# CHEMISTRY A European Journal 

## Supporting Information

## $\alpha$-Hydroxy Ketones as Masked Ester Donors in Brønsted Base Catalyzed Conjugate Additions to Nitroalkenes

lurre Olaizola, ${ }^{[a]}$ Teresa E. Campano, ${ }^{[a]}$ Igor Iriarte ${ }^{[a]}$ Silvia Vera, ${ }^{[a]}$ Antonia Mielgo, ${ }^{[a]}$
Jesús M. García ${ }^{[b]}$ ]osé M. Odriozola ${ }^{[b]}$ Mikel Oiarbide* ${ }^{[a]}$ and Claudio Palomo* ${ }^{[a]}$
chem_201705968_sm_miscellaneous_information.pdf

## Supporting Information

## Table of Contents

1. Materials and general techniques ..... S2
2. Preparation of $\alpha$-hydroxy ketones $\mathbf{1 - 4}$ ..... S3
2.1 Step 1: Alkynylation of ketones. ..... S3
2.2 Step 2: Sonogashira coupling ..... S4
2.1 Step 3: Alkyne hydration ..... S7
3. Preparation of alkenyl $\alpha$-hydroxy ketones $\mathbf{1 6 - 1 8}$ ..... S12
4. Catalytic conjugate addition of $\alpha$-hydroxy ketones $\mathbf{1 - 4}$ to nitroalkenes ..... S14
5. Catalytic addition of alkenyl $\alpha$-hydroxy ketones $\mathbf{1 6} \mathbf{- 1 8}$ to nitroalkenes ..... S25
6. Control experiments using as donors 10,12 , and 14 ..... S30
7. Reaction profiles of hydroxy enones $\mathbf{1 A} / \mathbf{B}$ vs. silyloxy enones $\mathbf{1}^{\mathbf{\prime}} \mathbf{A} / \mathbf{B}$ ..... S34
8. Chemical elaboration of adducts ..... S36
8.1 Ketol cleavage in adduct 9Aa to yield carboxylic acid $\mathbf{2 2}$. ..... S36
8.2 Nef reaction in adduct 9Aa to yield carboxylic acid $\mathbf{2 3}$. ..... S37
8.3 Conversion of 9Aa into aldehyde 24 and alcohol 25. ..... S38
8.4 Hydrogenation of $\mathbf{2 0}$ to 26 and subsequent ketol cleavage ( $\mathbf{2 7}$ and 28) ..... S39
8.5 Michael-aldol reaction of $\mathbf{2 8}$ with acrolein (cycloadducts 29 and $\mathbf{3 0}$ ). ..... S40
8.6 Double Michael-Henry approach to cycloadducts $\mathbf{3 3}$ and $\mathbf{3 4}$ from 18 ..... S41
9. Stereochemical determinations. ..... S44
10. Catalytic reaction of ketone $\mathbf{1 A}$ with vinyl 1,1-bis(sulfone) 35 ..... S46
11. NMR Spectra. ..... S47
12. HPLC Chromatograms ..... S105
13. X-Ray Analysis: ORTEP diagram of compounds $9 \mathbf{A b}$ and 33 ..... S141

## 1. Materials and general techniques

All reactions were carried out under argon atmosphere in flame dried glassware with efficient magnetic stirring. Unless otherwise specified, materials were obtained from commercial sources and used without purification. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from $\mathrm{CaH}_{2}$, and diethyl ether and tetrahydrofuran were dried by filtration through activated alumina (powder $\approx 150$ mesh, pore size $58 \AA$, basic, Sigma Aldrich) columns. Analytical reagent grade $\mathrm{MeOH}, \mathrm{CH}_{3} \mathrm{CN}$ and 1,4-dioxane were used without further drying.

Catalyst $\mathbf{C 1}$ and $\mathbf{C 2}$ were obtained from commercial sources and catalyst $\mathbf{C 3}{ }^{1}, \mathbf{C 4}^{2}, \mathbf{C 5}^{\mathbf{3}}$ and $\mathbf{C} \mathbf{6}^{4}$ were prepared following the procedures described in the literature. Nitroalkenes $\mathbf{5 a - g}$ were obtained from commercial sources and $\mathbf{5 h}, \mathbf{5 i}, \mathbf{5 j}$ and $\mathbf{5 k}$, were prepared following the procedure described in the literature. ${ }^{5}$

Reactions were monitored by thin layer chromatography (TLC) using Merck silica gel 60 F254 plates and visualized by fluorescence quenching under UV light. In addition, TLC plates were stained with a solution of potassium permanganate ( 1 g ) in 100 ml of water (limited lifetime), followed by heating. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 MHz and 75 MHz respectively. The chemical shifts are reported in ppm relative to $\mathrm{CDCl}_{3}(\mathrm{~d}=7.26)$ and $\mathrm{CD}_{3} \mathrm{OD}(\mathrm{d}=3.31)$ for ${ }^{1} \mathrm{H}$ NMR and relative to the central resonances of $\mathrm{CDCl}_{3}(\mathrm{~d}=77.0)$ and $\mathrm{CD}_{3} \mathrm{OD}(\mathrm{d}=49.2)$ for ${ }^{13} \mathrm{C}$ NMR. Purification of reaction products was carried out by flash column chromatography using ROCC silica gel 60 ( $0.040-0.063 \mathrm{~mm}, 230-400 \mathrm{mesh}$ ). Optical rotations were recorded on a Jasco P-2000 polarimeter. Specific rotation ( $[\alpha]_{D}$ ) are reported in $10^{-1} \mathrm{deg} \cdot \mathrm{cm}^{2} \cdot \mathrm{~g}^{-1}$; concentrations (c) are quoted in $\mathrm{g} / 100 \mathrm{~mL} ; D$ refers to the D-line of sodium ( 589 nm ). MS spectra were recorded on an ESI-ion trap Mass spectrometer (Agilent 1100 series LC/MSD, SL model) and on an UPLC-DAD-QTOF (Ultra High Performance Liquid Chromatograph-Mass spectrometer; Waters UPLC ACQUITY, Waters PDA Detector, Waters Synapt G2). Analytical high performance liquid chromatography (HPLC) was performed on Waters-600E, equipped with 2996 and 2998 photodiode array UV detector, using Daicel Chiralpak AD-H, OD-H, IA, IB and IC columns.

[^0]
## 2. Preparation of $\alpha$-hydroxy ketones 1 - $\mathbf{4}$

$\alpha$-Hydroxy ketones $\mathbf{1 - 4}$ were prepared by the three-step sequence shown in the scheme.


### 2.1 Step 1: Alkynylation of ketones ${ }^{6}$


$n \mathrm{BuLi}\left(2.5 \mathrm{M}\right.$ in hexane, 2 eq., $4.0 \mathrm{~mL}, 10 \mathrm{mmol}$ ) was added dropwise under $\mathrm{N}_{2}$ to a solution of ethynyltrimethylsilane ( 2 eq., $1.4 \mathrm{~mL}, 10 \mathrm{mmol}$ ) in THF ( 16.7 mL ) at $-10^{\circ} \mathrm{C}$. After stirring for 30 min at $-10^{\circ} \mathrm{C}$, benzophenone or dibenzyl ketone ( $1 \mathrm{eq} ., 5 \mathrm{mmol}$ ) was added. The mixture was stirred at room temperature for 4 h . A solution of potassium hydroxide ( 5 eq., $1.4 \mathrm{~g}, 25 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added to the mixture at $0^{\circ} \mathrm{C}$. Desilylation was complete within 30 min as monitored by TLC. The mixture was poured into a satured solution of $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and extracted with EtOAc ( $3 \times 25 \mathrm{~mL}$ ). The combined organic layers were washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 95:5 $\rightarrow$ 90:10) to afford the desired product.

## 1,1-Diphenylprop-2-yn-1-ol (S3)



The title compound $\mathbf{S 3}$ was prepared from benzophenone ( $0.9 \mathrm{~g}, 5 \mathrm{mmol}$ ) according to the general procedure. Colorless oil, yield: $1.01 \mathrm{~g}, 5 \mathrm{mmol}$, quantitative. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-$

[^1]7.27 (m, 6H), $2.88(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 1 \mathrm{H})$.

## 2-Benzyl-1-phenylbut-3-yn-2-ol (S4)



The title compound $\mathbf{S 4}$ was prepared from 1,3-diphenylpropan-2-one (1.1 g, 5 $\mathrm{mmol})$ according to the general procedure. Colorless oil, yield: $1.23 \mathrm{~g}, 4.3$ mmol, $86 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta 7.42-7.25(\mathrm{~m}, 10 \mathrm{H}), 3.02(\mathrm{~s}, 4 \mathrm{H})$, 2.48 ( $\mathrm{s}, 1 \mathrm{H}$ ).

Propargylic alcohols S1 and S2 are commercially available.

### 2.2 Step 2: Sonogashira coupling

METHOD A ${ }^{7}$ (For R ${ }^{1}$ : $\mathrm{NO}_{2}, \mathrm{CN}$ )


To a solution of $p$-bromo-nitrobenzene or $p$-bromobenzonitrile ( 1 eq .) and the corresponding alkyne S1-S4 (1.3 eq.) in THF ( $3 \mathrm{~mL} / \mathrm{mmol}$ ) were added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \mathrm{~mol} \%)$ and $\mathrm{CuI}(4$ $\mathrm{mol} \%$ ), and the reaction mixture was degassed with $\mathrm{N}_{2}$. To this solution was added $\mathrm{Et}_{3} \mathrm{~N}$ (2 eq.), and the reaction mixture was stirred under refluxing for 12 h . The solvent was removed under vacuum, and the residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 90:10 $\rightarrow 80: 20$ ) to afford the desired coupling product.
${ }^{7}$ Li, Y.; Zou, H.; Gong, J.; Xiang, J.; Luo, T.; Quan, J.; Wang, G.; Yang, Z. Org. Lett. 2007, 9, 4057-4060.

METHOD B ${ }^{8}$ (For ${ }^{1}$ : F, H)


To a solution of $\mathrm{Et}_{3} \mathrm{~N}(3.75 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2 \mathrm{~mol} \%), \mathrm{CuI}(1 \mathrm{~mol} \%)$, and iodobenzene or $p$-fluoroiodobenzene (1 eq.) was added the corresponding propargylic alcohol $\mathbf{S 1}$ or $\mathbf{S 4}$ (1.2 eq.) under inert $\mathrm{N}_{2}$ atmosphere. The mixture was allowed to stir at room temperature for 4 h . After completion, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ solution and extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 95:5 $\rightarrow$ 90:10) to afford the desired product.

METHOD C ${ }^{9}$ (For R ${ }^{1}$ : OMe)


A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}\left(2.8 \mathrm{~g}, 20 \mathrm{mmol}, 4 \mathrm{eq}\right.$.), $\mathrm{PPh}_{3}(26.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and $10 \%$ palladium on charcoal ( $53.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1 \mathrm{~mol} \%$ ) in $\mathrm{EtOH}(50 \mathrm{~mL})$ was stirred gently for 30 min , then 1-bromo-4-methoxybenzene ( $0.63 \mathrm{~mL}, 5 \mathrm{mmol}, 1 \mathrm{eq}$.$) and propargylic alcohol$ $\mathbf{S} 1(0.58 \mathrm{~mL}, 6 \mathrm{mmol}, 1.2$ eq.) were added. The mixture was stirred at reflux for 48 h . The resulting precipitate was filtered through a pad of silica gel and the EtOH was evaporated. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 95:5 $\rightarrow$ 90:10) to afford the desired product.

[^2]
## 2-Methyl-4-(4-nitrophenyl)but-3-yn-2-ol (S5A)

The title compound was prepared from 2-methyl-3-butyn-2-ol (S1)
 ( $0.6 \mathrm{~mL}, 6.5 \mathrm{mmol}$ ) and 1-bromo-4-nitrobenzene ( $1.0 \mathrm{~g}, 5 \mathrm{mmol}$ ) according to the general procedure A. Orange oil, yield: $1.02 \mathrm{~g}, 5$ mmol, quantitative. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 8.18$ (d, $J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H})$.

## 3-Ethyl-1-(4-nitrophenyl)pent-1-yn-3-ol (S6A)



The title compound was prepared from 3-ethylpent-1-yn-3-ol (S2) $(0.5 \mathrm{~mL}, 3.9 \mathrm{mmol})$ and 1-bromo-4-nitrobenzene $(0.6 \mathrm{~g}, 3 \mathrm{mmol})$ according to the general procedure A. Orange oil, yield: $0.71 \mathrm{~g}, 3$ mmol, quantitative. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 8.18$ (d, $J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 1 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 6 H ).

## 3-(4-Nitrophenyl)-1,1-diphenylprop-2-yn-1-ol (S7A)

 $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.26(\mathrm{~m}, 8 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H})$.

## 2-Benzyl-4-(4-nitrophenyl)-1-phenylbut-3-yn-2-ol (S8A)



The title compound was prepared from 2-benzyl-1-phenylbut-3-yn-2-ol (S4) ( 1.2 g .4 .3 mmol ) and 1-bromo-4-nitrobenzene $(0.7 \mathrm{~g}, 3.3$ $\mathrm{mmol})$ according to the general procedure A . Orange oil, yield: 1.14 $\mathrm{g}, 3 \mathrm{mmol}$, quantitative. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 8.19$ (d, $J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.20(\mathrm{~m}, 12 \mathrm{H}), 3.16(\mathrm{~s}, 4 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H})$.

## 4-(3-Hydroxy-3-methylbut-1-yn-1-yl)benzonitrile (S5B)



The title compound was prepared from 2-methyl-3-butyn-2-ol (S1) $(0.6 \mathrm{~mL}, 6.5 \mathrm{mmol})$ and 4-bromobenzonitrile $(0.9 \mathrm{~g}, 5 \mathrm{mmol})$ according to the general procedure A. Orange oil, yield: 0.95 g , $4.9 \mathrm{mmol}, 97 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.63$ ( $\mathrm{d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 6 \mathrm{H})$.

## 4-(3-Benzyl-3-hydroxy-4-phenylbut-1-yn-1-yl)benzonitrile (S8B)



The title compound was prepared from 2-benzyl-1-phenylbut-3-yn-2-ol (S4) ( $1.0 \mathrm{~g}, 4.2 \mathrm{mmol}$ ) and 4-bromobenzonitrile ( $0.6 \mathrm{~g}, 3.3$ mmol ) according to the general procedure A. Orange solid, yield: $1.03 \mathrm{~g}, 3.0 \mathrm{mmol}, 92 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.60(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.31(\mathrm{~m}, 12 \mathrm{H}), 3.15(\mathrm{~s}, 4 \mathrm{H})$.

