
1

  
Abstract—A novel deterministic approach to model the radio 

wave propagation channels in complex indoor environments 
reducing computational complexity is proposed. This technique 
combines a neural network and a 3D ray launching algorithm in 
order to compute wireless channel performance in indoor 
scenarios. An example of applying the method for studying indoor 
radio wave propagation is presented and the results are compared 
with a very high resolution fully three dimensional ray launching 
simulation as the reference solution. The new method allows the 
use of a lower number of launched rays in the simulation scenario 
whereas intermediate points can be predicted using neural 
network. Therefore a high gain in terms of computational 
efficiency (approximately 80% saving in simulation time) is 
achieved. 

Index Terms—3D-Ray launching, Neural Network, RF 
environment modeling, radio channel simulation, multipath 

I. INTRODUCTION

HE significant growth of wireless communications over 
the past two decades, has led to an intense interest in 

understanding and predicting radio wave propagation 
characteristics in indoor and outdoor environments. This 
makes it really valuable to have the capability of determining 
optimum base-station locations, and predicting their coverage, 
without carrying out a series of measurements, which are very 
expensive and time consuming. It is therefore fundamental to 
develop an effective propagation model for wireless 
communication, in order to provide accurate design guidelines 
for wireless systems.  

Traditionally, empirical methods were used (such as COST-
231, Walfish-Bertoni, Okumura-Hata, etc.) for initial coverage 
estimation [1-3]. These empirical models can give rapid results 
but require calibration based on measurements to provide an 
adequate fit of the results using regression methods. On the 

Manuscript received  
Leire Azpilicueta and Francisco Falcone are with the Electrical and 

Electronic Engineering Dept, Universidad Pública de Navarra, Pamplona, 
Navarra, Spain (phone: +34-948-169741; fax: +34-948-160720; e-mail: 
francisco.falcone@unavarra.es).  

Meenakshi Rawat, Karun Rawat and Fadhel Ghannouchi are with the 
iRadio Laboratory, University of Calgary, Canada. 

other hand, deterministic methods [4-10] are based on 
numerical approaches involving either solution of Maxwell’s 
equations using full-wave simulation techniques, such as 
method of moment (MoM) and finite difference time domain 
(FDTD) [11], or, using geometrical approximations such as 
ray launching (RL) [12] and ray tracing (RT) [13]. Previously, 
RL and RT were both classified as ray tracing methods, 
although more recently both methods are distinguished. The 
differences are mainly due to different approaches. RL 
technique principle is that the transmitter launches thousands 
of test rays in a solid angle and the true path is determined by 
looking for the rays arriving at the receiver, whereas in 
classical RT methods the reflected paths by walls and furniture 
are found by computing the image of the transmitter or of the 
receiver. These methods are precise but are time-consuming 
due to inherent computational complexity. Their combination 
with uniform theory of diffraction (UTD) [14] is most 
frequently applied to radio coverage prediction [15-18]. The 
RT and RL models potentially represent the most accurate and 
versatile methods for urban and indoor, multipath propagation 
characterization or prediction.  

Nevertheless, the computational time in the conventional ray 
launching, called the shooting-and-bouncing-ray (SBR) 
method [19], can be very large depending of the accuracy of 
the results. Reducing the simulation time is still a challenging 
problem and several acceleration techniques have been 
proposed in the literature to overcome this drawback. The 
main technique focuses on reducing the number of 
intersections tests of the rays with the objects in the 
environment. This reduction is masterly done by using 
geometrical algorithms based on the concept of bounding 
volumes [20-21]. Bounding volumes are simple geometric 
objects that surround the objects of the environment in a tree-
like manner. The algorithm finds the intersected wall through 
searching in the tree generated by the bounding volumes 
instead of using a brute force method. Some examples are 
reported in [22] where the binary space is partitioned and in 
[23] where the volumetric space is partitioned and angular Z-
buffer is used. In [24] several acceleration techniques to 
enhance data storing and processing are presented.  Some 
Authors have worked on speed-up methods by splitting the 3D 
problem into two 2D sub-problems [25-26], while the 
decomposition of 3D ray propagation into 2D vertical planes is 
proposed in [27]. In [28-29], the environment is tessellated 
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using rectangular and triangular meshes, respectively. A 
preprocessing and discretization of the database of the 
environment are proposed in [30]. Finally, two different 
classes of methods for speeding up ray tracing are presented in 
[31], aimed at reducing the size of input database and the 
number of rays to be handled by the algorithm.  

One of the major drawbacks of the SBR method is that most 
of the rays emitted from the source do not reach the receiver 
and none of the acceleration techniques mentioned above is 
capable of solving this problem. However, the number of 
launching rays could be decreased with the aid of a trained 
neural network (NN) which predicts the results for 
intermediate rays, resulting in a significant decrease of the 
computational burden. In this paper, we will present a new 
coverage prediction method based on this idea.  

The original contribution of this paper is the presentation of 
a new hybrid Ray Launching-Neural Network (RL-NN) 
technique for joint prediction of radio wave propagation using 
RL and NN, which is more computationally efficient as 
compared to the conventional RL method. This technique uses 
NN for modeling and storing the RL results for coverage 
prediction. Once NN is trained to understand RL based 
scenario, it allows the use of less number of launching rays in 
the space while power received for intermediate points can be 
predicted using NN. This result in computational requirement 
to be reduced by 80% compared with a very high-resolution 
fully three-dimensional (3D) RL simulation.  

The paper is organized as follows. In Section II the RL 
method is analytically described with the geometry of the 
environment under the consideration. Section III presents the 
comparison of the neural networks considered for the new 
hybrid method. Measurement results are discussed in Section 
IV and, in Section V, simulation results and processing gain in 
terms of computational time are reported. Finally, conclusions 
are given in Section VI. 

II.  RAY LAUNCHING SIMULATION  

As a starting step, the high resolution RL simulation has 
been done to achieve accurate results of the propagation 
channel. The results of this simulation are considered as a 
reference for comparing proposed technique with current state 
of art. In addition, measurements have been performed in a 
typical indoor scenario in order to verify the high resolution 
RL results. This fully 3D RL algorithm has been implemented 
in-house, based on MatlabTM programming environment. It is 
based on Geometrical Optics (GO) and Geometrical Theory of 
Diffraction (GTD). To complement the GO theory, the 
diffracted rays are introduced with the GTD and its uniform 
extension called as the Uniform GTD (UTD). The purpose of 
these rays is to remove the field discontinuities and to 
introduce proper field corrections, especially in the zero-field 
regions predicted by GO. The principle of the ray launching 
method is to consider a bundle of transmitted rays that may or 
may not reach the receiver. The number of rays considered in 
this bundle and the distance from the transmitter to the 
receiver location are the two factors determining the available 

spatial resolution and, hence, the accuracy of the model. A 
finite sample of the possible directions of the propagation from 
the transmitter is chosen and a ray is launched for each such 
direction. If a ray hits an object, then a set of a reflecting and a 
refracting ray is generated. If a ray hits a wedge, then a family 
of diffracting rays is generated. This is depicted in Fig. 1. 

Rays are launched from the transmitter at an elevation angle 
θ and an azimuth angle,Φ as defined in the spherical 
coordinate system. Antenna patterns are incorporated to 
include the effects of antenna beam-width in both azimuth and 

 

 
 

Fig. 1. Principle of operation of the 3D ray launching method implemented 
in-house to perform indoor coverage analysis. 

 
elevation. Parameters such as frequency of operation, number 
of multipath reflections, separation angle between rays, and 
cuboids dimension are introduced. The material properties for 
all the elements within the scenario are also taken into account, 
by knowing the dielectric constant and permittivity at the 
frequency range of operation of the system under analysis.  

Two scenarios have been considered for the analysis. First, 
a canonical scenario which corresponds with a small office of 
the second floor of the Electric and Electronic Department of 
the Public University of Navarre has served as the set up for 
the experiments. Measurements have been performed in this 
scenario and they have been compared with simulation. A 
schematic view is shown in Fig. 2 which dimensions are 3.5m 
x 4m x 2.5m. The small office has two tables and one 
bookshelf. Objects are defined as different hexahedrons in the 
algorithm. This basic geometric shape can conveniently be 
used to model any complex objects, such as tables, chairs and 
shelves, and placing them into the room. In a generic room, 
walls can be formed by windows, doors, frames, etc. Thus, to 
characterize the walls of a room; each discontinuity on the wall 
must be characterized. This will define each part of the wall 
like an object by its central position ( 0x , 0y , 0z ),  the width in 

each dimension ( , ,x y z∆ ∆ ∆ ) and the material that is made. All 

the materials within the scenario have been taken into account 
for the simulation, like metal for the bookshelf, wood for the 
tables, and plasterboard for the walls, considering their 
dielectric constant and conductivity for the given frequency of 
operation.  
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Fig. 2. Initial scenario implemented for simulation validation. 

 
The second considered scenario is the iRadio laboratory of 

the University of Calgary, which has dimensions given as 
8.91m by 17.85m by 3.93m. This scenario is much more 
complex and bigger than first one. A schematic view of the 
simulated scenario is depicted in Fig. 3, with the typical work 
stations of a laboratory. The material parameters used for both 
scenarios at 2.4GHz frequency are defined in Table I. 

 

 
 

Fig. 3. Schematic view of the considered scenario for deterministic radio 
channel simulation.  

 
TABLE I 

MATERIAL PROPERTIES IN THE RAY LAUNCHING SIMULATION  

Parameters Air Aluminum Wood Plasterboard 

Permittivity (εr) 1 4.5 2.88 2.02 

Conductivity (σ) [S/m] 0 4.107 0.21 0.06 

 
Table II shows the selected parameters for the high 

resolution RL simulation. The transmitter and receiver 
antennas are omnidirectional, with 5dBi gain respectively. The 
angular resolution in the horizontal (∆Φ) and vertical plane (∆θ) 
for the launching rays is 0.5º.  The number of reflections 
considered in the simulation is seven. It should be noted that 
this reflection number has been chosen as a result of the 
convergence analysis of the algorithm. Fig. 4 shows this 
convergence trend for different heights along Z-axis of the 
scenario shown in Fig. 3. The convergence trend in Fig. 4 is 
shown in terms of the standard deviation of received power 

along Y-axis for x=3m. Thus, Fig. 4 represents a measurement 
along YZ plane at x=3m. From Fig. 4, it can be observed that 
the algorithm converges for seven reflections for all the 
heights taken into consideration.  

 
TABLE II 

HIGH RESOLUTION RAY LAUNCHING PARAMETERS 

Frequency 2.4GHz 
Transmitter power 0dBm 

Antenna gain 5dBi 

Horizontal plane angle resolution (∆Φ) 0.5º 
 

Vertical plane angle resolution (∆θ) 0.5º 

Reflections 7 

Cuboids resolution 12cm x 12cm x 12cm 

 
In order to evaluate proposed hybrid RL-NN technique, a 

low resolution RL simulation with only four reflections has 
been made, storing and modeling the parameters for training 
the data with a NN, achieving accurate results comparable to 
the high resolution RL simulation as a reference technique. 
This comparable performance is achieved with a high 
efficiency gain in terms of computational time and required 
memory.  

 
Fig. 4. Standard Deviation of Received Power for X=3m, along the Y-axis, 
for different heights, versus the number of reflections.  

III.  MULTIDIMENSIONAL NEURAL NETWORKS 
 

     For a fixed transmitter position, power decreases with 
respect to the distance from the transmitter and can be 
perceived as a nonlinear function of relative coordinates, X, Y 
and Z. This paper proposes the use of neural network to model 
this multiple-input-single-output nonlinear function. In 
general, neural networks works on the principle that any 
nonlinear function can be approximated by summation of 
weighted nonlinear functions [32]. A simple neural network 
contains nonlinear activation functions which map input signal 
into different nonlinear domains. These nonlinear outputs are 
multiplied with an appropriate weight and biased by a constant 
value (known as bias value) such that summation of these 
output domains is eventually equal to the required output. 
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An analogy can be perceived between the ray-tracing scheme, 
where the space is segmented into 3-D blocks and the power is 
computed for each block, and the neural network scheme 
where each activation function output provides nonlinear 
segmentation and weight/bias is adjusted to imitate computed 
power. 
For multi-dimensional modeling, feed-forward NN (FFNN) 
and radial basis function NNs (RBFNN) are used extensively. 
FFNN neural network increases number of nonlinear 
segmentation using two layers containing activation functions. 
According to control theory, two transfer functions in series 
provide multiplication of transfer functions thus providing 
higher nonlinearity. RBFNN uses single layer with very high 
number of neurons with the same goal of achieving higher 
number of nonlinear segmentation. The working of these NNs 
is explained in detail in next section. In addition, the modeling 
capability of these NNs is assessed for the following three 
scenarios: 
Case-I: ∆φ =π/90, ∆θ= π/90 (16200 rays). 

