CHEMISTRY A European Journal

Supporting Information

Asymmetric Assembly of All-Carbon Tertiary/Quaternary Nonadjacent Stereocenters through Organocatalytic Conjugate Addition of α-Cyanoacetates to a Methacrylate Equivalent
Igor Iriarte, ${ }^{[a]}$ Silvia Vera, ${ }^{[a]}$ Eider Badiola, ${ }^{[a]}$ Antonia Mielgo, ${ }^{[a]}$ Mikel Oiarbide, ${ }^{*[a]}$ Jesús M. García, ${ }^{[b]}$ José M. Odriozola, ${ }^{[b]}$ and Claudio Palomo* ${ }^{[a]}$

Asymmetric Assembly of All-Carbon Tertiary/Quaternary Nonadjacent Stereocenters Through Organocatalytic Conjugate Addition of α-Cyanoacetates to a Methacrylate Equivalent

I. Iriarte, ${ }^{a}$ S. Vera, ${ }^{a}$ E. Badiola, ${ }^{a}$ A. Mielgo, ${ }^{a}$ M. Oiarbide, ${ }^{\text {a }}{ }^{*}$ J. M. García, ${ }^{\text {b }}$ J. M. Odriozola, ${ }^{\text {b }}$ and C. Palomo ${ }^{\text {a }}$ *

Electronic Supplementary Information

Table of Contents

1. Materials and general techniques S2
2. Full reference $2 b$ S3
3. Preparation of 4-hydroxy-2,4-dimethylpent-1-en-3-one 1 S4
4. Preparation of α-cyanoesters 2-4 S4
4.1 General procedure for the preparation of tertbutyl α-cyanoesters 2 S4
4.2. General procedure for the preparation of α-cyanoesters $\mathbf{3}$ and $\mathbf{4}$ S6
5. Catalytic conjugate addition of α-cyanoesters 2-4 to enone 1 : General procedure and characterization data S7
6. Results with elementary Michael acceptors other than $\mathbf{1}$ S11
7. Catalytic conjugate addition of α-cyanoesters to chiral enones 8-11 S12
7.1. Preparation of chiral α^{\prime}-oxyenones $\mathbf{8 , 9 , 1 0}$ and $\mathbf{1 1}$ S12
7.2. Screening of catalysts S17
7.3. Catalytic addition of α-cyanoacetates $\mathbf{2}$ to quiral enones $\mathbf{8 - 1 1}$ S18
7.4. Preparation of chiral α^{\prime}-silyloxyenone 17 S20
7.5. Catalytic addition of α-cyanoacetates $\mathbf{2 b}$ and $\mathbf{2 c}$ to chiral enone $\mathbf{1 7}$ S22
8. Chemical elaboration of adducts S23
8.1. Synthesis of carboxylic acids $\mathbf{2 0}, \mathbf{2 1}$ and ester $\mathbf{2 2}$ S23
8.2. Synthesis of aldehyde 23 S24
8.3.Scision of $\mathbf{1 5}$ and 18. Synthesis of methyl esters 22, 24 and $\mathbf{2 5}$ S24
8.4.Reduction of $\mathbf{1 3}$ and $\mathbf{1 8}$ to corresponding anti-diols $\mathbf{2 6}$ and $\mathbf{2 7}$ S25
9. Cofigurational stability of α-oxy ketones S27
9.1. Configurational stability of enones $\mathbf{8}$ and $\mathbf{1 0}$ S27
9.2. Configurational stability of Michael adduct 13 and its silyl ether S28
10. Asignment of configuration to adducts $\mathbf{1 5}$ and $\mathbf{1 8}$ S29
11. Determination of the ratio of stereoisomers S33
11.1. Diastereomeric ratio by NMR S33
11.2. Enantiomeric ratio by HPLC/GC Chromatography S37
12. NMR Spectra S52
13. X-Ray Analysis: ORTEP diagram of compounds 5e S86

1. Materials and general techniques

General experimental: All non-aqueous reactions were performed using oven-dried glassware and were magnetically stirred unless otherwise stated. Yields refer to chromatographically purified and spectroscopically pure compounds, unless otherwise stated.

Solvents and reagents: All reagents bought from commercial sources were used as sold. Organic solvents were evaporated under reduced pressure using a Büchi rotary evaporator. Anhydrous dichloromethane was dried over CaH_{2}, and diethyl ether and tetrahydrofuran were dried by filtration through activated alumina (powder $\approx 150 \mathrm{mesh}$, pore size $58 \AA$, basic, Sigma Aldrich) columns. (DHQ) ${ }_{2} \mathrm{Pyr}$ was purchased from Sigma Aldrich, quinine and quinidine were purchased from Alfa Aesar.

Chromatography: Reactions were monitored by thin layer chromatography (TLC) using Merck silica gel 60 F254 plates and visualized by fluorescence quenching under UV light. In addition, TLC plates were stained with a dipping solution of potassium permanganate (1 g) in 100 mL of water (limited lifetime), followed by heating. Chromatographic purification was performed on ROCC 60 silica gel 40-63 $\mu \mathrm{m}$.

Gas Chromatography: Performed using a Thermo Scientific Trace 1300 equipment with a FID. Chiral column HYDRODEX $\beta-6 T B D M, 25 \mathrm{~m}, 0.25 \mathrm{~mm}$ ID. Temperature gradient: 1) $100^{\circ} \mathrm{C}$ for 1 min ; 2) from $100^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ (11 min); 3) $200^{\circ} \mathrm{C}$ for an additional 11 min .

Mass spectra: MS spectra were recorded on an ESI-ion trap Mass spectrometer (Agilent 1100 series LC/MSD, SL model).

NMR spectra: NMR spectra were recorded using a Bruker Avance 300 MHz or 500 MHz spectrometer, chemical shifts (δ) are quoted in parts per million referenced to the residual solvent peak. In case of diastereomeric mixture, data of the major diastereomer were provided. The multiplicity of each signal is designated using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; brs, broad singlet. Coupling constants (J) are reported in Hertz (Hz).

Determination of enantiomeric excesses: Enantiomeric excesses were determined using analytical high performance liquid chromatography (HPLC) performed on a Waters 600 (Photodiode Array Detector Waters 2996) (column and solvent conditions are given with the compound).

Optical rotations: Optical rotations were recorded using a Jasco P-2000 polarimeter; specific rotation (SR) $\left([\alpha]_{D}\right)$ are reported in $10^{-1} \mathrm{deg} \cdot \mathrm{cm}^{2} \cdot \mathrm{~g}^{-1}$; concentrations (c) are quoted in $\mathrm{g} / 100 \mathrm{~mL} ; D$ refers to the D-line of sodium (589 nm); temperatures (T) are given in degree Celsius (${ }^{\circ} \mathrm{C}$).

2. Full reference 2b.

2b) R. B. Woodward, E. Logusch, K. P. Nambiar, K. Sakan, D. E. Ward, B.-W. AuYeung, P. Balaram, L. J. Browne, P. J. Card, C. H. Chen, R. B. Chtnevert, A. Fliri, K. Frobel, H.-J. Gais, D. G. Garratt, K. Hayakawa, W. Heggie, D. P. Hesson, D. Hoppe, I. Hoppe, J. A. Hyatt, D. Ikeda, P. A. Jacobi, K. S. Kim, Y. Kobuke, K. Kojima, K. Krowicki, V. J. Lee, T. Leutert, S. Malchenko, J. Martens, R. S. Matthews, B. S. Ong, J. B. Press, T. V. Rajan Babu, G. Rousseau, H. M. Sauter, M. Suzuki, K. Tatsuta, L. M. Tolbert, E. A. Truesdale, I. Uchida, Y. Ueda, T. Uyehara, A. T. Vasella, W. C. Vladuchick, P. A. Wade, R. M. Williams, H. N.-C. Wong, J. Am. Chem. Soc. 1981, 103, 3215-3217

3. Preparation of 4-hydroxy-2,4-dimethylpent-1-en-3-one 1.

2-hydroxy-N-methoxy-N,2-dimethylpropanamide: To a solution of methyl 2-hydroxy-2-methylpropanoate ($15 \mathrm{mmol}, 1.77 \mathrm{~g}, 1$ equiv.) and N, O dimethylhydroxylamine hydrochloride ($22.5 \mathrm{mmol}, 1,37 \mathrm{~g}, 1.5$ equiv.) in THF (50 mL), a 2 M solution of ${ }^{\mathrm{i}} \mathrm{PrMgCl}$ in THF ($60 \mathrm{mmol}, 4$ equiv.) was added at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1.5 h at room temperature. The reaction was then quenched with an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30$ $\mathrm{mL})$. The combined organic phases were dried with MgSO_{4}. After filtration the solvent was evaporated under reduced pressure and the crude material was purified by flash column chromatography (eluent hexane/ethyl acetate 80/20) to obtain the desired amide product as colorless oil. Yield: $1.99 \mathrm{~g}(90 \%)$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those reported in the literature. ${ }^{1}$

4-hydroxy-2,4-dimethylpent-1-en-3-one (1): To a solution of the Weinreb amide prepared as above ($10 \mathrm{mmol}, 1.85 \mathrm{~g}, 1$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, a solution of isopropenyl magnesium bromide ($0.5 \mathrm{M}, 60 \mathrm{~mL}, 3$ equiv.) was added at $-20^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 16 h . The reaction was quenched with an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic phases were dried with MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O} 95 / 5$) to obtain the desired product as a colorless oil. Yield: 833 mg (65 $\%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those reported in the literature ${ }^{2}$

4. Preparation of α-cyanoesters 2-4.

4.1. General procedure for the preparation of tertbutyl α-cyanoesters $2 .{ }^{3}$

A solution of the corresponding nitrile (10 mmol) in THF (10 mL) was added dropwise to a solution of LDA ($25 \mathrm{mmol}, 2.5$ equiv.) in THF (30 mL) cooled to $-78^{\circ} \mathrm{C}$. The reac-

[^0]tion mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 45 min . and then at room temperature for an additional 45 minutes. The reaction mixture was then cooled to $-78^{\circ} \mathrm{C}$ and a solution of di-tert-butyl dicarbonate ($2.62 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv.) in THF (10 mL) was added via syringe. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was quenched with saturated ammonium chloride (20 mL) and extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL}$), brine (30 mL) and dried with MgSO_{4}. The solvent was removed under reduced pressure and the resulting crude oil was purified using silica gel chromatography (EtOAc:hexane 1:20) to yield the desired α-cyanoester $\mathbf{2}$.