## 4-(4-Fluoropheny)-2-methylbut-3-yn-2-ol (S5C)



The title compound was prepared from 2-methyl-3-butyn-2-ol (S1) $(0.6 \mathrm{~mL}, 6 \mathrm{mmol})$ and 1-fluoro-4-iodobenzene ( $0.6 \mathrm{~mL}, 5.0 \mathrm{mmol}$ ) according to the general procedure B. Orange oil, yield: $0.87 \mathrm{~g}, 4.9$ mmol, $97 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.48-7.35$ (m, 2H), 7.07-6.96 (m, 2H), 2.34 (s, 1H), 1.64 ( $\mathrm{s}, 6 \mathrm{H}$ ).

## 2-Benzyl-4-(4-fluorophenyl)-1-phenylbut-3-yn-2-ol (S8C)



The title compound was prepared from 2-benzyl-1-phenylbut-3-yn-2ol (S4) ( $0.9 \mathrm{~g}, 3.8 \mathrm{mmol}$ ) and 1-fluoro-4-iodobenzene ( $0.4 \mathrm{~mL}, 3.2$ mmol ) according to the general procedure B. Orange oil, yield: 1.04 g , $3.2 \mathrm{mmol}, 99 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.54-7.23(\mathrm{~m}, 12 \mathrm{H})$, 7.09-6.94 (m, 2H), $3.14(\mathrm{~s}, 4 \mathrm{H}), 2.16(\mathrm{~s}, 1 \mathrm{H})$.

## 2-Methyl-4-phenylbut-3-yn-2-ol (S5D)



The title compound was prepared from 2-methyl-3-butyn-2-ol (S1) (0.5 $\mathrm{mL}, 5 \mathrm{mmol})$ and iodobenzene ( $0.5 \mathrm{~mL}, 4.1 \mathrm{mmol}$ ) according to the general procedure B. Orange oil, yield: $0.62 \mathrm{~g}, 4.1 \mathrm{mmol}$, quantitative. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: \quad 7.47-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H})$, $2.00(\mathrm{~s}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H})$.

## 2-Benzyl-1,4-diphenylbut-3-yn-2-ol (S8D)



The title compound was prepared from 2-benzyl-1-phenylbut-3-yn-2-ol (S4) $(1.2 \mathrm{~g}, 5 \mathrm{mmol})$ and iodobenzene $(0.5 \mathrm{~mL}, 4.1 \mathrm{mmol})$ according to the general procedure B. Orange oil, yield: $1.21 \mathrm{~g}, 3.8 \mathrm{mmol}, 96 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.81-7.04(\mathrm{~m}, 15 \mathrm{H}), 3.15(\mathrm{~s}, 4 \mathrm{H}), 2.16(\mathrm{~s}$, $1 \mathrm{H})$.

## 4-(4-methoxyphenyl)-2-methylbut-3-yn-ol (S5E)



The title compound was prepared from 1-bromo-4methoxybenzene ( $0.63 \mathrm{~mL}, 5 \mathrm{mmol}$ ) and propargylic alcohol $\mathbf{S} 1$ $(0.58 \mathrm{~mL}, 6 \mathrm{mmol})$ according to the general procedure C . Orange oil, yield: $0.76 \mathrm{~g}, 4 \mathrm{mmol}, 80 \%$. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\mathrm{CDCl}_{3}$ ), $\delta: 7.39(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.84$ (s, 3H), $2.02(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H})$.

### 2.1 Step 3: Alkyne hydration ${ }^{10}$



To a pressure reactor, the mixture of the corresponding propargylic alcohol $\mathbf{S 5}-\mathbf{S 8}$ (1 eq.), $\mathrm{AgOAc}(10 \mathrm{~mol} \%)$, $\mathrm{DBU}(0.5 \mathrm{eq}),. \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL} / \mathrm{mmol})$ and $\mathrm{MeCN}(2 \mathrm{~mL} / \mathrm{mmol})$ was added successively. The reactor was filled up with dry ice $\left(\mathrm{CO}_{2}\right)$, closed and stirred for 24 h at 120 ${ }^{\circ} \mathrm{C}$ and 30-40 bar. Then the reaction mixture was cooled and the pressure was released slowly to atmospheric pressure. The residual material was diluted with diethyl ether and MeCN , dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 90:10 $\rightarrow 80: 20$ ) to afford the desired product.

## 3-Hydroxy-3-methyl-1-(4-nitrophenyl)butan-2-one (1A)



The title compound $\mathbf{1 A}$ was prepared from 2-methyl-4-(4-nitrophenyl)but-3-yn-2-ol (S5A) ( $0.9 \mathrm{~g}, 4.5 \mathrm{mmol}$ ) according to the general procedure. Orange solid, yield: $0.77 \mathrm{~g}, 3.5 \mathrm{mmol}, 77 \%$. M.p. $103-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 8.20(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H})$. All the spectroscopic data were consistent with those previously reported. ${ }^{10}$

## 3-Ethyl-3-hydroxy-1-(4-nitrophenyl)pentan-2-one (2A)

[^3]

The title compound $\mathbf{2 A}$ was prepared from 3-ethyl-1-(4-nitrophenyl)pent-1-yn-3-ol (S6A) (0.7 g, 3 mmol$)$ according to the general procedure. M.p. $81-82^{\circ} \mathrm{C}$. Yellow solid, yield: $0.48 \mathrm{~g}, 1.9$ mmol, $64 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 8.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 1 \mathrm{H}), 1.94-1.60(\mathrm{~m}, 4 \mathrm{H}), 0.78(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 210.6,146.9,141.0,123.4,82.6,42.6,31.2,7.5$. UPLC-DAD-QTOF: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 250.1079, found: 250.1070 .

## 1-Hydroxy-3-(4-nitrophenyl)-1,1-diphenylpropan-2-one (3A)



The title compound $\mathbf{3 A}$ was prepared from 3-(4-nitrophenyl)-1,1-diphenylprop-2-yn-1-ol (S7A) (1.2 g, 3.5 mmol$)$ according to the general procedure. M.p. $98-99^{\circ} \mathrm{C}$. Orange solid, yield: $0.45 \mathrm{~g}, 1.3$ mmol, $37 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 8.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.53-7.17(\mathrm{~m}, 10 \mathrm{H}), 7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 206.8,141.2,140.5,130.3,128.8,128.5,128.5,128.0,123.3,86.1,44.2$. UPLC-DADQTOF: $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 346.1079 , found: 346.1070.

## 3-Benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one (4A)



The title compound $\mathbf{4 A}$ was prepared from 2-benzyl-4-(4-nitrophenyl)-1-phenylbut-3-yn-2-ol (S8A) (1.1 g, 3 mmol ) according to the general procedure. Orange solid, yield: $0.94 \mathrm{~g}, 2.5$ mmol, 83\%. M.p. $133-134^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 8.04$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.04(\mathrm{~m}, 10 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.97 (d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.66(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 211.3$, 146.7, 141.2, 135.1, 130.5, 130.3, 128.6, 127.2, 123.2, 83.4, 46.2, 45.5. UPLC-DAD-QTOF: $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 374.1392, found: 374.1382.

## 4-(3-Hydroxy-3methyl-2-oxobutyl)benzonitrile (1B)



The title compound 1B was prepared from 4-(3-hydroxy-3-methylbut-1-yn-1-yl)benzonitrile (S5B) $(0.9 \mathrm{~g}, 5 \mathrm{mmol})$ according to the general procedure. Yellow oil, yield: $0.91 \mathrm{~g}, 4.5 \mathrm{mmol}, 90 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.65$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.35 (d, $J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H})$. All the spectroscopic data were consistent with those previously reported. ${ }^{10}$

## 4-(3-Benzyl-3-hydroxy-2-oxo-4-phenylbutyl)benzonitrile (4B)



The title compound $\mathbf{4 B}$ was prepared from 4-(3-benzyl-3-hydroxy-4-phenylbut-1-yn-1-yl)benzonitrile (S8B) (0.6 g, 1.8 mmol$)$
according to the general procedure. White solid, yield: $0.36 \mathrm{~g}, 1.0 \mathrm{mmol}, 56 \%$. M.p. 131-132 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.20$ $(\mathrm{m}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~d}, J=13.6$ $\mathrm{Hz}, 2 \mathrm{H}$ ), $2.64(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 211.9,139.4,135.6,132.3,130.9$, 130.7, 129.0, 127.7, 119.2, 111.0, 83.8, 46.8, 45.9. UPLC-DAD-QTOF: $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 378.1470, found: 378.1477.

## 1-(4-Fluorophenyl)-3-hydroxy-3-methylbutan-2-one (1C)



The title compound 1C was prepared from 4-(4-fluoropheny)-2-methylbut-3-yn-2-ol (S5C) ( $0.9 \mathrm{~g}, 5 \mathrm{mmol}$ ) according to the general procedure. Yellow oil, yield: $0.43 \mathrm{~g}, 2.2 \mathrm{mmol}, 44 \%{ }^{1} \mathrm{H}$ NMR ( 300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.20(\mathrm{dd}, J=8.6,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=8.7 \mathrm{~Hz}(\mathrm{~s}$, $2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H})$. All the spectroscopic data were consistent with those previously reported. ${ }^{10}$

## 3-Benzyl-1-(4-fluorophenyl)-3-hydroxy-4-phenylbutan-2-one (4C)



The title compound $\mathbf{4 C}$ was prepared from 2-methyl-4-phenylbut-3-yn-2-ol (S8C) ( $1.0 \mathrm{~g}, 3.1 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $0.66 \mathrm{~g}, 1.9 \mathrm{mmol}, 60 \%$. M.p. $121-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.43-7.21(\mathrm{~m}, 11 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.82-$ $6.72(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 212.4,163.7,135.7,131.5,131.4,130.7,128.9,127.5,115.6$, 115.3, 83.6, 45.7, 45.5. UPLC-DAD-QTOF: $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 349.1604, found: 349.1605 .

## 3-Hydroxy-3-methyl-1-phenylbutan-2-one (1D)



The title compound 1D was prepared from 2-methyl-4-(4-phenyl)but-3-yn-2-ol (S5D) ( $0.6 \mathrm{~g}, 4 \mathrm{mmol}$ ) according to the general procedure. Colorless oil, yield: $0.23 \mathrm{~g}, 1.3 \mathrm{mmol}, 43 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.42-7.12(\mathrm{~m}, 5 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H})$. All the spectroscopic data were consistent with those previously reported. ${ }^{10}$

## 3-Benzyl-3-hydroxy-1,4-diphenylbutan-2-one (4D)



The title compound 4D was prepared from 2-benzyl-1,4-diphenylbut-3-yn-2-ol (S8D) ( $1.1 \mathrm{~g}, 3.5 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $0.74 \mathrm{~g}, 2.1 \mathrm{mmol}, 60 \%$. M.p. $101-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.42-7.10(\mathrm{~m}, 13 \mathrm{H}), 6.83(\mathrm{dd}, J=6.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.29$ $(\mathrm{d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta:$
$212.3,135.8,130.7,130.1,128.9,128.7,127.5,127.2,83.5,46.2,45.6$. UPLC-DAD-QTOF: $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 331.1698, found: 331.1703.

## 3-Hydroxy-1-(4-methoxyphenyl)-3-methylbutan-2-one (1E)



The title compound $\mathbf{1 E}$ was prepared from 4-(4-methoxyphenyl)-2-methylbut-3-yn-ol) ( $0.65 \mathrm{~g}, 3.4 \mathrm{mmol}$ ) according to the general procedure. Orange oil, yield: $0.37 \mathrm{~g}, 1.8 \mathrm{mmol}, 52 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H})$. All the spectroscopic data were consistent with those previously reported. ${ }^{11}$

[^4]
## 3. Preparation of alkenyl hydroxyketones 16-18.

## Method A:



A mixture of the corresponding aldehyde ( $3.0 \mathrm{mmol}, 3$ equiv.), In powder ( $230 \mathrm{mg}, 2 \mathrm{mmol}, 2$ equiv.), $\mathrm{InCl}_{3}$ ( $110 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.5$ equiv.) and 4-benzyl-4-hydroxy-5-phenylpent-1-en-3one ( $266 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1,8 \mathrm{~mL}$ ) was stirred at room temperature for 8 h . After the addition of $1 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$, the resulting mixture was stirred for 30 min and extracted with ethyl acetate ( $15 \mathrm{~mL} \times 4$ ). The combined organic phase was washed with brine and dried with $\mathrm{MgSO}_{4}$. After filtration, the solvent was evaporated under reduced pressure and the crude product war purified by flash column chromatography (hexane/ethyl acetate 90/10).

## (E)-2-Benzyl-2-hydroxy-1,6-diphenylhex-5-en-3-one (16)



Prepared according to the general procedure starting from benzaldehyde ( $0.3 \mathrm{~mL}, 3 \mathrm{mmol}$ ) .The title compound was isolated as a white solid. Yield: $278 \mathrm{mg}(78 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.33$ $-7.22(\mathrm{~m}, 15 \mathrm{H}), 6.23(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03\left(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J^{\prime}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.26(\mathrm{~d}, J$ $=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.20\left(\mathrm{dd}, J=6.8 \mathrm{~Hz}, J^{\prime}=1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.02(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 212.3,136.9,135.4,133.6,130.3,128.4,127.5,127.1,126.3,121.4$, 83.1, 45.0, 42.8.
(E)-2-Benzyl-2-hydroxy-1-phenyl-6-p-tolylhex-5-en-3-one (17)


Prepared according to the general procedure starting from 4methylbenzaldehyde ( $0.35 \mathrm{~mL}, 3 \mathrm{mmol}$ ). The title compound was isolated as a white solid. Yield: $304 \mathrm{mg}(82 \%)$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.32-7.11(\mathrm{~m}, 14 \mathrm{H}), 6.21(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.97\left(\mathrm{dt}, J=16.0 \mathrm{~Hz}, J^{\prime}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.25(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.19\left(\mathrm{dd}, J=6.8 \mathrm{~Hz}, J^{\prime}\right.$ $=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 212.4$, 137.3, 135.6, 135.4, 133.4, 130.3, 129.1, 128.4, 127.1, 126.1, 120.3, 83.1, 45.0, 42.8, 21.2.

