# **CHEMISTRY** A European Journal

### Supporting Information

# $\alpha$ -Hydroxy Ketones as Masked Ester Donors in Brønsted Base Catalyzed Conjugate Additions to Nitroalkenes

lurre Olaizola,<sup>[a]</sup> Teresa E. Campano,<sup>[a]</sup> Igor Iriarte,<sup>[a]</sup> Silvia Vera,<sup>[a]</sup> Antonia Mielgo,<sup>[a]</sup> Jesús M. García,<sup>[b]</sup> José M. Odriozola,<sup>[b]</sup> Mikel Oiarbide,<sup>\*[a]</sup> and Claudio Palomo<sup>\*[a]</sup>

chem\_201705968\_sm\_miscellaneous\_information.pdf

### **Supporting Information**

### **Table of Contents**

| 1. Materials and general techniques                                                     | S2   |
|-----------------------------------------------------------------------------------------|------|
| 2. Preparation of α-hydroxy ketones 1–4                                                 | S3   |
| 2.1 Step 1: Alkynylation of ketones.                                                    | S3   |
| 2.2 Step 2: Sonogashira coupling.                                                       | S4   |
| 2.1 Step 3: Alkyne hydration                                                            | S7   |
| 3. Preparation of alkenyl α-hydroxy ketones 16–18                                       | S12  |
| 4. Catalytic conjugate addition of $\alpha$ -hydroxy ketones <b>1–4</b> to nitroalkenes | S14  |
| 5. Catalytic addition of alkenyl $\alpha$ -hydroxy ketones <b>16–18</b> to nitroalkenes | S25  |
| 6. Control experiments using as donors 10, 12, and 14                                   | S30  |
| 7. Reaction profiles of hydroxy enones 1A/B vs. silyloxy enones 1'A/B                   | S34  |
| 8. Chemical elaboration of adducts                                                      | S36  |
| 8.1 Ketol cleavage in adduct <b>9Aa</b> to yield carboxylic acid <b>22</b>              | S36  |
| 8.2 Nef reaction in adduct <b>9Aa</b> to yield carboxylic acid <b>23</b>                | S37  |
| 8.3 Conversion of <b>9Aa</b> into aldehyde <b>24</b> and alcohol <b>25</b>              | S38  |
| 8.4 Hydrogenation of 20 to 26 and subsequent ketol cleavage (27 and 28)                 | S39  |
| 8.5 Michael-aldol reaction of 28 with acrolein (cycloadducts 29 and 30)                 | S40  |
| 8.6 Double Michael-Henry approach to cycloadducts 33 and 34 from 18                     | S41  |
| 9. Stereochemical determinations.                                                       | S44  |
| 10. Catalytic reaction of ketone 1A with vinyl 1,1-bis(sulfone) 35                      | S46  |
| 11. NMR Spectra                                                                         | S47  |
| 12. HPLC Chromatograms                                                                  | S105 |
| 13. X-Ray Analysis: ORTEP diagram of compounds 9Ab and 33                               | S141 |

#### 1. Materials and general techniques

All reactions were carried out under argon atmosphere in flame dried glassware with efficient magnetic stirring. Unless otherwise specified, materials were obtained from commercial sources and used without purification. Methylene chloride (CH<sub>2</sub>Cl<sub>2</sub>) was distilled from CaH<sub>2</sub>, and diethyl ether and tetrahydrofuran were dried by filtration through activated alumina (powder  $\approx$  150 mesh, pore size 58 Å, basic, Sigma Aldrich) columns. Analytical reagent grade MeOH, CH<sub>3</sub>CN and 1,4-dioxane were used without further drying.

Catalyst C1 and C2 were obtained from commercial sources and catalyst C3<sup>1</sup>, C4<sup>2</sup>, C5<sup>3</sup> and C6<sup>4</sup> were prepared following the procedures described in the literature. Nitroalkenes **5a-g** were obtained from commercial sources and **5h**, **5i**, **5j** and **5k**, were prepared following the procedure described in the literature.<sup>5</sup>

Reactions were monitored by thin layer chromatography (TLC) using Merck silica gel 60 F254 plates and visualized by fluorescence quenching under UV light. In addition, TLC plates were stained with a solution of potassium permanganate (1 g) in 100 ml of water (limited lifetime), followed by heating. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded at 300 MHz and 75 MHz respectively. The chemical shifts are reported in ppm relative to  $CDCl_3$  (d = 7.26) and CD<sub>3</sub>OD (d = 3.31) for <sup>1</sup>H NMR and relative to the central resonances of CDCl<sub>3</sub> (d = 77.0) and CD<sub>3</sub>OD (d = 49.2) for <sup>13</sup>C NMR. Purification of reaction products was carried out by flash column chromatography using ROCC silica gel 60 (0.040-0.063mm, 230-400 mesh). Optical rotations were recorded on a Jasco P-2000 polarimeter. Specific rotation ( $[\alpha]_D$ ) are reported in  $10^{-1}$  deg·cm<sup>2</sup>·g<sup>-1</sup>; concentrations (c) are quoted in g/100 mL; D refers to the D-line of sodium (589 nm). MS spectra were recorded on an ESI-ion trap Mass spectrometer (Agilent 1100 series LC/MSD, SL model) and on an UPLC-DAD-QTOF (Ultra High Performance Liquid Chromatograph-Mass spectrometer; Waters UPLC ACQUITY, Waters PDA Detector, Waters Synapt G2). Analytical high performance liquid chromatography (HPLC) was performed on Waters-600E, equipped with 2996 and 2998 photodiode array UV detector, using Daicel Chiralpak AD-H, OD-H, IA, IB and IC columns.

<sup>&</sup>lt;sup>1</sup> W. Yang, M. U. Du Org. Lett. **2010**, *12*, 5450-5453.

<sup>&</sup>lt;sup>2</sup>For the diamine formation, see: a) Y. Gao, Q. Ren, L. Wang, J. Wang *Chem. Eur. J.* **2010**, *16*, 13068-13071. For the coupling reaction and characterization, see: b) K. Hu, A. Lu, Y. Wang, Z. Zhou, C. Tang *Tetrahedron: Asymmetry* **2013**, *24*, 953-957.

