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Abstract: Time-varying media break temporal symmetries while preserving spatial symmetries
intact. Thus, it represents an excellent conceptual framework to investigate the fundamental
implications of Noether’s theorem for the electromagnetic field. At the same time, addressing
momentum conservation in time-varying media sheds light on the Abraham-Minkowski debate,
where two opposing forms of the electromagnetic field momentum are defended. Here, we present
a tutorial review on the conservation of momentum in time-varying media. We demonstrate
that the Minkowski momentum is a conserved quantity with three independent approaches of
increasing complexity: (i) via the application of the boundary conditions for Maxwell equations
at a temporal boundary, (ii) testing for constants of motion and deriving conservation laws, and
(iii) applying temporal and spatial translations within the framework of the Lagrangian theory of
the electromagnetic field. Each approach provides a different and complementary insight into the
problem.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Time-varying media are revolutionizing the fields of optics and nanophotonics by harnessing time
as an additional resource for controlling light-matter interactions [1–4]. Dynamically modulating
matter offers new possibilities for the manipulation of electromagnetic fields including compact
and low-energy nonreciprocal devices [5], inverse prism and temporal aiming effects [6,7],
overcoming bandwidth bounds in impedance matching [8], energy accumulation without a
theoretical limit [9], quantum state frequency shifting [10], and ultra-fast switching without
thermal noise amplification [10], to name a few. Time-varying media also empower new
amplification [11] and photon generation mechanisms, such as directional vacuum amplification
effects [12], amplified light emission from quantum emitters [13] and free electrons [14], as well
as incandescent sources not constrained within the black-body spectrum [15].

Because a homogeneous time-varying medium is invariant under spatial translations (see Fig. 1),
it is usually argued that time-varying media preserves the momentum of the electromagnetic
field [1–4,16–18]. This intuition stems from Noether’s theorem [19–22], which more generally
states that symmetries of the action of a physical system have an associated conserved quantity.
However, a direct connection between invariance under spatial translations and momentum
conservation in time-varying media is not specified. In addition, the notion of the momentum of
the electromagnetic field is quite subtle. In fact, according to the Abraham-Minkowski debate
[23–27], there is more than one definition for the momentum of the electromagnetic field. On the
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one hand, one can define the Abraham momentum,

PA (t) =
∫

d3r pA (r, t) = µ0ε0

∫
d3r E (r, t) × H (r, t) (1)

where we have also defined the Abraham momentum density, which is proportional to the
Poynting vector field, pA = µ0ε0S. On the other hand, the Minkowski momentum reads as

PM (t) =
∫

d3r pM (r, t) =
∫

d3r D (r, t) × B (r, t) (2)

Fig. 1. Schematic depiction of time-varying media, in which both permittivity ε (t) and
permeability µ (t) change with time. Thus, the systems is invariant with respect to spatial
translations, but is not invariant with respect to temporal translations.

A common simplification of those definitions for a plane wave in non-dispersive media is
pA = ℏω/nc and pM = nℏω/c, which highlights the role of the refractive index n. Interestingly,
as pointed out by Leonhardt [28] one should call for the Minkowski momentum whenever the
wave aspects dominate, for example, in experiments involving momentum recoil [26,29], while
the Abraham momentum appears when the particle aspects are probed [23].

A resolution of the debate was offered among others by Barnett [30,31]. It is suggested that
the Abraham momentum is the kinetic momentum of the electromagnetic field, associated with
energy transport. The Minkowski momentum is, however, the canonical momentum of the
electromagnetic field, being the generator of spatial translations. Nevertheless, certain aspects of
the momentum of the electromagnetic field are still under question [32]. Moreover, the avenue of
near-zero-index (NZI) media exacerbates the differences between the forms of the momentum
[33–35] giving rise to zero Minkowski momentum but nonzero Abraham momentum inside
epsilon-and-mu-near-zero (EMNZ) media where both permittivity and permeability approach
zero.