## Method B: ${ }^{12}$

## 2-Hydroxy-2-methyl-6-phenylhex-5-en-3-one (18)



A mixture of commercial 3-hydroxy-3-methyl-2-butanone (3 eq., $1.6 \mathrm{~mL}, 15 \mathrm{mmol}$ ), phenylacetylene ( $1 \mathrm{eq} ., 0.6 \mathrm{~mL}, 5 \mathrm{mmol}$ ) and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}(1.4 \mathrm{eq} ., 0.78 \mathrm{~g}, 7 \mathrm{mmol})$ in DMSO $(12.5 \mathrm{~mL})$ was heated $\left(100{ }^{\circ} \mathrm{C}\right)$ and stirred for 3 hours. The reaction mixture, after cooling, was diluted with $\mathrm{H}_{2} \mathrm{O}$, neutralized with $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated. The residue was purified by flash column chromatography on silica gel (eluting hexane/ EtAcO 95:5). Yellow oil, yield: $0.41 \mathrm{~g}, 2 \mathrm{mmol}, 40 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.45-$ $7.23(\mathrm{~m}, 5 \mathrm{H}), 6.53(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dt}, J=15.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 212.6,137.1,134.1,128.9,128.0,126.6$, 121.9, 76.8, 40.1, 26.9. UPLC-DAD-QTOF: $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 205.1229, found: 205.1230.

[^5]
## 4. Catalytic conjugate addition of $\alpha$-hydroxy ketones $1-4$ to nitroalkenes



To a mixture of the corresponding $\alpha$-hydroxyketone 1-4 ( $1 \mathrm{eq} ., 0.1 \mathrm{mmol}$ ) and the nitroalkene 5 ( 2.0 eq., 0.2 mmol for aromatic nitroalkenes; 3.0 eq., 0.3 mmol for aliphatic nitroalkenes), in dichloromethane $(0.3 \mathrm{~mL})$ at room temperature (or cooled to the corresponding temperature), catalyst $\mathbf{C 1} \mathbf{- C 6}(10 \mathrm{~mol} \%)$ was added. The resulting suspension was stirred at the same temperature, until consumption of the $\alpha$-hydroxyketone as monitored by ${ }^{1} \mathrm{H}$ NMR. The mixture was quenched with $\mathrm{HCl} 2 \mathrm{M}(1 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 95:5 $\rightarrow 90: 10$ ) to afford the desired product.

The corresponding racemic compounds were prepared following the above procedure at room temperature, but using as catalyst either TEA, DBU or achiral thiourea $\mathbf{S 9}{ }^{13}(10 \mathrm{~mol} \%)$.


## 2-Hydroxy-2-methyl-6-nitro-4-(4-nitrophenyl)-5-phenylhexan-3-one (6Aa)



The title compound 6Aa was prepared from 3-hydroxy-3-methyl-1-(4-nitrophenyl)butan-2-one ( $\mathbf{( 1 A )}$ ) $22.3 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and nitrostyrene (5a) ( $29.8 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $36.8 \mathrm{mg}, 0.098 \mathrm{mmol}, 98 \%$. m.p. $170-172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 8.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}$,

[^6]2H), 7.44-7.16 (m, 5H), 4.95 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (dd, $J=12.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-$ $4.28(\mathrm{~m}, 1 \mathrm{H}) 4.19(\mathrm{dd}, J=12.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ), $\delta: 210.5,147.9,142.3,136.9,129.8,129.0,128.5,128.3,124.5,77.8,77.8,55.0$, 47.1, 26.6, 25.9. UPLC-DAD-QTOF: $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 371.1243, found: 371.1239. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak OD-H, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 24.6 $\min$ (minor) and 30.1 min (major)).

## 5-Ethyl-5-hydroxy-1-nitro-3-(4-nitrophenyl)-2-phenylheptan-4-one (7Aa)



The title compound 7Aa was prepared from 3-ethyl-3-hydroxy-1-(4-nitrophenyl)pentan-2-one (2A) ( $25.1 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and nitrostyrene (5a) $(29.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ according to the general procedure. White solid, yield: $39.6 \mathrm{mg}, 0.097 \mathrm{mmol}, 97 \%$. m.p. $166-167^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 8.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.00(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (dd, $J=12.2$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=12.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.46-1.24(\mathrm{~m}$, $2 \mathrm{H}), 1.25-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ), $\delta: 209.8,147.8,142.0,137.1,130.1,129.0,128.5,128.5,124.4,83.4,78.3,46.9$, 29.73, 29.6, 6.8, 6.6. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 399.1556, found: 399.1551. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 25.8 min (major) and 33.4 min (minor)).

## 1-Hydroxy-5-nitro-3-(4-nitrophenyl)-1,1,4-triphenylpentan-2-one (8Aa)



The title compound 8Aa was prepared from 1-hydroxy-3-(4-nitrophenyl)-1,1-diphenylpropan-2-one (3A) ( $34.7 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and nitrostyrene (5a) ( $29.8 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $43.2 \mathrm{mg}, 0.087 \mathrm{mmol}, 87 \%$. m.p. $186-$ $188{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 8.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J$ $=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.71-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.31$ $(\mathrm{m}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=12.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 206.5$, $147.4,142.8,140.2,140.0,136.7,129.8,128.8,128.6,128.4,128.3,128.2,128.2,128.0$, $127.4,127.4,124.0,86.4,78.3,55.3,47.0$. UPLC-DAD-QTOF: $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}-\mathrm{H}]^{-}$ calcd.:495.1556, found: 495.1540. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 70/30, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 7.2 min (major) and 13.1 min (minor)).

## 2-Benzyl-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1,5-diphenylhexan-3-one (9Aa)



The title compound 9Aa was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one (4A) ( $37.5 \mathrm{mg}, 0.1$ $\mathbf{m m o l}$ ) and nitrostyrene ( $\mathbf{5 a}$ ) ( $29.8 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $51.9 \mathrm{mg}, 0.099 \mathrm{mmol}, 99 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}=-97.0\left(\mathrm{c}=0.54,99 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. m.p. $187-188^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.86$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.42-7.24(\mathrm{~m}, 8 \mathrm{H})$, $7.16(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.00$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=12.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (dd, $J=12.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=28.1,13.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~d}$, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 208.9,147.2,139.9,137.4$, 134.6, 134.2, 130.8, 130.1, 129.8, 129.1, 128.8, 128.5, 128.5, 128.1, 127.3, 126.5, 124.0, 83.4, 78.1, 55.5, 46.2, 42.8, 42.4. UPLC-DAD-QTOF: $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 523.1869, found: 523.1880. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 16.7 min (major) and 22.7 min (minor)).

2-Benzyl-5-(4-chlorophenyl)-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3-one (9Ab)


The title compound $\mathbf{9 A b}$ was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one ( $\mathbf{4 A}$ ) ( $37.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 4chloronitrostyrene ( $\mathbf{5 b}$ ) $(36.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ according to the general procedure. White solid, yield: $48.1 \mathrm{mg}, 0.086 \mathrm{mmol}, 86 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-$ 12.27 ( $\mathrm{c}=1,99 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p. $236-238^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 300 MHz , Acetone- $d_{6}$ ), $\delta: 7.89$ (d, $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18$ (m, 3H), 7.04$6.65(\mathrm{~m}, 7 \mathrm{H}), 5.29(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=13.0,11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34(\mathrm{dd}, J=13.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{td}, J=11.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , Acetone- $d_{6}$ ), $\delta: 210.4,148.5,142.4,139.2,137.4,136.6,134.8$, $132.5,132.3,132.1,131.8,130.2,129.5,128.9,128.2,127.3,125.0,85.1,79.7,56.5,47.5$, 45.9, 44.5. UPLC-DAD-QTOF: $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 581.1455, found: 581.1454. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 16.4 min (major) and 21.5 min (minor)).

## 2-Benzyl-5-(3-chlorophenyl)-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3-one (9Ac)



The title compound 9Ac was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one ( $\mathbf{4 A}$ ) ( $37.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 3chlroronitrostyrene ( $\mathbf{5 c}$ ) $(36.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ according to the general procedure. White solid, yield: $45.3 \mathrm{mg}, 0.081 \mathrm{mmol}, 81 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-$ 101.6 (c $=0.52,99 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p. $176-177{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.21-$ $7.07(\mathrm{~m}, 3 \mathrm{H}), 7.07-6.88(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.00(\mathrm{~m}, 1 \mathrm{H})$, ), $1.80(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ), $\delta: 208.8,147.2,139.6,139.4,135.0,134.5,134.0,131.95,130.8,130.3,130.1,129.8$, 128.7, 128.6, 128.2, 127.5, 126.7, 126.6, 124.0, 83.4, 77.70, 55.3, 45.6, 43.3, 42.8. UPLC-DAD-QTOF: $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Cl}[\mathrm{M}-\mathrm{H}]-$ calcd.: 557.1479 , found: 557.1478. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 16.6 min (major) and 22.8 $\min$ (minor)).

## 2-Benzyl-5-(2-chlorophenyl)-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3-one (9Ad)



The title compound 9Ad was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one (4A) ( $37.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 2chlroronitrostyrene ( $\mathbf{5 d}$ ) $(36.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ according to the general procedure. White solid, yield: $43.0 \mathrm{mg}, 0.077 \mathrm{mmol}, 77 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-$ 94.6 (c $=0.52,99 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p. ${ }^{155-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \text { NMR (300 }}$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.13(\mathrm{~m}, 8 \mathrm{H}), 7.09-$ $6.93(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.84-4.61$ $(\mathrm{m}, 2 \mathrm{H}), 4.46-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 208.9,147.2,139.7,134.6,134.6,134.0,130.8,130.8,130.1$, 130.1, 129.7, 128.5, 128.5, 128.1, 127.4, 126.6, 123.9, 83.4, 76.2, 54.0, 53.5, 43.2, 42.3. UPLC-DAD-QTOF: $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Cl}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 557.1479, found: 557.1487. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 14.4 min (major) and 18.4 min (minor)).

2-Benzyl-5-(4-bromophenyl)-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3-one (9Ae)


The title compound 9Ae was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one (4A) ( $37.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 4bromonitrostyrene (5e) $(45.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ according to the general procedure. White solid, yield: $56.1 \mathrm{mg}, 0.093 \mathrm{mmol}, 93 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-$ 84.6 (c $=0.49,99 \% ~ e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p. $212-214{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.33-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{dd}, J=8.6,2.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H})$, $6.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34(\mathrm{dd}, J=13.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.10(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-$ $2.26(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 208.7,147.2,139.7,136.4,134.5$, $134.0,132.2,130.7,130.1,130.0,129.8,128.6,128.2,127.4,126.7,124.0,122.5,83.5,77.8$, 55.4, 45.5, 43.4, 42.8. UPLC-DAD-QTOF: $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Br}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 601.0974, found: 601.0972. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 18.5 min (major) and 24.6 min (minor)).

## 2-Benzyl-2-hydroxy-5-(4-methoxyphenyl)-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3one (9Af)



The title compound 9Af was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one (4A) ( $37.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 4 methoxynitrostyrene (5f) ( $35.8 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $51.0 \mathrm{mg}, 0.092 \mathrm{mmol}, 92 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}=-112.6\left(\mathrm{c}=0.50,99 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. m.p. $223-224^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.86$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.43-7.05 (m, 8H), $7.01-6.73(\mathrm{~m}, 6 \mathrm{H}), 6.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=13.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.46-1.95(\mathrm{~m}, 3 \mathrm{H})$, ), $1.75(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta:{ }^{13} \mathrm{C}$ NMR ( 75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 209.0,159.5,147.14,140.1,134.6,134.2,130.8,130.1,129.8,129.5,128.5$, $128.1,127.3,126.5,124.0,114.9,114.4,83.4,78.34,55.5,55.2,45.6,43.0,42.5$. UPLC-DAD-QTOF: $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{9}[\mathrm{M}+\mathrm{HCOOH}-\mathrm{H}]^{-}$calcd.: 599.2030, found: 599.2028. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 21.5 min (major) and 28.4 min (minor)).

## 2-Benzyl-2-hydroxy-5-(3-methoxyphenyl)-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3one ( 9 Ag )



The title compound $\mathbf{9 A g}$ was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one (4A) ( $37.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 3 -methoxynitrostyrene $\mathbf{( 5 g})(35.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ according to the general procedure. White solid, yield: $44.4 \mathrm{mg}, 0.080 \mathrm{mmol}, 80 \%$. $[\alpha]_{D}{ }^{25}=-114.8\left(\mathrm{c}=0.46,99 \%\right.$ ee, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. m.p. $201-202{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.86$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.38-7.21$ (m, $4 \mathrm{H}), 7.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6.74(\mathrm{~m}, 8 \mathrm{H}), 6.58(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 5.01$ (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{t}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-1.96(\mathrm{~m}, 1 \mathrm{H})$, ), $1.78(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 208.9,160.0,147.2,140.0,138.9,134.6,134.2,130.8,130.1,130.1,129.8$, $128.5,128.1,127.3,126.5,124.0,120.4,115.1,113.4,83.4,78.2,55.3,55.2,46.2,42.9,42.6$. UPLC-DAD-QTOF: $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{9}$ [M+HCCOH-H] ${ }^{-}$calcd.: 599.2030, found: 599.2015. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 23.6 min (major) and 35.4 min (minor)).

## 2-Benzyl-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1-phenyl-5-(p-tolyl)hexan-3-one (9Ah)



The title compound 9Ah was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one ( $\mathbf{4 A}$ ) ( $37.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 4 methylnitrostyrene ( $\mathbf{5 h}$ ) ( $32.6 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $45.8 \mathrm{mg}, 0.085 \mathrm{mmol}, 85 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-$ 46.6 ( $\mathrm{c}=0.47$, $99 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p. $214-215{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.86$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.28-7.26 (m, 3H), 7.217.14 (m, 6H), 6.95-6.91 (m, 3H), 6.84-6.79 (m, 2H), 6.59 (d, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.08(\mathrm{~m}$, $2 \mathrm{H}), 3.00(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 208.9,147.1,140.1,138.3,134.6,134.3,134.2,130.8,130.1,129.8,129.7,128.5,128.3$, 128.1, 127.3, 126.5, 124.0, 83.4, 78.3, 55.4, 45.9, 43.0, 42.5, 21.1. UPLC-DAD-QTOF: $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{HCOOH}-\mathrm{H}]^{-}$calcd.: 583.2080, found: 583.2075. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 18.0 min (major) and 20.1 $\min ($ minor $)$ ).

## 2-Benzyl-2-hydroxy-5-(nitromethyl)-4-(4-nitrophenyl)-1-phenyldecan-3-one (9Ai)



The title compound $\mathbf{9 A i}$ was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one (4A) ( $37.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 1-nitrohept-1-ene ( $\mathbf{5 i}$ ) $(42.9 \mathrm{mg}, 0.3 \mathrm{mmol})$ according to the general procedure. White solid, yield: $38.9 \mathrm{mg}, 0.075 \mathrm{mmol}, 75 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-$
47.3 ( $\mathrm{c}=0.73,96 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p. $122-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.90(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.16-6.98(\mathrm{~m}, 5 \mathrm{H}), 6.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=12.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=12.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=$ $18.9,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.95(\mathrm{~s}, 1 \mathrm{H}), 1.41-1.17(\mathrm{~m}, 8 \mathrm{H}), 0.93(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta$ : $211.5,147.3,141.4,135.0,131.2,130.6,129.0,128.8,127,8,127.3,124.1,84.2,75.8,69.0$, $54.8,45.1,44.0,40.0,31.9,30.2,26.6,22.8,14.4$. UPLC-DAD-QTOF: $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 541.2315, found: 541.2325. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 9.4 min (minor) and 10.9 min (major)).

