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Abstract—In recent years, malware diversity and complexity
have increased substantially, so the detection and classification
of malware families have become one of the key objectives of
information security. Machine learning (ML)-based approaches
have been proposed to tackle this problem. However, most of these
approaches focus on achieving high classification performance
scores in static scenarios, without taking into account a key
feature of malware: it is constantly evolving. This leads to ML
models being outdated and performing poorly after only a few
months, leaving stakeholders exposed to potential security risks.
With this work, our aim is to highlight the issues that may
arise when applying ML-based classification to malware data. We
propose a three-step approach to carry out a forensics exploration
of model failures. In particular, in the first step, we evaluate and
compare the concept drift generated by models trained using a
rolling windows approach for selecting the training dataset. In
the second step, we evaluate model drift based on the amount
of temporal information used in the training dataset. Finally,
we perform an in-depth misclassification and feature analysis to
emphasize the interpretation of the results and to highlight drift
causes. We conclude that caution is warranted when training
ML models for malware analysis, as concept drift and clear
performance drops were observed even for models trained on
larger datasets. Based on our results, it may be more beneficial
to train models on fewer but recent data and re-train them after
a few months in order to maintain performance.

Index Terms—Concept drift, temporal analysis, malware clas-
sification, forensic exploration, explainability

I. INTRODUCTION

Malware represents a particular piece of code whose aim
is to alter normal program behaviour. Today, malicious soft-
ware is more disruptive than ever with more than 450,000
new malicious programs (malware) and potentially unwanted
applications (PUA) being registered every day [1]. These
malware programs are frequently used for cyberattacks aimed
at stealing information, deploying ransomware, or carrying
out other illegal operations or cybercrimes. Furthermore, their
versatility allows one to adapt and use them in a wide range
of devices such as the Internet of Things (IoT) and mobile
domains [38], [48].

Modernization of security software and detection techniques
have led hackers and malicious operators to develop new
methods for bypassing firewalls, spreading malware through
a system, and injecting backdoors [46]. This trend of creating
new malware variants based on techniques that are able to

evade “traditional” detection systems such as anti-virus scan-
ners [13], has generated an increasing amount and diversity of
malware applications. Due to the increasing complexity and
range of malware functionalities, it is not only important to
detect malware but also to distinguish the (growing number of)
different types of malware families in order to gain a better
understanding of current and future malware capabilities, and
their possible impacts [19]. Given this scenario, malware
detection and classification has become a key objective within
the field of information security [32].

Machine learning (ML) algorithms are commonly used to
detect malware elements [36]. These models are trained to
extract, analyze, and classify source programs as benign or
malware. However, the majority of studies in recent literature
[34], [36] are purely focused on the classification task -
typically racing towards the best classification performance
while neglecting the interpretation of the results. More and
more complex ML solutions are implemented to squeeze and
alter the initially given information while common pitfalls
are overlooked so that often over-optimistic conclusions are
drawn that do not reflect real-world cybersecurity scenarios
[5]. In fact, program behaviour and malware families can
change rapidly through the continuous use of new malicious
code, which ultimately leads to trained ML models becoming
outdated after only a few months without being noticed [26].
Moreover, these learning models may also be subject to
cyber-attacks aimed at deliberately “confusing” the model and
altering prediction results, which in turn may cause financial
loss, infrastructure damages, etc. [4]. This situation results in
a loss of control over the data, especially knowing that these
models are usually implemented by ML experts that are neither
the actual cybersecurity operators nor malware analysts [27].

Prior studies have tried to address these concerns [26],
[45], for example proposing an approach to evaluate temporal
decay on Android malware. However, the authors addressed
the problem as a binary classification and they did not analyze
the causes that generated the drift. Concept drift is also
analyzed in [23] and [30]. In both cases, again, the authors
only applied methods to detect concept drift, without analyzing
the causes behind this performance decay and its relation with
the malware behaviour.

Digital Forensics is a field within forensic science that
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is concerned with the identification, acquisition, processing,
analysis, and reporting of electronically stored data [8]. Its
primary objective is to extract useful information from digital
evidence, transform it into actionable intelligence, and present
the findings. This strategy is used in a variety of contexts,
such as criminal investigations, incident response, cyberattacks
investigation, data breaches, etc. [6] In the same way, in this
paper, we aimed to use a digital forensic approach to gain
more knowledge about the ML models, shedding light on input
data evolution and model behaviors. In particular, we propose
a methodology for forensics exploration based on temporal
analyses and concept drift detection, with the main goal of
extracting a deeper understanding of the challenges faced by
ML-based classification and exploring possible reasons for
model failure. Thanks to this, it will be possible to have a
broader vision of the model characteristics without limiting
the conclusions to its performance, helping cybersecurity an-
alysts and practitioners. To validate the effectiveness of this
approach, we apply it to a specific case study involving a
multi-class task with portable executables (PE).

