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Abstract: The sheet-metal-forming process is crucial in manufacturing various products, including
pipes, cans, and containers. Despite its significance, controlling this complex process is challenging
and may lead to defects and inefficiencies. This study introduces a novel approach to monitor the
sheet-metal-forming process, specifically focusing on the rolling of cans in the oil-and-gas sector.
The methodology employed in this work involves the application of temporal-signal-processing
and artificial-intelligence (AI) techniques for monitoring and optimizing the manufacturing process.
Temporal-signal-processing techniques, such as Markov transition fields (MTFs), are utilized to
transform time series data into images, enabling the identification of patterns and anomalies. synamic
time warping (DTW) aligns time series data, accommodating variations in speed or timing across
different rolling processes. K-medoids clustering identifies representative points, characterizing
distinct phases of the rolling process. The results not only demonstrate the effectiveness of this
framework in monitoring the rolling process but also lay the foundation for the practical application
of these methodologies. This allows operators to work with a simpler characterization source,
facilitating a more straightforward interpretation of the manufacturing process.

Keywords: rolling; monitoring; deep learning; neuronal networks; material deformation

1. Introduction

The material-forming processes for manufacturing pipe-shaped parts require the gen-
eration of process models as an essential task in production engineering [1]. In recent years,
significant technological development has been made in this type of modelling, resulting in
a wide variety that continues to expand [2]. The need to continuously advance in process
modeling and its limits is a recent trend in manufacturing engineering. The design and pa-
rameterization of robust processes can be effectively evaluated with appropriate models [3],
which helps meet the demand for tighter product tolerances [4]. The inclusion of these
models and the virtualization of the workspace enable the digitization of manufacturing in
the era of new smart factories [5]. The metal-forming processes selected for modelling stand
out due to their efficiency and relevance in various industrial applications. These processes
offer a favourable terrain for modelling due to their significant impact on production and
their versatility in creating metal components with various shapes and properties.

Among the parts that can be manufactured through mechanical sheet forming, many
engineering applications, such as the skeleton of oil-and-gas platforms, tunnel construction,
and commercial and industrial buildings [6], employ large- and medium-sized tubes and
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tubular sections. Round tubes generally have curves of single or double orders. The
manufacturing of tubes can be performed sequentially or divided into phases, first by
preforming or roller bending and then by forming to the final geometry. Efficient bending
is a prerequisite for precise formation of bending surfaces [7]. In normal practice, the
skill, knowledge, and experience of the operator largely determine the final quality of
roller bending. Adjusting the process through trial and error and subsequent work with
templates is a common practice in the industry.

The integrity of flexible pipes used in offshore oil-and-gas transportation is critical,
and failures related to tensile armor fractures have raised concerns [8]. To address this
issue, one study focused on characterizing a tensile wire made of cold-worked high-carbon
steel. The microstructure analysis revealed a fine-and-deformed pearlite structure with
fragmented and spheroidized cementite carbides. Mechanical properties were determined
through tensile testing, and a fatigue curve was constructed to assess the wire’s resistance
to cyclic loading [9]. These findings provide valuable insights into the microstructure
and mechanical behavior of the high-carbon steel used in tensile wires for flexible pipes,
contributing to improved understanding and potential enhancements in the construction
of these vital components.

In another study, the influence of bending roll profiles on the stress–strain state of
billets for longitudinally welded rolled pipes was investigated using 3D finite-element
modeling. The researchers explored alternative methods for lowering the upper roller of a
traditional profile during the bending process [10]. By analyzing the resulting geometry,
deformations, and stress distribution, they identified areas of the billets that experienced the
main load and underwent plastic deformation and local thinning. The researchers proposed
changes to the bending tool’s profile aimed to create additional contact pads during bending,
potentially improving the quality of the produced billets. This research highlights the
significance of optimizing the bending process for ensuring the structural integrity and
performance of longitudinally welded rolled pipes used in various applications.