## 2-Benzyl-2-hydroxy-5-(nitromethyl)-4-(4-nitrophenyl)-1-phenyloctan-3-one (9Aj)



The title compound $\mathbf{9 A} \mathbf{j}$ was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one (4A) ( $37.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 1-nitropent-1-ene $5 \mathbf{j}$ ( $34.5 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $37.2 \mathrm{mg}, 0.076 \mathrm{mmol}, 76 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-$ 41.0 ( $\mathrm{c}=1.00$, $99 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) m.p. $128-129{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.19-$ $6.96(\mathrm{~m}, 5 \mathrm{H}), 6.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (dd, $J=13.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=12.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.94(\mathrm{~s}, 1 \mathrm{H}), 1.43-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 211.5,147.4,141.5,135.0,131.3,130.7,129.0,128.8,127.8,127.3,124.1$, 84.2, $75.7,54.9,45.1,44.0,39.8,32.4,20.1,14.3$. UPLC-DAD-QTOF: $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 513.2002, found: 513.2000. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 14.2 min (major) and 26.9 $\min$ (minor)).
2-Benzyl-2-hydroxy-6-methyl-5-(nitromethyl)-4-(4-nitrophenyl)-1-phenylheptan-3-one (9Ak)


The title compound 9 Ak was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one ( $\mathbf{4 A}$ ) ( $37.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 3-methyl-1-nitrobut-1-ene $\mathbf{5 k}$ ( $34.5 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $22.1 \mathrm{mg}, 0.045 \mathrm{mmol}, 45 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}=-24.2\left(\mathrm{c}=0.80,97 \%\right.$ ee, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. m.p. $159-160^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 5 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=13.6,1 \mathrm{H}), 2.92(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$,
2.79 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}), 1.61-1.41(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 211.3,147.5,141.3$, $135.0,134.8,131.3$, 130.9, 130.6, 129.0, 128.9, 127.8, 127.4, 124.2, 84.1, 74.1, 54.0, 44.8, 44.6, 44.3, 29.4, 21.6, 16.3. UPLC-DAD-QTOF: $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 513.2002, found: 513.2001. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 99/1, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 84.8 min (major) and 114.7 min (minor)).

## 4-(5-hydroxy-5-methyl-1-nitro-4-oxo-2-phenylhexan-3-yl)benzonitrile (6Ba)



The title compound 6Ba was prepared from 4-(3-hydroxy-3-methyl-2oxobutyl)benzonitrile ( $\mathbf{1 B}$ ) ( $20.3 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and nitrostyrene $(17.9 \mathrm{mg}, 1.2 \mathrm{mmol})$ according to the general procedure. White solid, yield: $31.7 \mathrm{mg}, 0.089 \mathrm{mmol}, 89 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-70.0(\mathrm{c}=0.19,82 \% e e$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p. $181-182{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.73(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.88(\mathrm{~d}, J$ $=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=12.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=12.5,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 210.6,140.3$, 136.9, 133.1, 129.7, 129.0, 128.5, 128.3, 118.0, 112.6, 77.9, 47.0, 26.6, 25.9. UPLC-DADQTOF: $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 375.1321 , found: 375.1327 . The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol $90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 21.5 min (major) and 26.5 $\min$ (minor)).

## 4-(2-Hydroxy-2,7-dimethyl-5-(nitromethyl)-3-oxooctan-4-yl)benzonitrile (6Bk)



The title compound $\mathbf{6 B k}$ was prepared from 4-(3-hydroxy-3-methyl-2oxobutyl)benzonitrile ( $\mathbf{1 B}$ ) ( $20.3 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 4-methyl-1-nitropent-1-ene ( $38.7 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) according to the general procedure. Colorless oil, yield: $21.3 \mathrm{mg}, 0.064 \mathrm{mmol}, 64 \%{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.69(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=13.2,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91(\mathrm{dd}, J=13.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}$, $1 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.12-1.03(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 213.0,141.4,133.2,130.5,118.5,112.7,78.2,75.3$, $54.4,39.8,39.6,27.5,27.1,25.7,24.1,21.3$. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd.: 355.1634 , found: 355.1639 . The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 95/5, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}$, retention times: 26.5 min (minor) and 33.1 min (major)).

## 4-(4-Fluorophenyl)-2-hydroxy-2-methyl-6-nitro-5-phenylhexan-3-one (6Ca)



The title compound 6Ca was prepared from 1-(4-fluorophenyl)-3-hydroxy-3-methylbutan-2-one (1C) (19.6 mg, 0.1 mmol$)$ and nitrostyrene ( $44.7 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $24.2 \mathrm{mg}, 0.070 \mathrm{mmol}, 70 \%$. m.p. $135-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 5 \mathrm{H})$, $7.20-7.08(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=12.3,10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.41-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=12.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}) 0.89(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 211.2,164.3,161.0,137.4,130.5,130.4,128.9,128.3,116.7$, $116.5,78.1,77.5,54.8,47.1,26.4,25.9$. UPLC-DAD-QTOF: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd.: 368.1274 , found: 368.1271 . The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 9.3 min (major) and 11.0 min (minor)).

## 2-Hydroxy-2-methyl-6-nitro-4,5-diphenylhexan-3-one (6Da)



The title compound 6Da was prepared from 3-hydroxy-3-methyl-1-phenylbutan-2-one (1D) ( $17.8 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and nitrostyrene (5a) ( $29.8 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $12.1 \mathrm{mg}, 0.037 \mathrm{mmol}, 37 \%$. m.p. $128-130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.58-7.10(\mathrm{~m}, 10 \mathrm{H}), 4.62(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-$ $4.50(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=12.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H})$, $0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 211.1,137.7,134.7,129.6,128.9,128.7,128.7$, 128.3, 128.1, 78.3, 75.9, 55.9, 47.0, 26.4, 25.9. UPLC-DAD-QTOF: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{-}$ calcd.: 326.1392, found: 326.1380. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 10.4 min (major) and 13.0 min (minor)).

## 4-(5-Benzyl-5-hydroxy-1-nitro-4-oxo-2,6-diphenylhexan-3-yl)benzonitrile (9Ba)



The title compound 9Ba was prepared from 4-(3-benzyl-3-hydroxy-2-oxo-4-phenylbutyl)benzonitrile (4B) $(35.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and nitrostyrene ( $17.9 \mathrm{mg}, 1.2 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $35.3 \mathrm{mg}, 0.070 \mathrm{mmol}, 70 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}=-66.1$ ( $\mathrm{c}=$ $1.00,99 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p. $220-221{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), \delta: 7.42-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=6.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $4.94(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.34(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13}{ }^{13}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 209.0,138.0,137.4,134.5,134.2,132.6,130.8,130.0,129.6$,
129.0, 128.5, 128.4, 128.1, 127.2, 126.6, 118.2, 111.5, 83.4, 78.1, 55.6, 46.1, 42.7, 42.3. UPLC-DAD-QTOF: $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 527.1947, found: 527.1942. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 15.1 min (major) and 18.6 min (minor)).

## 4-(2-Benzyl-2-hydroxy-7-methyl-5-(nitromethyl)-3-oxo-1-phenyloctan-4-yl)benzonitrile (9Bk)



The title compound 9Bk was prepared from 4-(3-benzyl-3-hydroxy-2-oxo-4-phenylbutyl)benzonitrile (4B) ( $35.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 4-methyl-1-nitropent-1-ene $\mathbf{5 k}(38.7 \mathrm{mg}, 0.3 \mathrm{mmol})$ according to the general procedure. White solid, yield: $17.4 \mathrm{mg}, 0.036 \mathrm{mmol}, 36 \%$. $[\alpha]_{D}{ }^{25}=-61.9^{\circ}\left(\mathrm{c}=0.21,99 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. M.p. $121-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.41-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.00(\mathrm{~m}, 5 \mathrm{H})$, $6.80(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=13.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=13.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ (s, 1H), 1.06-0.96 (m, 2H), 0.92 (d, J $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 211.6,139.7,135.1$, $135.0,132.7,131.3$, 130.7, 129.0, 128.9, 127.8, 127.4, 118.8, 111.7, 84.1, 75.7, 55.5, 44.9, 44.1, 39.4, 37.8, 25.5, 24.0, 21.5. UPLC-DAD-QTOF: $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 507.2260 , found: 507.2263. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 98/2, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}$, retention times: 29.4 min (minor) and 32.0 min (major)).

## 2-Benzyl-4-(4-fluorophenyl)-2-hydroxy-6-nitro-1,5-diphenylhexan-3-one (9Ca)



The title compound 9Ca was prepared from 3-benzyl-1-(4-fluorophenyl)3-hydroxy-4-phenylbutan-2-one (4C) ( $34.8 \mathrm{mg}, 0.1$ mmol ) and nitrostyrene ( $44.7 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $24.4 \mathrm{mg}, 0.049 \mathrm{mmol}, 49 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}=-65.7^{\circ}\left(\mathrm{c}=1,96 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. M.p. $198-199{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 7.41-7.22(\mathrm{~m}, 8 \mathrm{H}) 7.08-6.90(\mathrm{~m}, 7 \mathrm{H}), 6.79(\mathrm{t}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.33-$ $4.15(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.77$ (s, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 210.1,164.2,138.4,135.0,131.2,131.0,130.8,130.5$, 123.3, 128.9, 128.6, 127.4, 127.0, 116.7, 116.4, 83.8, 78.9, 55.4, 46.6, 43.0, 42.5. UPLC-DAD-QTOF: $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{FNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 520.1900, found: 520.1895. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IB, hexane/isopropanol $98 / 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 14.1 min (minor) and 15.9 $\min$ (major)).

## 2-Benzyl-2-hydroxy-6-nitro-1,4,5-triphenylhexan-3-one (9Da)



The title compound 9Da was prepared from 3-benzyl-3-hydroxy-1,4-diphenylbutan-2-one (4D) ( $33.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and nitrostyrene ( 44.7 $\mathrm{mg}, 0.3 \mathrm{mmol})$ according to the general procedure. White solid, yield: $22.1 \mathrm{mg}, 0.046 \mathrm{mmol}, 46 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-98.6^{\circ}(\mathrm{c}=0.23,96 \% e e$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). M.p. $194-195{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.41-$ $6.87(\mathrm{~m}, 18 \mathrm{H}), 6.68(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.37-$ $4.15(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}) 2.34-2.17(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 210.2,138.6,135.2,135.0,133.1,131.2,130.5,129.7,129.3$, 128.9, 128.6, 128.6, 128.5, 128.3, 127.3, 127.0, 83.8, 79.1, 56.5, 46.6, 42.9, 42.5. UPLC-DAD-QTOF: $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 502.1994, found: 502.1993. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol $98 / 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 18.1 min (major) and 21.6 $\min ($ minor $)$ ).

## 2-Hydroxy-4-(4-methoxyphenyl)-2-methyl-6-nitro-5-phenylhexan-3-one (6Ea)



The title compound 6Ea was prepared from 3-hydroxy-1-(4-methoxyphenyl)-3-methylbutan-2-one ( $\mathbf{1 E}$ ) ( $20.83 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and nitrostyrene (5a) ( $44.7 \mathrm{mg}, 0.3 \mathrm{mmol}$ ) according to the general procedure. White solid, yield: $16.1 \mathrm{mg}, 0.045 \mathrm{mmol}, 45 \%$. M.p. $142-$ $143{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.42-7.25(\mathrm{~m}, 7 \mathrm{H}), 6.96(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.64-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $0.91(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 210.8,159.3,137.4,129.4,128.4$, 127.8, 127.8, 127.6, 125.9, 114.6, 77.9, 54.9, 54.6, 46.6, 26.0, 25.6. UPLC-DAD-QTOF: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 380.1474 , found: 380.1470 . The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol $90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 16.5 min (major.) and 21.6 $\min (\min$.$) ).$

## 5. Catalytic conjugate addition of alkenyl ketols 16-18 to nitroalkenes.



To a solution of the corresponding hydroxyketone 16-18 ( $0.2 \mathrm{mmol}, 1$ equiv.) and trans- $\beta$ nitrostyrene ( $32.8 \mathrm{mg}, 0.22 \mathrm{mmol}$, 1.1 equiv.) in dichloromethane ( 0.4 mL ), catalyst $\mathbf{C 5}$ (11.9 $\mathrm{mg}, 0.02 \mathrm{~mol}, 10 \mathrm{~mol} \%$ ) was added at room temperature or $-20^{\circ} \mathrm{C}$ and the resulting mixture was stirred to completion of the reaction ( $2-20 \mathrm{~h}$, TLC). Then the reaction mixture was submitted to flash column chromatography (eluent hexane/ethyl acetate 90:10).

The same procedure was employed for the reactions involving catalyst C6, but with a molar ratio of ketone $/ \mathbf{5} /$ catalyst of 1.5:1:0.1.

## (E)-2-Benzyl-2-hydroxy-4(S)-(2-nitro-1(S)-phenylethyl)-1,6-diphenylhex-5-en-3-one (19)



Prepared according to the general procedure starting from 16 (71.3 $\mathrm{mg}, 0.2 \mathrm{mmol}$ ) and $\mathbf{C} 5$ as catalyst. The title compound was purified by flash column chromatography on silicagel (eluting with hexane/ethyl acetate $1 / 20$ ) and isolated as a white solid. Yield: 63.7 $\mathrm{mg}(63 \%)$. m.p. $=168-171^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{22}=-126.7^{\circ}\left(\mathrm{c}=0.5,>98 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.20(\mathrm{~m}, 11 \mathrm{H}), 7.03-6.92(\mathrm{~m}, 8 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.33\left(\mathrm{dd}, J=15.6 \mathrm{~Hz}, J^{\prime}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.76\left(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J^{\prime}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.58\left(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J^{\prime}=10.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.30(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97\left(\mathrm{td}, J=10.2 \mathrm{~Hz}, J^{\prime}=\right.$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.28(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{sb}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 210.9,138.2,136.9$, 135.5, 134.9, 134.8, 130.9, 130.3, 128.8, 128.4, 128.3, 128.0, 127.1, 127.0, 126.6, 121.6, 83.6, 78.2, 54.6, 44.7, 43.0, 42.9. UPLC-DAD-QTOF: $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NO}_{4} .[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 506.2331, found: 506.2337.
(E)-2-Benxyl-2-hydroxy-4(S)-[2-nitro-1(S)-phenylethyl]-1-phenyl-6-p-tolylhex-5-en-3one (20)


Prepared according to the general procedure starting from $(74.1 \mathrm{mg}$, 0.2 mmol ) and $\mathbf{C 5}$ as catalyst. The title compound was purified by flash column chromatography on silicagel (eluting with hexane/ethyl
acetate $1: 20$ ) and isolated as a white solid. Yield: $72.7 \mathrm{mg}(70 \%)$. m.p. $=170-173{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{24}=$ $-174.5^{\circ}\left(\mathrm{c}=0.5,>98 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.32-6.84(\mathrm{~m}, 19 \mathrm{H}), 6.18$ $(\mathrm{d}, ~ J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25\left(\mathrm{dd}, J=15.6 \mathrm{~Hz}, J^{\prime}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.75\left(\mathrm{dd}, J=13.0 \mathrm{~Hz}, J^{\prime}=4.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.57\left(\mathrm{dd}, J=13.0 \mathrm{~Hz}, J^{\prime}=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.25(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dt}, J=10.0$ $\left.\mathrm{Hz}, J^{\prime}=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.20(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=13.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{sb}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 211.0,138.3,138.2,136.9,135.0,134.9,132.8,130.8,130.3,129.0,128.8,128.4,128.3$, 128.0, 127.1, 127.0, 126.6, 120.5, 83.6, 78.2, 54.7, 44.7, 43.0, 42.9, 21.2. UPLC-DAD-QTOF: $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{Na}$. $[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 542.2307, found 542.2315.