Data of $\mathbf{2 c}, \mathbf{2 f}, \mathbf{2 g}, \mathbf{2 h}$ and $\mathbf{2 i}$:
tert-Butyl 2-(4-chlorophenyl)-2-cyanoacetate 2c

Yield: $1.701 \mathrm{~g}(6.75 \mathrm{mmol}, 68 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.39(\mathrm{~s}, 4 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 163.6,135.3,129.6,129.3,115.7,85.0,44.3,27.8$. UPLC-DAD-QTOF (ESI): $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Cl}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 250.0635, found: 250.0632 .
tert-Butyl 2-cyano-2-(m-tolyl)acetate $2 f$

Yield: $1.693 \mathrm{~g}(7.32 \mathrm{mmol}, 73 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.35-7.08(\mathrm{~m}, 4 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,139.2,130.5,129.9,129.2$, $128.5,125.0,116.3,84.5,44.8,27.8,21.5$. HRMS (ESI): $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 232.1338, found: 232.1331.
tert-Butyl 2-cyano-2-(o-tolyl)acetate 2 g
Yield: $1.274 \mathrm{~g}(5.50 \mathrm{mmol}, 55 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51$
 $-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.17(\mathrm{~m}, 4 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,136.2,131.3,129.6,129.2$, 128.6, 127.0, 116.3, 84.6, 42.2, 27.8, 19.5. HRMS (ESI): $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 232.1338, found: 232.1333.
tert-butyl 2-(3-bromo-4-methoxyphenyl)-2-cyanoacetate 2 h

Yield: $213 \mathrm{mg}(31 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-$ $7.60(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{ddd}, J=8.5,2.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 163.6, 156.4, 132.7, 128.0, 123.6, 115.7, 112.2, 112.1, 84.8, 56.3, 43.5, 27.7. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{BrNa}[\mathrm{M}]^{+}$ calcd.: 348.0211, found:348.0214.
tert-butyl 2-cyano-2-(thiophen-2-yl)acetate 2i

Yield: $679 \mathrm{mg}(60 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-6.96(\mathrm{~m}$, $3 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9$, 147.5, 131.1, 127.9, 127.1, 115.2, 85.1, 40.1, 27.6. UPLC-DADQTOF: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$calcd.: 224.0746, found: 224.0745.

Physical and spectroscopic data of the remaining α-cyanoesters 2 were identical to those previously reported. ${ }^{4}$

4.2. General procedure for the preparation of α-cyanoesters 3 and 4

A solution of the corresponding nitrile (10 mmol) in THF (10 mL) was added dropwise to a solution of LDA ($25 \mathrm{mmol}, 2.5$ equiv.) in THF (30 mL) cooled to $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 45 min . and then at room temperature for an additional 45 minutes. The reaction mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of the corresponding chloroformate ($15 \mathrm{mmol}, 1.5$ equiv.) in THF (10 mL) was added via syringe. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was quenched with saturated ammonium chloride (20 mL) and extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$, brine (30 mL) and dried with MgSO_{4}. The solvent was removed under reduced pressure and the resulting crude oil was purified using silica gel chromatography to yield the desired cyanoester.
benzyl 2-cyano-2-(p-tolyl)acetate (3e)

ethyl 2-(4-bromophenyl)-2-cyanoacetate (4b)
Yield: $1.24 \mathrm{~g}(92 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.29$
 $(\mathrm{m}, 4 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.18(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.5, 132.4, 129.7, 129.2, 123.4, 115.4, 63.5, 43.1, 13.8. UPLC-DAD-QTOF: $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{Br}$ [M-H] calcd.: 265.9850, found: 265.9817.

[^1]
5. Catalytic conjugate addition of α-cyanoesters 2-4 to enone 1: General procedure and characterization data

General Procedure: To a mixture of the corresponding α-cyanoacetate ($0.3 \mathrm{mmol}, 1.5$ equiv.) and α-hydroxy enone 1 ($26 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.) in 1,2 -dichloroethane (DCE, 0.4 mL), catalyst $\mathbf{C 6}(13 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added. The resulting mixture was stirred until consumption of the enone (monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). The reaction was treated with HCl 1 N and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases were dried with MgSO_{4}. Evaporation of the solvent under reduced pressure gave the crude product which was purified by flash column chromatography (eluent hexane/ethyl acetate 95/5).
(2S,4S)-tert-Butyl 2-cyano-6-hydroxy-4,6-dimethyl-5-oxo-2-phenylheptanoate (5a)
Prepared according to the general procedure starting from tert-butyl 2-cyano-2-phenylacetate $\mathbf{2 a}$ ($65 \mathrm{mg}, 0.3 \mathrm{mmol}$). The title compound was isolated as an oil. Yield: 81% (84 $\mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{25}=+27.6^{\circ}\left(\mathrm{c}=0.7,98 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.34(\mathrm{~m}$, $3 \mathrm{H}), 3.33-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{dd}, J=14.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=14.6,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.41(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.8,166.2,135.1,129.3,129.1,126.1,118.8,84.9,53.8,40.6,36.9$, 27.7, 27.2, 27.0, 19.9. UPLC-DAD-QTOF: $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 368.1838, found: 368.1836 .
The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IC hexane/isopropanol 98/2, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 19.6 min (major.) and 24.5 min (minor.)).

> (2S,4S)-tert-Butyl oxoheptanoate (5b)

2-(4-bromophenyl)-2-cyano-6-hydroxy-4,6-dimethyl-5-

Prepared according to the general procedure starting from tert-butyl 2-cyano-2-(4-bromophenyl)acetate 2b ($88 \mathrm{mg}, 0.3 \mathrm{mmol}$). The title compound was isolated as an oil. Yield: $69 \%(88 \mathrm{mg}) .[\alpha]_{D}{ }^{25}=+18.5^{\circ}$ ($\mathrm{c}=1.15,98 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{q}, J=6.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ $(\mathrm{s}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=14.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=14.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H})$, $1.39(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.6,165.8$, 134.2, 132.5, 127.9, 123.5, 118.4, 85.4, 53.5, 40.6, 36.9, 27.7, 27.3, 27.1, 20.0. UPLC-DAD-QTOF: $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 446.0943, found: 446.0945 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IA hexane/isopropanol 98/2, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 27.1 min (minor.) and 29.3 min (major.)).

(2S,4S)-tert-Butyl oxoheptanoate (5c)

2-(4-chlorophenyl)-2-cyano-6-hydroxy-4,6-dimethyl-5-

Prepared according to the general procedure starting from tert-butyl 2-(4-chlorophenyl)-2-cyanoacetate 2c ($76 \mathrm{mg}, 0.3 \mathrm{mmol}$). The title compound was isolated as an oil. Yield: $95 \%(108 \mathrm{mg}) \cdot[\alpha]_{\mathrm{D}}{ }^{25}=+17.8^{\circ}$ (c=4.2, $96 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H})$, $3.34-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{dd}, J=14.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dd}, J=14.6,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 216.6$, 165.8, 135.2, 133.7, 129.5, 127.6, 118.4, 85.2, 53.4, 40.5, 36.9, 27.7, 27.2, 27.0, 19.9. UPLC-DAD-QTOF: $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 402.1448, found: 02.1447.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IA hexane/isopropanol 98/2, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 30.9 min (minor.) and 34.9 min (major.)).
(2S,4S)-tert-Butyl 2-cyano-6-hydroxy-2-(4-methoxyphenyl)-4,6-dimethyl-5oxoheptanoate (5d)