<sup>&</sup>lt;sup>3</sup> I. Iriarte, O. Olaizola, S. Vera, I. Gamboa, M. Oiarbide, C. Palomo, *Angew. Chem.* **2017**, *129*, 8986-8990; *Angew. Chem. Int. Ed.* **2017**, *56*, 8860-8864

<sup>&</sup>lt;sup>4</sup> a) S. H. McCooey, S. Connon, *Angew. Chem.* **2005**, *117*, 6525-6528; *Angew. Chem. Int. Ed.* **2005**, *44*, 6367-6370; b) J. Ye, D. J. Dixon, P. S. Hynes, *Chem. Commun.* **2005**, 4481-4483; c) B. Vakulya, S. Varga, A. Csampai, T. Sojs, *Org. Lett.* **2005**, *7*, 1967-1969; d) B.-J. Li, L. Jiang, M. Liu, Y.-C. Chen, L.-S. Ding, Y. Wu, Synlett **2005**, 603-606

<sup>&</sup>lt;sup>5</sup> B. M. Trost and Ch. Muller, J. Am. Chem. Soc. 2008, 130, 2438-2439.

#### 2. Preparation of α-hydroxy ketones 1–4

 $\alpha$ -Hydroxy ketones 1–4 were prepared by the three-step sequence shown in the scheme.



#### 2.1 Step 1: Alkynylation of ketones<sup>6</sup>



*n*BuLi (2.5M in hexane, 2 eq., 4.0 mL, 10 mmol) was added dropwise under N<sub>2</sub> to a solution of ethynyltrimethylsilane (2 eq., 1.4 mL, 10 mmol) in THF (16.7 mL) at -10 °C. After stirring for 30 min at -10 °C, benzophenone or dibenzyl ketone (1 eq., 5 mmol) was added. The mixture was stirred at room temperature for 4 h. A solution of potassium hydroxide (5 eq., 1.4 g, 25 mmol) in MeOH (2 mL) was added to the mixture at 0 °C. Desilylation was complete within 30 min as monitored by TLC. The mixture was poured into a satured solution of NH<sub>4</sub>Cl (25 mL) and extracted with EtOAc (3 x 25 mL). The combined organic layers were washed with brine, dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 95:5  $\rightarrow$  90:10) to afford the desired product.

#### 1,1-Diphenylprop-2-yn-1-ol (S3)



The title compound S3 was prepared from benzophenone (0.9 g, 5 mmol) according to the general procedure. Colorless oil, yield: 1.01 g, 5 mmol, quantitative. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.61 (d, J = 6.9 Hz, 4H), 7.44–

<sup>&</sup>lt;sup>6</sup> Gawel, P.; Dengiz, C.; Finke, A. D.; Trapp, N.; Boudon, C.; Gisselbrecht, J. P.; Diederich, F. Angew. Chem. Int. Ed. **2014**, *53*, 4341–4345.

7.27 (m, 6H), 2.88 (s, 1H), 2.77 (s, 1H).

#### 2-Benzyl-1-phenylbut-3-yn-2-ol (S4)



The title compound **S4** was prepared from 1,3-diphenylpropan-2-one (1.1 g, 5 mmol) according to the general procedure. Colorless oil, yield: 1.23 g, 4.3 mmol, 86%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$  7.42–7.25 (m, 10H), 3.02 (s, 4H), 2.48 (s, 1H).

Propargylic alcohols S1 and S2 are commercially available.

#### 2.2 Step 2: Sonogashira coupling

METHOD A<sup>7</sup> (For R<sup>1</sup>: NO<sub>2</sub>, CN)



To a solution of *p*-bromo-nitrobenzene or *p*-bromobenzonitrile (1 eq.) and the corresponding alkyne **S1–S4** (1.3 eq.) in THF (3 mL/mmol) were added Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (2 mol %) and CuI (4 mol %), and the reaction mixture was degassed with N<sub>2</sub>. To this solution was added Et<sub>3</sub>N (2 eq.), and the reaction mixture was stirred under refluxing for 12 h. The solvent was removed under vacuum, and the residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 90:10  $\rightarrow$  80:20) to afford the desired coupling product.

<sup>&</sup>lt;sup>7</sup>Li, Y.; Zou, H.; Gong, J.; Xiang, J.; Luo, T.; Quan, J.; Wang, G.; Yang, Z. Org. Lett. 2007, 9, 4057–4060.



To a solution of Et<sub>3</sub>N (3.75 mL), Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (2 mol %), CuI (1 mol %), and iodobenzene or *p*-fluoroiodobenzene (1 eq.) was added the corresponding propargylic alcohol **S1** or **S4** (1.2 eq.) under inert N<sub>2</sub> atmosphere. The mixture was allowed to stir at room temperature for 4 h. After completion, the reaction was quenched with saturated NH<sub>4</sub>Cl (20 mL) solution and extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/AcOEt 95:5  $\rightarrow$  90:10) to afford the desired product.

METHOD  $C^9$  (For  $R^1$ : OMe)



A mixture of K<sub>2</sub>CO<sub>3</sub> (2.8 g, 20 mmol, 4 eq.), PPh<sub>3</sub> (26.5 mg, 0.1 mmol, 2 mol%) and 10% palladium on charcoal (53.6 mg, 0.05 mmol, 1 mol%) in EtOH (50 mL) was stirred gently for 30 min, then 1-bromo-4-methoxybenzene (0.63 mL, 5 mmol, 1 eq.) and propargylic alcohol **S1** (0.58 mL, 6 mmol, 1.2 eq.) were added. The mixture was stirred at reflux for 48 h. The resulting precipitate was filtered through a pad of silica gel and the EtOH was evaporated. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/AcOEt 95:5  $\rightarrow$  90:10) to afford the desired product.

<sup>&</sup>lt;sup>8</sup> Hussain, M. K.; Ansari, M. I.; Kant, R.; Hajela, K. Org. Lett. 2014, 16, 560–563.

<sup>&</sup>lt;sup>9</sup> Arsenyan P. et al., *Tetrahedron Letters* **2014**, *54*, 6524–6528.

#### 2-Methyl-4-(4-nitrophenyl)but-3-yn-2-ol (S5A)



The title compound was prepared from 2-methyl-3-butyn-2-ol (S1) (0.6 mL, 6.5 mmol) and 1-bromo-4-nitrobenzene (1.0 g, 5 mmol) according to the general procedure A. Orange oil, yield: 1.02 g, 5 mmol, quantitative. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.18 (d, J = 8.9 Hz, 2H), 7.56 (d, J = 8.9 Hz, 2H), 2.01 (s, 1H), 1.64 (s, 6H).

#### 3-Ethyl-1-(4-nitrophenyl)pent-1-yn-3-ol (S6A)



The title compound was prepared from 3-ethylpent-1-yn-3-ol (S2) (0.5 mL, 3.9 mmol) and 1-bromo-4-nitrobenzene (0.6 g, 3 mmol) according to the general procedure A. Orange oil, yield: 0.71 g, 3 mmol, quantitative. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.18 (d, J =

8.9 Hz, 2H), 7.56 (d, J = 8.9 Hz, 2H), 1.97 (s, 1H), 1.87–1.74 (m, 4H), 1.11 (t, J = 7.4 Hz, 6H).

#### 3-(4-Nitrophenyl)-1,1-diphenylprop-2-yn-1-ol (S7A)



The title compound was prepared from 1,1-diphenylprop-2-yn-1-ol (**S3**) (1.0 g, 5 mmol) and 1-bromo-4-nitrobenzene (0.8 g, 3.8 mmol) according to the general procedure A. Orange solid, yield: 1.30 g, 3.85 mmol, quantitative. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>), δ: 8.21 (d, J = 8.9 Hz, 2H), 7.72–7.60 (m, 4H), 7.43–7.26 (m, 8H), 2.87 (s, 1H).

#### 2-Benzyl-4-(4-nitrophenyl)-1-phenylbut-3-yn-2-ol (S8A)



The title compound was prepared from 2-benzyl-1-phenylbut-3-yn-2-ol (S4) (1.2 g. 4.3 mmol) and 1-bromo-4-nitrobenzene (0.7 g, 3.3 mmol) according to the general procedure A. Orange oil, yield: 1.14 g, 3 mmol, quantitative. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.19 (d, J = 9.0 Hz, 2H), 7.55–7.20 (m, 12H), 3.16 (s, 4H), 2.22 (s, 1H).

#### 4-(3-Hydroxy-3-methylbut-1-yn-1-yl)benzonitrile (S5B)



The title compound was prepared from 2-methyl-3-butyn-2-ol (S1) (0.6 mL, 6.5 mmol) and 4-bromobenzonitrile (0.9 g, 5 mmol) according to the general procedure A. Orange oil, yield: 0.95 g, 4.9 mmol, 97%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.63 (d, J = 8.6Hz, 2H), 7.53 (d, *J* = 8.6Hz, 2H), 2.05 (s,1H), 1.66 (s, 6H).

#### 4-(3-Benzyl-3-hydroxy-4-phenylbut-1-yn-1-yl)benzonitrile (S8B)



#### 4-(4-Fluoropheny)-2-methylbut-3-yn-2-ol (S5C)



The title compound was prepared from 2-methyl-3-butyn-2-ol (S1) (0.6 mL, 6 mmol) and 1-fluoro-4-iodobenzene (0.6 mL, 5.0 mmol) according to the general procedure B. Orange oil, yield: 0.87 g, 4.9 mmol, 97%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>), δ: 7.48–7.35 (m, 2H), 7.07–6.96 (m, 2H), 2.34 (s, 1H), 1.64 (s, 6H).

#### 2-Benzyl-4-(4-fluorophenyl)-1-phenylbut-3-yn-2-ol (S8C)



The title compound was prepared from 2-benzyl-1-phenylbut-3-yn-2ol (S4) (0.9 g, 3.8 mmol) and 1-fluoro-4-iodobenzene (0.4 mL, 3.2 mmol) according to the general procedure B. Orange oil, yield: 1.04 g, 3.2 mmol, 99%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>), δ: 7.54–7.23 (m, 12H),

7.09-6.94 (m, 2H), 3.14 (s, 4H), 2.16 (s, 1H).

#### 2-Methyl-4-phenylbut-3-yn-2-ol (S5D)



The title compound was prepared from 2-methyl-3-butyn-2-ol (S1) (0.5 mL, 5 mmol) and iodobenzene (0.5 mL, 4.1 mmol) according to the general procedure B. Orange oil, yield: 0.62 g, 4.1 mmol, quantitative. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>), δ: 7.47–7.36 (m, 2H), 7.35–7.27 (m, 3H), 2.00 (s, 1H), 1.62 (s, 6H).

#### 2-Benzyl-1,4-diphenylbut-3-yn-2-ol (S8D)



The title compound was prepared from 2-benzyl-1-phenylbut-3-yn-2-ol (S4) (1.2 g, 5 mmol) and iodobenzene (0.5 mL, 4.1 mmol) according to the general procedure B. Orange oil, yield: 1.21 g, 3.8 mmol, 96%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>), δ: 7.81–7.04 (m, 15H), 3.15 (s, 4H), 2.16 (s,

1H).

#### 4-(4-methoxyphenyl)-2-methylbut-3-yn-ol (S5E)



The title compound was prepared from 1-bromo-4methoxybenzene (0.63 mL, 5 mmol) and propargylic alcohol **S1** (0.58 mL, 6 mmol) according to the general procedure C. Orange oil, yield: 0.76 g, 4 mmol, 80%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.39 (d, *J* = 8.9Hz, 2H), 6.87 (d, *J* = 8.9Hz, 2H), 3.84

(s, 3H), 2.02 (s, 1H), 1.65 (s, 6H).

#### 2.1 Step 3: Alkyne hydration<sup>10</sup>



To a pressure reactor, the mixture of the corresponding propargylic alcohol **S5–S8** (1 eq.), AgOAc (10 mol %), DBU (0.5 eq.), H<sub>2</sub>O (0.6 mL/mmol) and MeCN (2 mL/mmol) was added successively. The reactor was filled up with dry ice (CO<sub>2</sub>), closed and stirred for 24 h at 120 °C and 30-40 bar. Then the reaction mixture was cooled and the pressure was released slowly to atmospheric pressure. The residual material was diluted with diethyl ether and MeCN, dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 90:10  $\rightarrow$  80:20) to afford the desired product.

#### 3-Hydroxy-3-methyl-1-(4-nitrophenyl)butan-2-one (1A)



The title compound **1A** was prepared from 2-methyl-4-(4-nitrophenyl)but-3-yn-2-ol (**S5A**) (0.9 g, 4.5 mmol) according to the general procedure. Orange solid, yield: 0.77 g, 3.5 mmol, 77%. M.p. 103–104 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.20 (d, *J* = 8.8

Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 4.02 (s, 2H), 3.20 (s, 1H), 1.47 (s, 6H). All the spectroscopic data were consistent with those previously reported.<sup>10</sup>

#### 3-Ethyl-3-hydroxy-1-(4-nitrophenyl)pentan-2-one (2A)

<sup>&</sup>lt;sup>10</sup> He, H.; Qi, C.; Hu, X.; Guan, Y.; Jiang, H. Green Chem. 2014, 16, 3729–3733.



The title compound 2A was prepared from 3-ethyl-1-(4nitrophenyl)pent-1-yn-3-ol (S6A) (0.7 g, 3 mmol) according to the general procedure. M.p. 81-82 °C. Yellow solid, yield: 0.48 g, 1.9 mmol, 64%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.12 (d, J = 8.6 Hz, 2H), 7.34 (d, J = 8.3 Hz, 2H), 3.90 (s, 2H), 3.50 (s, 1H), 1.94–1.60 (m, 4H), 0.78 (t, J = 6.8Hz, 6H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>), δ: 210.6, 146.9, 141.0, 123.4, 82.6, 42.6, 31.2, 7.5.

UPLC-DAD-QTOF: C<sub>13</sub>H<sub>16</sub>NO<sub>4</sub> [M–H]<sup>-</sup> calcd.: 250.1079, found: 250.1070.

#### 1-Hydroxy-3-(4-nitrophenyl)-1,1-diphenylpropan-2-one (3A)



The title compound **3A** was prepared from 3-(4-nitrophenyl)-1,1diphenylprop-2-yn-1-ol (S7A) (1.2 g, 3.5 mmol) according to the general procedure. M.p. 98-99 °C. Orange solid, yield: 0.45 g, 1.3 mmol, 37%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.07 (d, J = 8.7 Hz,

2H), 7.53–7.17 (m, 10H), 7.12 (d, J = 8.7 Hz, 2H), 4.02 (s, 2H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>), δ: 206.8, 141.2, 140.5, 130.3, 128.8, 128.5, 128.5, 128.0, 123.3, 86.1, 44.2. UPLC-DAD-QTOF: C<sub>21</sub>H<sub>16</sub>NO<sub>4</sub> [M–H]<sup>-</sup> calcd.: 346.1079, found: 346.1070.

#### 3-Benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one (4A)



The title compound 4A was prepared from 2-benzyl-4-(4nitrophenyl)-1-phenylbut-3-yn-2-ol (S8A) (1.1 g, 3 mmol) according to the general procedure. Orange solid, yield: 0.94 g, 2.5 mmol, 83%. M.p. 133–134 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>), δ: 8.04

(d, J = 8.7 Hz, 2H), 7.49–7.04 (m, 10H), 6.83 (d, J = 8.6 Hz, 2H), 3.41 (s, 2H), 3.29 (d, J =13.5 Hz, 2H), 2.97 (d, J = 13.6 Hz, 2H), 2.66 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 211.3, 146.7, 141.2, 135.1, 130.5, 130.3, 128.6, 127.2, 123.2, 83.4, 46.2, 45.5. UPLC-DAD-QTOF: C<sub>23</sub>H<sub>20</sub>NO<sub>4</sub> [M–H]<sup>-</sup> calcd.: 374.1392, found: 374.1382.

#### 4-(3-Hydroxy-3methyl-2-oxobutyl)benzonitrile (1B)

CN



The title compound **1B** was prepared from 4-(3-hydroxy-3methylbut-1-yn-1-yl)benzonitrile (S5B) (0.9 g, 5 mmol) according to the general procedure. Yellow oil, yield: 0.91 g, 4.5 mmol, 90%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.65 (d, J = 8.3 Hz, 2H), 7.35 (d, J =

8.3 Hz, 2H), 4.00 (s, 2H), 1.48 (s, 6H). All the spectroscopic data were consistent with those previously reported.<sup>10</sup>

#### 4-(3-Benzyl-3-hydroxy-2-oxo-4-phenylbutyl)benzonitrile (4B)



The title compound **4B** was prepared from 4-(3-benzyl-3-hydroxy-4-phenylbut-1-yn-1-yl)benzonitrile (S8B) (0.6 g, 1.8 mmol) according to the general procedure. White solid, yield: 0.36 g, 1.0 mmol, 56%. M.p. 131–132 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.49 (d, J = 8.3 Hz, 2H), 7.38–7.29 (m, 6H), 7.23–7.20 (m, 4H), 6.80 (d, J = 8.2 Hz, 2H), 3.38 (s, 2H), 3.29 (d, J = 13.6 Hz, 2H), 2.97 (d, J = 13.6 Hz, 2H), 2.64 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 211.9, 139.4, 135.6, 132.3, 130.9, 130.7, 129.0, 127.7, 119.2, 111.0, 83.8, 46.8, 45.9. UPLC-DAD-QTOF: C<sub>24</sub>H<sub>21</sub>NO<sub>2</sub>Na [M+Na]<sup>+</sup> calcd.: 378.1470, found: 378.1477.

#### 1-(4-Fluorophenyl)-3-hydroxy-3-methylbutan-2-one (1C)



The title compound **1C** was prepared from 4-(4-fluoropheny)-2methylbut-3-yn-2-ol (**S5C**) (0.9 g, 5 mmol) according to the general procedure. Yellow oil, yield: 0.43 g, 2.2 mmol, 44 %. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.20 (dd, *J* = 8.6, 5.4 Hz, 2H), 7.06 (t, *J* = 8.7 Hz (s,

2H), 3.89 (s, 2H), 1.48 (s, 6H). All the spectroscopic data were consistent with those previously reported.<sup>10</sup>

#### 3-Benzyl-1-(4-fluorophenyl)-3-hydroxy-4-phenylbutan-2-one (4C)



The title compound **4C** was prepared from 2-methyl-4-phenylbut-3-yn-2-ol (**S8C**) (1.0 g, 3.1 mmol) according to the general procedure. White solid, yield: 0.66 g, 1.9 mmol, 60%. M.p. 121–122 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.43–7.21 (m, 11H), 7.01–6.90 (m, 2H), 6.82–

6.72 (m, 2H), 3.44 (s, 2H), 3.32 (d, J = 13.6 Hz, 2H), 3.03 (d, J = 13.6 Hz, 2H), 2.86 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 212.4,163.7, 135.7, 131.5, 131.4, 130.7, 128.9, 127.5, 115.6, 115.3, 83.6, 45.7, 45.5. UPLC-DAD-QTOF: C<sub>23</sub>H<sub>22</sub>O<sub>2</sub>F [M+H]<sup>+</sup> calcd.: 349.1604, found: 349.1605.

#### 3-Hydroxy-3-methyl-1-phenylbutan-2-one (1D)

The title compound **1D** was prepared from 2-methyl-4-(4-phenyl)but-3yn-2-ol (**S5D**) (0.6 g, 4 mmol) according to the general procedure. Me Me Colorless oil, yield: 0.23 g, 1.3 mmol, 43%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.42–7.12 (m, 5H), 3.88 (s, 2H), 1.45 (s, 6H). All the spectroscopic data were consistent with those previously reported.<sup>10</sup>

#### 3-Benzyl-3-hydroxy-1,4-diphenylbutan-2-one (4D)

The title compound **4D** was prepared from 2-benzyl-1,4-diphenylbut-3yn-2-ol (**S8D**) (1.1 g, 3.5 mmol) according to the general procedure. White solid, yield: 0.74 g, 2.1 mmol, 60%. M.p. 101–102 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.42–7.10 (m, 13H), 6.83 (dd, J = 6.8, 2.7 Hz, 2H), 3.49 (s, 2H), 3.29 (d, J = 13.6 Hz, 2H), 3.02 (d, J = 13.6 Hz, 2H), 2.89 (s,1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 212.3, 135.8, 130.7, 130.1, 128.9, 128.7, 127.5, 127.2, 83.5, 46.2, 45.6. UPLC-DAD-QTOF: C<sub>23</sub>H<sub>23</sub>O<sub>2</sub> [M+H]<sup>+</sup> calcd.: 331.1698, found: 331.1703.

#### 3-Hydroxy-1-(4-methoxyphenyl)-3-methylbutan-2-one (1E)



The title compound **1E** was prepared from 4-(4-methoxyphenyl)-2methylbut-3-yn-ol) (0.65 g, 3.4 mmol) according to the general procedure. Orange oil, yield: 0.37 g, 1.8 mmol, 52%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.16 (d, *J* = 8.7 Hz, 2H), 6.91 (d, *J* = 8.7 Hz,

2H), 3.85 (s, 2H), 3.83 (s, 3H), 1.47 (s, 6H). All the spectroscopic data were consistent with those previously reported.<sup>11</sup>

<sup>&</sup>lt;sup>11</sup> He, H.; Qi, C.; Hu, X.; Guan, Y.; Jiang, H. Green Chem. 2014, 16, 3729–3733.

#### 3. Preparation of alkenyl hydroxyketones 16-18.

Method A:



A mixture of the corresponding aldehyde (3.0 mmol, 3 equiv.), In powder (230 mg, 2 mmol, 2 equiv.), InCl<sub>3</sub> (110 mg, 0.5 mmol, 0.5 equiv.) and 4-benzyl-4-hydroxy-5-phenylpent-1-en-3-one (266 mg, 1 mmol, 1 equiv.) in THF/H<sub>2</sub>O (1: 1,8 mL) was stirred at room temperature for 8h. After the addition of 1M HCl (15 mL), the resulting mixture was stirred for 30 min and extracted with ethyl acetate (15 mL x 4). The combined organic phase was washed with brine and dried with MgSO<sub>4</sub>. After filtration, the solvent was evaporated under reduced pressure and the crude product war purified by flash column chromatography (hexane/ethyl acetate 90/10).

#### (E)-2-Benzyl-2-hydroxy-1,6-diphenylhex-5-en-3-one (16)

Prepared according to the general procedure starting from  $HO_{Bn}$  Ph Bn Bn Prepared according to the general procedure starting from benzaldehyde ( 0.3 mL, 3 mmol) .The title compound was isolated as a white solid. Yield: 278 mg (78%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 -7.22 (m, 15H), 6.23 (d, J = 16.0 Hz, 1H), 6.03 (dt, J = 16.0 Hz, J' = 6.8 Hz, 1H), 3.26 (d, J = 13.6 Hz, 2H), 3.20 (dd, J = 6.8 Hz, J' = 1.2 Hz, 2H), 3.02 (d, J = 13.6 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  212.3, 136.9, 135.4, 133.6, 130.3, 128.4, 127.5, 127.1, 126.3, 121.4, 83.1, 45.0, 42.8.

#### (E)-2-Benzyl-2-hydroxy-1-phenyl-6-*p*-tolylhex-5-en-3-one (17)



Prepared according to the general procedure starting from 4methylbenzaldehyde (0.35 mL, 3 mmol). The title compound was isolated as a white solid. Yield: 304 mg (82%). <sup>II</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32–7.11 (m, 14H), 6.21 (d, *J* = 16.0 Hz,

1H), 5.97 (dt, J = 16.0 Hz, J' = 6.8 Hz, 1H), 3.25 (d, J = 14.0 Hz, 2H), 3.19 (dd, J = 6.8 Hz, J' = 1.2 Hz, 2H), 3.02 (d, J = 14.0 Hz, 2H), 2.35 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  212.4, 137.3, 135.6, 135.4, 133.4, 130.3, 129.1, 128.4, 127.1, 126.1, 120.3, 83.1, 45.0, 42.8, 21.2.

#### Method B:<sup>12</sup>

#### 2-Hydroxy-2-methyl-6-phenylhex-5-en-3-one (18)



A mixture of commercial 3-hydroxy-3-methyl-2-butanone (3 eq., 1.6 mL , 15 mmol), phenylacetylene (1 eq., 0.6 mL, 5 mmol) and KO<sup>t</sup>Bu (1.4 eq., 0.78 g, 7 mmol) in DMSO (12.5 mL) was heated (100 °C) and stirred for 3 hours. The reaction mixture, after cooling, was diluted with H<sub>2</sub>O, neutralized with NH<sub>4</sub>Cl, and extracted with Et<sub>2</sub>O. The organic extract was washed with H<sub>2</sub>O and dried dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated. The residue was purified by flash column chromatography on silica gel (eluting hexane/EtAcO 95:5). Yellow oil, yield: 0.41 g, 2 mmol, 40%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.45–7.23 (m, 5H), 6.53 (d, *J* = 16.0 Hz, 1H), 6.37 (dt, *J* = 15.9, 6.7 Hz, 1H), 3.55 (d, *J* = 7.9 Hz, 2H), 1.47 (s, 6H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 212.6, 137.1, 134.1, 128.9, 128.0, 126.6, 121.9, 76.8, 40.1, 26.9. UPLC-DAD-QTOF: C<sub>13</sub>H<sub>17</sub>O<sub>2</sub> [M+H]<sup>+</sup> calcd.: 205.1229, found: 205.1230.

<sup>&</sup>lt;sup>12</sup> Adapted from: J. Org. Chem. **2012**, 77, 6880-6886

#### 4. Catalytic conjugate addition of $\alpha$ -hydroxy ketones 1-4 to nitroalkenes



To a mixture of the corresponding  $\alpha$ -hydroxyketone 1-4 (1 eq., 0.1 mmol) and the nitroalkene 5 (2.0 eq., 0.2 mmol for aromatic nitroalkenes; 3.0 eq., 0.3 mmol for aliphatic nitroalkenes), in dichloromethane (0.3 mL) at room temperature (or cooled to the corresponding temperature), catalyst C1–C6 (10 mol %) was added. The resulting suspension was stirred at the same temperature, until consumption of the  $\alpha$ -hydroxyketone as monitored by <sup>1</sup>H NMR. The mixture was quenched with HCl 2M (1 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 2 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 95:5  $\rightarrow$  90:10) to afford the desired product.

The corresponding racemic compounds were prepared following the above procedure at room temperature, but using as catalyst either TEA, DBU or achiral thiourea  $S9^{13}(10 \text{ mol}\%)$ .



#### 2-Hydroxy-2-methyl-6-nitro-4-(4-nitrophenyl)-5-phenylhexan-3-one (6Aa)



The title compound **6Aa** was prepared from 3-hydroxy-3-methyl-1-(4nitrophenyl)butan-2-one (**1A**) (22.3 mg, 0.1 mmol) and nitrostyrene (**5a**) (29.8 mg, 0.2 mmol) according to the general procedure. White solid, yield: 36.8 mg, 0.098 mmol, 98%. m.p. 170–172 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.25 (d, J = 8.8 Hz, 2H), 7.67 (d, J = 8.8 Hz,

<sup>&</sup>lt;sup>13</sup> Synthesis adapted from: R. C. Pratt, B. G. Lohmeijer, D. A. Long, P. N. Lundberg, A. P. Dove, H. B. Li, C. G. Wade, R. M. Waymouth, J. L. Hedrick, *Macromolecules*, 2006, *39*, 7863–7871.

2H), 7.44–7.16 (m, 5H), 4.95 (d, J = 11.5 Hz, 1H), 4.53 (dd, J = 12.5, 10.1 Hz, 1H), 4.43– 4.28 (m, 1H)4.19 (dd, J = 12.5, 4.3 Hz, 1H), 0.89 (s, 3H), 0.80 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 210.5, 147.9, 142.3, 136.9, 129.8, 129.0, 128.5, 128.3, 124.5, 77.8, 77.8, 55.0, 47.1, 26.6, 25.9. UPLC-DAD-QTOF: C<sub>19</sub>H<sub>19</sub>N<sub>2</sub>O<sub>6</sub> [M–H]<sup>–</sup> calcd.: 371.1243, found: 371.1239. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak OD-H, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 24.6 min (minor) and 30.1 min (major)).

#### 5-Ethyl-5-hydroxy-1-nitro-3-(4-nitrophenyl)-2-phenylheptan-4-one (7Aa)



The title compound **7Aa** was prepared from 3-ethyl-3-hydroxy-1-(4nitrophenyl)pentan-2-one (**2A**) (25.1 mg, 0.1 mmol) and nitrostyrene (**5a**) (29.8 mg, 0.2 mmol) according to the general procedure. White solid, yield: 39.6 mg, 0.097 mmol, 97%. m.p. 166–167 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.26 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 7.45–7.23 (m, 5H), 5.00 (d, J = 11.3 Hz, 1H), 4.49 (dd, J = 12.2,

10.4 Hz, 1H), 4.43–4.31 (m, 1H), 4.16 (dd, J = 12.3, 4.1 Hz, 1H), 1.86 (s, 1H), 1.46–1.24 (m, 2H), 1.25–1.10 (m, 2H), 0.27 (t, J = 7.5 Hz, 3H), 0.17 (t, J = 7.5 Hz, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 209.8, 147.8, 142.0, 137.1, 130.1, 129.0, 128.5, 128.5, 124.4, 83.4, 78.3, 46.9, 29.73, 29.6, 6.8, 6.6. UPLC-DAD-QTOF: C<sub>21</sub>H<sub>23</sub>N<sub>2</sub>O<sub>6</sub> [M–H]<sup>-</sup> calcd.: 399.1556, found: 399.1551. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 25.8 min (major) and 33.4 min (minor)).

#### 1-Hydroxy-5-nitro-3-(4-nitrophenyl)-1,1,4-triphenylpentan-2-one (8Aa)



The title compound **8Aa** was prepared from 1-hydroxy-3-(4-nitrophenyl)-1,1-diphenylpropan-2-one (**3A**) (34.7 mg, 0.1 mmol) and nitrostyrene (**5a**) (29.8 mg, 0.2 mmol) according to the general procedure. White solid, yield: 43.2 mg, 0. 087 mmol, 87%. m.p. 186–188 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.13 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 8.7 Hz, 2H), 7.42–7.25 (m, 8H), 7.19–7.09 (m, 3H), 6.91 (d, *J* 

= 12.3 Hz, 2H), 6.71 – 6.62 (m, 2H), 5.21 (d, J = 11.3 Hz, 1H), 4.54–4.43 (m, 1H), 4.40–4.31 (m, 1H), 4.18 (dd, J = 12.1, 3.8 Hz, 1H), 2.36 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 206.5, 147.4, 142.8, 140.2, 140.0, 136.7, 129.8, 128.8, 128.6, 128.4, 128.3, 128.2, 128.2, 128.0, 127.4, 127.4, 124.0, 86.4, 78.3, 55.3, 47.0. UPLC-DAD-QTOF: C<sub>29</sub>H<sub>23</sub>N<sub>2</sub>O<sub>6</sub> [M–H]<sup>-</sup> calcd.:495.1556, found: 495.1540. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 70/30, flow rate = 1.0 mL/min, retention times: 7.2 min (major) and 13.1 min (minor)).

#### 2-Benzyl-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1,5-diphenylhexan-3-one (9Aa)



The title compound **9Aa** was prepared from 3-benzyl-3hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one (**4A**) (37.5 mg, 0.1 mmol) and nitrostyrene (**5a**) (29.8 mg, 0.2 mmol) according to the general procedure. White solid, yield: 51.9 mg, 0. 099 mmol, 99%.  $[\alpha]_D^{25} = -97.0$  (c= 0.54, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 187–188 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.86 (d, J = 8.7 Hz, 2H), 7.42–7.24 (m, 8H),

7.16 (d, J = 9.3 Hz, 2H), 7.00–6.88 (m, 3H), 6.86–6.75 (m, 2H), 6.58 (d, J = 7.1 Hz, 2H), 5.00 (d, J = 11.0 Hz, 1H), 4.43 (dd, J = 12.0, 10.3 Hz, 1H), 4.28 (dd, J = 11.0, 4.0 Hz, 1H), 4.17 (dd, J = 12.1, 4.0 Hz, 1H), 3.01 (d, J = 13.5 Hz, 1H), 2.27 (dd, J = 28.1, 13.6 Hz, 2H), 1.95 (d, J = 13.7 Hz, 1H), 1.75 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 208.9, 147.2, 139.9, 137.4, 134.6, 134.2, 130.8, 130.1, 129.8, 129.1, 128.8, 128.5, 128.5, 128.1, 127.3, 126.5, 124.0, 83.4, 78.1, 55.5, 46.2, 42.8, 42.4. UPLC-DAD-QTOF: C<sub>31</sub>H<sub>27</sub>N<sub>2</sub>O<sub>6</sub> [M–H]<sup>-</sup> calcd.: 523.1869, found: 523.1880. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 16.7 min (major) and 22.7 min (minor)).

### 2-Benzyl-5-(4-chlorophenyl)-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3-one (9Ab)



The title compound **9Ab** was prepared from 3-benzyl-3-hydroxy-1-(4nitrophenyl)-4-phenylbutan-2-one (**4A**) (37.5 mg, 0.1 mmol) and 4chloronitrostyrene (**5b**) (36.7 mg, 0.2 mmol) according to the general procedure. White solid, yield: 48.1 mg, 0. 086 mmol, 86%. [ $\alpha$ ]<sub>D</sub><sup>25</sup>= – 12.27 (c = 1, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 236–238 °C. <sup>1</sup>H NMR (300 MHz, Acetone-*d*<sub>6</sub>),  $\delta$ : 7.89 (d, *J* = 8.8 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.6 Hz, 2H), 7.28 (d, *J* = 8.8 Hz, 2H),7.25–7.18 (m, 3H), 7.04– 6.65 (m, 7H), 5.29 (d, *J* = 11.2 Hz, 1H), 4.77 (dd, *J* = 13.0, 11.3 Hz,

1H), 4.34 (dd, J = 13.1, 4.2 Hz, 1H), 4.23 (td, J = 11.2, 4.2 Hz, 1H), 4.17 (s, 1H), 2.91 (d, J = 13.5 Hz, 1H), 2.52 (d, J = 13.5 Hz, 1H), 2.40 (d, J = 13.5 Hz, 1H), 2.26 (d, J = 13.5 Hz, 1H).<sup>13</sup>C NMR (75 MHz, Acetone- $d_6$ ),  $\delta$ : 210.4, 148.5, 142.4, 139.2, 137.4, 136.6, 134.8, 132.5, 132.3, 132.1, 131.8, 130.2, 129.5, 128.9, 128.2, 127.3, 125.0, 85.1, 79.7, 56.5, 47.5, 45.9, 44.5. UPLC-DAD-QTOF: C<sub>13</sub>H<sub>27</sub>ClN<sub>2</sub>O<sub>6</sub>Na [M+Na]<sup>+</sup> calcd.: 581.1455, found: 581.1454. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 16.4 min (major) and 21.5 min (minor)).