Our methodology is based on three main steps. In Step 1, we
analyze how the data temporality in the training dataset affects
model performance and leads to concept drift and points of
model failure. This step applies a temporal dissection approach
dividing the given data into short temporal chunks and using
a rolling window strategy to train multiple models in order
to evaluate how the quality of the information affects model
performance over time. Then, in Step 2, we apply a temporal
aggregation operation for analyzing the temporal consistency
and reliability of the implemented models to unveil concept
drift and points of model failure. This operation increases
the amount of information (the number of temporal chunks)
used for training the models. Finally, in Step 3, we carry out
an in-depth misclassification and feature analysis combining
feature importance score, prediction results, and performance
evolution to understand trends and patterns that may have
generated the concept drift and model failure.

By applying digital forensic concepts and recently published
guidelines [5], it is possible to extract new domain knowledge
that could be used to enhance the analyst’s expertise and to
improve the detection of potential future attacks [12]. We
believe that the introduced methodology represents an initial
step to highlight behavioral trends and causes of model failure
of both models and input data. This information can help
analysts create a more valid and transparent ML model during
the research phase and then translate their lessons learned
to a production environment. In fact, identifying the specific
input information that is causing concept drift can allow
users and practitioners to acquire additional domain knowledge
that, in turn, can be used to take preventive actions, such
as modifying the data pre-processing pipeline, adjusting the
model’s parameters, determining when retrain or update their
model, for finally avoiding future model failures.

Inspired by previous approaches in which embeddings were
computed from malware Control Flow Graphs (CFGs) [41],
[43] in this work, we evaluate our methodology on multi-class

classifiers that directly use graph structural properties of CFGs
as embeddings for the malware classification. In particular, we
use three different classifier families, each one implemented in
two configurations. To the best of our knowledge, this is the
first study that is not limited to merely analyzing PE malware
multi-class classification performance but also proposes to use
detailed temporal and misclassification analyses to identify and
comprehend concept drift and potential points of failure for
digital forensics.

The main contributions of this work can be summarized as
follows:

• We compare the performance of six ML models able to
classify six malware families (multi-class problem) using
structural graph properties obtained from malware CFGs;

• Two temporal analyses are proposed: temporal dissection
to evaluate the quality of the training data and how
it affects model performance over time, and temporal
aggregation to detect significant concept drift points, even
when a larger dataset is used for training the model;

• An extensive misclassification and feature analysis is
performed to extract insightful information and explain
the causes that may have led to the observed concept
drifts and model failures.

The rest of the paper is organized as follows. In Section II,
concepts regarding malware classification and concept drift are
introduced. In Section III, we present the proposed method-
ology, whereas in Section IV, the dataset and the evaluation
metrics considered, as well as the experiment configurations,
are introduced. Then, in Section V, results are presented and
discussions are reported in Section VI. Finally, Section VII
provides conclusions and guidelines for future work.

II. BACKGROUND

In this Section, concepts about malware classification and
concept drift are introduced. More specifically, Section II-A
describes the malware classification task and its related works,
whereas in Section II-B the concept drift problem is presented.

A. Malware Classification

Malware classification tasks are usually based on static,
dynamic, or hybrid analyses. In the static case, malware
binaries are analyzed without actually running the code. The
code is used to extract information such as signatures, and
hashes, or for creating graph structures on top of which the
classification is performed [40]. In dynamic analyses, the
malware code is executed in an isolated environment, and
its behaviour is studied, as shown in [14]. However, this
approach can be more complex and time-consuming due to the
required malware execution in a secure environment. Finally,
in the hybrid analysis, both static and dynamic information
are combined for the final prediction [3]. One of the most
promising approaches is based on static analysis, extracting
CFGs in order to represent the flow of control between the
basic blocks in the program, i.e., a maximal-length sequence
of a branch-free code [9]. In these CFGs, vertices represent
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sequential code without branches or jump targets, whereas
edges represent the jumps in the control flow of the program.

In particular, Xu et al. [42] used CFGs and data flow graphs
extracted from Android applications, whereas Bruschi et al.
[7] introduced a detection method for detecting malicious
code exploiting their representation via CFGs. In [40], graph
information extracted from CFGs was combined with an in-
struction sequence for a malware family classification through
graph neural networks. In [43] and [41], authors proposed to
use embeddings directly extracted from Malware CFGs using
deep learning models. However, in this way, embeddings were
computed directly by the learning models, so they worked
like “black boxes”, which do not allow linking classification
performance to the embedding values. In this sense, it was
not possible to extract additional insightful information for
improving CTI.

Inspired by the approaches presented in [41] and [43], in
this work, we directly use structural properties of the CFGs
as graph embeddings and use them for the final multi-class
classification. In this way, our hypothesis is that we can di-
rectly relate classification performance to the structural graph
embeddings and use the analysis of input trends to improve
malware CTI. Furthermore, while [41] focused on firmware
images or vulnerable functions for binary classification, we
extract CFGs directly from a large PE malware dataset to
perform a multi-class classification.