Prepared according to the general procedure starting from tert-butyl 2-cyano-2-(4methoxyphenyl)acetate $2 \mathbf{d}(74 \mathrm{mg}, 0.3 \mathrm{mmol})$. The title compound was isolated as an oil. Yield: 70% $(79 \mathrm{mg}) \cdot[\alpha]_{\mathrm{D}}{ }^{25}=+25.4^{\circ}(\mathrm{c}=0.85,>98 \% e e$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.35$ $(\mathrm{m}, 2 \mathrm{H}), 6.97-6.84(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{q}, J=6.3,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.77 (dd, $J=14.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.39$ (s, $9 \mathrm{H}), 1.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.9,166.3,139.2,135.0$, 129.8, 129.2, 126.7, 123.1, 119.0, 84.8, 53.8, 40.7, 37.0, 27.7, 27.2, 27.0, 21.7, 19.9. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 398.1943 , found: 398.1942 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak AY-H hexane/isopropanol $98 / 2$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention time: 40.9 min).
(2S,4S)-tert-Butyl 2-cyano-6-hydroxy-4,6-dimethyl-5-oxo-2-(p-tolyl)heptanoate (5e)
Prepared according to the general procedure starting from tert-butyl 2-cyano-2-(p-tolyl)acetate 2e (69 $\mathrm{mg}, 0.3 \mathrm{mmol}$). The title compound was isolated as an oil. Yield: $67 \%(72 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{25}=+28.7^{\circ}$ ($c=0.85,>98 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H})$, $3.32(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{q}, J=6.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=14.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $2.14(\mathrm{dd}, J=14.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 216.8,166.4,139.0,132.0,130.0,126.0,119.0$, 84.8, 53.5, 40.6, 36.9, 27.7, 27.2, 27.0, 21.2, 20.0. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 382.1994, found: 382.1998.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IC hexane/isopropanol $85 / 15$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 10.2 min).
(2S,4S)-tert-Butyl 2-cyano-6-hydroxy-4,6-dimethyl-5-oxo-2-(m-tolyl)heptanoate (5f)

Prepared according to the general procedure starting from tert-butyl 2-cyano-2-(m-tolyl)acetate $\mathbf{2 f}$ ($69 \mathrm{mg}, 0.3$ $\mathrm{mmol})$. The title compound was isolated as an oil. Yield: $83 \%(89 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{25}=+22.7^{\circ}\left(\mathrm{c}=2.35,97 \%\right.$ ee, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.19-$ $7.12(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 3.31-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dd}$, $J=14.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{dd}, J=14.6,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 216.9,166.3,139.2,135.0,129.8,129.2,126.7,123.1,119.0,84.8,53.8,40.7$, 37.0, 27.7, 27.2, 27.0, 21.7, 19.9. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 382.1994, found: 382.1991.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IC hexane/isopropanol $99 / 1$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 30.4 min (major.) and 43.1 min (minor.)).
tert-butyl (2S,4S)-2-(3-bromo-4-methoxyphenyl)-2-cyano-6-hydroxy-4,6-dimethyl-5-oxoheptanoate (5h)

Prepared according to the general procedure starting from cyanoacetate 2 h ($98 \mathrm{mg}, 0.3 \mathrm{mmol}$). The title compound was isolated as an oil. Yield: 57 mg (62%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73$ (d, $J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48$ (dd, $J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=$ $14.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=14.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 15 \mathrm{H}), 1.14(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 216.4,165.8,156.2,130.8,128.1,126.3,118.3$, 112.2, 111.9, 85.0, 56.3, 52.6, 40.4, 36.7, 27.5, 27.0, 19.8. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 454.1229, found: 454.1233.
The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak OJ-H hexane/isopropanol 98/2, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 54.8 min (major.) and 67.9 min (minor.). Processed Channel Descr.: PDA 210.0 nm).
(2S,4S)-tert-butyl yl)heptanoate (5i)

2-cyano-6-hydroxy-4,6-dimethyl-5-oxo-2-(thiophen-2-
Prepared according to the general procedure starting from cyanoacetate $2 \mathbf{i}$ ($67 \mathrm{mg}, 0.3 \mathrm{mmol}$). The title compound was isolated as an oil. Yield: $51 \mathrm{mg}(72 \%) .[\alpha]_{D}{ }^{25}=+4.0(\mathrm{c}=1,97$ \% ee, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-6.93(\mathrm{~m}$, 3 H), 3.35 (dt, $J=7.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dd, $J=14.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.22 (dd, $J=14.4$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.19(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.2,165.3,137.7,126.8,118.0,85.4,77.1,50.8,41.9,36.7,27.5$, 27.1, 19.5. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 374.1406, found: 374.1402 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak AY-H hexane/isopropanol 95/5, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 29.9 min (minor.) and 47.4 min (major.). Processed Channel Descr..: PDA 245.0 nm).
benzyl (2S,4S)-2-cyano-6-hydroxy-4,6-dimethyl-5-oxo-2-(p-tolyl)heptanoate (6e)
Prepared according to the general procedure starting from
 cyanoacetate $3 \mathbf{e}(80 \mathrm{mg}, 0.3 \mathrm{mmol})$. The title compound was isolated as an oil. Yield: $60 \mathrm{mg}(76 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=$ +11.2 ($\mathrm{c}=1,92 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.54-7.14(\mathrm{~m}, 9 \mathrm{H}), 5.19(\mathrm{q}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.40-3.28$ (m, 1H), 2.91 (dd, $J=14.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (s, 3H), 2.23 (dd, $J=14.6,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.5,167.2,139.1,134.5,131.2,129.9,128.5,128.5,127.8,125.9,118.3,68.6,52.6$, 40.6, 36.7, 26.9, 26.5, 21.0, 19.7. UPLC-DAD-QTOF: $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 394.2015, found: 394.2018.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IC+AYH hexane/isopropanol 90/10, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 59.0 min (major.) and 74.4 min (minor.). Processed Channel Descr.: PDA 235.0 nm).
ethyl (2S,4S)-2-(4-bromophenyl)-2-cyano-6-hydroxy-4,6-dimethyl-5-oxoheptanoate (7b)

Prepared according to the general procedure starting from cyanoacetate $\mathbf{4 b}(80 \mathrm{mg}, 0.3 \mathrm{mmol})$. The title compound was isolated as an oil. Yield: $70 \mathrm{mg}(88 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=+12.5$ (c=1, $91 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.69-7.39(\mathrm{~m}, 4 \mathrm{H}), 4.39-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{qd}, J=$ $6.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (dd, $J=14.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=14.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.43$ $(\mathrm{d}, J=4.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.3,166.9,133.5,132.4,127.8,123.4,117.9,77.1,63.7,52.6,40.6$, 36.7, 27.0, 19.9, 13.7. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 396.0810, found: 396.0811.
The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IC hexane/isopropanol $97 / 3$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$, retention times: 43.9 min (major.) and 51.4 min (minor.). Processed Channel Descr..: PDA 235.0 nm).

General procedure for the racemic reactions:

Racemic reactions were conducted following the above General Procedure, but using as catalyst DBU ($20 \mathrm{~mol} \%$) and running the reaction at room temperature.

6. Results with elementary Michael acceptors other than 1

R_{1}	$\mathrm{~T}^{\circ} \mathrm{C}$	$\mathrm{t}(\mathrm{h})$	Conv.	Yield (\%)	$d r$	$e e(\%)$
Me	50	16	35			
		40	45			
		70	60			
	90	60	45	$80: 20$	92 (major.)	
						42 (minor.)
OMe	50	20	0	NR	--	--
H	rt	24	100	83	$60: 40$	14 (major.)
						10 (minor.)

To a mixture of the cyanoacetate ($0.3 \mathrm{mmol}, 1.5$ equiv.) and the corresponding Michael acceptor ($0.2 \mathrm{mmol}, 1$ equiv.) in 1,2-dichloroethane (DCE, 0.4 mL), catalyst C6 (13 mg , 0.02 mmol) was added. The resulting mixture was stirred until consumption of the electrophile (monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). The reaction was treated with HCl 1 N and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases were dried with MgSO_{4}. Evaporation of the solvent under reduced pressure gave the crude product. After purification by flash column chromatography (eluent hexane/ ethyl acetate) the product was isolated. NR: no reaction.

7. Catalytic conjugate addition of α-cyanoester to chiral enones 8-11 and 17.

7.1. Preparation of chiral α^{\prime}-oxyenones $8,9,10$ and 11 .

Step 1

$R=B n$
$R=i B u$
i) $\mathrm{H}_{2} \mathrm{SO}_{4}$
ii) NaNO_{2}
recryst.
$\mathrm{H}_{2} \mathrm{O}, 24$ h, $0^{\circ} \mathrm{C}-$ r.t.

Step 3
i) $\mathrm{CH}_{3} \mathrm{ONHCH}_{3} \cdot \mathrm{HCl}$
ii) PrMgCl

THF, -20 to $0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$

Step 4

$\begin{array}{ll}R=B n & 8 \\ R=i B u & 9\end{array}$

Step 5

Step 1: Preparation of (\boldsymbol{R})-2-hydroxy acids: ${ }^{5}$

To a suspension of the corresponding amino acid (50 mmol) in water (27.5 mL), an aqueous solution of sulfuric acid ($2 \mathrm{~N}, 27.5 \mathrm{~mL}$) was added dropwise at $0^{\circ} \mathrm{C}$. At the same temperature, an aqueous solution of sodium nitrite ($2 \mathrm{~N}, 27.5 \mathrm{~mL}$) was also added dropwise. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The mixture was then warmed up to r.t. and was stirred for 24 h . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40$ mL) and the combined organic phases were dried over MgSO_{4}. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by crystallization (ethyl acetate / hexane 1:1).

[^2]
(R)-2-hydroxy-3-phenylpropanoic acid

Prepared according to the general procedure starting from Dphenylalanine ($50 \mathrm{mmol}, 8.26 \mathrm{~g}$). Product obtained as white crystals after recrystallization. Yield: $4.15 \mathrm{~g}(50 \%) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those reported in the literature. ${ }^{5}$
(R)-2-hydroxy-4-methylpentanoic acid

Step 2: Preparation of methyl-(R)-2-hydroxy esters: ${ }^{6}$

To a solution of the corresponding 2-hydroxy acid (40 mmol) in methanol (35 mL), an aqueous solution of sulfuric acid $(96 \%, 0.93 \mathrm{~mL})$ was added and the resulting mixture was heated to reflux and stirred for 3 h . The solvent was evaporated under reduced pressure and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and washed successively with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and $\mathrm{NaCl}(20 \mathrm{~mL})$. The organic phase was dried with MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The resulting oil was used without further purification.