## ( $S, E$ )-2-hydroxy-2-methyl-4-((S)-2-nitro-1-phenylethyl)-6-phenylhex-5-en-3-one (21a)

Prepared according to the general procedure starting from 2-hydroxy-
 2-methyl-6-phenylhex-5-en-3-one $\mathbf{1 8}(41 \mathrm{mg}, 0.2 \mathrm{mmol})$ and nitroalkene $\mathbf{5 a}(32 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathbf{C 5}$ as catalyst. The title compound was isolated as as a white solid. Yield: $60 \mathrm{mg}(85 \%) . \mathrm{m}$. p.: $143-145{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=-60.3^{\circ}\left(\mathrm{c}=1,97 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ( 300 MHz , Chloroform- $d$ ) $\delta 7.48-7.24(\mathrm{~m}, 10 \mathrm{H}), 6.73(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=$ $15.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.69(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.11(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , Chloroform- $d$ ) $\delta 211.6,128.9,128.8,128.6,128.3,126.5,124.3,78.0,54.5$, 45.7, 26.1, 25.9. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 354.1705, found: 354.1707. The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; retention times: 17.6 min (minor) and 27.1 $\min$ (major)).

## (S,E)-4-((S)-1-(4-chlorophenyl)-2-nitroethyl)-2-hydroxy-2-methyl-6-phenylhex-5-en-3one (21b)



Prepared according to the general procedure starting from 2-hydroxy-2-methyl-6-phenylhex-5-en-3-one $\mathbf{1 8}$ ( $41 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) and nitroalkene 5b ( $40 \mathrm{mg}, 0.22 \mathrm{mmol}$ ) and $\mathbf{C 5}$ as catalyst. The title compound was isolated as as a white solid. Yield: $64 \mathrm{mg}(82 \%) . \mathrm{m}$. p.: $166-168{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=-102.6^{\circ}\left(\mathrm{c}=0.5,95 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ( 300 MHz , Chloroform- $d$ ) $\delta 7.44-7.17$ (m, 9H), 6.72 (d, $J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=15.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.60(\mathrm{~m}, 2 \mathrm{H})$, $4.28(\mathrm{dd}, J=10.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=10.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , Chloroform- $d$ ) $\delta$ 211.1, 136.5, 135.7, 135.1, 133.9, 129.4, 128.8, 128.6, $128.5,126.3,123.5,77.7,53.9,44.7,26.1,26.0$. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ calcd.: 388.1316, found: 388.1323. The enantiomeric purity was determined by HPLC
analysis (Daicel Chiralpak IB hexane/isopropanol 95/5, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; retention times: 44.7 min (minor) and 66.2 min (major)).

## 4-(1-(3-Chlorophenyl)-2-nitroethyl)-2-hydroxy-2-methyl-6-phenylhex-5-en-3-one (21c)

The title compound 21c was prepared from 2-hydroxy-2-methyl-6-
 phenylhex-5-en-3-one $18(40.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and nitrostyrene ( $\mathbf{5 c}$ ) $(40.4 \mathrm{mg}, 0.22 \mathrm{mmol})$ according to the general procedure for $\mathbf{C 5}$. White solid, yield: $73.7 \mathrm{mg}, 0.19 \mathrm{mmol}, 95 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}=-117.94^{\circ}(\mathrm{c}=$ $0.5,96 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p. $158-160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.42-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.05(\mathrm{dd}, J=15.9,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=13.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (dd, $J=13.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{td}, J=10.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H})$, $1.09(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 211.1,139.5,136.7,135.2,134.6$, 130.0, 128.7, 128.6, 128.3, 128.2, 126.5, 126.4, 123.6, 77.7, 54.0, 45.0, 26.2, 26.1. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 410.1135 , found: 410.1125 . The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IB, hexane/isopropanol 90/10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 19.5 min (minor) and 25.3 $\min$ (major)).
(S,E)-2-hydroxy-4-((S)-1-(4-methoxyphenyl)-2-nitroethyl)-2-methyl-6-phenylhex-5-en-3one (21f)


Prepared according to the general procedure starting from 2-hydroxy-2-methyl-6-phenylhex-5-en-3-one $\mathbf{1 8}(41 \mathrm{mg}, 0.2 \mathrm{mmol})$ and nitroalkene $\mathbf{5 f}$ ( $39 \mathrm{mg}, 0.22 \mathrm{mmol}$ ) and $\mathbf{C 5}$ as catalyst. The title compound was isolated as as a white solid. Yield: $58 \mathrm{mg}(75 \%) . \mathrm{m}$. p.: $154-156{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=-94.1^{\circ}\left(\mathrm{c}=1.2,94 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ( 300 MHz , Chloroform- $d$ ) $\delta 7.42-7.29(\mathrm{~m}, 4 \mathrm{H}$ ), $7.24-7.13(\mathrm{~m}, 2 \mathrm{H})$, $6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=15.9,9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.87-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{dd}, J=10.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{td}, J=10.4,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=53.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , Chloroform-d) $\delta 212.4,160.0$, $136.9,136.2,130.0,129.8,129.5,129.3,127.2,125.2,115.0,79.0,55.9,55.3,45.7,26.9$, 26.7. UPLC-DAD-QTOF: $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$calcd.: 384.1811, found: 384.1807. The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol $95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; retention times: 48.8 min (minor) and 76.2 $\min$ (major)).

## 2-Hydroxy-2-methyl-5-(nitromethyl)-4-styryldecan-3-one (21i)

The title compound 21i was prepared from 2-hydroxy-2-methyl-6-phenylhex-5-en-3-one $\mathbf{1 8}(40.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and nitrostyrene ( $\mathbf{5 i}$ ) $(31.5 \mathrm{mg}, 0.22 \mathrm{mmol})$ according to the general procedure for $\mathbf{C 5}$.

Yellow oil, yield: $65.3 \mathrm{mg}, 0.19 \mathrm{mmol}, 94 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}=-64.4^{\circ}\left(\mathrm{c}=1,98 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.64(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=15.9$, $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=13.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=13.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 215.6,138.2,137.7,130.7,130.4,128.4,126.2$, 79.4, 77.7, 53.4, 41.7, 33.5, 32.1, 28.9, 28.8, 28.3, 24.3, 15.9. UPLC-DAD-QTOF: $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 370.1994 , found: 370.1994 . The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IC hexane/isopropanol $95 / 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 9.0 min (minor) and 10.5 $\min$ (major)).

## 2-Hydroxy-2-methyl-8-nitro-6,7-diphenyloct-4-en-3-one (21'a)

The title compound 21'a was prepared from 2-hydroxy-2-methyl-6-
 phenylhex-5-en-3-one $\mathbf{1 8}(40.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and nitrostyrene (5a) $(19.4 \mathrm{mg}, 0.13 \mathrm{mmol})$ according to the general procedure for $\mathbf{C 6}$. White solid, yield: $7.78 \mathrm{mg}, 0.022 \mathrm{mmol}, 11 \%$. m.p. $138-139^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.39-7.15(\mathrm{~m}, 7 \mathrm{H}), 7.07-6.96(\mathrm{~m}$, $4 \mathrm{H}), 6.59(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{td}, J=8.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 202.9$, $149.0,139.3,137.4,129.9,129.7,129.0,128.6,125.1,79.4,76.6,54.0,49.8,27.3$. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 376.1525, found: 376.1526.

## 7-(4-Chloropheynyl)-2-hydroxy-2-methyl-8-nitro-6-phenyloct-4-en-3-one (21'b)



The title compound 21'b was prepared from 2-hydroxy-2-methyl-6-
 phenylhex-5-en-3-one $\mathbf{1 8}(40.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and nitrostyrene (5b) $(23.9 \mathrm{mg}, 0.13 \mathrm{mmol})$ according to the general procedure for C6. Orange solid, yield: $14.6 \mathrm{mg}, 0.04 \mathrm{mmol}, 29 \%$. m.p. 145-147 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.37-7.17$ (m, 7H), 7.04 (dd, J $=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.80-4.60(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{td}, J=9.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}) 3.66(\mathrm{~s}, 1 \mathrm{H})$, $1.43(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 202.9,148.6,139.0,136.0,134.9$, 130.6, 130.1, 130.0, 129.1, 128.8, 125.3, 79.4, 76.6, 53.9, 49.3, 27.3, 27.3 UPLC-DADQTOF: $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 410.1135, found: 410.1133. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol 90:10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 17.7 min (minor) and 19.8 $\min$ (major)).

## 7-(3-Chloropheynyl)-2-hydroxy-2-methyl-8-nitro-6-phenyloct-4-en-3-one (21'c)



The title compound 21'c was prepared from 2-hydroxy-2-methyl-6-phenylhex-5-en-3-one $\mathbf{1 8}$ ( $40.8 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) and nitrostyrene ( $\mathbf{5 c}$ )
( $23.9 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) according to the general procedure for C6. Yellow oil, yield: 18.2 mg , $0.05 \mathrm{mmol}, 36 \% .^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.36-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.89$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.60(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{td}, J=9.2,6.0 \mathrm{~Hz}$, 1 H ), 3.79 (t, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.41(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta$ : 201.5, 146.9, 138.3, 137.6, 134.2, 129.6, 128.6, 127.8, 127.7, 127.4, 126.2, 77.7, 75.2, 52.4, 48.1, 25.8. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClNO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 410.1135, found: 410.1138 . The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol 90:10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 19.2 min (minor) and 24.9 min (major)).

## 6. Control experiments using as donors 10,12 , and 14

## Catalytic conjugate addition of 2-(4-nitrophenyl)ethanethioate to nitrostyrene



To a mixture of phenyl 2-(4-nitrophenyl)ethanethioate $\mathbf{1 0}(27.3 \mathrm{mg}, 1 \mathrm{eq} ., 0.1 \mathrm{mmol})$ and nitrostyrene (5a) ( $29.8 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) in dichloromethane $(0.3 \mathrm{~mL})$ at room temperature, catalyst $\mathbf{C 5}(5.9 \mathrm{mg}, 10 \mathrm{~mol} \%, 0.01 \mathrm{mmol})$ was added. The resulting solution was stirred at room temperature, until consumption of the phenyl 2-(4-nitrophenyl)ethanethioate as monitored by ${ }^{1} \mathrm{H}$ NMR. The mixture was quenched with $\mathrm{HCl} 2 \mathrm{M}(1 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 2 mL ). The combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 80:20) to afford phenyl 4-nitro-2-(4-nitrophenyl)-3-phenylbutanethioate $\mathbf{1 1}$ as a 73:27 mixture of diastereomers (50 \% ee, major; $20 \% \mathrm{ee}$, minor). Yield: $21.9 \mathrm{mg}, 0.052 \mathrm{mmol}, 52 \%$. The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane/isopropanol 80/20, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: major diastereomer: 13.6 min (minor.) and 17.4 min (major.)); minor diastereomer: 15.6 min (major) and 24.6 min (minor)).

The corresponding racemic compound was prepared following the above procedure at room temperature, but using as catalyst achiral thiourea $\mathbf{S 9}(3.6 \mathrm{mg}, 10 \mathrm{~mol} \%, 0.01 \mathrm{mmol}){ }^{14}$


S9

[^7]

Daicel Chiralpak AD-H, hexane/isopropanol 80/20 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

11

Rac-11


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 13.576 | 44.86 |
| 2 | 15.614 | 6.44 |
| 3 | 17.426 | 41.88 |
| 4 | 24.649 | 6.81 |

Scalemic 11


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 13.152 | 18.17 |
| 2 | 15.041 | 15.79 |
| 3 | 16.749 | 55.04 |
| 4 | 24.213 | 11.00 |

## Catalytic conjugate addition of 2-phenylacetaldehyde to 4-bromo nitrostyrene



To a mixture of 2-phenylacetaldehyde 12 ( $12 \mathrm{mg}, 1 \mathrm{eq} ., 0.1 \mathrm{mmol}$ ) and 4-bromonitrostyrene ( $\mathbf{5 b}$ ) $(45.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dichloromethane $(0.3 \mathrm{~mL})$ at room temperature, catalyst $\mathbf{C 5}(5.9$ $\mathrm{mg}, 10 \mathrm{~mol} \%, 0.01 \mathrm{mmol}$ ) was added. The resulting solution was stirred at room temperature, until consumption of the 2-phenylacetaldehyde as monitored by ${ }^{1} \mathrm{H}$ NMR. The mixture was quenched with $\mathrm{HCl} 2 \mathrm{M}(1 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 90:10) to afford 3-(4-bromophenyl)-4-nitro-2-phenylbutanal 13 as a diastereomeric mixture dr 59:41, major diastereomer $60 \% e e$, minor diastereomer $40 \%$ ee. White solid. Yield: $33.0 \mathrm{mg}, 0.095 \mathrm{mmol}, 95 \%$. m.p. $152-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\mathrm{CDCl}_{3}$ ), $\delta: 9.72(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.55(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.21$ (m, 5H), 7.15 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{dd}, J=$ $12.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=12.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{dd}, J=18.6,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.27-4.21(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=10.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta:{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 197.9,196.4,136.2,135.3,132.2$, 131.7, 130.0, 130.0, 129.8, 129.8, 129.4, 129.2, 129.1, 129.1, 128.4, 128.4, 122.2, 121.8, 78.0, $77.8,61.5,60.8,43.7,43.6$. UPLC-DAD-QTOF: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrNO}_{3}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 346.0079, found: 346.0078 .