However, in recent years, there has also been significant research on the monitoring
of sheet bending with rollers [11–13]. The monitoring of the sheet-bending process can
also be improved with the application of artificial-intelligence techniques. For example,
machine learning algorithms can be used to predict the geometric deviation of curved
parts and detect problems in the manufacturing process. Additionally, computer vision
techniques can be used to detect surface defects in curved parts and achieve more efficient
quality control. Overall, the application of AI can enhance the efficiency and quality of
the sheet-bending process by allowing more precise and real-time monitoring. However,
this is more commonly applied to small parts; there is little information available on roller
bending of large components, such as oil-and-gas pipes. Also, this is in contrast to other
works, such as the study published by Liu et al. [14], where a theory-guided regularization
method is applied for the training of deep neural networks within a learning system. This
approach aims to uncover the intrinsic relationship between the work-piece shape after
springback and the required process parameters. The current study, however, uniquely
focuses on the application of temporal-signal-processing and AI techniques to optimize
the metal-sheet-bending process, offering a distinct perspective on process improvement.
Therefore, the authors consider it highly valuable to study the roller bending of large pipes
and the digitization of more traditional processes.

This study explores the synergies between temporal-signal-processing and artificial-
intelligence (AI) techniques to enhance the metal-sheet-bending process. Recognizing the
complexity and challenges inherent in this cornerstone of manufacturing, this research
poses specific sub-questions regarding the effective transformation of time series data, the
capabilities of AI algorithms in pattern extraction and anomaly detection, the optimiza-
tion impact on the bending process, and a comparative analysis against existing methods.
Through experimental data collection and the application of techniques like Markov transi-
tion fields, dynamic time warping, and k-medoids clustering, this study aims to provide
real-time monitoring, detect anomalies, and optimize the metal-sheet-bending process.
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The integration of temporal-signal-processing and AI techniques shows promising
potential for determining and classifying the sheet-metal-bending process. By offering
insights into process dynamics, detecting defects, and suggesting corrective actions, this
approach has the capacity to improve efficiency, minimize defects, and optimize resource
utilization. While acknowledging the need for further validation and addressing practical
implementation challenges, this study underscores the substantial benefits this integrated
methodology could bring to the manufacturing landscape. Considering the importance
of the folding process, there seems to be a limited amount of literature on the monitoring
of the process. This paper aims to fill that gap by applying artificial intelligence to the
sheet-deformation process until the final geometry is achieved.

2. Use Case

The manufacturing of pipe components requires forming processes that are critical
to ensure product quality. One of these processes is the bending of sheet metal using a
three-roller machine. This process is carried out to produce pipes with the appropriate
curvature tolerances to meet design requirements. However, the trial-and-error bending
process can be costly due to material loss and production time.

To address this problem, a production method with the minimum number of passes
is proposed, ensuring repeatability, precision, and process productivity. To achieve this, a
real-time monitoring system is needed to adjust process parameters and achieve the desired
shape of the sheet metal. Additionally, the application of artificial intelligence can enhance
the monitoring and optimization of the sheet-metal-forming process, similar to that in [15].

The reference flange is shown in Figure 1, along with the bending process, the three
rollers involved, and the dimensions of the studied sheet metal. This process is performed
using a three-roller bending machine and involves multiple bending sequences in an
iterative process. It starts by inserting the end of the sheet metal into the bending machine
with the help of a crane, ensuring it is centered with respect to the rollers. Then, pressure
is applied with the upper roller on the sheet metal, which is supported by the two lower
rollers to prevent the sheet from slipping. This operation is repeated until the curvature
meets the tolerance requirements, verified by the worker using a template. In this study, a
real-time monitoring system is proposed that uses only the sensors installed on the machine
in its current configuration to capture sheet-metal-forming data during the forming process.