(R)-methyl 2-hydroxy-3-phenylpropanoate

O Product obtained as yellow oil. Yield: 7.28 g (100 \%). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those reported in the literature. ${ }^{6}$

(R)-methyl 2-hydroxy-4-methylpentanoate

 NMR spectra were identical to those reported in the literature. ${ }^{6}$

Step 3: Preparation of (R)-2-hydroxy-N-methoxy-N-methylamides: ${ }^{7}$

[^3]To a solution of the corresponding hydroxy ester (10 mmol) and $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine hydrochloride ($15 \mathrm{mmol}, 1.5$ equiv.) in THF (35 mL), a 2 M solution of ${ }^{\mathrm{i}} \mathrm{PrMgCl}$ in THF ($40 \mathrm{mmol}, 4$ equiv.) was added at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1.5 h at $0^{\circ} \mathrm{C}$. The reaction was then quenched with an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic phases were dried with MgSO_{4}. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 80/20).

(R)-2-hydroxy-N-methoxy-N-methyl-3-phenylpropanamide

(R)-2-hydroxy-N-methoxy-N,4-dimethylpentanamide

Product obtained as a colorless oil. Yield: $1.42 \mathrm{~g}(81 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=$ +28.3 (ee $>99 \%, \mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 4.44 (dd, $J=8.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (s, 3 H), 3.26 (s, 3 H), 1.95 (td, $J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.8,67.3,61.2,44.0,24.6,23.6,21.3$. UPLC-DAD-QTOF: $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}]^{+}$calcd.: 176.1287, found: 176.1289.

Step 4: Preparation of hydroxyenones 8 and 9:

To a solution of 2-bromopropene ($9 \mathrm{mmol}, 0.79 \mathrm{~mL}, 3$ equiv.) in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$, a tertbutyllithium solution ($1.6 \mathrm{M}, 6.75 \mathrm{~mL}, 3.6$ equiv.) was added at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred at the same temperature for 1 h . A solution of the corresponding Weinreb amide (3 mmol) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was then added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ for 16 h . The reaction was quenched with an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 95/5).
(R)-4-hydroxy-2-methyl-5-phenylpent-1-en-3-one (8)

Product obtained as a yellow oil. Yield: $411 \mathrm{mg}(72 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=-49.5$ (ee $>99 \%$, c=1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.13$ (m, 5H), $6.07-5.95(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{td}, J=7.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (ddd, $J=20.9,14.0,5.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.96 (dd, $J=$ $1.4,0.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.8,142.0,137.0,129.8,128.8$,

[^4]127.2, 126.8, 73.4, 42.9, 18.2. UPLC-DAD-QTOF: $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 191.1062, found: 191.1072.
The enantiomeric purity was determined by HPLC analysis (Chiralpak column AS-H, 95:5 Hexane: $i-\mathrm{PrOH}, 0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$).

(\boldsymbol{R})-4-hydroxy-2,6-dimethylhept-1-en-3-one (9)

Product obtained as a yellow oil. Yield: $214 \mathrm{mg}(46 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=$ -32.7 (ee >99\%, c=1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.91$ $(\mathrm{d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.89-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.07-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.44$ (dddd, $J=18.2,14.1,9.7,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.99$ $(\mathrm{dd}, J=25.0,6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.4,141.6,126.4,71.4$, 45.9, 25.3, 24.0, 21.7, 18.3. UPLC-DAD-QTOF: $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 179.1048, found: 179.1051.

The enantiomeric purity was determined by GC analysis (Chiral column HYDRODEX $\beta-6 \mathrm{TBDM}$. Temperature gradient: $100^{\circ} \mathrm{C}$ for 1 min ., $10^{\circ} \mathrm{C} / \mathrm{min}$. until minute $11,200^{\circ} \mathrm{C}$ until minute 22).

Step 5: Preparation of silyloxyenones 10 and 11:

To a solution of the corresponding hydroxyenone (2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$), were added successively 2,6 -lutidine ($0.55 \mathrm{~mL}, 4.8 \mathrm{mmol}, 2.4$ equiv.) and TMSOTf (0.72 $\mathrm{mL}, 4 \mathrm{mmol}, 2$ equiv.) at $-20^{\circ} \mathrm{C}$. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 3 h and then EtOAc (40 mL) was added. The organic phase was washed with saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL}), \mathrm{CuSO}_{4}(3 \times 40 \mathrm{~mL}), \mathrm{NaHCO}_{3}(2 \times 40 \mathrm{~mL})$ and $\mathrm{NaCl}(40 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The resulting crude material was purified by flash column chromatography (eluent hexane/ethyl acetate 99/1).
The optical purity was determined on the corresponding α^{\prime}-hydroxy derivatives obtained by desilylation with $\mathrm{H}_{2} \mathrm{~F}_{2} / \mathrm{MeOH}$.

(\boldsymbol{R})-2-methyl-5-phenyl-4-((trimethylsilyl)oxy)pent-1-en-3-one (10)

Product obtained as a yellow oil. Yield: $399 \mathrm{mg}(72 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=-1.7$ $\left(\mathrm{c}=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.17(\mathrm{~m}, 5 \mathrm{H})$, $6.14(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=1.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=9.0,4.0 \mathrm{~Hz}$, 1 H), 2.96 (ddd, $J=22.5,13.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ (dd, $J=1.3,0.9 \mathrm{~Hz}$, 3 H), -0.05 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.9,142.6,137.9,129.5,128.2$, $126.5,125.5,76.4,42.1,18.4,-0.4$. UPLC-DAD-QTOF: $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}$calcd.: 263.1467, found: 263.1464 .
(R)-2,6-dimethyl-4-((trimethylsilyl)oxy)hept-1-en-3-one (11)

TMSO \quad| Product obtained as a yellow oil. Yield: $279 \mathrm{mg}(61 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=+0.5$ |
| :--- |
| $\left(\mathrm{c}=0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J$ |
| $=1.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=9.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.74(\mathrm{~m}, 4 \mathrm{H})$, |

$6 \mathrm{H}), 0.11-0.05(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.6,142.3,124.9,73.6,44.5$, 24.4, 23.3, 21.2, 18.3, -0.1. [UPLC-DAD-QTOF: $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}$calcd.: 229.1620, found: 229.1624.

7.2. Screening of catalysts

64 h, 65 \% dr: 22:21:57:0

64 h, 75 \%
dr: 56:35:9:0

14 days, 55 \%
dr: 67:30:3:0

dr: 32:23:23:22

dr: 22:16:51:11

Catalysts C1-C12 were prepared following the procedures described in the literature. ${ }^{9}$

[^5]
7.3. Catalytic addition of α-cyanoacetates 2 to chiral enones 8-11.

8 R: Bn R¹: H
9 R: iBu R ${ }^{1}$: H
$10 \mathrm{R}: \mathrm{Bn} \mathrm{R}^{1}: \mathrm{SiMe}_{3}$
$11 \mathrm{R}: \mathrm{iBu} \mathrm{R}^{1}: \mathrm{SiMe}_{3}$
$12 \mathrm{R}: \mathrm{Bn} \mathrm{R}^{2}$: H
$13 \mathrm{R}: \mathrm{Bn} \mathrm{R}^{2}$: Br
$14 \mathrm{R}: ~ i B u R^{2}$: Br
15 R: iBu R²: CI

General Procedure: To a solution of the corresponding tert-butyl cyanoacetate 2 (0.6 mmol) and the corresponding α^{\prime}-oxy enone $\mathbf{8 - 1 1}$ (0.2 mmol , 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.4 mL), the catalyst (0.02 mmol) was added and the resulting mixture was stirred at $20^{\circ} \mathrm{C}$ until consumption of the α^{\prime}-oxy enone (monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$; see Table 3 for reaction times). The reaction mixture was quenched with $\mathrm{HCl} 1 \mathrm{~N}(5 \mathrm{~mL})$ and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure.

Reactions from α^{\prime}-hydroxy enone 8/9: The residue was submitted to purification by flash column chromatography (eluent hexane/ethyl acetate 95/5).

Reactions from α^{\prime}-silyloxy enone 10/11: The resulting material was dissolved in MeOH $(0.5 \mathrm{~mL})$ and a solution of concentrated fluorhydric acid in MeOH was added (10 $\mathrm{mmol}, 0.2 \mathrm{~mL}$) and the resulting mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h . Then the solvent was evaporated and the resulting residue was basified to pH 7 with sat'd solution of NaHCO_{3}. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 4 \mathrm{~mL})$, dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The residue was submitted to purification by flash column chromatography (eluent hexane/ethyl acetate 95/5).
(2S,4S,6R)-tert-butyl 2-cyano-6-hydroxy-4-methyl-5-oxo-2,7-diphenylheptanoate (12)

Prepared according to the general procedure starting from silyloxyenone $\mathbf{1 0}$ and cyanoacetate 2a, and using catalyst C6. The title compound was isolated as an oil. Yield: 59 mg $(73 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=+5.7\left(\mathrm{c}=0.3\right.$, dr: 89:11:0:0, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR major diastereomer ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.18(\mathrm{~m}, 10 \mathrm{H}), 4.54$ (ddd, $J=9.3$, $5.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-2.93(\mathrm{~m}, 4 \mathrm{H}), 2.93-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}$, 9 H), $1.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR major diastereomer $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.1$, $166.1,136.8,134.4,129.3,129.2,128.9,128.6,126.8,126.0,118.6,84.7,76.0,53.7$, 39.7, 38.8, 27.5, 19.0. UPLC-DAD-QTOF: $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 430.1993, found: 430.1994. dr: 89:11:0:0.
The ratio of diastereomers was determined by ${ }^{1} \mathrm{H}$ NMR analysis.