B. Concept Drift

In machine learning problems, results strongly depend on
the data used during the training process. Hence, uncontrolled
changes in the input features can generate inconsistent and
misleading results. This problem becomes even more relevant
when temporal data are analyzed and novel information is used
as input for models trained on old data [35]. This problem is
usually known as concept drift or dataset shift [39]. In par-
ticular, concept drift can appear following different temporal
patterns, which can be distinguished into four categories [24]:
abrupt, incremental, gradual or reoccuring drift. It is to be
noted that although outliers and noise can be seen as points
that instantaneously change the data distribution, as happen in
abrupt drift, formally, they are not considered as concept drift
[24].

Concept drift is a highly relevant problem in cybersecurity
applications, especially when machine learning models are im-
plemented. It has been predominantly studied in applications
such as anomaly detection [17], fraud [10] and spam [31]
detection. However, in recent years, concept drift has been
recognized as a key issue for malware detection as malware
developers constantly try to create new variants to avoid
detection, leading to continuously evolving malware behaviour
that may render certain machine learning models outdated after
a few months only. More specifically, in [11], authors try to
improve classifier performance by detecting concept drift and
creating adaptive models, i.e., systems able to detect drift while
being in operation (“on-running”) and address it by retraining
themselves with more recent data. Other studies, such as [23]

and [30], propose novel methods for detecting concept drift,
however, they do not deeply analyze the relationship between
these performance decays and the actual input of the malware
classifier.

For these reasons, in this work, we propose to analyze
concept drift in depth using digital forensic analysis. Our
focus is not on directly mitigating concept drift, but rather
on developing a methodology to study it and gain a better
understanding of its causes and its impact on model decisions
over time.

III. TOWARDS PRACTICAL MALWARE THREAT ANALYSIS

The methodology proposed in this study aims to conduct
a digital forensic analysis that involves temporal and feature
analysis. This approach is then validated using a dataset of
PE malware binaries. The idea of this strategy is to extract
insightful information about the limitations of both the model
and the data. More specifically, the methodology is based on
three main steps: Temporal dissection, Temporal aggregation
and Misclassification and feature analysis.

1) Temporal dissection: this step allows us to evaluate
how the quality of the data changes over time and how
it affects the classification performance. In this sense,
we propose to split the dataset into M temporal chunks
of fixed size, and then train several ML models using
a x-chunks rolling window data and finally evaluate
them with data from the following chunks, respectively
(Figure 1).

2) Temporal aggregation: this step changes the size of the
training dataset to incorporate more chunks, as shown in
Figure 2. This strategy helps us to detect more consistent
drift points in the model performance, i.e., performance
drops found when larger datasets are used during the
model training. These drift points are further analyzed
in the next step.

3) Misclassification and feature analysis: in this step,
we first analyze confusion matrices to highlight which
classes are misclassified. Then, a feature importance
analysis is carried out. This operation can be performed
using different approaches, such as the mean decrease
impurity (MDI) [28], permutation method (PI) [2],
SHapley Additive exPlanation (SHAP) [16], etc. This
operation helped us in ranking the features and focusing
the analysis just on the most relevant ones used by the
classifier. Hence, the temporal trends of these features,
i.e., the feature values per class in all chunks, can
be analyzed. In this way, it is possible to detect rare
behaviours in the data that may help to explain what the
model learned and why it misclassified certain classes.
However, in cases where ML decisions are complex and
difficult to interpret, methods such as SHapley Additive
exPlanation (SHAP) [16] or Local Interpretable Model-
Agnostic Explanations (LIME) [47] can be employed
to study the predictions of individual instances or cases
(local interpretability) and to attempt to generalize the
model’s behavior.
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Fig. 1: Temporal dissection with 2-chunks rolling window
data.

Fig. 2: Temporal aggregation models trained with different
data amount.

IV. EXPERIMENTAL FRAMEWORK

In this Section, we describe the dataset, the used metrics
and the experiment configurations used in this work. More
specifically, in Section IV-A an overview of the used dataset
is reported, whereas in Section IV-B the metrics are described.
Finally, in Section IV-C, we present the classifier and the
parameters used during the experiments.

A. Dataset

In this work, as a case study for validating the introduced
approach, a PE Malware dataset called SOREL-20M [20]
is used. This dataset contains information about 20 million
binaries, of which 10 million are benign and 10 million
malicious, collected from January 1, 2017 to April 10, 2019.
This dataset publishes the executable files of the malware only,
which are opportunely disarmed. For each of these malware
programs, a first-seen timestamp is provided as well as one
or more “tags”. These tags represent the number of times
in which a certain sample has been detected as belonging
to a concrete malware family. If malware belongs to more
than one family, it has multiple tags, creating a multi-label
dataset. The dataset contains 11 malware families: Adware,
Dropper, Spyware, File Infector, Worm, Downloader, Flooder,
Ransomware, Packed, Cryptominer and Installer.