Since time-varying media preserve spatial symmetries while breaking temporal symmetries,
it represents an excellent conceptual playground to illuminate the Abraham-Minkowski debate.
Following the interpretation offered by Barnett [30], it should be expected that the Minkowski
momentum - related to spatial translations - is a conserved quantity, while the Abraham momentum
- related to energy transport - is not. This work aims to provide a tutorial review of different
aspects on the conservation of the momentum of the electromagnetic field in time-varying
media. We address three independent derivations showing that only the Minkowski momentum
is a conserved quantity in time-varying media based on: (i) boundary conditions on Maxwell
equations, (ii) directly evaluating constants of motion and deriving conservation laws, and (iii)
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inducing spatial translations to the Lagrangian of the electromagnetic field. Each approach
provides a different physical insight into the problem.

2. Momentum conservation from inspecting Maxwell equations at a temporal
boundary

Our starting point is Maxwell curl equations in time-varying media, which, in the absence of
charges and currents, can be written as follows

∇ × E (r, t) = −∂tB (r, t) (3)

∇ × H (r, t) = ∂tD (r, t) (4)

For the sake of simplicity, we assume homogeneous and instantaneous time-varying media,
with constitutive relations

D (r, t) = ε (t)E (r, t) (5)

B (r, t) = µ (t)H (r, t) (6)

A more complete description of time-varying media would include the impact of dispersion
and loss [17,36]. However, a system with dissipation does not necessarily conserve quantities
even in the presence of symmetries. In addition, the assumption of instantaneous media is
widespread in the field of temporal metamaterials [2].

Integrating Maxwell Eqs. (3)–(4) accross a temporal boundary taking place at t0, where
material parameters suddenly change from ε(t−0 ), µ(t

−
0 ) to ε(t+0 ), µ(t

+
0 ), gives∫ t+0

t−0
dt∇ × H (r, t) =

∫ t+0

t−0
dt ∂tD (r, t) = D

(︁
r, t+0

)︁
− D

(︁
r, t−0

)︁
(7)

−

∫ t+0

t−0
dt∇ × E (r, t) =

∫ t+0

t−0
dt ∂tB (r, t) = B

(︁
r, t+0

)︁
− B

(︁
r, t−0

)︁
(8)

Therefore, we find that D (r, t) and B (r, t)must be continuous accross changes of the constitutive
parameters, for finite E (r, t) and H (r, t) fields. This property is well-known since early works
on time-varying media [16]. As a consequence, this reasoning confirms that the Minkowski
momentum – uniquely defined as a function of D and B fields via Eq. (2) - is a continuous quantity
across a temporal boundary, suggesting that is should be a conserved quantity in time-varying
media. While this argument is valid for instantaneous temporal boundaries, the continuity of D
and B has been extended to more general temporal evolutions, allowing for temporal tampering
[37]. At the same time, it must be noted that the continuity of D and B is directly linked to the
theoretical concept of a time-varying permittivity and permeability. Experimental demonstrations
of time-varying media based on metamaterials structures might include additional boundary
conditions leading to different continuity principles at an instantaneous temporal boundary [38].
However, this approach fails at providing any insight on the associated conservation law and/or
how it can be related to invariance under spatial translations. Moreover, it does not clarify the
(non) conservation of Abraham momentum.

3. Constants of motion and conservation laws

In this section, we address the conservation of momentum in time-varying media by direcly
testing if a given quantity is a constant of motion. To this end, one can take the time derivative
of the quantity under question and check if it is zero, in which case it shall be a constant of
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motion/conserved quantity. Before addressing the momentum, it is instructive to analyze the
energy of the electromagnetic field, which in time-varying media can be written as

U (t) =
∫

d3r u (r, t) (9)

with energy density
u (r, t) =

1
2
[︁
ε (t)E2 (r, t) + µ (t)H2 (r, t)

]︁
(10)

Taking the time derivative of the energy and, substituting Maxwell Eqs. (3)–(4), leads to the
following expression

dU
dt
= −

1
µ0ε0

∫
dS · pA −

1
2

∫
d3r

[︃
dε (t)

dt
E2 (r, t) +

dµ (t)
dt

H2 (r, t)
]︃

(11)