[^6]

Prepared according to the general procedure starting from silyloxyenone $\mathbf{1 0}$ and cyanoacetate $\mathbf{2 b}$, and using catalyst C6. The title compound was isolated as an oil. Yield: $73 \mathrm{mg}(75 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=+4.5(\mathrm{c}=1, \mathrm{dr}: 83: 17: 0: 0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR major diastereomer ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.19(\mathrm{~m}, 9 \mathrm{H}), 4.59-$ $4.47(\mathrm{~m}, 1 \mathrm{H}), 3.19-2.94(\mathrm{~m}, 3 \mathrm{H}), 2.83(\mathrm{dt}, J=14.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.00(\mathrm{~m}, 1 \mathrm{H})$, $1.45(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR major isomer $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $212.8,165.6,137.0,134.0,132.3,129.6,129.3,128.5,127.7,126.8,85.1,76.0,54.1$, 42.9, 40.6, 38.8, 27.5, 19.0. UPLC-DAD-QTOF: $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Br}[\mathrm{M}]^{+}$calcd.: 486.1280, found: 486.1282. dr: 83:17:0:0.
The diastereomeric purity was determined by ${ }^{1} \mathrm{H}$ NMR analysis.

(2S,4S,6R)-tert-butyl

2-(4-bromophenyl)-2-cyano-6-hydroxy-4,8-dimethyl-5oxononanoate (14)

Prepared according to the general procedure starting from silyloxyenone $\mathbf{1 1}$ and cyanoacetate $\mathbf{2 b}$, and using catalyst C6. The title compound was isolated as an oil. Yield: $81 \mathrm{mg}(90 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=-1.2(\mathrm{c}=0.6, \mathrm{dr}: 91: 9: 0: 0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR major diastereomer $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.41(\mathrm{~m}, 4 \mathrm{H}), 4.40$ $4.28(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.45$ $(\mathrm{s}, 9 \mathrm{H}), 1.44-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~d}, 3 \mathrm{H}), 1.08(\mathrm{~d}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR major diastereomer ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.7,165.5,134.0$, 131.7, 127.7, 123.3, 118.0, 85.1, 73.3, 42.8, 38.6, 38.5, 27.5, 24.8, 23.6, 21.0, 19.4. UPLC-DAD-QTOF: $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Br}[\mathrm{M}]^{+}$calcd.: 452.1436, found: 452.1439. dr: 91:9:0:0.

The diastereomeric purity was determined by ${ }^{1} \mathrm{H}$ NMR analysis.

(2S,4S,6R)-tert-butyl

2-(4-chlorophenyl)-2-cyano-6-hydroxy-4,8-dimethyl-5-

 oxononanoate (15)Prepared according to the general procedure starting from silyloxyenone 11 and cyanoacetate $2 \mathbf{c}$, and using catalyst C6. The title compound was isolated as an oil. Yield: $65 \mathrm{mg}(80 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=-0.8$ (c=0.7, dr: 90:10:0:0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR major diastereomer ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.35$ (m, $4 \mathrm{H}), 4.43-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ - $2.90(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{dt}, J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-$ $1.40(\mathrm{~m}, 11 \mathrm{H}), 1.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-0.98(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR major diastereomer ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.4$, 165.7, 135.1, 133.5, 129.4, 127.4, 118.4, 85.1, $73.4,53.2,42.8,38.6,27.5,24.8,23.8,21.1,19.6$. UPLC-DAD-QTOF: $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Cl}$ $[\mathrm{M}]^{+}$calcd.: 408.1942, found: 408.1943. dr: 90:10:0:0.
The diastereomeric purity was determined by ${ }^{1} \mathrm{H}$ NMR analysis.

7.4. Preparation of chiral α^{\prime}-silyloxyenone 17.

Step 1
Step 2

Step 3

Step 1: Preparation of methyl (R)-3-phenyl-2-((triethylsilyl)oxy)propanoate: ${ }^{10}$

To a solution of 4-dimethylamino pyridine ($900 \mathrm{mg}, 7.5 \mathrm{mmol}$), triethylamine (0.7 mL , 5 mmol), and triethylchlorosilane ($1.27 \mathrm{~mL}, 7.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$, methyl (R) -2-hydroxy-3-phenylpropanoate ($901 \mathrm{mg}, 5 \mathrm{mmol}$, prepared as described on pages S12S13) was added and the reaction was stirred at room temperature for 24 h . After filtration over celite, the filtrate was diluted with diethyl ether (50 mL) and the resulting solution was washed with brine $(1 \times 25 \mathrm{~mL}), \mathrm{HCl} 3 \mathrm{M}(3 \times 50 \mathrm{~mL})$, and water $(1 \times 25$ mL). The organic phase was dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 20/1) to give the desired compound as a colorless oil $(1.21 \mathrm{~g}, 82 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=+47.4\left(\mathrm{ee}>99 \%, \mathrm{c}=2.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.41-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.40(\mathrm{dd}, J=8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.19-2.85(\mathrm{~m}, 2 \mathrm{H})$, $0.92-0.79(\mathrm{~m}, 9 \mathrm{H}), 0.57-0.41(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.5,137.3$, 129.6, 128.1, 126.6, 73.5, 51.8, 41.6, 6.4, 4.3. UPLC-DAD-QTOF: $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ cald.: 295.1729, found: 295.1733.

Step 4: $\underset{\text { Preparation }}{\text { (triethylsilyl)oxy)propanamide: }}{ }^{11}$ of $\quad(\boldsymbol{R})$-N-methoxy-N-methyl-3-phenyl-2-

[^7]

To a solution of the methyl silyloxyester ($1.21 \mathrm{~g}, 4.1 \mathrm{mmol}$) and N, O dimethylhydroxylamine hydrochloride ($601 \mathrm{mg}, 6.2 \mathrm{mmol}, 1.5$ equiv.) in THF (14 mL), a 2 M solution of ${ }^{\mathrm{i}} \mathrm{PrMgCl}$ in THF ($8.2 \mathrm{~mL}, 16.5 \mathrm{mmol}, 4$ equiv.) was added at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1.5 h at $0^{\circ} \mathrm{C}$. The reaction was then quenched with an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30$ mL). The combined organic phases were dried over MgSO_{4}. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate $80 / 20$) to obtain the desired product as a yellow oil $(1.08 \mathrm{~g}, 3.3 \mathrm{mmol}, 81 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=+3.6$ (ee $>99 \%, \mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.72(\mathrm{dd}, J=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}$, $3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.12-2.83(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.60-0.42(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,137.7,129.6,128.1,126.4,70.8,61.0,41.2,32.4,6.4$, 4.4. UPLC-DAD-QTOF: $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$cald.: 324.1995, found: 324.2000.

Step 5: Preparation of (\boldsymbol{R})-5-phenyl-4-((triethylsilyl)oxy)pent-1-en-3-one (17):

To a solution of the α-silyloxy amide ($458 \mathrm{mg}, 1.4 \mathrm{mmol}$) in dry THF (4 mL), a 0.7 M solution of vinylmagnesium bromide in THF was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h at $0^{\circ} \mathrm{C}$. The reaction was then quenched with an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 95/5) to obtain the desired product as a colorless oil (159 $\mathrm{mg}, 0.6 \mathrm{mmol}, 43 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=+15.6$ (ee $>99 \%, \mathrm{c}=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}) $\delta 7.40-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{ddd}, J=17.4,10.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{ddd}, J=$ $17.5,1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dt}, J=10.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{ddd}, J=8.4,4.5,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03-2.81(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.52-0.40(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.6,137.4,131.4,130.2,129.8,128.6,127.0,79.7,41.9,7.0,4.9$. UPLC-DAD-QTOF: $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$cald.: 291.1780, found: 291.1782.