For the aim of this work, we focus only on the most
represented classes which are Adware, Dropper, Spyware,

Short SOREL
multi-labelled (M)

Single-labelled
class reduced

Final dataset
extracted

Months from 01/2017 01/2017 01/2017
Months to 04/2019 04/2019 04/2019
Adware Adw ∼ 2.4 306,972 (27%) 9,000 (∼ 16.67%)
Dropper Dro ∼ 3.5 210,833 (18%) 9,000 (∼ 16.67%)
Spyware Spy ∼ 4.5 93,305 (8%) 9,000 (∼ 16.67%)
File Infector Fil ∼ 3.3 193,932 (17%) 9,000 (∼ 16.67%)
Worm Wor ∼ 3.4 288,417 (25%) 9,000 (∼ 16.67%)
Downloader Dow ∼ 2.5 51,037 (5%) 9,000 (∼ 16.67%)
Flooder - ∼ 0.1 - -
Ransomware - ∼ 1.1 - -
Packed - ∼ 3.7 - -
Cryptominer - ∼ 0.3 - -
Installer - ∼ 1 - -
Total - 1,144,496 (100%) 54,000 (100%)

TABLE I: Malware families distribution in the dataset.

Packed, File Infector, Worm, and Downloader. Furthermore,
from this list, we excluded the Packed family as well, since
the compression of the malicious code works as an obfuscation
technique that obstacles their detection [44]. Hence, their
identification is out of the scope of this work. This leaves us
with 6 families to be distinguished. As mentioned, malware
samples in the SOREL-20M dataset can have more than one
tag (multi-label problem), however, for the sake of simplicity,
we focus on the ones that are characterized by one tag
only, addressing the problem as a multi-class task. In order
to decrease the computational cost mainly related to CFG
extraction and avoid imbalance problems, 9, 000 samples are
chosen among the obtained multi-class data to create the
dataset for the experiments. The final dataset was composed
of 54,000 single-labelled malware samples (9,000 per class)
as shown in Table I, whereas Figure 3 shows the monthly
distribution of the malware families in the 28 months (from
01/2017 until 04/2019).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Months
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Fig. 3: Malware families in each month (in percentage).

B. Metrics.

F1-score and Area Under Time (AUT) were used to compare
the performance of the different models. Hereby, F1-score
represents the relation between actual positive labels and those
given by the classifier, whereas AUT indicates the area under
the performance curve over time [26]. In our experiments, the
AUT is computed using the F1-score monthly curve. Further-
more, two AUT variants are considered: AUTnext6 and AUTlast6.
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Model
family Name Parameters

Random Forest RF1 estimators = 100, max depth = 10
RF2 estimators = 100, max depth = 100

Adaptive Boosting ADA1 estimators = 100, max depth = 10
ADA2 estimators = 100, max depth = 100

Support Vector
Machine

SVM1 C = 1, gamma = 0.5
SVM2 C = 1, gamma = 0.1

TABLE II: Classifiers families and configuration used in the
experiments.

The first one is computed considering only the 6 months
following the ones used for training the model, whereas the
latter is computed using only the last 6 months of the dataset.
The AUTlast6 can be used for evaluating the performance of
the models over a common dataset. All considered metrics
were applied in multi-class classification using micro-average
operations, which do not take into consideration possible
differences between classes [18]. All metrics take values in
a range between 0 and 1.

C. Experiment Configurations

In this work, we apply our three-step methodology to
classifiers able to analyze CFG properties extracted from PE
malware binaries. In particular, we extract CFGs from SOREL
dataset by using the Angr tool1 [29], [33]. Then, from each
malware CFG, we extracted 9 common graph properties to
describe them: the number of nodes in the CFG; the number
of edges; the number of strongly connected components [25];
the number of weakly connected components [37]; the number
of isolated nodes; transitivity of the CFG [21]; maximum
centrality degree, minimum centrality degree, centrality degree
on average. These CFG properties allow us to transform the
graph information into feature vectors (embedding) that are
finally used for training ML classifiers.

Three model families are used to learn and classify malware
behaviours extracted from CFGs. More specifically, Random
Forest (RF), Adaptive Boosting (ADA) [15] and, Support
Vector Machine (SVM) [22] are implemented, each one in
two different configurations, as reported in Table II.

For validating the introduced approach, the malware dataset
is split into chunks of 1 month, generating 28 chunks (M ).
In particular, during the temporal dissection (Step 1), a rolling
window is used to keep selecting 3 consecutive months (x) to
be used for training the classifiers, which are then evaluated
with data from the following months - while moving forward
in time, as described in Section III. The process is repeated by
moving the rolling window until reaching month 12 (12-2017),
hence, generating 10 different models (N ). On the other hand,
during the temporal aggregation (Step 2), 3 temporal sizes are
used, i.e., 3 models for each family-configuration are trained.
In particular, train datasets from the first month until months
3, 6 and 12 are used. This approach simulates training with
as much data as one has at hand in an equivalent real-world
scenario, and it helps to detect consistent performance drifts.