On the one hand, the first term in the r.h.s. of (11) is a surface term proportional to the E
and H fields. This term physically means that the change of energy over time is partly due to
energy either leaking out or coming into the system. It can be seen as a flux of either outgoing
or incoming Poynting vector field, hence setting down a link with PA (Eq. (1)). It confirms the
role of the Abraham momentum as the kinetic momentum, associated with energy transport. If
the volume is large enough to capture the entirety of the E and H fields within the time interval
of interest, its contribution vanishes. On the other hand, the second term in the r.h.s. of (11) is
a volume integral directly linked to the time modulation of the permittivity and permeability,
which results in a change of the energy of the system. It represents the energy that must be
pumped into or retracted from the system in order to realize the time modulation of the material
parameters. In other words, the time variation of the material parameters act as sources or sinks
of electromagnetic energy. By contrast, Eq. (11) shows that for a medium with static material
properties dU/dt = 0 and energy would be a conserved quantity.

Eq. (11) can also be casted as a local conservation law as a function of the energy and
momentum densities

du (r, t)
dt

+
1
µ0ε0

∇ · pA (r, t) = −
1
2

[︃
dε (t)

dt
E2 (r, t) +

dµ (t)
dt

H2 (r, t)
]︃

(12)

where we clearly identify the source/sink at the r.h.s..
Let us now tackle the conservation of Minkowski momentum and examine the time variation

of Abraham momentum. By introducing Maxwell equations and applying a few vector calculus
identities, it can be found that the time derivative of the Minkowski momentum is given by

dPM (t)
dt

= ε (t)

[︄ ∑︂
p=x,y,z

up

∫
dS ·

(︁
EpE

)︁
−

1
2

∫
dS (E · E)

]︄
+ µ (t)

[︄ ∑︂
p=x,y,z

up

∫
dS ·

(︁
HpH

)︁
−

1
2

∫
dS (H · H)

]︄ (13)

By doing so, we find that the time derivative of the Minkowski momentum reduces to surface
terms. Once again, if the volume of integration is taken large enough so that all the E and H
fields are confined within its interior, all surface terms vanish. In other words, dPM (t) /dt = 0,
proving that the Minkowski momentum is a constant of motion as expected. It is also instructive
to note that the above equation can be written in a differential form as a conservation law for the
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momentum density:
dpM (t)

dt
= ∇ · TM (r, t) (14)

where we define the Minkowski stress tensor for time-varying media as

TM (r, t) = ε (t)
(︃
E ⊗ E −

1
2

I (E · E)
)︃
+ µ (t)

(︃
H ⊗ H −

1
2

I (H · H)

)︃
(15)

with I being the identity dyadic. Conservation laws in the form of (14) can be found scattered in
the literature, for example, in the appendix of [18].

Proceeding similarly with the Abraham momentum reveals that in general it is not a conserved
quantity:

dPA
dt = −

(︂
1

ε(t)
dε(t)

dt +
1

µ(t)
dµ(t)

dt

)︂
PA (t)

−
ε0µ0
µ(t)

[︁ 1
2

∫
dS (E · E) −

∑︁
p=x,y,z up

∫
dS ·

(︁
EpE

)︁ ]︁
−

ε0µ0
ε(t)

[︁ 1
2

∫
dS (H · H) −

∑︁
p=x,y,z up

∫
dS ·

(︁
HpH

)︁ ]︁ (16)

Here again, the second and third terms are surface terms that would vanish for a sufficiently
large volume. However, the first term illustrates that the Abraham momentum does change in
time, following the change in the permittivity and permeability of the medium. Equation (16)
can also be compactly written as a local conservation law for the momentum density

dpA

dt
= ∇ · TA −

(︃
1
ε (t)

dε (t)
dt
+

1
µ (t)

dµ (t)
dt

)︃
pA (r, t) (17)

where we define the Abraham stress tensor in time-varying media, related to the Minkowski
stress tensor as follows

TA =
ε0µ0
µ (t) ε (t)

TM (r, t) (18)

In conclusion, testing for constants of motions provides an independent confirmation that the
Minkowski momentum is indeed a conserved quantity in time-varying media. In addition, it
provides insight in the form of the conservation law that supports its invariance. Furthermore, it
shows that the Abraham momentum is not a constant of motion in close connection to energy
considerations, and re-emphasizes its role as the kinetic momentum of the electromagnetic field.
Nevertheless, writing the conservation law does not clarify the role of the invariance of the
system under spatial translations in the conservation of momentum.