7.5. Catalytic addition of α-cyanoacetates 2 b and 2 c to chiral enone 17.

General Procedure: To a solution of tert-butyl cyanoacetate 2b or $\mathbf{2 c}(0.6 \mathrm{mmol})$ and the α^{\prime}-silyloxy enone $\mathbf{1 7}\left(0.2 \mathrm{mmol}, 1\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$, catalyst $\mathbf{C 6}(0.02$ mmol) was added and the resulting mixture was stirred at $20{ }^{\circ} \mathrm{C}$ until consumption of the α^{\prime}-oxy enone (monitored by ${ }^{1} \mathrm{H}$-NMR). The reaction mixture was quenched with $\mathrm{HCl} 1 \mathrm{~N}(5 \mathrm{~mL})$ and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The resulting material was dissolved in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and a solution of concentrated fluorhydric acid in MeOH was added ($10 \mathrm{mmol}, 0.2 \mathrm{~mL}$) and the resulting mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h . Then the solvent was evaporated and the resulting residue was basified to pH 7 with sat'd solution of NaHCO_{3}. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 4 \mathrm{~mL})$, dried over MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The residue was submitted to purification by flash column chromatography (eluent hexane/ethyl acetate 95/5).
tert-butyl phenylheptanoate (18)

(2S,6R)-2-(4-bromophenyl)-2-cyano-6-hydroxy-5-oxo-7-
$\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.19(\mathrm{~m}, 9 \mathrm{H}), 4.48-4.34$ $(\mathrm{m}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=14.2,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=14.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{ddd}, J=$ $17.2,12.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 208.9, 165.0, 135.7, 132.9, 132.1, 128.9, 128.3, 127.3, 126.7, 123.0, 117.5, 84.8, 77.0, 53.1, 39.8, $34.3,30.9$, 27.2. UPLC-DAD-QTOF: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+}$cald.: 494.0943, found: 494.0950.
tert-butyl
(2S,6R)-2-(4-chlorophenyl)-2-cyano-6-hydroxy-5-oxo-7phenylheptanoate (19)

Prepared according to the general procedure starting from α^{\prime}-silyloxy enone 17 and cyanoacetate 2 c . The title compound was isolated as an oil. Yield: $68 \mathrm{mg}(79 \%)$. $[\alpha]_{\mathrm{D}}{ }^{23}=+7.8$ (dr: > 95:5, c=1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.20(\mathrm{~m}, 9 \mathrm{H}), 4.48-4.36(\mathrm{~m}$, $1 \mathrm{H}), 3.22-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.2,165.4,136.0,135.2,132.7,129.4,129.2,128.6,127.3$, 127.0, 117.8, 85.1, 77.3, 53.4, 40.2, 34.6, 31.2, 27.5. UPLC-DAD-QTOF: $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$cald.: 450.1448 , found: 450.1447.

8. Chemical elaboration of adducts.

8.1. Synthesis of carboxylic acids 20,21 and ester 22

(2S,4S)-5-(tert-Butoxy)-4-cyano-2-methyl-5-oxo-4-phenylpentanoic acid (20)
A suspension of sodium periodate $\mathrm{NaIO}_{4}(342 \mathrm{mg}, 1.6 \mathrm{mmol})$ in water $(0.8 \mathrm{~mL})$ was added to a solution of α-hydroxy ketone $\mathbf{5 a}(0.2 \mathrm{mmol})$ in methanol (1 mL). The mixture was stirred at room temperature until the reaction was complete (monitored by TCL, 24h). Then the solvent was removed under reduced pressure. Water (4.5 mL) was added to the crude product and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3×6 mL). The combined organic extracts were dried over MgSO_{4}, filtered and the solvent was evaporated to afford the corresponding carboxylic acid. After purifying with flash column chromatography ($80: 20$ Hex: EtOAc) the carboxylic acid was obtained as a colorless oil ($52 \mathrm{mg}, 86 \%$ yield). $[\alpha]_{\mathrm{D}}{ }^{25}=+34.9\left(\mathrm{c}=2.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{dd}, J=14.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ ($\mathrm{tt}, J=7.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.09(\mathrm{dd}, J=14.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.3$, 166.0, 135.2, 129.3, 129.0, 126.1, 118.3, 84.9, 53.9, 40.8, 37.1, 27.7, 18.8. UPLC-DAD-QTOF: $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 304.1549, found: 304.1553.

(2S,4S)-2-tert-butoxycarbonyl-5-methyl-2-(4-chlorophenyl)-2-cyano-4methylpentanoic acid (21)

The same procedure as above was employed starting from α-hydroxy ketone $\mathbf{5 c}(76 \mathrm{mg}$, $0.2 \mathrm{mmol})$. Yield $59 \mathrm{mg}(88 \%)$. This compound was characterized as its methyl ester derivative 22, prepared as follow: To a solution of the resulting residue ($0.13 \mathrm{mmol}, 44$ mg) in $\mathrm{MeOH}(1 \mathrm{~mL})$, a solution of $\mathrm{Me}_{3} \mathrm{SiCHN}_{2}(2 \mathrm{M}, 0.65 \mathrm{mmol}, 0.33 \mathrm{~mL}, 5$ equiv.) was added and the resulting mixture was stirred at room temperature for 3 h . The solvent was evaporated under reduced pressure and the crude material was purified by flash column chromatography (eluent hexane/ethyl acetate 90/10). Yield $43 \mathrm{mg}(90 \%)$. $[\alpha]_{\mathrm{D}}{ }^{23}=+11.0\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.34(\mathrm{~m}, 4 \mathrm{H}), 3.74$ (s, 3H), $2.90(\mathrm{dd}, J=14.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=14.4,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.9,166.0$, $135.4,133.8,129.7,127.9,118.2,85.3,53.6,52.4,41.3,37.1,27.9,19.3$. UPLC-DADQTOF: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Cl}[\mathrm{M}]^{+}$calcd.: 352.1316, found: 352.1321.

8.2. Synthesis of aldehyde 23

(2S,4S)-tert-Butyl 2-cyano-4-methyl-5-oxo-2-phenylpentanoate 23

$\mathrm{BH}_{3} \cdot$ THF complex ($1 \mathrm{M}, 0.4 \mathrm{~mL}, 0.4 \mathrm{mmol}$) was added to a solution of α-hydroxy ketone $\mathbf{5 a}(69 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry $\mathrm{THF}(0.9 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting solution was stirred at the same temperature for 2 h . Then $\mathrm{MeOH}(1 \mathrm{~mL})$ was added and the resulting mixture was stirred at room temperature for 30 min . The solvents were removed under reduced pressure and the residue thus obtained was subjected to oxidative scission by treatment with NaIO_{4}, under the same conditions reported above. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 95/5) to give the title compound as an oil ($44 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.36$ $(\mathrm{m}, 3 \mathrm{H}), 2.97(\mathrm{dd}, J=14.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.51(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{dd}, J=14.5,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.3,180.6$, 135.2, 129.4, 129.1, 129.0, 126.1, 85.1, 53.9, 40.8, 38.5, 27.7, 15.4.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak AY-H hexane/isopropanol 95/5, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$, retention times: 18.7 min (major.) and 22.2 min (minor.)).

8.3. Scision of 15 and 18. Synthesis of methyl esters 22,24 and 25.

$15(R, S, S)$

$(R, S, S)+(R, R, S)(90: 10)$
a) NaIO_{4} $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$
r.t., 2 h
b) $\mathrm{Me}_{3} \mathrm{SiCHN}_{2}$ 2 M in $\mathrm{Et}_{2} \mathrm{O}$ MeOH, r.t., 3 h

1-tert-butyl 5-methyl 2-(4-chlorophenyl)-2-cyano-4-methylpentanedioate 22/24
A suspension of $\mathrm{NaIO}_{4}(171 \mathrm{mg}, 0.79 \mathrm{mmol})$ in water $(0.38 \mathrm{~mL})$ was added to a solution of adduct 15 ($90: 10$ mixture of diastereomers, $65 \mathrm{mg}, 0.16 \mathrm{mmol}$) in methanol $(0.79 \mathrm{~mL})$. The mixture was stirred at room temperature until the starting material dissapeared (monitored by TLC) and the solvent was removed under reduced pressure. Water (2.5 mL) was added to the residue and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and the solvent was evaporated. To a solution of the resulting residue ($0.13 \mathrm{mmol}, 44 \mathrm{mg}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$, a solution of $\mathrm{Me}_{3} \mathrm{SiCHN}_{2}(2 \mathrm{M}, 0.65 \mathrm{mmol}, 0.33 \mathrm{~mL}$, 5 equiv.) was added and the resulting mixture was stirred at room temperature for 3 h . The solvent was
evaporated under reduced pressure and the crude material was purified by flash column chromatography (eluent hexane/ethyl acetate 90/10). Yield (two steps): 42 mg ($90: 10$ mixture of diastereomers, 78%). NMR data of major isomer were identical to those of ester 22 prepared as above.

1-(tert-butyl) 5-methyl (S)-2-(4-bromophenyl)-2-cyanopentanedioate (25)
A suspension of sodium periodate $\mathrm{NaIO}_{4}(342 \mathrm{mg}, 1.6 \mathrm{mmol})$ in water $(0.8 \mathrm{~mL})$ was
 added to a solution of α-hydroxy ketone $\mathbf{1 8}(0.2 \mathrm{mmol})$ in methanol (1 mL) and water $(0.8 \mathrm{~mL})$. The mixture was stirred at room temperature until the reaction was complete (monitored by TCL, 2 h). Then the solvent was removed under reduced pressure. Water (4.5 mL) was added to the crude product and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 6 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered and the solvent was evaporated. To a solution of the resulting residue in $\mathrm{MeOH}(1 \mathrm{~mL})$, a solution of $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{~N}_{2}(2 \mathrm{M}, 1 \mathrm{mmol}, 0.5 \mathrm{~mL}, 5$ equiv.) was added and the resulting mixture was stirred at room temperature for 3 h . The solvent was evaporated under reduced pressure and the crude material was purified by flash column chromatography (eluent hexane/ethyl acetate $90 / 10$). Yield (two steps): $65 \mathrm{mg}(85 \%) .[\alpha]_{\mathrm{D}}{ }^{23}=+0.7$ ($\mathrm{c}=0.6$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.37(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.35$ $(\mathrm{m}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,165.8,133.7,132.8,128.1$, 123.7, 118.1, 85.5, 54.0, 52.4, 33.2, 30.5, 28.0. UPLC-DAD-QTOF: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrNO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}$cald.: 382.0654 , found: 382.0656 .