Case-II: ∆φ =π/180, ∆θ= π/180 (64800 rays). 

Case-II: ∆φ =π/360, ∆θ= π/360 (259200 rays) 

Following section discusses the both NNs and their 
comparison from analytic point of view. 

A. Multidimensional NNs 

 
Feedforward Neural Network: 
 
FFNN contains one input layer, one hidden layer and one 
output layer. Fig. 5(a) shows a fully connected feedforward 
NN. Weights are initialized randomly in the interval of [-0.8, 
0.8] and converge toward their optimal values as the training 
proceeds.  

During the forward computation, data from neurons of a 
lower layer (i.e., kth layer) are propagated forward to neurons 
in upper layer [i.e., (k+1)th layer]. The net input to any neuron, 
i, in any layer (k+1) is given by [32]: 
 

                           

1 1 1

1

net
p

k k k k
i ij j i

j

w o b+ + +

=

= +∑                             (1) 

where 1K
ijw +  denotes the synaptic weight connecting the j th 

input from the previous layer to the ith neuron of the present 
layer, P denotes the total number of neurons in the previous 

layers, and k
ib denotes bias of the ith  neuron in the kth layer. 

The output of neuron i at any layer (k) is calculated as:        
 

                            (net )k k
i io f=                                              (2)  

 
The output of any layer works as an input to the next layer. 

The output layer has a linear activation function, which sums 
up the outputs of hidden neurons and linearly maps them to the 
output. The activation function, f, chosen for two hidden layers 
is the hyperbolic tangent, which maps nonlinearity between -1 
and 1. 

The goal of training is the minimization of the error between 
the expected value and the actual NN that was determined in 
the forward computation. During the forward pass, the cost 
function or error energy is given by: 

 

2 2
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where ξ  is total error, out ( )I n and out ( )Q n are the desired 

outputs, N denotes the total number of training samples, and 

out
ˆ ( )I n and out

ˆ ( )Q n are the outputs from output- layer neurons. 

Starting with the output layer and moving back towards the 
input layer, the error term for the i th neuron in kth layer is 
calculated as: 

 

1 1
1

Output Layer

Hidden Layer

k
i ik

i P k k
ij jj

t o k
ε

w δ k+ +
=

 − == 
=∑

                (4)     

                                            
Where P is number of neurons in the jth layer, the local 

gradient, 
1k

iδ
+ , for the ith neuron in the (k+1)th layer can be 

calculated as 

                 (net ) Present Layerk k k
i i iδ ε f k′= =          (5) 

where (net )k
if ′ is the derivative of the activation function. 

With the aim of minimizing the error energy given in (3), 
the backward computation is done in batch mode to adjust the 
synaptic weights and biases of the network, according to the 
Levenberg-Marquardt algorithm [32]: 
 

                  ∆ [ ( ) ( ) ] ( ) ( )T TJ J µ J−= + 1X X X I X e X              (6) 

 
where µ is the gain constant, J(X) is the Jacobian matrix 
calculated over the error matrix, e(X), with respect to X, 
where:  
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(b) 

Fig.5 (a) Feedforward NN architecture. (b) Number of hidden neurons selection for 
case I. 

 

  
[ ... ... ... ... ... ]1 1 1 1 1 h h h h h

11 12 nR 1 n 11 12 nR 1 nw w w b b w w w b b=X                 (7) 

 

  
[ ( ) ( ) ( ) ............. ( ) ( ) ( )]x y z x y zε 1 ε 1 ε 1 ε N ε N ε N=e(X)   .     (8)  

 
N denotes the total number of training samples, h denotes the 
outermost layer.  

A complete description of the Levenberg-Marquardt 
algorithm for a three-layer feedforward NN can be found in 
[32], which is a numerical optimization of the Gauss-Newton 
method, where a small value of µ provides a Gauss-Newton 
solution and a very high value provides steepest descent 
solution. During initial iterations, µ is selected to be high 
(=.01); and, the algorithm converges swiftly according to 
steepest descent. After every iteration µ is divided by β (=10); 
and, after a few iterations, the algorithm takes the form of a 
second-order Gauss-Newton optimization, which avoids 
falling into local minima. The whole procedure is carried out 
repeatedly until the desired performance is attained or the NN 
starts failing the validation procedure, drifting away from the 
generalization criterion. The FFNN model had three neurons 
in input layer to account for three inputs as X, Y, Z position 
co-ordinates and one neuron at the output layer to account for 
power at that co-ordinate. Fig. 5(b) shows model performances 
in terms of absolute mean error, standard deviation (S.D.) and 
normalized mean square error (NMSE) with respect to number 
of neurons in hidden layer for most simple case of case-I and 
number of neurons in hidden layer is chosen as 15.    
 
Radial Basis function neural network: 
 

The topology of RBFNN is shown in Fig.6 (a), where only 
one layer of weights is to be adjusted. The training procedure 
works as follows [33]. Computational cost of learning for 
RBFNN is less than FFNN as neurons are added as learning 
continues. Initially, the hidden layer has no neuron.   
The nonlinear function,{ ( ), , .... }i if G x t i 1 2 M= − =  is the 

Green’s function defined as  

                         
( ) exp( )

2
i i2

i

1
G t t

2σ
− = − −x x                     (9) 

which is a multivariate Gaussian function with variance 2
iσ       

(spread factor), where x is the input vector and {t i, i=1, 2…M} 
are the centers of  G(.). The output of the j th output node is 
given by 
 

                              
( ) . ( )i j iy x W G x t b= − +                           (10) 

 
where i jW are the weights and b is a bias term. The smoothness 

of the approximation is determined. The following steps are 
repeated until the mean squared error falls below goal, or the 
number of neurons reaches to a predefined number. The goal 
here is set to zero. 
Step-1) The network is simulated. 
Step-2) The input vector with the greatest error is found. 
Step-3) A neuron is added with weights equal to that vector. 
Step-4) The output layer weights are redesigned to minimize 
error according to least mean square method. The topology 
requires selection of appropriate spread factor, shown in Fig. 6 
(b), which is selected as 12. 

B. Ray Launching modeling with NN 

 
The implemented RL algorithm subdivides the simulation 

volume in uniform cuboids or blocks. In this section, each 
scenario in the case study is divided into a grid. The X-axis in 
the grid contains 146 blocks, Y-axis contains 73 blocks and Z-
axis contains 33 blocks. NNs are trained for a low resolution 
scenario with some blocks omitted and tested for complete 
scenario in each case. Table III shows the modeling results for 
RBFNN and FFNN for the three cases. The comparisons are 
made in terms of total time consumption for NN training, total 
memory taken by processor for training including all variables 
as well as trained network, NMSE, standard deviation and 
mean error. 

 It can be perceived that FFNN is efficient in terms of time 
while RBFNN is efficient in terms of total memory required. 
Due to significant saving in training time, FFNN has been 
chosen in this paper for NN based modeling of RF trend.  
However, RBFNN can also be used according to memory or 
time requirement of any computing system because modeling 
performances in terms of NMSE, S.D. and absolute mean 
errors are almost equivalent for both NNs. It is to be noted that 
processing data of 1.96GB has been modeled and saved using 
FFNN which requires 1.6MB memory space to train and save 
all data in a network. 
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Fig. 6. (a) Radial basis function architecture (b) RBFNN spread factor impact 
on modeling for case I. 
 

IV. MEASUREMENT RESULTS 
 

In order to validate high resolution RL predictions, 
measurements have been performed for the first scenario 
depicted in Fig. 2. The wideband measurements were 
performed with 100MHz bandwidth at 2.4GHz frequency, a 
potential situation in which Wireless Local Area 
Network/Wireless Personal Area Network applications and 
services are employed. The transceivers are from Texas 
Instruments, specifically the CC2530 that is a true system-on-
chip (SoC) solution for IEEE 802.15.4 ZigBee. The radiation 
pattern of the transceivers is omnidirectional with linear 
polarization and 0.82dBi gain. Measurements have been made 
with the transmitter fixed at the point XY (0.75m, 2m) with a 
height of 1.5m (the transmitter is depicted as a red point in Fig. 
2). The transmitter power is 0dBm.  
A portable spectrum analyzer from Agilent (N9912 Field Fox) 
has been used for the experiments. The measurement time at 
each point is 60s and the power value represented by each 
point is the higher peak of power shown by the spectrum 
analyzer for the considered bandwidth (MaxHold function in 
the 9912A Field Fox Spectrum Analyzer). Measurements have 
been performed for y=1m and y=2m, each 0.25m along the X-
axis. 
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Fig. 7. Comparison simulation versus measurements along the X-axis  

(a) y=1m (b) y=2m 
 

Fig. 7 shows the comparison between simulation and 
measurements, exhibiting good agreement with a mean error of 
0.23dB with a standard deviation of 1.65dB. The differences 
are mainly due to approximations made in simulation within 
the morphological details of the definition of the scenario, 
which in the case of scenarios such as this one with rich 
multipath components, has a significant influence. 
 
 
 

                                                                                                                                           TABLE III 
MODELING RESULTS FOR FFNN AND RBFNN FOR THE THREE CASES 

 CASE-I 
FFNN            RBFNN 

CASE-II 
FFNN         RBFNN 

CASE-III 
FFNN        RBFNN 

Memory Consumption (MB) 1.68 1.635 1.634 1.6322 1.633 1.612 
Time consumption (S) 403.46 3591.8 306.36 3491 305.53 3463.67 
Std. Deviation (dB) 5.63 5.7655 9.89 10 5.586 5.6324 
NMSE (dB) .0189 .0198 .0543 .0553 .0164 .0165 
Absolute Mean error (dB) .0149 .0874 .0603 .3343 .131 .1345 
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V. RL-NN RESULTS AND DISCUSSION 
 

Once the RL simulation code as well as the NN algorithm 
have been validated, both techniques are combined in order to 
increase computational efficiency. This validation has been 
performed by comparison of RL estimation (previously 
compared with measurements) with the obtained NN results. 
Fig. 8 shows the estimated received power corresponding to 
the measured scenario previously depicted in Fig. 2. The high 
resolution RL results are compared with the new joint 
prediction method described above as RL-NN. It can be seen 
that the new method RL-NN follows the trend correctly, 
achieving a significant reduction in computational time and 
resources required for simulation with this new method. 

Fig. 9 and Fig. 10 show the received power at two different 
heights in the indoor scenario of the iRadio Laboratory 
(depicted in Fig. 3) for the full 3D High resolution RL and the 
proposed RL-NN technique which employs low resolution RL. 

 

 
(a) 

 
(b) 

 
Fig. 8. Bi-dimensional planes of estimated received power for a height of 1m 
in scenario of Fig. 2 with (a) RL High Resolution and (b) RL Low Resolution 
and Neural Network. 

 

For both heights, a good agreement between the results of 
the proposed method and fully 3D High resolution RL is 
observed. A mean error of 0.07dB and 1.19dB is observed 
between the results of these two techniques at 0.95m and 1.9m 
heights respectively. It is worth to mention that while obtaining 
these results, an interaction with the different elements within 
the indoor scenario is considered and it is observed that the 
material properties of the objects (see Table I) play a relevant 
role in the overall performance of the wireless system. 

 

 
(a) (b) 

Fig. 9. Bi-dimensional planes of estimated received power for a height of 
0.95m in scenario of Fig. 3 with (a) RL High Resolution and (b) RL Low 
Resolution and Neural Network.  

 

 
(a) (b) 

Fig. 10. Bi-dimensional planes of estimated received power for a height of 
1.9m in scenario of Fig. 3 with (a) RL High Resolution and (b) RL Low 
Resolution and Neural Network.  
 

The comparison between the received power along the Y-
axis, for x=2m and z=0.95m height is shown in Fig. 11. It can 
be observed that even in high resolution RL; a lot of variations 
are present. This is due to multipath propagation, which is 
dominant phenomenon in any indoor environment and can be 
characterized by the temporal dispersion of the signal and the 
frequency dispersion because of temporal variations of the 
received amplitude. Thus, the RL-NN technique also follows 
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the trend of the high resolution RL technique. 