This process essentially consists of a sheet metal, an upper roller, and two lower
rollers (front and rear). The position of the rollers is fixed, as shown in Figure 1. The
roller diameters are different (916, 964, and 992 mm), and the length of the lower rollers is
L = 4167 mm, while the upper roller has a length of L = 4610 mm. The maximum distance
between the upper roller and the lower rollers is 100 mm and will be adjusted based on the
thickness of the sheet metal. During the operation, the sheet metal is fed into the rollers. It
is then bent to a curvature by adjusting the position of the rear roller, while the front roller
rotates to advance the sheet metal and continue forming the desired curvature. However,
the upper and front rollers do not exert bending pressure; they are used as support for
the sheet metal and simply rotate to allow the sheet metal to pass through them. They
do not apply pressure. The success of the three-roller bending process largely depends
on the experience and skill of the operator. Typically, the curvature of the sheet metal is
achieved through a multi-pass method, also known as “trial and error,” to optimize the
bending capacity of the bending rollers. However, the multi-pass method entails high costs
due to material waste and production time loss. Repeatability, precision, and productivity
of the process require the use of a minimum-pass production method. However, the
latter method has always been challenging because the operator needs knowledge of the
different machine parameters to obtain the pipe component with the desired diameter. The
selection of roller diameters and lengths aimed to mirror the standard configuration of the
sheet-metal-forming machine employed in this study. Additionally, the chosen diameter,
length, and thickness of the sheets align with the specifications of an actual gas storage tank,
illustrated in Figure 1. These dimensions were deliberately chosen to capture a realistic
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scenario within the sheet-metal-forming process. In the central cylindrical part of the tank,
there are sheets of two different thicknesses with the same diameter. The conducted tests
involved pipes with a diameter of 3050 mm, a length of 17,000 mm, and a thickness of
32 mm (4 sheets) or 44 mm (3 sheets). The component weight can range from 130,987 to
180,089 kN. These tests are carried out to evaluate the bending roller process’s capacity to
produce large-sized pieces with the required dimensions and specifications. The aim is also
to ensure process quality and precision while minimizing time and production costs. The
component dimensions are indicated in Table 1.
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Table 1. Component dimensions.

Diameter 3050 mm
Length 17,000 mm

Thickness 32 (4 sheets) or 44 (3 sheets) mm
Component weight 130,987–180,089 kN

Component materials SA-516 Gr.70N

The objective of this article is to develop manufacturing technologies that are modular
and reconfigurable, specifically to produce large components with improved precision.
One aspect focused on is the monitoring of the sheet-bending process. This monitoring
process is considered a modular-and-reconfigurable manufacturing methodology that
centers around the operator. It enables real-time optimization and control of the bending
process, leading to enhanced accuracy and efficiency. Additionally, monitoring serves as a
valuable tool for training and improving workers’ skills. This aligns with the broader goal
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of advancing workers’ capabilities and facilitating their transition towards Industry 4.0,
which represents the integration of digital technologies in industrial processes.

The central inquiry of this research revolves around whether the implementation
of temporal-signal-processing techniques, coupled with artificial-intelligence techniques,
contributes to the enhancement of the metal-sheet-bending process. The essence of this im-
provement lies in the ability of AI methodology to discern anomalies in the manual process
and provide guidelines to operators, facilitating adherence to sequences and parameters
that have demonstrated superior results in terms of efficiency and time.

3. Data Generation

In the process of analyzing and pre-processing the data from the bending machine,
several important steps were followed to understand the signal coming from the pro-
grammable logic controller (PLC) that controls the process. Firstly, the machine signals
were captured with a low sampling frequency of around 2 hertz, as requested by the opera-
tor. Once the bending process was completed, all control data were available in the form of
64 Boolean variables and 34 analog variables, which could be plotted using encoding.

However, before starting the data analysis, a preliminary exploration of the data was
conducted to eliminate signals that did not exhibit variation over time. Once the data were
cleaned, a more detailed exploration of the signals was carried out to identify possible
correlations between different variables. In this initial exploration, it was observed that out
of the 34 analog variables, only 9 showed variations over time, while out of the 64 Boolean
variables, only 6 exhibited significant variations, of which only 3 had a physical meaning.
The following Table 2 summarizes the main variables under study.