8.4. Reduction of 13 and 18 to corresponding anti-diols 26 and 27.

Preparation of zinc borohydride ${ }^{12}$

A mixture of anhydrous zinc chloride ($2 \mathrm{~g}, 14.5 \mathrm{mmol}$) and dry MTBE (25 mL) was refluxed until most of the solid had disolved. The mixture was allowed to stand, and the supernatant liquid was decanted from the insoluble material. The solution was added dropwise at room temperature to a stirred suspension of sodium borohydride (1.30 g , $34.5 \mathrm{mmol}, 2.4$ equiv.) in 75 mL of dry MTBE. The resulting mixture was stirred for 3

[^8]days at room temperature. The solids were allowed to settle, and the solution was directly used for the next reactions.

General procedure for the reduction of 13 and 18: To a solution the corresponding α^{\prime}-hydroxy ketone (0.6 mmol) in dry MTBE (2 mL) a solution of zinc borohydride in MTBE was added at $0^{\circ} \mathrm{C}(25 \mathrm{~mL})$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for $10-15$ minutes. The reaction mixture was quenched with water and the layers were separated. The organic phase was dried with MgSO_{4}, filtered and the solvent was evaporated under reduced pressure. The resulting crude material was purified by flash column chromatography (eluent hexane / ethyl acetate 80 / 20).

tert-butyl (2S,4S,6R)-2-(4-bromophenyl)-2-cyano-5,6-dihydroxy-4-methyl-7phenylheptanoate 26

Prepared according to the general procedure starting from 290 mg of ketone $\mathbf{1 3}$. The title compound was isolated as a colorless oil. Yield $225 \mathrm{mg}(76 \%) .[\alpha]_{\mathrm{D}}{ }^{25}$ $=+29.9\left(\mathrm{c}=1, \mathrm{dr}>95: 5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69-7.21(\mathrm{~m}, 9 \mathrm{H}), 3.95(\mathrm{dtd}, J=9.8,4.9$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=9.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=$ 13.8, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{qd}, J=7.3,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.85(\mathrm{dd}, J=14.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,138.3,135.3,132.1,129.5,128.6,127.6,126.6,122.9,118.8$, 85.5, 78.4, 72.7, 53.7, 40.9, 37.5, 33.2, 27.5, 17.7. UPLC-DAD-QTOF: $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 510.1256, found: 510.1266.
tert-butyl
(2S,5S,6R)-2-(4-bromophenyl)-2-cyano-5,6-dihydroxy-7phenylheptanoate 27

Prepared according to the general procedure starting from 284 mg of ketone 18. The title compound was isolated as a white solid. Yield: 222 mg (78%). m. p.: $127-129^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{23}=+6.7$ (dr: $>95: 5, \mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.41$
$-7.14(\mathrm{~m}, 5 \mathrm{H}), 4.63$ (ddd, $J=8.9,7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (ddd, $J=10.5,7.5,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.94-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.16-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,137.6,133.8,132.2,129.0,128.5,127.7,126.5$, 123.1, 118.1, 84.8, 79.3, 78.2, 54.3, 37.3, 34.9, 27.6, 25.2. UPLC-DAD-QTOF: $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{BrNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{H}]^{+}$cald.: 496.1099, found: 496.1104.

9. Configurational stability of $\boldsymbol{\alpha}^{\prime}$-oxy ketones

9.1. Configurational stability of enones 8 and 10 against Brønsted bases ${ }^{\text {a }}$

${ }^{\text {a }}$ Experiments carried out at room temperature. $e e^{\prime}$ s measured by chiral HPLC after 16 h . ${ }^{\mathrm{b}} e \mathrm{e}$ measured by chiral HPLC after 72 h . (Conditions for HPLC: Chiralpak column AS-H, 95:5 Hexane: $i-\mathrm{PrOH}, 0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$)

9.2. Configurational stability of Michael adduct 13 and its silyl ether

Diastereomeric ratios were determined by integration of key peaks on ${ }^{1} \mathrm{H}$ NMR.

Base	$\mathrm{t}(\mathrm{h})$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	S / R
$\mathrm{Et}_{3} \mathrm{~N}$	16	r.t.	$83: 17$
	72	r.t.	$83: 17$
	24	40	$83: 17$
DBU	16	r.t.	$-\cdots-\cdots-\cdots-\cdots$
	72	r.t.	$79: 19$
	24	40	$69: 31$

Configurational stability of the silyl ether under the reaction conditions:

10. Asignment of configuration to adducts 15 and 18

Configurational identity of each isomer of adduct $\mathbf{1 5}$ was established by correlation of HPLC chromatograms of the corresponding methyl ester derivatives 22 and comparison with ester products obtained from adduct $\mathbf{5 c}$, as follow:

rac-5c

	Retention Time	\% Area
1	14,681	17,14
2	17,074	29,41
3	17,796	35,45
4	20,360	18,00

a) NaIO_{4}

5c

	Retention Time	\% Area
1	17,146	90,63
2	20,188	9,37

a) NaIO_{4}

15
$S, S-15: R, S-15 \approx 90: 10$
a) NaIO_{4}

b) $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{CH}=\mathrm{N}_{2}$ 2 M in $\mathrm{Et}_{2} \mathrm{O}$
MeOH, r.t., 3 h

$S, S-22: R, S-22 \approx 91: 9$

	Retention Time	\% Area
1	17,542	91,35
2	20,079	8,65

Configurational identity of adduct 18 was established by correlation of HPLC chromatograms of the corresponding methyl ester derivatives $\mathbf{2 5}$ and comparison with ester products obtained from previously described adducts 28 and rac-28, ${ }^{4}$ as follow:
a) NaIO_{4}

	Retention Time	\% Area
1	27,318	46,71
2	29,504	53,29

28
a) NaIO_{4}

	Retention Time	\% Area
1	27,387	94,06
2	29,274	5,94

a) NaIO_{4}

	Retention Time	\% Area
1	27,217	100,00

11. Determination of the ratio of stereisomers

11.1 Diastereomeric ratio by NMR

(${ }^{1} \mathrm{H}$ NMR insets corresponding to reaction crudes)

Crude product from catalytic asymmetric reaction (single diastereomer)

[^9]
Adduct 12:

Adduct 13:

Adduct 14:

Adduct 15:

Adduct 18:

Adduct 19:

11.2. Enantiomeric ratio by HPLC/GC Chromatography

Determination of the $e e$ of enones 8, 9 and 17:

Chiralpak column AS-H, 95:5 Hexane: $i-\mathrm{PrOH}, 0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$.

	Retention Time	\% Area	Height
1	27.784	48.62	1756589
2	30.901	51.38	1657162

	Retention Time	\% Area	Height
1	31.746	100.00	209263

Gas Chromatography: Performed using a Thermo Scientific Trace 1300 equipment with a FID. Chiral column HYDRODEX $\beta-6$ TBDM, $25 \mathrm{~m}, 0.25 \mathrm{~mm}$ ID. Temperature gradient: 1) $100^{\circ} \mathrm{C}$ for 1 min ; 2) from $100{ }^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ $(11 \mathrm{~min}) ; 3) 200^{\circ} \mathrm{C}$ for an additional 11 min .

RT	Area (\%)
4.99	60.5
5.12	39.5

RT	Area (\%)
4.92	99.7
5.11	0.3

Determination of $e e$ of $\mathbf{1 7}$ was carried out by HPLC analysis on the desilylated alcohol: To a solution of $\mathbf{1 7}(0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(0.2 \mathrm{~mL})$, a concentrated solution of $\mathrm{H}_{2} \mathrm{~F}_{2}$ in $\mathrm{MeOH}(0.1 \mathrm{~mL})$ was added at room temperature and the mixture was stirred at the same temperature for 2 h . The solvent was evaporated and a saturated solution of NaHCO_{3} was added to the residue to adjust pH to 7 . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times$ 2 mL), dried over MgSO_{4}, filtered and the solvent evaporated under reduced pressure. The crude material was subjected to HPLC analysis (Chiralpak column AS-H, 95:5 Hexane: $i-\mathrm{PrOH}, 0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$)

RT	Area (\%)
26.010	99.53
26.210	0.47

(adduct from α-methyl 3-buten-2-one)

racemic

Column: AD-H
Eluent: Hex: $i \mathrm{PrOH}, 99: 1$ Flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ $\lambda=210 \mathrm{~nm}$

	Retention Time	Area	\% Area	Height
1	12.456	12163732	23.48	288662
2	13.867	13714389	26.47	357393
3	15.583	10810537	20.86	268153
4	17.060	15126763	29.19	364032

scalemic

	Retention Time	Area	\% Area	Height
2	13.867	5761668	6.61	169616
1	12.406	14165292	16.25	323895
4	17.170	2606201	2.99	80843
3	15.526	64637491	74.15	1345565

80:20 dr $92 \% e e$ (major.) $42 \% e e$ (minor.)