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 90:10, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: major diastereomer: 19.5 min (minor) and 21.6 min (major)); minor diastereomer: 12.1 min (major) and 17.8 min (minor)).


Daicel Chiralpak IC, hexane/isopropanol 90/10 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

13

## Rac-13



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 12.094 | 21.54 |
| 2 | 17.771 | 20.21 |
| 3 | 19.548 | 28.80 |
| 4 | 21.604 | 29.45 |

Scalemic 13


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 12.338 | 35.33 |
| 2 | 18.224 | 6.19 |
| 3 | 20.046 | 11.68 |
| 4 | 22.186 | 46.81 |

## 7. Reaction profiles of hydroxy ( $1 \mathrm{~A} / 1 \mathrm{~B}, \mathrm{OH}$ ) and silyloxy ( $\mathbf{1}^{\prime} \mathrm{A} / 1^{\prime} \mathrm{B}, \mathrm{OSiMe}_{3}$ )

## ketones





| $\mathbf{1 A}$ |  | 1'A |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{t}(\mathrm{h})$ | Conv (\%) | $\mathrm{t}(\mathrm{h})$ | Conv (\%) |
| 0.25 | 7 |  | 1 |



## 8. Chemical elaboration of adducts

### 8.1. Ketol cleavage in adduct 9Aa to yield carboxylic acid 22 and conversion to 11



To a suspension of 9Aa ( 1 eq., $52 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) in dioxane ( 3 mL ), periodic acid ( 10 eq., $228 \mathrm{mg}, 1 \mathrm{mmol}$ ) was added. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h and afterwards the reaction was quenched with water ( 5 mL ) and extracted with ethyl acetate ( 3 x 5 mL ). The combined organic extracts were dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated. The crude was suspended in dioxane ( 3 mL ), periodic acid ( $10 \mathrm{eq} ., 228 \mathrm{mg}, 1$ mmol ) was added. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h and afterwards the reaction was quenched with water ( 5 mL ) and extracted with ethyl acetate ( $3 \times 5 \mathrm{~mL}$ ). The combined organic extracts were dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated. The crude was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $50 / 50$ ) to give the title compound $\mathbf{2 2}$ as a white solid. Yield: $29.4 \mathrm{mg}, 0.089$ mmol, $89 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-22.0^{\circ}$ (c=1.47, $99 \% e e, \mathrm{MeOH}$ ). M.p. $174-176{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\mathrm{CD}_{3} \mathrm{OD}$ ), $\delta: 8.29(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.65(\mathrm{dd}, J$ $=12.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.07(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ), $\delta: 173.5,149.2,144.9$, 139.0, 131.0, 129.7, 129.5, 129.0, 125.1, 79.3, 56.0, 48.4. UPLC-DAD-QTOF: $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 355.0750 , found: 353.0739 .

## Conversion of carboxylic acid 22 into thioester $11^{15}$



[^8]To a solution of carboxylic acid 22 ( $1 \mathrm{eq} ., 33 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) and 1-hydroxybenzotriazole hydrate ( $1 \mathrm{eq} ., 13.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) in ethyl acetate ( 1 mL ) under argon, at $0^{\circ} \mathrm{C}$, thiophenol ( 2 eq., $20 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$ ) was added. After 5 min , dicyclohexylcarbodiimide ( $1.1 \mathrm{eq} ., 23 \mathrm{mg}$, 0.11 mmol ) was added. After stirring overnight, a $50 \%$ solution of acetic acid in ethyl acetate $(0.3 \mathrm{~mL})$ was added. The reaction mixture was filtered throughouth a pad of celite and solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 80:20) to give the title compound $\mathbf{1 1}$ as a white solid. Yield: $36.3 \mathrm{mg}, 0.086 \mathrm{mmol}, 86 \% .[\alpha]_{\mathrm{D}}{ }^{25}=-38.8^{\circ}\left(\mathrm{c}=0.5,98 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. m.p. $152-153$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 8.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.24(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\mathrm{CDCl}_{3}$ ), $\delta: 195.0,148.2,141.5,135.7,134.1,129.9,129.6,129.3,129.1,128.6,128.2,126.1$, 124.5, 77.8, 62.0, 47.3. UPLC-DAD-QTOF: $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 421.0858, found: 421.0858. The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak ADH , hexane/isopropanol $80 / 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: major diastereomer: 13.6 min (minor) and 17.4 min (major)); minor diastereomer: 15.6 min (major) and 24.6 min (minor)).

### 8.2. Nef reaction in adduct 9Aa to yield carboxylic acid $23^{16}$



A solution of 2-benzyl-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1,5-diphenylhexan-3-one (9Aa) $(104.9 \mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{eq}),. \mathrm{NaNO}_{2}(82.8 \mathrm{mg}, 1.2 \mathrm{mmol}, 6 \mathrm{eq}$.$) and \mathrm{AcOH}(120.1 \mathrm{mg}, 2$ mmol, 10 eq.) in DMSO ( 2 mL ) was stirred overnight at $35^{\circ} \mathrm{C}$. The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed successively with brine ( 20 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluting with hexane/ AcOEt 90:10 $\rightarrow 70: 30$ ). Yield $36.7 \mathrm{mg}, 0.072 \mathrm{mmol}, 36 \%$. $[\alpha]_{\mathrm{D}}{ }^{25}=-30.3^{\circ}$ ( $\mathrm{c}=$ $0.40,99 \% ~ e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p. $169-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz},\left(\mathrm{CD}_{3} \mathrm{OD}\right.$ ), $\delta: 7.77(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.85-6.62(\mathrm{~m}, 7 \mathrm{H})$, $5.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=$

[^9]$13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right), \delta: 211.0,175.1,147.9,143.4,138.8,137.3,136.4,134.0,132.0,131.7,131.4,130.7$, $130.5,129.8,129.4,129.1,128.9,128.3,127.6,126.6,123.9,84.7,56.6,56.1,45.7$, 43.7.UPLC-DAD-QTOF: $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 532.1736, found: 532.1732.

### 8.3 Conversion of 9Aa into aldehyde 24 and alcohol 25



To a suspension of 9Aa ( 1 eq., $105 \mathrm{mg}, 0.2 \mathrm{mmol}$ ) in tetrahydrofuran ( 2 mL ), borane tetrahydrofuran solution complex $1.0 \mathrm{M}(4 \mathrm{eq} ., 0.8 \mathrm{~mL}, 0.8 \mathrm{mmol})$ was added. The resulting mixture was stirred at room temperature for 24 h and afterwards methanol ( 1 mL ) was added at $0{ }^{\circ} \mathrm{C}$ and the solvent was evaporated. The resulting crude material was suspended in dioxane ( 4 mL ), periodic acid ( $10 \mathrm{eq} ., 456 \mathrm{mg}, 2 \mathrm{mmol}$ ) was added and the mixture was stirred at room temperature for 24 h . The reaction was quenched with water ( 10 mL ) and extracted with ethyl acetate ( $3 \times 10 \mathrm{~mL}$ ). The combined organic extracts were dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated. The crude product was crushed with diethyl ether to give the title compound 24 as a white solid. Yield $42.2 \mathrm{mg}, 0.13 \mathrm{mmol}, 67 \% .[\alpha]_{\mathrm{D}}{ }^{25}=$ $-9.9^{\circ}\left(\mathrm{c}=0.40,99 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ ). m.p. $140-142^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 8.30(\mathrm{~d}, \mathrm{~J}$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.63-4.40(\mathrm{~m}$, 2H), 4.34-4.20 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 196.2,148.1,140.0,135.8,130.4$, 129.4, 128.7, 128.1, 124.6, 77.8, 60.1, 45.0. UPLC-DAD-QTOF: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{-}$calcd.: 313.0824, found: 313.0821.


A solution of aldehyde, 4-nitro-2-(4-nitrophenyl)-3-phenylbutanal (24) ( $62.9 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ eq.), $\mathrm{NaBH}_{4}$ ( $15.1 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ eq.) in $\mathrm{MeOH}(0.4 \mathrm{~mL})$ was stirred overnight at $-40^{\circ} \mathrm{C}$ during 2 h . Then the reaction was quenched with NH 4 Cl and extracted with DCM ( $3 \times 2 \mathrm{~mL}$ ). The combined organic layers were dried over $\mathrm{MgSO}_{4}$ and concentrated under reduced
pressure. The crude product was purified by silica gel chromatography (eluting with hexane/ AcOEt 90:10). Orange solid, yield $50.6 \mathrm{mg}, 0.16 \mathrm{mmol}, 80 \% .[\alpha]_{D^{25}}=+3.21^{\circ}(\mathrm{c}=0.51,99 \%$ $e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p. $128-129^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz},(\mathrm{CDCl} 3), \delta: 8.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.48-7.31(\mathrm{~m}, 5 \mathrm{H}), 4.58(\mathrm{dd}, J=12.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.31(\mathrm{~m}, 1 \mathrm{H})$, $4.00(\mathrm{td}, J=10.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{dt}, J=10.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ), $\delta: 147.9,137.3,129.7,128.9,128.3,124.7,79.6,64.5,51.1,46.5$. UPLC-DAD-QTOF: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]{ }^{-}$calcd.: 315.0981, found: 315.0976.

### 8.4 Hydrogenation of 20 to 26 and subsequent ketol cleavage (27 and 28)

(S)-2-hydroxy-2-methyl-4-((S)-2-nitro-1-phenylethyl)-6-phenylhexan-3-one (26)


To a solution of ( $S, E$ )-2-hydroxy-2-methyl-4-(( $S$ )-2-nitro-1-phenylethyl)-6-phenylhex-5-en-3one $20(206.6 \mathrm{mg}, 0.58 \mathrm{mmol})$ in dry EtOAc ( 20 mL ), $\mathrm{Pd} / \mathrm{C}(\mathrm{Pd} 10 \%$ in activated carbon) was added ( 21 mg ). The air was evacuated by vacuum and $\mathrm{H}_{2}$ was introduced (this process was carried out three times). The reaction mixture was stirred under $\mathrm{H}_{2}$ atmosphere at room temperature for 1 h . Then, the mixture was filtered over celite and the filtrate was concentrated under reduced pressure to afford the hydrogenated product as a solid.
Yield: $196 \mathrm{mg}(95 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=+5.5^{\circ}\left(\mathrm{c}=0.32,94 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. m.p. $94-96^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz},\left(\mathrm{CDCl}_{3}\right), \delta: 7.41-7.19(\mathrm{~m}, 8 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.90-4.76(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.01(\mathrm{~m}$, $1 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}$, $1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ), $\delta: 215.3,140.6,138.0,129.0$, 128.6, 128.1, 128.0, 128.0, 126.3, 75.9, 48.7, 44.2, 33.2, 29.8, 26.6. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 378.1681, found: 378.1686.


To a suspension of 26 ( $1 \mathrm{eq} ., 49 \mathrm{mg}, 0.12 \mathrm{mmol}$ ) in dioxane ( 3 mL ), periodic acid ( $10 \mathrm{eq} ., 274$ $\mathrm{mg}, 1.2 \mathrm{mmol}$ ) was added. The resulting mixture was stirred at room temperature for 1 h and afterwards the reaction was quenched with water ( 5 mL ) and extracted with ethyl acetate ( 3 x 5 mL ). The combined organic extracts were dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated to give the title compound 27 as an orange oil. Yield: $34.9 \mathrm{mg}, 0.11 \mathrm{mmol}, 93 \%$.
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ), $\delta: 7.38-7.14(\mathrm{~m}, 10 \mathrm{H}), 4.91-4.69(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 1 \mathrm{H})$, 2.92-2.52 (m, 3H), 2.11-1.98 (m, 1H), 1.93-1.82 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ), $\delta$ : 177.9, 139.9, 135.8, 128.2, 127.9, 127.7, 127.6, 127.3, 125.7, 77.0, 47.4, 44.9, 32.8, 30.6. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 336.1212, found: 336.1215 .

(2S, 3S)-4-Nitro-2-phenethyl-3-phenylbutanal (28)
$\mathrm{BH}_{3}$. THF complex ( $1 \mathrm{M}, 1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$ ) was added to a solution of $\alpha$-hydroxy ketone 26 $(178 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dry THF $(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting solution was stirred at room temperature for 24 h . Then $\mathrm{MeOH}(2.5 \mathrm{~mL})$ was added and the resulting mixture was stirred at room temperature for 30 min . The solvents were removed under reduced pressure and the residue thus obtained was subjected to oxidative scission by treatment with $\mathrm{NaIO}_{4}$.

A suspension of sodium periodate $\mathrm{NaIO}_{4}(535 \mathrm{mg}, 2.5 \mathrm{mmol})$ in water $(1.25 \mathrm{~mL})$ was added to a solution of the corresponding diol $(0.5 \mathrm{mmol})$ in methanol $(2.5 \mathrm{~mL})$. The mixture was stirred overnight at room temperature. Then the solvent was removed under reduced pressure. Water ( 4.5 ml ) was added to the crude product and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 6 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 6 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated to afford the corresponding aldehyde. The crude product was purified by flash column chromatography on silicagel (eluting with hexane/ethyl acetate $1 / 20$ ) to afford a colorless oil.
Yield: $110 \mathrm{mg}(74 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CDCl}_{3}\right), \delta: 9.54(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.14\right.$ (m, 10H), $4.80(\mathrm{dd}, J=6.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (dd, $J=8.4,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dt}, J=6.8$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 202.9,140.3,136.0,135.9,129.2,128.7,128.3,128.2,126.5,77.7$, 52.7, 44.5, 33.2, 29.2. UPLC-DAD-QTOF: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 320.1263, found: 320.1272 .
8.5 Michael-aldol reaction of 28 with acrolein (cycloadducts 29 and 30)

(1S,2R,3S,4S,5S)-2-Hydroxy-5-nitro-3-phenethyl-4-phenylcyclohexanecarbaldehyde (29)

DIPEA ( $10.2 \mu \mathrm{~L}, 0.06 \mathrm{mmmol}$ ) was added to a solution of aldehyde $28(59.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and acrolein $(26.6 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ and the solution was stirred overnight at room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added and the mixture was washed with $1 \mathrm{M} \mathrm{HCl}(5$ mL ). The organic extract was dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated to afford the corresponding dialdehyde. The crude product was used in the next step. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CDCl}_{3}\right), \delta: 9.68(\mathrm{~s}, 1 \mathrm{H}), 9.61(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.13(\mathrm{~m}, 10 \mathrm{H}), 5.28(\mathrm{~m}\right.$, $1 \mathrm{H}), 3.52(\mathrm{dd}, J=5.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.94$ $(\mathrm{m}, 1 \mathrm{H}), 1.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 203.0$, 199.3, $140.5,134.4,129.3,129.2,128,6,128,5,128,4,126.4,88.8,51.6,51.0,39.5,33.3,29.6,24.4$.