1https://docs.angr.io/built-in-analyses/cfg

Finally, due to the ML models trained in this case study,
the Permutation strategy is used for computing the feature
importance (Misclassification and feature analysis step). This
strategy measures the decrease in model performance after
the feature’s values are shuffled [2]. Then, just the top-4
features are further analyzed in terms of temporal (monthly)
trends to detect rare behaviours in the data. Lastly, to improve
the explainability of the results of unclear decay points, the
local interpretability of the model is studied using the SHAP
strategy [16]. The local interpretability allows us to detect how
individual features of a concrete input sample contribute to the
final prediction.

V. EXPERIMENTAL RESULTS

In this section, the results obtained by applying our method-
ology to the introduced malware dataset, are reported. In
particular, the temporal dissection (Step 1) and temporal
aggregation (Step 2) results are described in Section V-A and
Section V-B, respectively. Finally, in Section V-C, misclassi-
fication and feature analysis results (Step 3) are presented.

A. Temporal dissection.

Figure 4 reports the monthly F1-scores of models trained
with 3-month rolling window data. The figures show that
all the models (of the three families) perform well in the
initial months after training. However, their performance dra-
matically deteriorates over time. More specifically, models
trained with the early months (from months 1 to 5) exhibit
poor results in terms of F1-score in almost every test month.
This behaviour is more evident in SVM models (Figure 4c
and Figure 4f). When month 5 is included in the training
dataset (3-5 and 4-6), SVM models still yield poor results.
In contrast, RF and ADA models perform well in the 3-4
following months. They show a strong decay in months 11,
12, and 13 and then again, an improvement until month 17
(their peak value). However, all these models show their lowest
performance in month 19. ADA models trained in months 5-7
and 6-8 (Figure 4b and Figure 4e) exhibit promising results
with high performance in the following 9-10 months. Yet, with
a strong decay (lowest point) on month 19. Finally, all the
models (of the three families) trained from month 7-9 show
high results just for the first 3-4 months.

B. Temporal aggregation

AUT, AUTnext6 and AUTlast6 of the models trained with
temporal aggregation strategy are reported in Table III. The
3-month models achieve very low values, especially in terms
of overall AUT (values ≤ 0.43). However, RF2, ADA1 and
ADA2 models show better performance in the 6 months
following the training dataset, reaching AUTnext6 ≥ 0.60.
Nonetheless, their performance decreases dramatically when
“recent” data are used (AUTlast6), consistent with the results
obtained in the temporal dissection analysis. The same trend
is shown for 6-month and 12-month models. However, in the
latter, RF2 and ADA2 models reach overall AUT ≥ 0.62 and
AUTnext6 ≥ 0.77.
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Fig. 4: Monthly F1-score values for each model trained with 3-month rolling window data (temporal dissection).

Model
name

Training
months AUT AUTnext6 AUTlast10

RF1 1 - 3 0.39 0.59 0.40
RF2 1 - 3 0.43 0.61 0.41

ADA1 1 - 3 0.41 0.60 0.38
ADA2 1 - 3 0.41 0.60 0.40
SVM1 1 - 3 0.27 0.45 0.18
SVM2 1 - 3 0.31 0.45 0.26
RF1 1 - 6 0.53 0.60 0.48
RF2 1 - 6 0.56 0.63 0.50

ADA1 1 - 6 0.57 0.62 0.53
ADA2 1 - 6 0.58 0.63 0.52
SVM1 1 - 6 0.48 0.56 0.39
SVM2 1 - 6 0.52 0.56 0.47
RF1 1 - 12 0.61 0.76 0.55
RF2 1 - 12 0.62 0.77 0.58

ADA1 1 - 12 0.61 0.75 0.57
ADA2 1 - 12 0.63 0.80 0.57
SVM1 1 - 12 0.46 0.50 0.47
SVM2 1 - 12 0.58 0.75 0.54

TABLE III: Overall AUT, AUTnext6 and AUTlast6 values for
models trained on differently sized temporal datasets (temporal
aggregation).

Figure 5 shows the monthly F1-scores for each trained
model, revealing a performance variance according to the
training dataset size. In particular, the trend showed by all
3-month models (Figure 5a) can be seen as a incremental
concept drift, with a slow decline and two significant drops
at months 12 and 19. SVM1 model has two more decay
points in months 21 and 22. Models trained with 6-month
(Figure 5b) do not show a clear concept drift pattern, but

they disply fragmented values that in some cases can be
considered both an abrupt concept drift or outlier. All 6-
month models showed similar performance until month 20,
when their monthly performance started to diverge. Yet, all
of them exhibit a performance drop in months 12 and 19,
with their best value in month 17. Finally, analyzing Figure
5c, again all the models (excluding the SVM1) showed high
performance in month 17 and a decay in month 19.

The results obtained from the temporal dissection and the
temporal aggregation analysis, have highlighted the presence
of three interesting points, two related to performance decay
(months 12 and 19) and one related to highest performance
(month 17). Our hypotheses, for each point, are the following:

1) Hypothesis A - month 12: one possible explanation of
this decay is that there was a change in the distribution
of the Dropper family (Figure 3), as evidenced by the
higher presence of Dropper samples in this month com-
pared to the previous ones that were used for training
the models.