Column: IC
Eluent: Hex: $\mathrm{iPrOH}, 98: 2$
Flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$
$\lambda=210 \mathrm{~nm}$
rac-5a (mixture of diastereomers)

	Retention Time	Area	\% Area	Height
1	15.966	837575	7.81	14122
2	19.000	5381088	50.18	70135
3	23.439	4504790	42.01	52851

Scalemic-5a

	Retention Time	Area	\% Area	Height
1	19.598	23362803	99.45	289755
2	24.510	128192	0.55	1887

>99:1 dr, 99\% ee ((*) single diastereomer)

rac-5b (mixture of diastereomers)

Column: IA
Eluent: Hex:iPrOH, 98:2
Flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$
$\lambda=210 \mathrm{~nm}$

	Retention Time	Area	\% Area	Height
4	30.459	3124822	18.47	38178
3	27.450	3005918	17.77	33990
2	24.169	5160114	30.50	72419
1	18.732	5625158	33.25	71581

Scalemic-5b

	Retention Time	Area	\% Area	Height
1	18.776	303672	0.70	6358
2	24.026	728872	1.69	13463
3	27.075	271135	0.63	4586
4	29.250	41913775	96.98	478108

$\mathbf{9 8 : 2} \mathbf{d r}, \mathbf{9 8 \%}$ ee $\left(\left(^{*}\right)\right.$ major diastereomer)

5c

Column: IA Eluent: Hex: i PrOH, 98:2 Flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ $\lambda=210 \mathrm{~nm}$
rac-5c (mixture of diastereomers)

	Retention Time	Area	\% Area	Height
1	21.483	5762780	17.07	91140
2	27.772	5378653	15.93	97241
3	30.525	10944371	32.42	175296
4	36.481	11675291	34.58	138092

Scalemic-5c

	Retention Time	Area	\% Area	Height
1	22.318	1019460	1.17	17217
2	28.154	1095755	1.25	22859
3	30.961	1346425	1.54	22596
4	34.872	84031295	96.04	734174

98:2 $d r, 96 \% e e\left(\left(^{*}\right)\right.$ major diastereomer)

	Retention Time	Area	\% Area	Height
4	64.936	6017265	23.38	16754
3	42.567	8833842	34.32	32995
2	38.655	4775763	18.55	27054
1	33.308	6113472	23.75	38484

Scalemic-5d
*

	Retention Time	Area	\% Area	Height
2	40.901	18121094	99.10	77559
1	36.678	164964	0.90	1578

99:1 $d r, 99 \% e e\left(\left({ }^{*}\right)\right.$ major diastereomer)

rac-5e (mixture of diastereomers)

	Retention Time	Area	\% Area	Height
4	14.060	12213367	42.68	438711
3	12.455	10395302	36.32	495986
2	11.639	2812315	9.83	144101
1	10.980	3197850	11.17	143683

Scalemic-5e

	Retention Time	Area	\% Area	Height
2	12.089	395670	1.49	13281
1	10.209	26248711	98.51	772819

98:2 $\mathbf{d r}, \mathbf{9 9 \%} \boldsymbol{e e}\left(\left(^{*}\right)\right.$ major diastereomer)
rac-5f (mixture of

diastereomers)
Column: IC
Eluent: Hex:iPrOH, 99:1
Flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$ $\lambda=210 \mathrm{~nm}$

	Retention Time	Area	\% Area	Height
4	45.622	26889132	34.34	131594
3	37.003	9316343	11.90	53895
2	32.736	25504192	32.57	180199
1	25.267	16586096	21.18	134673

Scalemic-5f

	Retention Time	Area	\% Area	Height
1	30.400	48766610	98.61	318693
2	43.112	686201	1.39	5069

>99:1 dr, 97\% ee ((*) single diastereomer)

Daicel Chiralpak AY-H hexane/isopropanol 95/5, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 54.8 min (major.) and 67.9 min (minor.). Processed Channel Descr.: PDA 245.0 nm.

Rac-5h (mixture of diastereomers)

	Retention Time	\% Area
1	47,943	19,36
2	54,806	41,05
3	67,922	39,60

	Retention Time	\% Area
1	52,209	2,69
2	57,616	95,62
3	74,567	1,69

$\mathbf{9 7 : 3} \mathbf{d r}, \mathbf{9 6 \%}$ ee ((*) major diastereomer)

Daicel Chiralpak AY-H hexane/isopropanol 95/5, flow rate= 0.5 $\mathrm{mL} / \mathrm{min}$, retention times: 29.9 min (minor.) and 47.4 min (major.). Processed Channel Descr.: PDA 245.0 nm.

Rac-5i (mixture of diastereomers)

	Retention Time	\% Area
1	29.967	19.33
2	39.140	31.20
3	47.454	18.19
4	88.592	31.28

scalemic 5i

96:4dr, 97\% ee ((*) major diastereomer)

Scalemic 6e

90:10 dr, 92\% ee ((*) major diastereomer)

Daicel Chiralpak IC hexane/isopropanol 97/3, flow rate= 0.6 $\mathrm{mL} / \mathrm{min}$, retention times: 43.9 min (major.) and 51.4 min (minor.). Processed Channel Descr.: PDA 235.0 nm.

Rac-7b (mixture of diastereomers)

Scalemic 7b

88:12 dr, 91% ee ((*) major diastereomer)

23

Rac-23 (mixture of diastereomers)

Column: AY-H
Eluent: Hex:iPrOH, 95:5
Flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$
$\lambda=210 \mathrm{~nm}$

	Retention Time	Area	\% Area	Height
1	16.267	9103329	17.17	322348
2	18.658	16850925	31.79	502337
3	21.501	17846964	33.67	470486
4	29.430	9206326	17.37	168054

scalemic-23

	Retention Time	Area	\% Area	Height
1	16.548	1376800	3.31	48689
2	18.731	38142958	91.73	894624
3	22.231	1191685	2.87	28830
4	30.123	869363	2.09	26716

95:5 dr 94\% ee ((*) major diastereomer)
12. NMR spectra

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

CN
$3 e$

4b

-S58-
(

[^10]
5i

[^11]

$\begin{array}{lllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^12]

17

18

$\begin{array}{llllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ & 100\end{array}$

19

22

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 1 |
| :--- |
| $\mathrm{f} 1(\mathrm{ppm})$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | | |

26

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40			10	
	18	170	160		140	130	120	110			80	70	60	50	40	30	20	10	0

27

13. X-Ray Analysis: ORTEP diagram of compounds 5e.

CCDC-1470018 contains the supplementary crystallographic data for the structural analysis of $\mathbf{5 e}$. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[^0]: ${ }^{1}$ F. Miege, B. M. Trost, J. Am. Chem. Soc. 2014, 136, 3016-3019.
 ${ }^{2}$ A. Basheer, M. Mishima, I. Marek, Org. Lett., 2011, 13, 4076-4079.
 ${ }^{3}$ B. M. Trost, J. R. Miller, C. M. Hoffman Jr., J. Am. Chem. Soc. 2011, 133, 8165-8167.

[^1]: ${ }^{4}$ E. Badiola, B. Fiser, E. Gómez-Bengoa, A. Mielgo, I. Olaizola, I. Urruzuno, J. M. García, J. M. Odriozola, J. Razkin, M. Oiarbide, C. Palomo J. Am. Chem. Soc. 2014, 136, 17869-17881

[^2]: ${ }^{5}$ A. Bodlenner, S. M. Glueck, B. M. Nestl, C. C.Gruber, N. Baudendistel, B. Hauer, W. Kroutil, K. Faber, Tetrahedron, 2009, 65, 7752-7755.

[^3]: ${ }^{6}$ M. Poterala, J. Plenkiewicz, Tetrahedron, 2011, 22, 294-299.
 ${ }^{7}$ Procedure adapted from: Miege, F.; Trost, B. M. J. Am. Chem. Soc., 2014, 136, 3016-3019.

[^4]: ${ }^{8}$ M. R. Aronoff, N. A. Bourjaily, K. A. Miller, Tetrahedron, 2010, 51, 6375-6377.

[^5]: ${ }^{9}$ C6-C9: W. Yang, D. M. Du, Org. Lett. 2010, 12, 5450-5453. C3: B. Vakulya, S. Varga, A. Csampai, T. Sóos, Org. Lett., 2005, 7, 1967-1969. C10: J. P. Malerich, K. Hagihara, V. H. Rawal, J. Am. Chem. Soc., 2008, 130, 14416-14417. C11, C5: Y. Zhu, J. P. Malerich, V. H. Rawal, Angew. Chem. Int. Ed. 2010, 49, 153-156; W. Yang, D. M. Du, Adv. Synth. Catal. 2011, 353, 1241-1246. C12: S. Diosdado, R. López, C. Palomo, Chem. Eur. J. 2014, 20, 6526-6531.

[^6]: (2S,4S,6R)-tert-butyl
 2-(4-bromophenyl)-2-cyano-6-hydroxy-4-methyl-5-oxo-7phenylheptanoate (13)

[^7]: ${ }^{10}$ Procedure adapted from: J. M. García, A. Gozalez, B. G. Kardak, J. M. Odriozola, M. Oiarbide, J. Razkin, C. Palomo, Chem. Eur. J., 2008, 14, 8768-8771.
 ${ }^{11}$ Procedure adapted from: F. Miege, B. M. Trost, J. Am. Chem. Soc., 2014, 136, 3016-3019.

[^8]: ${ }^{12}$ W. J. Gemsler, F. Johson, A. D. B. Sloam, J. Am. Chem. Soc. 1960, 82, 6074-6081.

[^9]: $\begin{array}{ll}1.6 & 5.5 & 5.4 & 5.3 & 5.2 & 5.1 & 5.0 & 4.9 & 4.8 & 4.7 & 4.6 & 4.5 & 4.4 & 4.3 & 4.2 & 4.1 & 4.0 & 3.9 & 3.8 & 3.7 & 3.6 & 3.5 & 3.4 & 3.3 & 3.2 & 3.1 & 3.0 & 2.9 & 2.8 & 2.7 & 2.6 & 2.5\end{array}$

[^10]:

[^11]: $\begin{array}{llllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \underset{f 1}{110}(\mathrm{ppm}) & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^12]:

