The differences between the two parts, even if there are any, are practically minimum.
In both the simulations and field tests, the differences are practically non-existent.

• Confocal analyses are suitable tests to study the grooves left by the grinding machine.
Therefore, the direction in which the parts are ground is very relevant and directly
affects how the material flows. In addition, it could also be seen how the material is
able to deform these grooves.

• The tool Stepchamfer has not suffered any remarkable damage, and this is in line
with the calculations made in the simulations. There are no stresses exceeding the
elastic limit of the material. The tool with coating achieves a maximum stress level of
1500 MPa, whereas the uncoated tool reaches 1800 MPa.

• The chamfer insert with the friction coefficient of 0.3 has a fracture on the back side.
This is in accordance with the simulations. However, it is certainly clear from the
simulations that there is another area with a higher probability of failure. This area
is where three different vertices meet and may be a conflict point. However, another
type of failure cannot be dismissed.

• In both tools, wear has been higher when the friction coefficient is 0.3. Sa values have
been increased approximately 0.5 µm.
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