L-Proline ( $2.1 \mathrm{mg}, 0.02 \mathrm{mmol}$ ) was added to a solution of dialdehyde in THF $(0.4 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for $8 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added and the mixture was washed with water ( 2 x 5 mL ). The organic extract was dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated to afford the corresponding cyclohexanecarbaldehyde epimers $\mathbf{2 9}$ and $\mathbf{3 0}$ in a ratio 90:10 respectively. Each isomer was separated as colorless oil by a quick flash column chromatography on silica gel (eluting with hexane/ethyl acetate 1:1). The product was unstable at room temperature and was stored at $-30^{\circ} \mathrm{C}$. Yield: $49.5 \mathrm{mg}(70 \%$, two steps, both isomers). Major isomer 29: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CDCl}_{3}\right), \delta: 10.04(\mathrm{~s}, 1 \mathrm{H}), 7.35-\right.$ $6.98(\mathrm{~m}, 10 \mathrm{H}), 4.91(\mathrm{dt}, J=6.0,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=6.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36(\mathrm{dt}, J=4.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.00$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 204.5,141.4,134.3,130.4,128.8,128.6,128.4$, $128.2,126.0,82.8,70.1,50.2,47.7,44.2,33.0,30.5,23.1$. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 376.1525 , found: 376.1527 . Minor isomer 30: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CDCl}_{3}\right)\right.$, $\delta: 9.92(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.00(\mathrm{~m}, 10 \mathrm{H}), 4.83(\mathrm{ddd}, J=4.4,5.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.38(\mathrm{~m}, 4 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 202.7,141.4,133.6,130.6,128.9,128.4,128.3,128.2$, 126.0, 85.6, 68.8, 54.2, 47.9, 45.5, 32.8, 30.2, 23.0. UPLC-DAD-QTOF: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 376.1525 , found: 376.1527 .
8.6 Double Michael-Henry approach to cycloadducts 33 and 34 from 18 (4S,5S,6R,7S)-2-Hydroxy-2-methyl-6,8-dinitro-4-phenethyl-5,7-diphenyloctan-3-one (31)


18

2. $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}, 2 \mathrm{~h}$


31

1) To a solution of hydroxyketone $\mathbf{1 8}(40.9 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.) and trans- $\beta$-nitrostyrene ( $89.5 \mathrm{mg}, 0.6 \mathrm{mmol}, 3$ equiv.) in dichloromethane ( 0.4 ml ), catalyst C6 ( $23.8 \mathrm{mg}, 0.04 \mathrm{mmol}$, $20 \mathrm{~mol} \%$ ) was added at room temperature and the resulting mixture was stirred to completion of the reaction ( 5 days). When the reaction was finished, the mixture was directly submitted to flash column chromatography (hexane/ethyl acetate 90:10). The organic solvent
evaporation yielded the double addition product 2-hydroxy-2-methyl-6,8-dinitro-5,7-diphenyl-4-(styryl)octan-3-one. White solid, yield: $75.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 78 \%$. Decomp. temp. $185-187{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 7.48(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}$, $J=15.8,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=10.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}) 5.00-4.83(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{t}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dt}, J=11.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.89$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 211.2,136.8,136.6,135.6,134.6,129.8,129.3$, 129.0, 128.7, 128.8, 128.5, 128.3, 127.1, 126.5, 122.6, 93.7, 77.6, 73.4, 56.6, 47.9, 44.0, 26.8, 26.3. UPLC-DAD-QTOF: $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd.: 525.2002, found: 525.2007.
2) This product was dissolved in dry EtOAc ( 40 ml ) and $\mathrm{Pd} / \mathrm{C}(\mathrm{Pd} 10 \%$ in activated carbon) was added ( 10.1 mg ). The air was evacuated by vacuum and $\mathrm{H}_{2}$ was introduced (this process was carried out three times). The reaction mixture was stirred under $\mathrm{H}_{2}$ atmosphere at room temperature for 2 h . Then, the mixture was filtered over celite and the filtrate was concentrated under reduced pressure to afford the hydrogenated product $\mathbf{3 1}$ as an oil. Yield: $70.6 \mathrm{mg}(70 \%) .[\alpha]_{\mathrm{D}}{ }^{24}=+13.9^{\circ}\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.05$ $(\mathrm{m}, 15 \mathrm{H}), 5.49(\mathrm{dd}, J=11.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=14.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=$ $14.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.93 (dd, $J=11.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dt}, J=10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.67$ $(\mathrm{m}, 1 \mathrm{H}), 3.00(\mathrm{sb}, 1 \mathrm{H}), 2.56-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}$, $3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta: 214.8,141.0,136.3,135.1,129.5,129.4$, 128.9, 128.7, 128.5, 128.4, 127.2, 126.2, 93.0, 73.5, 48.9, 47.8, 43.9, 33.3, 30.4, 28.1, 27.1. UPLC-DAD-QTOF: $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{6}$. [M+NH4] ${ }^{+}$calcd.: 522.2604, found: 522.2611.
(2S,3S,4R,5S)-4,6-Dinitro-2-phenethyl-3,5-diphenylhexanal (32)

$\mathrm{BH}_{3}$. THF complex ( $1 \mathrm{M}, 1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$ ) was added to a solution of $\alpha$-hydroxy ketone 31 $(252 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dry THF $(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting solution was stirred at room temperature for 24 h . Then $\mathrm{MeOH}(2.5 \mathrm{~mL})$ was added and the resulting mixture was stirred at room temperature for 30 min . The solvents were removed under reduced pressure and the residue thus obtained was subjected to oxidative scission by treatment with $\mathrm{NaIO}_{4}$.

A suspension of sodium periodate $\mathrm{NaIO}_{4}(535 \mathrm{mg}, 2.5 \mathrm{mmol})$ in water $(1.25 \mathrm{~mL})$ was added to a solution of the corresponding diol $(0.5 \mathrm{mmol})$ in methanol $(2.5 \mathrm{~mL})$. The mixture was stirred overnight at room temperature. Then the solvent was removed under reduced pressure. Water ( 4.5 ml ) was added to the crude product and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 6 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 6 \mathrm{~mL})$. The combined organic extracts were dried over
$\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated to afford the corresponding aldehyde. The crude product was purified by flash column chromatography on silicagel (eluting with hexane/ethyl acetate $1 / 20$ ) to afford the tittle product as a colorless oil. Yield: $179 \mathrm{mg}(80 \%)$. $[\alpha]_{\mathrm{D}}{ }^{23}=+16.4^{\circ}\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.58\left(\mathrm{dd}, J=2.0 \mathrm{~Hz}, J^{\prime}=0.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49-6.98(\mathrm{~m}, 15 \mathrm{H}), 5.62\left(\mathrm{dd}, J=11.6 \mathrm{~Hz}, J^{\prime}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.02\left(\mathrm{dd}, J=14.0 \mathrm{~Hz}, J^{\prime}\right.$ $=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92$ $(\mathrm{m}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 203.0,140.2,134.9,133.3,129.9$, 129.5, 129.3, 129.2, 129.0, 128.7, 128.4, 127.1, 126.5, 92.9, 73.6, 51.2, 49.3, 43.5, 33.5, 29.7. UPLC-DAD-QTOF: $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{5}$. [M+Na] ${ }^{+}$calcd.: 469.1739, found: 469.1730 .
(1R,2S,3R,4R,5S,6S)-2,4-Dinitro-6-phenethyl-3,5-diphenylcyclohexanol (33)


DIPEA ( $3.5 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$ ) was added to a solution of aldehyde $32(44.6 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for $20 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added and the mixture was washed with $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$. The organic extract was dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated to afford the corresponding cyclohexanols epimers $\mathbf{3 3}$ and $\mathbf{3 4}$ in a ratio $92: 8$ respectively. The mayor isomer was separated as a white solid by a quick flash column chromatography on silicagel (eluting with hexane/ethyl acetate 20:1). Yield: 37 mg (82\%). m.p. $=191-193{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=-$ $38.3^{\circ}\left(\mathrm{c}=0.65, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.38-7.05(\mathrm{~m}, 15 \mathrm{H}), 6.17(\mathrm{dd}, J=$ $\left.12.6 \mathrm{~Hz}, J^{\prime}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.26(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=12.4$ $\left.\mathrm{Hz}, J^{\prime}=5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.03(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.47-$ $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.09(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5,136.3,133.8,129.3$, 129.0, 128.8, 128.5, 128.4, 128.3, 127.9, 127.2, 126.2, 91.6, 83.5, 71.1, 45.4, 42.4, 42.1, 35.4, 27.6. UPLC-DAD-QTOF: $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}$. $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd.: 464.2185 , found: 464.2190 .

## 9. Stereochemical determinations

Diastereomeric ratios ( $d r$ 's) were determined by ${ }^{1} \mathrm{H}$ NMR ( 300 Hz ) spectroscopy analysis of the respective crude reaction product. Diastereomeric ratio $d r \geq 95: 5$ denotes that no peaks assignable to any additional stereisomer appear within the ${ }^{1} \mathrm{H}$ NMR limit of detection. Enantioselectivities ( $e e$ 's) were determined by HPLC using chiral columns as specified for each entry. Both the absolute and relative configurations of adduct $\mathbf{9 A b}$ were established by X-Ray structure analysis. Configuration of the remaining adducts was assigned by analogy and by assuming a uniform reaction mechanism.

The stereochemistry of cyclic products $\mathbf{2 9 / 3 0}$ and $\mathbf{3 3} / \mathbf{3 4}$ could be primarily assigned by ${ }^{1} \mathrm{H}$-NMR taking into account the known configurations $R$ and $S$ for carbons C3 and C4, respectively, and then the configuration of $\mathbf{3 3}$ was unequivocally assigned by X-Ray analysis. Initial assignment was made based on the coupling constants measured among the skeletal protons, applying the following rules for cyclohexane skeleton: $J_{a x, a x}=8-13 \mathrm{~Hz}, J_{e q, a x}$ and $J_{\text {eq,eq }}=2-6 \mathrm{~Hz}$. Thus, in the spectrum of major isomer 29, the H2 proton ( 4.50 ppm ) gives a well-resolved doublet of doublet signal with coupling constants (ca. 6 Hz and 11 Hz ) referring to a relative 1,2-diequatorial relationship for the hydroxyl and phenethyl groups and a relative axial-equatorial relationship for the formyl and hydroxyl groups, respectively. In the spectrum of minor isomer 30, the H 2 proton ( 4.33 ppm ) gives a well-resolved triplet signal with coupling constant (ca. 10 Hz ) referring to a relative 1,2-diequatorial relationship for the hydroxyl group and both phenethyl and formyl groups. On the other hand, a coupling constant of 12 Hz of the proton H5 in both isomers $\mathbf{2 9}$ and $\mathbf{3 0}$ ( 4.91 ppm and 4.83 ppm respectively) indicates a relative equatorial relationship for the nitro group in both cases. Finally, the two small coupling constants ( 5.6 and 4.4 Hz ) of the H 1 signal in 29 ( 3.36 ppm ) fit well with an axial position for formyl group. Any other conformation and configuration do not fit well the observed ${ }^{1} \mathrm{H}$-NMR coupling constants.


Major isomer 29


Minor isomer 30

The stereochemistry of major and minor isomers 33 and 34, respectively, was initially assigned following a similar reasoning, based on the measured coupling constants pattern.

Accordingly, both products $\mathbf{3 3}$ and $\mathbf{3 4}$ would present a diferente conformational bias as compared with $\mathbf{2 9} / \mathbf{3 0}$. Both structures and the relevant coupling constant values are shown below.


Major isomer 33


Minor isomer 34

The stereochemistry of product $\mathbf{3 3}$ was unequivocally determined by a single crystal X-ray structure determination (see section 13, page S137).

## 10. Catalytic reaction of $\alpha$-hydroxy ketone 1 A with vinyl 1,1-bis(sulfone) 35.



To a mixture of $\alpha$-hydroxy ketone $\mathbf{1 A}(22.3 \mathrm{mg}, \quad 0.1 \mathrm{mmol})$ and $1,1-$ bis(phenylsulfonyl)ethylene $35(92.5 \mathrm{mg}, 3.0$ eq., 0.3 mmol$)$ in dichloromethane ( 0.3 mL ) at room temperature, catalyst $\mathbf{C} 5(5.9 \mathrm{mg}, 10 \mathrm{~mol} \%, 0.01 \mathrm{mmol})$ was added. The resulting suspension was stirred at room temperature, until consumption of the $\alpha$-hydroxyketone as monitored by ${ }^{1} \mathrm{H}$ NMR ( 40 h ). The mixture was quenched with $\mathrm{HCl} 2 \mathrm{M}(1 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{MgSO}_{4}$, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent Hexane/AcOEt 90:10 $\rightarrow$ 70:30) to afford the desired product. (2-Hydroxy-2-methyl-4-(4-nitrophenyl)-6,6-bis(phenylsulfonyl)hexan-3-one, 36). White foam, yield: $47.8 \mathrm{mg}, 0.090 \mathrm{mmol}, 90 \%{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta: 8.08(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.95-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 5.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.02(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 2.70-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}$, 3 H ), 1.27 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ), $\delta: 212.2,147.5,143.2,140.4,137.6,137.0$, 135.0, 134.9, 129.5, 129.3, 129.3, 128.5, 124.2, 80.2, 77.9, 48.4, 29.8, 27.2, 26.6. UPLC-DAD-QTOF: $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd.: 549.1365, found: 549.1368.

The enantiomeric purity was determined to be $38 \%$ ee by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol $50 / 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, retention times: 8.4 min (major) and 10.5 min (minor)).

## 11. NMR Spectra






(




















































19





























|  | Wern | N4M | ${ }^{1}$ | Whw | man | INWM | $-147.9$ | $\sim^{137.3}$ |  |  |  | (1)N0 | / |  |  | MWM | $\begin{aligned} & \text { Hi } \\ & \underset{\sim}{1} 0 \\ & \hline \end{aligned}$ |  | V |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | ${ }_{210}$ | 200 | 190 | 180 | 170 | 160 | 150 | 140 | ${ }_{130}$ | 120 | $\begin{gathered} 1110 \\ \mathrm{f}_{1}(\mathrm{ppm}) \\ \hline \end{gathered}$ | $100$ | ${ }_{90}$ | ${ }_{80}$ | 70 | 60 | 50 | 40 | 30 | ${ }_{20}$ | 10 | 1 |




(











$31$



$32$







## 12. HPLC Chromatograms



Rac-6Aa


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 24.559 | 50.77 |
| 2 | 30.063 | 49.23 |



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 24.569 | 9.96 |
| 2 | 29.054 | 90.04 |



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 25.820 | 47.81 |
| 2 | 33.397 | 52.19 |

## 7Aa



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 24.130 | 89.89 |
| 2 | 31.539 | 10.11 |



Daicel Chiralpak IA, hexane/isopropanol 70/30 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

Rac-8Aa


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 7.183 | 50.38 |
| 2 | 13.131 | 49.62 |



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 7.161 | 89.71 |
| 2 | 13.136 | 10.29 |



## Rac-9Aa



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 16.736 | 50.24 |
| 2 | 22.732 | 49.76 |



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 16.829 | 99.86 |
| 2 | 22.849 | 0.14 |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 256.0 \mathrm{~nm}$.

## Rac-9Ab



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
|  | 16.388 | 50.84 |
|  | 21.487 | 49.16 |

Scalemic 9Ab


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
|  | 16.406 | 99.53 |
|  | 21.854 | 0.47 |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

9Ac
Rac-9Ac


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 16.578 | 49.81 |
| 2 | 22.841 | 50.19 |



[^10]| 1 | 16.280 | 99.87 |
| ---: | ---: | ---: |
| 2 | 22.722 | 0.13 |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

## Rac-9Ad



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 14.384 | 50.77 |
| 2 | 18.404 | 49.23 |

Scalemic 9Ad


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 14.344 | 99.66 |
| 2 | 18.467 | 0.34 |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

Rac-9Ae


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 18.507 | 49.60 |
| 2 | 24.626 | 50.40 |

Scalemic 9Ae


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 18.632 | 99.90 |
| 2 | 24.760 | 0.10 |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

9Af
Rac-9Af


|  | Retention Time | \% Area |
| ---: | ---: | ---: |
| 1 | 21.486 | 50.10 |
| 2 | 28.445 | 49.90 |

Scalemic 9Af


|  | Retention Time | \% Area |
| :--- | ---: | :---: |
| 1 | 21.441 | 100.00 |


Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.
9Ag
Rac-9Ag


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 23.648 | 50.67 |
| 2 | 35.394 | 49.33 |

Scalemic 9Ag


|  | Retention Time | \% Area |
| ---: | ---: | ---: |
| 1 | 23.188 | 99.77 |
| 2 | 34.946 | 0.23 |

Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

Rac-9Ah


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 17.973 | 49.22 |
| 2 | 20.115 | 50.78 |

## Scalemic 9Ah



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 17.912 | 99.99 |
| 2 | 20.586 | 0.01 |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 256.0 \mathrm{~nm}$.

## Rac-9Ai



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 9.353 | 30.42 |
| 2 | 10.900 | 53.70 |
| 3 | 12.805 | 2.84 |
| 4 | 13.871 | 13.04 |

## Scalemic 9Ai



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 9.465 | 1.83 |
| 2 | 11.015 | 98.17 |



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 11.040 | 15.36 |
| 2 | 12.068 | 15.55 |
| 3 | 14.175 | 34.38 |
| 4 | 26.996 | 34.72 |

## Scalemic 9Aj



|  | Retention Time | \% Area |
| ---: | ---: | ---: |
| 1 | 13.730 | 99.95 |
| 2 | 26.558 | 0.05 |

Daicel Chiralpak IA, hexane/isopropanol 99/1 flow rate $=1.0$


9Ak $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

Rac-9Ak


|  | Retention Time | \% Area |
| ---: | ---: | ---: |
| 1 | 75.453 | 36.51 |
| 2 | 84.717 | 16.91 |
| 3 | 100.240 | 34.85 |
| 4 | 114.500 | 11.73 |

## Scalemic 9Ak



|  | Retention Time | \% Area |
| ---: | ---: | ---: |
| 1 | 85.173 | 98.65 |
| 2 | 117.698 | 1.35 |

 210.0 nm .

## Rac-6Ba



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 21.509 | 48.85 |
| 2 | 26.461 | 51.15 |

## Scalemic 6Ba



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 22.422 | 91.11 |
| 2 | 27.219 | 8.89 |



Daicel Chiralpak IC, hexane/isopropanol 95/5 flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda: 210.0 \mathrm{~nm}$.


6Bk
Rac-6Bk


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 22.478 | 22.35 |
| 2 | 24.420 | 22.34 |
| 3 | 26.553 | 27.74 |
| 4 | 33.116 | 27.57 |

## Scalemic 6Bk



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 25.655 | 18.60 |
| 2 | 32.008 | 81.40 |



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 15.072 | 50.33 |
| 2 | 18.566 | 49.67 |

## Scalemic 9Ba



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 15.051 | 99.29 |
| 2 | 18.753 | 0.71 |



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 29.450 | 34.05 |
| 2 | 31.986 | 34.56 |
| 3 | 34.740 | 15.84 |
| 4 | 39.036 | 15.55 |

## Scalemic 9Bk



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 29.588 | 0.02 |
| 2 | 32.019 | 99.98 |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda: 210.0 \mathrm{~nm}$.

## Rac-6Ca



|  | Retention Time | \% Area |
| ---: | ---: | ---: |
|  | 9.267 | 50.50 |
|  | 10.983 | 49.50 |

Scalemic 6Ca


|  | Retention Time | \% Area |
| ---: | ---: | ---: |
|  | 9.010 | 83.85 |
|  | 10.646 | 16.15 |



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 14.081 | 49.74 |
| 2 | 15.873 | 50.26 |

## Scalemic 9Ca



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 14.184 | 1.80 |
| 2 | 15.905 | 98.20 |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 10.405 | 50.79 |
| 2 | 12.967 | 49.21 |

Scalemic 6Da


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 10.560 | 78.53 |
| 2 | 13.047 | 21.47 |



Daicel Chiralpak IC, hexane/isopropanol $98 / 2$ flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ : 210.0 nm .

## Rac-9Da



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 16.535 | 16.17 |
| 2 | 18.103 | 32.59 |
| 3 | 21.572 | 33.97 |
| 4 | 26.248 | 17.27 |

## Scalemic 9Da



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 18.610 | 98.07 |
| 2 | 22.205 | 1.93 |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ : 210.0 nm .

## Rac-6Ea



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
|  | 16.478 | 59.67 |
|  | 21.547 | 40.33 |

## Scalemic 6Ea



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
|  | 16.586 | 88.92 |
|  | 21.880 | 11.08 |



|  | Retention Time | Area | \% Area | Height |
| :---: | :---: | :---: | :---: | :---: |
|  | 11.420 | 10214040 | 50.17 | 386590 |
|  | 15.013 | 10143400 | 49.83 | 297062 |

Scalemic 19


|  | Retention Time | Area | \% Area | Height |
| :---: | :---: | :---: | :---: | :---: |
|  | 11.407 | 16158557 | 99.97 | 594836 |
|  | 15.170 | 5301 | 0.03 | 559 |




| Peak Name | CH | tR | Area | Height | Area\% | Height\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unknown | 10 | 14,107 | 4794381 | 52923 | 57,595 | 65,444 |
| Unknown | 10 | 15,853 | 226057 | 3644 | 2,716 | 4,506 |
| Unknown | 10 | 21,760 | 3303864 | 24301 | 39,689 | 30,050 |

Scalemic 20


| Peak Name | CH | tR | Area | Height | Area\% | Height\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unknown | 10 | 13,680 | 23651655 | 358669 | 99,061 | 99,262 |
| Unknown | 10 | 20,253 | 224228 | 2668 | 0,939 | 0,738 |



19'
Rac-19'

Daicel Chiralpak IA, hexane /isopropanol 90:10; flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 235.3 \mathrm{~nm}$


|  | Retention Time | Area | \% Area | Height |
| :---: | :---: | :---: | :---: | :---: |
|  | 16.406 | 5258530 | 48.04 | 162057 |
|  | 29.922 | 5687078 | 51.96 | 89779 |

## Scalemic 19 ${ }^{\prime}$



|  | Retention Time | Area | \% Area | Height |
| :---: | :---: | :---: | :---: | :---: |
|  | 16.411 | 311087 | 8.42 | 11793 |
|  | 29.979 | 3382553 | 91.58 | 48925 |



20'


| Peak Name | CH | tR | Area | Height | Area\% | Height\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unknown | 10 | 55,360 | 6403699 | 16078 | 46,622 | 44,457 |
| Unknown | 10 | 67,400 | 7331740 | 20086 | 53,378 | 55,543 |

Scalemic 20'



The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol $90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$.
rac-21a

scalemic-21a


The enantiomeric purity was determined by HPLC analysis (Daicel

rac-21b

scalemic-21b



Daicel Chiralpak IB, hexane/isopropanol 90/10 flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda: 210.0 \mathrm{~nm}$.

## 21c <br> Rac-21c



|  | Retention Time | \% Area |
| ---: | ---: | ---: |
| 1 | 19.450 | 49.24 |
| 2 | 25.291 | 50.76 |

## Scalemic 21c



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 19.200 | 2.03 |
| 2 | 24.986 | 97.97 |


scalemic-21f


Daicel Chiralpak IB, hexane/isopropanol 90/10 flow rate $=1.0$


## Rac-21i



|  | Retention Time | \% Area |
| ---: | ---: | ---: |
| 1 | 8.955 | 46.92 |
| 2 | 10.464 | 53.08 |

## Scalemic 21i



|  | Retention Time | \% Area |
| ---: | ---: | ---: |
| 1 | 9.016 | 1.06 |
| 2 | 10.417 | 98.94 |



Daicel Chiralpak IB, hexane/isopropanol 90/10 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

21 'b

## Rac-21'b



|  | Retention Time | \% Area |
| :--- | ---: | ---: |
|  | 17.575 | 50.26 |
|  | 19.831 | 49.74 |

## Scalemic 21’b




21 'c

Rac-21'c


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
|  | 35.746 | 51.34 |
|  | 40.390 | 48.66 |

Scalemic 21'c


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
|  | 34.776 | 14.48 |
|  | 38.762 | 85.52 |




Daicel Chiralpak AD-H, hexane/isopropanol 80/20 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

11

Rac-11


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 13.576 | 44.86 |
| 2 | 15.614 | 6.44 |
| 3 | 17.426 | 41.88 |
| 4 | 24.649 | 6.81 |

Scalemic 11 (from derivatization of carboxylic acid 22)


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 13.623 | 1.05 |
| 2 | 15.740 | 0.94 |
| 3 | 17.569 | 98.01 |



Daicel Chiralpak IA, hexane/isopropanol 50/50 flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, \lambda: 210.0 \mathrm{~nm}$.

36
Rac-36


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 8.435 | 52.80 |
| 2 | 10.526 | 47.20 |

Scalemic 36


|  | Retention Time | \% Area |
| :--- | ---: | ---: |
| 1 | 8.382 | 69.09 |
| 2 | 10.542 | 30.91 |

## 13. X-Ray analysis: ORTEP diagram of compound 9Ab and 33

CCDC-1514777 (compound 9Ab) and CCDC-1588229 (compound 33) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.



9Ab



33


[^0]:    ${ }^{1}$ W. Yang, M. U. Du Org. Lett. 2010, 12, 5450-5453.
    ${ }^{2}$ For the diamine formation, see: a) Y. Gao, Q. Ren, L. Wang, J. Wang Chem. Eur. J. 2010, 16, 13068-13071. For the coupling reaction and characterization, see: b) K. Hu, A. Lu, Y. Wang, Z. Zhou, C. Tang Tetrahedron: Asymmetry 2013, 24, 953-957.
    ${ }^{3}$ I. Iriarte, O. Olaizola, S. Vera, I. Gamboa, M. Oiarbide, C. Palomo, Angew. Chem. 2017, 129, 8986-8990; Angew. Chem. Int. Ed. 2017, 56, 8860-8864
    ${ }^{4}$ a) S. H. McCooey, S. Connon, Angew. Chem. 2005, 117, 6525-6528; Angew. Chem. Int. Ed. 2005, 44, 63676370; b) J. Ye, D. J. Dixon, P. S. Hynes, Chem. Commun. 2005, 4481-4483; c) B. Vakulya, S. Varga, A. Csampai, T. Sojs, Org. Lett. 2005, 7, 1967-1969; d) B.-J. Li, L. Jiang, M. Liu, Y.-C. Chen, L.-S. Ding, Y. Wu, Synlett 2005, 603-606
    ${ }^{5}$ B. M. Trost and Ch. Muller, J. Am. Chem. Soc. 2008, 130, 2438-2439.

[^1]:    ${ }^{6}$ Gawel, P.; Dengiz, C.; Finke, A. D.; Trapp, N.; Boudon, C.; Gisselbrecht, J. P.; Diederich, F. Angew. Chem. Int. Ed. 2014, 53, 4341-4345.

[^2]:    ${ }^{8}$ Hussain, M. K.; Ansari, M. I.; Kant, R.; Hajela, K. Org. Lett. 2014, 16, 560-563.
    ${ }^{9}$ Arsenyan P. et al., Tetrahedron Letters 2014, 54, 6524-6528.

[^3]:    ${ }^{10}$ He, H.; Qi, C.; Hu, X.; Guan, Y.; Jiang, H. Green Chem. 2014, 16, 3729-3733.

[^4]:    ${ }^{11}$ He, H.; Qi, C.; Hu, X.; Guan, Y.; Jiang, H. Green Chem. 2014, 16, 3729-3733.

[^5]:    ${ }^{12}$ Adapted from: J. Org. Chem. 2012, 77, 6880-6886

[^6]:    ${ }^{13}$ Synthesis adapted from: R. C. Pratt, B. G. Lohmeijer, D. A. Long, P. N. Lundberg, A. P. Dove, H. B. Li, C. G. Wade, R. M. Waymouth, J. L. Hedrick, Macromolecules, 2006, 39, 7863-7871.

[^7]:    ${ }^{14}$ Synthesis adapted from: R. C. Pratt, B. G. Lohmeijer, D. A. Long, P. N. Lundberg, A. P. Dove, H. B. Li, C. G. Wade, R. M. Waymouth, J. L. Hedrick, Macromolecules, 2006, 39, 7863-7871.

[^8]:    ${ }^{15}$ E. C. Garnier-Amblard, S. G. Mays, R. F. Arrendale, M. T. Baillie, A. S. Bushnev, D. G. Culver, T. J. Evers, J. J. Holt, R. B. Howard, L. S. Liebeskind, D. S. Menaldino, M. G. Natchus, J. A. Petros, H. Ramaraju, G. P. Reddy, D. C. Liotta, Med. Chem. Lett. 2011, 2, 438-443.

[^9]:    ${ }^{16}$ Addapted from: Gong, L., Adv. Synth. Catal. 2013, 355, 2531-2537

[^10]:    Retention Time $\%$ Area