2) Hypothesis B - month 17: the performance peak in this
month could be attributed to the fact that models learn to
perfectly distinguish all the classes, especially the File
Infector which is the most represented one in this test
month (Figure 3).

3) Hypothesis C - month 19: this second decay could be
due to problems in distinguishing Dropper and Spyware
samples which are the most represented classes in this
test month (Figure 3), despite the models are trained
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(a) 3-month training dataset.
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(b) 6-month training dataset.
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(c) 12-month training dataset.

Fig. 5: Monthly F1-score computed for models trained on differently sized temporal datasets (Step 2 - temporal aggregation)

with larger datasets that included both families.
In order to validate our hypotheses, we propose to use the mis-
classification and feature analysis (Step 3) to investigate these
points in depth. For the sake of simplicity, the characteristics
of the best model (ADA2) are further analyzed.

C. Misclassification and feature analysis

Figure 6 shows the confusion matrices of the 3-month and
6-month ADA2 models when test data on month 12 are used.
In particular, the 3-month model confuses 95% (755/793) of
Dropper for Adware samples, whereas the 6-month model
confuses 94% (747/793) of Dropper for Downloader ones.
Furthermore, from this analysis, it is possible to highlight
that the 3-month model (Figure 6a) has a problem also in
detecting 65% (216/336) of Downloader, which are classified
as Adware. This insight seems to confirm our Hypothesis A.
In fact, in both cases, the models have problems in detecting
Dropper samples which are the most represented in this test
month, affecting the final results.

Analyzing Figure 7, it is possible to see that all the models
that showed their best performance on month 17 (6-month
and 12-month ADA2 models), can correctly classify Adware,
Spyware, Worm, Downloader and File Infector. More specif-
ically, 98% of File Infector samples are correctly classified,
affecting the final performance. On the other hand, the model
3-month ADA2 is not able to distinguish File Infector samples
as the other models, and in fact, 88% of them are classified
as Dropper. This analysis seems to verify the correctness of
our Hypothesis B.

Finally, Figure 8 reports confusion matrices of the models
affected by performance decay on month 19. Figure 8a shows
that the 3-month ADA2 model is able to distinguish Adware,
File Infector, and Downloader samples. However, its main
problem is in the detection of Dropper and Spyware families.
In fact, about 94% (1,986/2,121) of Dropper samples are
classified as Spyware, whereas about 66% (1,293/1,973) of
Spyware are classified as Dropper. These two families are also
misclassified by the 6-month model (Figure 8b), however in
this case, although the Dropper family is again confused with
the Spyware with a 94%, the model mixes Spyware with Worm
(60%). Finally, analyzing the confusion matrix of the 12-
month model (Figure 8c), it is possible to see that this model

Permutation Importance on ADA2 models
Features 3-month 6-month 12-month AVG.
# nodes 0.09 0.10 0.17 0.12
# edges 0.18 0.24 0.25 0.22
# weakly conn. 0.34 0.26 0.25 0.28
# strongly conn. 0.31 0.25 0.27 0.28
# isolated nodes 0.23 0.20 0.02 0.15
transitivity 0.00 0.01 0.01 0.01
# max. centrality degree 0.31 0.35 0.14 0.27
# min. centrality degree 0.24 0.34 0.34 0.31
# avg. centrality degree 0.18 0.14 0.08 0.13

TABLE IV: Feature importance scores based on Permutation
Importance. The top-4 features for each model are highlighted.

learns to classify the Spyware family correctly. Yet, it still
shows problems with Dropper samples, where 94% of them
are classified as Spyware. This analysis seems to verify also
our Hypothesis C. However, we are interested in extracting
information about the possible causes of this misclassification.
For this reason, feature importance and feature trend analyses
are reported.

In Section IV-C, Performance Importance (PI) values were
calculated for each ADA2 model, and the results have been
presented in Table IV. The analysis shows that for all models,
number of weakly connected components, number of strongly
connected components and minimum centrality degree are
essential features for the final classification. However, 3-month
and 6-month models also consider maximun centrality degree
in their top-4 important features, whereas the 12-month model
looks for the number of edges. Following the averaged PI
values over all the models (Table IV), the temporal trends of
number of weakly connected components, number of strongly
connected components, minimum and minimum centrality de-
gree are further analyzed in this study. The trend of a feature
is computed by averaging its values for each malware family
on a monthly basis, as shown in Figure 9. Then, the top 4
feature trends are compared in order to detect rare behaviours
in the data that may help to explain what the models learnt and
why they misclassified certain classes. In particular, just the
trends of Dropper, Spyware and Worm samples are analyzed
since these classes are the ones misclassified, as shown in the
previous analysis (Figure 8).

Figure 9 shows that the feature trends of Dropper, Spyware
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Fig. 6: Confusion matrices of the ADA2 models computed using test data on month 12 (first drop).
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Fig. 7: Confusion matrices of the ADA2 models computed using test data on month 17 (first hype).
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Fig. 8: Confusion matrices of the ADA2 models computed using test data on month 19 (second drop).

and Worm change constantly. In particular, when a model is
trained in just the first 3 months, it learns behaviours that are
very different from the ones that occur in month 19. In fact, in
terms of weakly connected components (Figure 9a), Dropper
samples showed very low values in the first 3 months (from
10 to 38), whereas the Spyware reached high values (from 40
to 85). However, in month 19, it is the Dropper family that
shows high values rather than Spyware. This trend occurs also
remarked in the strongly connected components feature (Fig-
ure 9b), while in minimum and maximum centrality degrees
(Figure 9c and Figure 9d) is the Spyware that started with low

values for then overwhelming Dropper ones in month 19.
Taking into account 6 months for training the model, still

does not address the misclassification of Dropper and Spyware.
However, in this case, the new 3 months integrate more
information that misleads the model in classifying Spyware
as a Worm family. In fact, in these new 3 months of the
datasets, the values of the strongly connected components
(Figure 9b) of Worms and Spyware are aligned, with the first
always below the latter. However, in month 19, again the
Spyware samples show low values never reached before. A
similar behaviour can be observed in minimum and maximum
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centrality degrees (Figure 9c and Figure 9d), where in month
19, Spyware reached high values usually reached by Worm
samples (at least in the 3 new months added in the training
dataset).

Finally, it is not possible to extract a clear explanation
about causes that generate misclassification when 12 months
are used as training dataset. In fact, in this case, limiting
the trend study only to the top-4 features is not enough
for a comprehensive analysis. For this reason, in order to
extract information related to this case, in Figure 10, the local
explainability results computed using the SHAP strategy are
reported. In particular, the figures show how each feature
contributes to the classification of a specific input sample.
More specifically, two samples of the misclassified class (X1

and X2 Dropper) are randomly chosen from the month 19
test dataset. Figure 10a shows that, although X1 is a Dropper
sample, the values of almost all the features lead the model
to classify it as Spyware with a score of 98%. In particular,
in this case, the value 0 of the minimum degree centrality, a
single isolated component and average degree centrality equal
to 0 are the most important features. On the other hand, as
shown in Figure 10b, X1 is classified as Dropper just with a
score of 1%. In fact, only the huge amount of nodes, and the
number of strongly and weakly connected components seem
favoring the Dropper label. A similar trend is also shown in
Figure 10c and Figure 10d, when X2 is used as input to the
model. In this case, again, the sample is classified as Spyware
with a score of 42%, thanks to the 0 in the average centrality
degree, the low number of weakly connected components and
the maximum centrality. This latter also positively impacts
the Dropper classification (Figure 10d). However, the number
of edges, the weakly connected, and the number of isolated
components decrease the probability of the Dropper label
(12%). With this analysis, it is possible to see, that values
of weakly connected components around 40 favouring the
Spyware classification over the Dropper one, and this is exactly
the average value that the Dropper family shows in month
19 (Figure 9a). Furthermore, Figure 10 shows that also other
features like the number of edges and average centrality degree
are determinants for penalizing Dropper classification.

VI. DISCUSSION

The temporality of the data and hence the lifetime of
malware strongly affected model performance. Analyzing the
performance of models trained with the presented rolling
window technique, one can appreciate that all models worked
better (and surprisingly well) in months closer to the months
used for training them, whereas their performance decayed
dramatically when evaluating with far away temporal data, i.e.,
malware developed about 4 months later. This is an important
finding as it warrants caution when applying once-trained
models in real-world applications: especially when dealing
with malware, models do have a “lifetime” and should be re-
trained after defined intervals, i.e., 4 months in our case study.
On the other hand, temporal aggregation strategy showed that
the more data were used in the training dataset, the better
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Fig. 9: Trends of the top-4 features for the Dropper, Worm
and Spyware classes until month 19.
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Fig. 10: Local explainability with SHAP: how features contribute to the classification of X1 and X2 (Dropper samples classified
as Spyware) in the 12-month model.

the overall classifier performance (Table III). Furthermore,
temporal aggregation analysis showed that even using a larger
dataset in the training process, all the considered models
were affected by concept drift - with the last models, trained
with 12-month (Figure 5c), showing the least concept drift
as one would expect. In particular, 3-month models (Figure
5a) showed several clear points of decline after which their
monthly performance tended to decrease. Finally, the 6-month
models (Figure 5b) did not show a clear concept drift pattern
but more fragmented values which can be considered both
abrupt concept drift or outliers.

In the final misclassification and feature analysis step, we
analyzed the confusion matrices extracted for the dates of
critical model failure (months 12 and 19) and for the date
where the models showed their best values (month 17). We
performed a feature importance analysis in order to explore
features and their trends in more detail. Table IV shows that all
structural graph properties extracted from the CFG were useful
for the final classification, except for “transitivity”, which can
be removed in future applications to improve generalization
and computational efficiency. When analyzing the trends of the
4 most important features (Figure 9), we observed that at least
one feature usually changed substantially in the months af-
fected by performance decay. At the same time, other features

seemed to align with features from the classes that the initial
class was confused with. This combination of divergence and
alignment of such features, together with the analysis of the
composition of the training dataset, allows us to shed light on
possible causes of the misclassifications.