 

Fig. 11. Estimated received power along the Y-axis, for X=2m and Z=0.95m, 
for RL High Resolution and the RL+ NN proposed technique.  

  
To illustrate the relevance of the multipath effect in the 

propagation channel, the power delay profile (PDP) has been 
predicted along the X-axis, for y=8m and z=0.95m (Fig. 12a) 
and for y=4m and z=0.95m (Fig. 12b). The PDP has been 
calculated for each cuboid along the X-axis, taking into 
account all the multipath components which arrive to the 
receiver cuboid, a similar procedure adopted in the case of 
PDP estimation by means of grid measurements [34, 35]. Fig. 
12 represents the most significant component of the PDP for 
each sample point along the 8.7m of the X-axis of the scenario 
depicted in Fig. 3. From this figures it can be seen, there are a 
large number of echoes in the scenario and the significant 
components do not have relevant variance between both 
methods. Fig. 12 shows the comparison for two different cases, 
but the whole scenario has been characterized and compared. 
It is worthy to mention that the hybrid method lead to more 
accurate results for the first components of the multipath 
trajectory, as it can be seen in the depicted cases, that the tail 
of the PDP is not as accurate as the comparison of the first 
components. This is due to the fact that the proposed RL 
method performs the calculation in a given frequency point 
and hence, is inherently narrowband for a single calculation 
sweep. The RL+NN method provides an estimation in which a 
smaller amount of rays are present and therefore, the available 
time domain information is reduced. 

 To illustrate the multipath propagation properly, the RMS 
delay spread has been predicted for the scenario depicted in 
Fig. 3 for both simulation methods. The RMS delay spread has 
been calculated using as threshold the noise floor and it is 
shown in Fig. 13. It can be seen that the surrounding physical 
environment, as well as the geometrical position of the 
transmitter and the receiver, has a relevant influence in time 
dispersion of the mobile radio channel.  
 

 
 

(a) 
 

 
(b) 

Fig. 12. Power-Delay Profile along the X-axis, for Z=0.95m, for RL High 
Resolution and the RL+ NN proposed technique (a) Y=8m (b) Y=4m.  

 
 

(a) (b) 
Fig. 13. Bi-dimensional planes of estimated RMS delay spread for a height 
of 1.9m in scenario of Fig. 3 with (a) RL High Resolution and (b) RL Low 
Resolution and Neural Network.  
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The new proposed method for coverage prediction achieves 
a commitment between accuracy and computational efficiency.  
Table IV shows the improved performance of the new method 
RL-NN versus the high resolution RL method in terms of 
computational time and energy consumption. The CPU-time 
savings reported include the FFNN training in the new joint 
approach RL-NN. The results shown present 80% reduction in 
terms of simulation time compared with High Resolution RL. 
In addition, whole 3D space data is stored in a parametric form 
in terms of NN weights, which lead to a 70% less memory 
space used in storing the massive data. The mean error 
acquired with the new proposed method compared with the 
reference solution is 0.28dB with a standard deviation of 
5.96dB. These results indicate that low resolution RL results 
may not fully capture fast fading phenomena. Therefore, a 
tradeoff between computational complexity and final accuracy 
is present when employing this combined approach. 

 
TABLE IV 

NEW JOINT PREDICTION METHOD RL-NN 

Computational time saving 80% 

Computer consumption saving 70% 

Mean Error 0.28dB 

Standard Deviation 5.96dB 

VI.  CONCLUSION 

In this article, a new deterministic approach for coverage 
prediction in complex indoor environments is presented. This 
technique applies a neural network (NN) for modeling and 
storing the ray launching (RL) results. Simulations of a real 
scenario have been done to compare the proposed method with 
a fully 3D high resolution ray launching as a reference 
solution. A small difference between the results of our 
proposed method and the fully 3D simulation is observed. 
However, the differences are moderate and the results are 
reliable for engineering purposes. The new method achieves a 
high gain in terms of computational efficiency, 80% reduction 
in simulation time and 70% reduction in used spaced memory, 
leading to accurate results. 
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