Table 2. Variables sensitive to the bending process.

Abbreviation Definition Variable Type Comment

H_F General-fault lamp bool * no info
H_MP_AV Front main-motor light bool
H_MP_RE Rear main-motor pilot light bool
H_MP_F Main-motor failure lamp bool * no info
H_E_On Operational main-motor lubrication lamp bool * no info
H_F_On Released-main-motor-brake lamp bool
Z_MP_V Main-motor speed control float
Z_B1_I Monitoring of pump 1 current float
Z_B2_I Monitoring of pump 2 current float
Z_CI Left-wedge monitoring float
Z_CD Right-wedge monitoring float
Z_CPI Left-rear-cylinder monitoring float
Z_CPD Right-rear-cylinder monitoring float

Z_CPI_P Left-rear-cylinder pressure monitoring float
Z_CPD_P Right-rear-cylinder pressure monitoring float

* These data do not contain information about the bending process.

These variables identified in the preliminary exploration were analyzed using a corre-
lation matrix between variables, aiming to detect collinear or highly correlated variables.
Collinear variables can have a negative impact on the results of subsequent analysis, so
it is important to identify and potentially eliminate them. This preliminary analysis was
crucial to identify the most relevant variables and effectively focus subsequent data analy-
sis studies. In summary, Figure 2 illustrates the necessary steps to perform a preliminary
analysis of a set of analog data acquired from a bending machine. The process starts with
signal acquisition, continues with signal conditioning and digitization, and concludes with
variable selection and correlation matrix analysis.
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Figure 2. Preliminary analysis on the dataset acquired from the bending machine.

The authors have undertaken a detailed examination of signals sensitive to the bending
process, strategically excluding those displaying strong correlations to prevent an excess of
stored data. This is a crucial aspect in this optimization effort. Following this, an in-depth
analysis of the temporal signal of variables of interest has been conducted to identify and
eliminate periods when the machine is not in operation, achieved through an examination
of internal signals. Subsequently, the continuous and distinct segments of sheet movement
during bending have been meticulously split, a process referred to as peak in this paper,
enhancing the precision and clarity of data segmentation.

4. Methods and Results

This section presents the methodology used to analyze the signals from the metal-
sheet-bending process. Physical considerations behind the analyzed signals are considered,
and visual analytics is applied for their analysis. Firstly, a comprehensive signal analysis is
performed using visual analytics techniques. Then, signal peaks are classified using the
dynamic-time-warping (DTW) and k-medoids techniques.

4.1. Physical Considerations behind the Analyzed Signal

The collected signal for the curving of the component includes periods of inactivity and
multiple curving cycles, as shown in Figure 2, so initially, the physical phenomena needed



Appl. Sci. 2023, 13, 13187 7 of 12

to be isolated. Initially, the algorithm uses the Boolean signals to create a Boolean variable
“Active,” which is true if any of the columns “H_MP_AV,” “H_MP_RE,” or “H_F_On” is
true and false otherwise. It is considered that for there to be activity, one of the motors
must be running. Then, the “timestamp” is converted into a date and time format with the
string representation of the “Active” column. Finally, a scatter plot is created that shows
the activity of the process over time.

The curving of the component is achieved through successive bending of the metal
sheet as it rotates with the rollers, so bending occurs along the entire length of the metal
sheet. Bending occurs when the rear roller moves upward and the motor rotates. The
pressure will never be zero, as the hydraulic axis must exert force even without deformation,
just to support the weight of the rear roller. Therefore, the evolution of the signals during
bending should be the following: the rear roller (Z_CPD) should have incremental upward
displacement, pressure (Z_CPD_P) should increase, and rotation (Z_MP_V) should be
negative when rotating in that direction. If the motor rotation changes direction, there will
be no bending.

Measurements of the position of the rear roller and the activity and inactivity times of
the curving process are provided for the component’s curving. The measurement position
of the rear roller varies between 562 and 572 mm in different components depending
on the thickness. The process activity times range from 15 min to nearly 1 h, while the
process inactivity times range from a few minutes to over 2 h. These data can be useful for
the analysis and optimization of the component’s curving process. The variability in the
process may be due to the manual nature of the operation and the on-site inspection carried
out by hand. These methods may be more prone to errors and variations compared with
automated processes monitored by sensors. Additionally, the corrections and controls made
on the machine may be less precise than controls performed through automated systems.
In general, the lack of automation and reliance on human intervention can contribute to
process variability and therefore a higher amount of undesired inactivity time.

4.2. Visual Analytics Applied to the Bending Signal

This article presents the adoption of a technique for converting time series into images
that could be classified using deep learning. This method provides a way to reconstruct the
original data into images and is an application of the methodology used by Wang et al. [16].
For the conversion of time series into images, they propose three techniques, two based
on Gramian angular fields (GAFs) and one based on Markov transition fields (MTFs). In
this article, the option of transforming the Markov transition fields is adopted, contrary to
the approach using the encoding technique based on the sum of Gramian angular fields
(GASFs) employed by Martinez-Arellano et al. (2019) [17].

Given a time series, in this case, the pressure of the right cylinder (Z_CPD_P), it is
possible to convert it into an image, identify the quantiles, and assign them to bins. Then, a
weighted adjacency matrix is constructed to count the transitions between quantile bins,
forming a first-order Markov chain. The frequency with which a point in one bin is followed
by another point in another bin determines the weights of the matrix. By normalizing the
matrix, the Markov fransition field (MTF) is obtained. The MTF encodes the transition
probabilities in different sections of the series, which are assigned to each pixel of the image.
To reduce the size of the image, the pixels are averaged. The following Figure 3 shows the
32 × 32 pixel images of the pressure signals in bending. From the signals shown in Figure 3,
the signals (1, 2, and 6) are those corresponding to the 44 mm plate and the signals (3, 4, 5,
and 7) are those corresponding to the smaller 32 mm thick plates.
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In the context of the bending process, MTFs have the potential to provide valuable
insights into the process and enable the identification of potential issues. By converting
the bending pressure signal into an image using MTFs, it becomes possible to visualize
the different phases of the process, such as the initial loading phase, the rolling phase, and
the unloading phase. This visual representation can aid in understanding the process and
identifying potential areas of concern. Additionally, MTFs can be used as input features for
machine learning algorithms to classify different types of bending defects, such as cracks,
wrinkles, and necking. This capability can help in identifying and addressing potential
quality issues early in the process. Furthermore, by monitoring the MTF of the bending
pressure signal over time, it is possible to detect anomalies in the process, such as sudden
changes in pressure or unexpected transitions between phases. This anomaly-detection ca-
pability can help in preventing process failures and ensuring the production of high-quality
products. Overall, MTFs offer a promising approach for analyzing and understanding the
bending process, with the potential to improve process efficiency, product quality, and
overall production outcomes.

4.3. Classification Based on DTW and K-Medoids

To analyze the pressure signals in the roller during the bending of sheet metal, a
methodology based on signal classification using the DTW technique combined with k-
medoids technique was employed. It is important to note that in the signals of the seven
bent sheets, the process underwent multiple active bending phases and periods of inactivity.
This can be seen in Figure 4a, which shows the signal for one of the thinner sheets. The
evolution of the signals during bending shows how the displacement of the rear roller
(Z_CPD) and the pressure in the cylinder (Z_CPD_P) increase and then return to the same
level when the sheet is released from contact with the roller. As for the rotation of the main
motor (Z_MP_V), the movement is indeterminate in terms of direction and level, as it is
manually operated.
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Considering the values during the active process, a total of 47 peaks were identified in
the signals of sheet metal bending. The peaks of the signals corresponding to the thinnest
sheet and the thickest sheet were analyzed. Figure 4b shows the train of active bending
peaks in the thinnest sheet, while Figure 4c presents the train of active bending peaks in
the thickest sheet. It can be observed that the peaks in both sheets have similar shapes;
however, the maximum pressure levels are higher in the thickest sheet. This analysis
provides valuable information about the deformation experienced by each type of sheet
during the bending process, which can be useful for optimizing the process and improving
the quality of the final product.

Figure 4b,c show the trains of active bending peaks. This graphical representation is
based on the horizon-graphs technique, which allows visualizing the temporal evolution
of the pressure signal in the cylinder during the bending of the sheet to form the collar.
The active peaks indicate the moments when the pressure in the cylinder exceeds a certain
threshold, indicating the presence of bending in the sheet. The train representation allows
identifying patterns and trends in the evolution of bending over time.

First, the peaks of the pressure signal were classified using the DTW technique. This
technique was chosen for its ability to measure the similarity between two signals that
have different lengths and shapes. In this case, each pressure peak was compared to a
predefined template, which allowed for the identification of characteristic pressure patterns
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for each bending, as it can be seen in Figure 5. Finally, the k-medoids technique was
applied to classify the pressure peaks into different clusters based on their similarity in
shape and amplitude. This technique grouped the pressure peaks into categories with
similar characteristics, enabling the identification of specific pressure patterns for each type
of bending.
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In summary, the employed methodology combined the use of visual analytics for
exploratory data analysis, the DTW technique for the classification of pressure peaks [18],
and the k-medoids technique for grouping the pressure peaks into different clusters based
on their similarity. This methodology allowed for the identification of specific pressure
patterns for each type of bending, which can be highly useful for quality control in the
metal-sheet-bending process.

The pressures recorded on the roller exclusively during the metal-sheet-bending
process were considered, resulting in a total of 47 peaks in the pressure diagram. These
peaks were aligned using the dynamic-time-warping (DTW) technique and clustered using
the k-medoids algorithm. A comparative analysis was conducted among the peaks obtained
from the signals corresponding to the three thickest sheets and the four thinnest sheets.

It is observed that peaks from the same sheet exhibit similarity among them, while
peaks from different sheets may not. Furthermore, it is observed that the maximum pressure
levels of the peaks in the thickest sheet are higher than those recorded in the thinnest sheet,
suggesting greater strength and rigidity of the thicker sheet.
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5. Conclusions

In this study, a comprehensive analysis of multiple signals within the context of
the bending machine was conducted, leading to the identification of the most-significant
signals. The primary focus was on the rolling process used in the production of tanks in
the oil-and-gas sector, characterized by substantial operator intervention.

The findings highlight the potential of applying artificial intelligence (AI) to semi-
manual processes, like sheet metal forming, offering prospects for enhanced efficiency, cost
reduction, and improved product quality. The integration of temporal-signal-processing
and AI techniques, including Markov transition field (MTF), dynamic time warping (DTW),
and k-medoids clustering, was successfully employed to monitor and analyze the process
state. The results not only demonstrate the efficacy of the proposed model fitting but also
yield valuable insights that contribute to optimizing the manufacturing process.

Comparing these outcomes to that of existing works in the field suggests that AI’s
application in semi-manual processes holds significant promise for the manufacturing
industry. As technology advances, further exploration of these techniques is anticipated to
play an increasingly vital role in refining manufacturing processes.

For future research directions, completing the analysis of the impact of metal sheet
dimensions on pressure and conducting a more in-depth examination of machine operations
to discern specific bending moments for each head and the central area are recommended.
Additionally, exploring lines of future research could involve investigating the integration
of real-time feedback mechanisms, exploring novel AI algorithms, and evaluating the
scalability of the proposed approach to diverse manufacturing settings. These endeavors
aim to continually advance the field and address emerging challenges in the dynamic
landscape of sheet metal forming.
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