Limitations and common pitfalls. The proposed method-
ology has been applied to a subset of the SOREL-20M
dataset for multi-class PE classification. However, a significant
portion of the dataset was filtered out to remove (a) less-
represented classes and (b) samples with multiple labels. For
this reason, the obtained results and conclusions represent just
a preliminary analysis and should be verified also when both
conditions, (a) and (b) would be relaxed, as happen in the real
environment. Furthermore, although we relate CFG properties
with performance drifts over time, these features do not
really allow us to determine what is changed in the malware
executable. However, these tasks are out of the scope of this
work, which aim was to validate the whole methodology for
discovering insights and improving explainability on model
failure points.

To evaluate the quality of the proposed methodology, we
discuss possible pitfalls that can generate misinterpretation of
preliminary results. These pitfalls are analyzed following the
same notation as introduced in [5]. P1. Samples Bias and P2.
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Label Inaccuracy represent the hardest pitfalls to mitigate. In
fact, although a single dataset (SOREL-20M) was used for
our analysis, it was composed of information from multiple
sources (P1), and it was not possible to verify the correctness
of all the labels (P2). Therefore, the limitations of the dataset
were acknowledged (P1), and the analysis focused only on
samples with a single label (P2).

P3. Data Snooping, P4. Spurious Correlations and P5.
Biased Parameter Selection represents three pitfalls related
to the system design. P3 and P5 were mitigated by splitting
the dataset into train and temporal test sets for validating the
performance. On the other hand, regarding P4, we provided an
analysis of feature importance to highlight which features were
more relevant for the classification, becoming more prone to
be used in an attack.

P6. Inappropriate Baseline, P7. Inappropriate Performance
Measures and P8. Base Rate Fallacy are common pitfalls
related to the evaluation of performance. In our approach,
the models themselves evaluated over time were used as the
baseline models (P6). However, following suggestions given
for P7, appropriate performance measures were used, such as
AUT, and F1-score. Regarding P8, the overall dataset result
was balanced, since we selected the same amount of samples
for each class. However, classes were not balanced temporally
due to their distribution in the original dataset.

Finally, the last two pitfalls - P9. Lab-Only Evaluation
and P10. Inappropriate Threat Model. – are related to the
deployment in real scenarios. In this work, we dealt with
these two pitfalls in trying to replicate real-world conditions,
such as considering data availability in time, the evolution
of behaviors, the amount of training information (which can
affect the model usability), etc.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we aimed to highlight the problems that may
arise when applying ML-based multi-class classification to
real-world malware data. For this reason, a three-step approach
was introduced to carry out a forensics exploration of model
failures in malware classification. Firstly, we performed a
detailed temporal analysis of concept drifts, in which models
were trained a) using data from 3-month rolling windows (tem-
poral dissection) and b) by gradually increasing the amount of
data available for training (temporal aggregation). Temporal
analyses revealed that all models were affected by concept
drift (performance breakdown) at the same temporal points,
even when trained with a large amount of data. In particular,
Dropper and Spyware samples were observed to be among the
most misclassified classes. The outcomes of this study can be
summarized as follows:

• The temporality of data and the potential lifetime of mal-
ware are critical factors when evaluating the performance
of classification models. In fact, concept drift and several
distinct points of model failure could be observed even
using models trained on a relatively large amount of data;

• Our temporal dissection approach highlighted that several
models trained with only a few months of recent data

(3 months) performed surprisingly well on immediately
following data;

• Analyzing trends of the most important features over
time for confused classes, we observed that in the lead-
up to critical points of model failure, it was usually
due to more than one feature changing substantially
and rather abruptly. Furthermore, in unclear points, local
explainability techniques are the key to gaining insights
from model failure.

Our final conclusion is that malware features as captured by
structural graph properties from CFGs are constantly changing
and evolving over time, leading to significant concept drifts
and points of classifier failure (in our particular study case for
Dropper and Spyware classes). Therefore, training a model and
leaving it in operation without re-training presents a potentially
serious security risk for practitioners and stakeholders. Follow-
ing our results, it may be beneficial to train models on fewer
but recent data, apply them for a few months only and then re-
train using the newest data again (rolling window approach)
- even though further research is necessary to confirm this
hypothesis and to define re-train intervals better.

In further future work, it may be interesting to validate our
methodology in a more complex scenario exploring additional
feature sets that could directly reflect malware behaviour
changes (not only related to graph properties), problem settings
(e.g., introducing other types of malware, consider execu-
tion/dynamic traces, etc.), and larger datasets. All models
implemented here showed concept drift, and most showed
distinct points of model failure. This hints that the problem
of malware multi-class classification indeed is not resolved
yet and that other strategies, such as adaptive models, need to
be explored to mitigate concept drift promptly.
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