4. Momentum conservation as a consequence of invariance under spatial trans-
lations: a Lagrangian approach

In this section we address the conservation of momentum in time-varying media from the
perspective of the Lagrangian formalism for electromagnetic fields. Using the Lagrangian
formalism adds an extra layer of complexity, but allows to unequivocally identify momentum
conservation as a fundamental consequence of the invariance of time-varying media under spatial
translations. We note that most works identifying the Minkowski momentum as the generator
of spatial translations do it from a quantum description of the electromagnetic field, where the
Minkowski momentum appears as an operator [30]. However, it is important to understand
that momentum conservation as a consequence of invariance under spatial translations is also a
classical effect. Therefore, we keep here a classical Lagrangian description of the electromagnetic
fields, without introducing the quantization of the electromagnetic field.

In the following, we first review the Lagrangian description of electromagnetic fields extended
to time-varying media. Then, we derive a form of Noether’s theorem in our formalism and we
finally show the quantities associated with temporal and spatial translations for time-varying
media.
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4.1. Lagrangian description of the electromagnetic field

An in-depth review of the Lagrangian theory of the electromagnetic field can be found in
the textbooks by Cohen-Tannoudji [21] and Kong [39]. Here we review it and extend it to
time-varying media. From the perspective of Lagrangian theory, Maxwell equations are equations
of motion that can be derived from the principle of least (or stationary) action. This principle
states that true path of motion corresponds to a stationary point of the action. By motion we refer
to the values that the dynamical variables have in a given interval of time, which, when position
is a dynamical variable, aligns with the common notion of motion. The action is defined as the
integral of the Lagrangian between two instants of time t1 and t2:

S (t1, t2) =
∫ t2

t1
dt L (t) (19)

with the Lagrangian

L (t) =
∫

d3r L (r, t) (20)

and the Lagrangian density

L (r, t) =
1
2

∫
d3r [ε (t)E (r, t) · E (r, t) − µ (t)H (r, t) · H (r, t)] (21)

The choice of this Lagrangian density is a direct extension from the case with no time
modulation. It is justified because Lagrange’s equation correctly recovers the equations of
motion for the electromagnetic field, as shown below. For the Lagrangian description of the
electromagnetic field, it is convenient to work with scalar V (r, t) and vector A (r, t) potentials
instead of fields. For the sake of simplicity, we work in the Coulomb gauge, for which
∇ · A (r, t) = 0. By doing so, the scalar potential is zero in the absence of charges V (r, t) = 0, all
the fields are transversal, and they can be simply written as a function of the vector potential

D (r, t) = −ε (t) ∂tA (r, t) (22)

B (r, t) = ∇ × A (r, t) (23)

Then, Maxwell equations lead to the following wave equation for the components of the vector
potential (p = x, y, z):

∇2Ap (r, t) − µ (t) ∂t
{︁
ε (t) ∂tAp (r, t)

}︁
= 0 (24)

Due to field transversality, the Minkowski momentum can be compactly written as

PM = −ε (t)
∑︂

p

∫
d3r ∂tAp (r, t) ∇Ap (r, t) (25)

Similarly, the Lagrangian density reduces to

L =
1
2

∑︂
p

(︃
ε (t) Ȧ2

p (r, t) −
1
µ (t)

(∇ × A (r, t))2p
)︃

(26)

where we have used Ȧp as a shorter way to write the time derivative. From this description, it lies
that the components of the vector potential, Ap, and its time derivatives, Ȧp, are the dynamical
variables of the system.
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Imposing that a true path of motion is a stationary point of the action, for which δS = 0, leads
to Lagrange’s equations

∂L

∂Ap
−
∑︂

q
∂q

(︃
∂L

∂
(︁
∂qAp

)︁ )︃ − d
dt
∂L

∂Ȧp
= 0 (27)

which reduces to the wave equation for Ap in (24), justifying the direct extension of the Lagrangian
to time-varying media.

With Eq. (26), we find that the conjugate momentum of each vector potential component, Ap,
is the negative of the electric displacement field components

Πp (r, t) =
∂L

∂Ȧp
= ε (t) Ȧp (r, t) = −Dp (r, t) (28)

This point allow us to clarify another ambiguity related to the momentum of the electromagnetic
field. For a freely moving particle of mass m with Lagrangian, L =

∑︁
p

1
2 m ṙ2

p, the dynamical
variables are the position coordinates rp, p = x, y, z. Thus, their associated conjugate momenta
pp = ∂L/∂ṙp = m ṙp correspond to the components of the linear momentum. The latter is
also the momentum associated with the spatial translations of the system. However, for the
electromagnetic field, position is not a dynamical variable of the system while the vector potential
is. For this reason, one has to differentiate between the conjugate momentum and the momentum
associated with spatial translations, as clarified below.

Finally, the Hamiltonian is defined as a function of the conjugate momentum as follows

H =
∑︂

p

∫
d3r Πp (r, t) Ȧp (r, t) − L (29)

which can be found to be fully equivalent to the form of the electromagnetic energy in time-varing
media employed in the previous section, and given by Eqs. (9)–(10).

4.2. Noether’s theorem in the Coulomb gauge

In this section, we cast a form of Noether’s theorem which allows us to discern the conserved
quantities associated with the continuous symmetries of time-varying media. To this end, we
note that any continuous symmetry can be described as an infinitesimal variation of the action.
Therefore, as schematically depicted in Fig. 2(a), we consider a motion between times t1 and t2,
defined by the dynamical variables Ap (r, t), and an infinitesimally close motion between times t′1
and t′2, described by A′

p (r, t). The variation of the dynamical variables at a given point of time is
dAp (r, t) = A′

p (r, t) − Ap (r, t), and the variation of the action can be written as

dS = S′ − S =
∫ t′2
t′1

dt L
(︂
A′

p

)︂
−
∫ t2
t1

dt L
(︁
Ap

)︁
=
∫ t2
t1

dt
[︂
L
(︂
A′

p

)︂
− L

(︁
Ap

)︁ ]︂
+
∫ t′2
t2

dt L
(︂
A′

p

)︂
−
∫ t′1
t1

dt L
(︂
A′

p

)︂ (30)

To first order, last two terms can be approximated by∫ t′2

t2
dt L

(︂
A′

p

)︂
= L

(︁
Ap

)︁ |︁|︁
t2

dt2 (31)

and the equivalent expression for t1.
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Fig. 2. (a) Schematic depiction of the motion of a dynamical variable Ap (r, t) between
times t1 and t2, and an infinitesimally close motion, described by A′

p (r, t) between times t′1
and t′2. The difference between both motions at time t is given by dA (r, t) = A′ (r, t)−A (r, t).
The difference between the initial and final temporal points is given by dt1 = t′1 − t1 and
dt2 = t′2 − t2, respectively. (b) Schematic depiction of trajectories for systems with (left)
temporal translation symmetry, and (right) spatial translation symmetry.

Similarly, for two infinitesimally closed motions, the first term is given by∫ t2
t1

dt
[︂
L
(︂
A′

p

)︂
− L

(︁
Ap

)︁ ]︂
=

=
∫ t2
t1

dt
∑︁

p
∫

d3r
{︂

∂L
∂Ap(r,t) dAp (r, t) + ∂L

∂Ȧp(r,t) dȦp (r, t)

+
∑︁

q

(︂
∂L

∂(∂qAp(r,t))

)︂
d∂qAp (r, t)

}︂ (32)

Similarly to the derivation of Lagrange’s equation, we integrate by parts the second term with
respect to time and the third term with respect to r, so the variation of the action reduces to∫ t2

t1
dt

[︂
L
(︂
A′

p

)︂
− L

(︁
Ap

)︁ ]︂
=

=
∫ t2
t1

dt
∑︁

p
∫

d3r
{︂

∂L
∂Ap(r,t) −

d
dt

∂L
∂Ȧp(r,t) −

∑︁
q ∂q

(︂
∂L

∂(∂qAp(r,t))

)︂}︂
dAp (r, t)

+
∑︁

p
∫

d3r ∂L
∂Ȧp(r,t) dAp (r, t)

|︁|︁|︁t2
t1

(33)

Note that, in deriving the above equation we have assumed that the fields vanish at infinity,
so that there are no surface contributions. By contrast, the fields do not need to vanish at the
initial and final temporal boundaries, leading the contribution from the last term. In addition, the
integrand of the first term is a solution to Lagrange’s Eq. (27), which reduces to zero. Thus, by
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substituting (31)–(33) into (30) we find that the variation of the action is given by:

dS =
∑︁

p
∫

d3r
{︃

∂L
∂Ȧp(r,t) dAp (r, t)

|︁|︁|︁
t2
+ L

(︁
Ap

)︁ |︁|︁
t2

dt2

− ∂L
∂Ȧp(r,t) dAp (r, t)

|︁|︁|︁
t1
− L

(︁
Ap

)︁ |︁|︁
t1

dt1
}︃ (34)

If a system has a continuous symmetry, then the corresponding action remains invariant with
respect to infinitesimal displacements, i.e., dS = 0. In addition, since dS = 0 must hold for any
pair of times t1 and t2 we find that the term within brackets must be a constant of motion. These
relations correspond to Noether’s theorem applied to our formulation of the electromagnetic field
in time-varying media in the Coulomb Gauge. Given a continuous symmetry, specified by the
variation dAp (r, t) and the boundary condition on the Lagrangian L

(︁
Ap

)︁
dt, one can identify an

associated conserved quantity.

4.3. Temporal and spatial translations

First, let us assume that the variation is produced by an infinitesimal temporal displacement
dt, such that dt2 = dt1 = dt (see Fig. 2(b)). If the system is invariant with respect to temporal
translations we can write A′

p (r, t) = Ap (r, t − dt) ≃ Ap (r, t) − Ȧp (r, t) dt. Then, we have
dAp (r, t) = −Ȧp (r, t) dt. Substituting this result in (34) and factoring out dt we find that the
conserved quantity is ∑︁

p
∫

d3r
[︂
− ∂L

∂Ȧp(r,t) Ȧp (r, t) + L
(︁
Ap

)︁ ]︂
=

= −
∑︁

p
∫

d3r 1
2
∑︁

p

(︂
ε (t) Ȧ2

p (r, t) + 1
µ(t) (∇ × A (r, t))2p

)︂
= −H

(35)

Therefore, it is found that invariance with respect to temporal translations implies that the
Hamiltonian must be a conserved quantity. In time-varying media, the system is not invariant
under temporal translations, and, consequently, the Hamiltonian manifestly depends on time. As
shown in the previous section, taking its time derivative explicitly shows that it is not a constant
of motion.

Second, we assume that the variation is produced by an infinitesimal spatial displacement
η (see Fig. 2(b)). Then, if the system is invariant under spatial translations we must have
A′

p (r, t) = Ap (r − η, t) ≃ Ap (r, t) − η · ∇Ap (r, t), so that dAp (r, t) = −η · ∇Ap (r, t). Again,
substituting this result into (34) and factoring out η we find that the conserved quantity must be

P =
∑︂

p

∫
d3r

∂L

∂Ȧp (r, t)
∇Ap (r, t) = −

∑︂
p

∫
d3r ε (t) Ȧp (r, t) ∇Ap (r, t) (36)

which equals the Minkowski momentum in (25). Therefore, we finally found that the fact that
time-varying media are invariant under spatial translations directly enforces that the Minkowski
momentum is a conserved quantity.

5. Concluding remarks

Symmetries play a fundamental role in physics. They reduce the complexity of difficult
problems, as well as the computational cost needed to solve them. Symmetries also enable the
identification of conserved quantities and the formal link between both symmetries and conserved
quantities is Noether’s theorem. One of the reasons why time-varying media and/or temporal
metamaterials provide a fresh view on electromagnetic theory is because they break temporal
symmetries, which are conserved in most traditional photonics systems, while they maintain
spatial symmetries. However, the connection between spatial and temporal symmetries and the
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properties of time-varying media is not always explicitly stated, or analyzed through the point
of view of Lagrangian mechanics. The present tutorial aims at filling this gap. Furthermore,
we hope that this tutorial may clarify the subtleties of the conservation of the electromagnetic
momentum in time-varying media, the nuances of defining the momentum of the electromagnetic
fields within the Abraham-Minkowski debate, and that it will foster further research on the role
and significance of symmetries in temporal metamaterials.
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