## 2-Benzyl-5-(3-chlorophenyl)-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3-one (9Ac)



The title compound **9Ac** was prepared from 3-benzyl-3-hydroxy-1-(4nitrophenyl)-4-phenylbutan-2-one (**4A**) (37.5 mg, 0.1 mmol) and 3chlroronitrostyrene (**5c**) (36.7 mg, 0.2 mmol) according to the general procedure. White solid, yield: 45.3 mg, 0. 081 mmol, 81%.  $[\alpha]_D^{25} = -$ 101.6 (c = 0.52, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 176–177 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.86 (d, J = 8.7 Hz, 2H), 7.35–7.21 (m, 6H), 7.21– 7.07 (m, 3H), 7.07–6.88 (m, 3H), 6.83 (t, J = 7.5 Hz, 2H), 6.60 (d, J =

7.4 Hz, 2H), 4.92 (d, J = 10.4 Hz, 1H), 4.47–4.30 (m, 1H), 4.30–4.12 (m, 2H), 3.01 (d, J = 13.6 Hz, 1H), 2.48 – 2.23 (m, 2H), 2.22–2.00 (m, 1H), ), 1.80 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 208.8, 147.2, 139.6, 139.4, 135.0, 134.5, 134.0, 131.95, 130.8, 130.3, 130.1, 129.8, 128.7, 128.6, 128.2, 127.5, 126.7, 126.6, 124.0, 83.4, 77.70, 55.3, 45.6, 43.3, 42.8. UPLC-DAD-QTOF: C<sub>31</sub>H<sub>26</sub>N<sub>2</sub>O<sub>6</sub>Cl [M–H]<sup>-</sup> calcd.: 557.1479, found: 557.1478. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 16.6 min (major) and 22.8 min (minor)).

## 2-Benzyl-5-(2-chlorophenyl)-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3-one (9Ad)



The title compound **9Ad** was prepared from 3-benzyl-3-hydroxy-1-(4nitrophenyl)-4-phenylbutan-2-one (**4A**) (37.5 mg, 0.1 mmol) and 2chlroronitrostyrene (**5d**) (36.7 mg, 0.2 mmol) according to the general procedure. White solid, yield: 43.0 mg, 0. 077 mmol, 77%. [ $\alpha$ ]<sub>D</sub><sup>25</sup>= – 94.6 (c = 0.52, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 155–156 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.86 (d, *J* = 8.9 Hz, 2H), 7.48–7.13 (m, 8H), 7.09– 6.93 (m, 4H), 6.90 – 6.79 (m, 2H), 6.62 (d, *J* = 7.3 Hz, 2H), 4.84–4.61

(m, 2H), 4.46–4.16 (m, 2H), 3.01 (d, J = 13.5 Hz, 2H), 2.33 (d, J = 13.5 Hz, 2H), 1.82 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 208.9, 147.2, 139.7, 134.6, 134.6, 134.0, 130.8, 130.8, 130.1, 130.1, 129.7, 128.5, 128.5, 128.1, 127.4, 126.6, 123.9, 83.4, 76.2, 54.0, 53.5, 43.2, 42.3. UPLC-DAD-QTOF: C<sub>31</sub>H<sub>26</sub>N<sub>2</sub>O<sub>6</sub>Cl [M–H]<sup>-</sup> calcd.: 557.1479, found: 557.1487. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 14.4 min (major) and 18.4 min (minor)).

## 2-Benzyl-5-(4-bromophenyl)-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3-one (9Ae)



The title compound **9Ae** was prepared from 3-benzyl-3-hydroxy-1-(4nitrophenyl)-4-phenylbutan-2-one (**4A**) (37.5 mg, 0.1 mmol) and 4bromonitrostyrene (**5e**) (45.6 mg, 0.2 mmol) according to the general procedure. White solid, yield: 56.1 mg, 0. 093 mmol, 93%.  $[\alpha]_D{}^{25}=-$ 84.6 (c = 0.49, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 212–214 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.88 (d, *J* = 8.8 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.33–7.24 (m, 4H), 7.13 (dd, *J* = 8.6, 2.9 Hz, 4H), 7.03–6.95 (m, 2H), 6.87 (t, *J* = 7.4 Hz, 2H), 6.63 (d, *J* = 7.2 Hz, 2H), 4.89 (d, *J* = 10.4 Hz,

1H), 4.34 (dd, J = 13.5, 11.7 Hz, 1H), 4.26–4.10 (m, 2H), 2.98 (d, J = 13.6 Hz, 1H), 2.38– 2.26 (m, 3H), 1.77 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 208.7, 147.2, 139.7, 136.4, 134.5, 134.0, 132.2, 130.7, 130.1, 130.0, 129.8, 128.6, 128.2, 127.4, 126.7, 124.0, 122.5, 83.5, 77.8, 55.4, 45.5, 43.4, 42.8. UPLC-DAD-QTOF: C<sub>13</sub>H<sub>26</sub>N<sub>2</sub>O<sub>6</sub>Br [M–H]<sup>–</sup> calcd.: 601.0974, found: 601.0972. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 18.5 min (major) and 24.6 min (minor)).

#### 2-Benzyl-2-hydroxy-5-(4-methoxyphenyl)-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3one (9Af)



The title compound **9Af** was prepared from 3-benzyl-3-hydroxy-1-(4nitrophenyl)-4-phenylbutan-2-one (**4A**) (37.5 mg, 0.1 mmol) and 4methoxynitrostyrene (**5f**) (35.8 mg, 0.2 mmol) according to the general procedure. White solid, yield: 51.0 mg, 0. 092 mmol, 92%.  $[\alpha]_D^{25} = -112.6$  (c = 0.50, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 223–224 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.86 (d, J = 8.8 Hz, 2H), 7.43–7.05 (m, 8H), 7.01–6.73 (m, 6H), 6.59 (d, J = 8.4 Hz, 2H), 4.97 (d, J = 11.0 Hz, 1H), 4.45–4.29 (m, 1H), 4.28–4.06 (m, 2H), 3.74 (s, 3H), 3.01 (d, J = 13.4

Hz, 1H), 2.46–1.95 (m, 3H), ), 1.75 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  209.0, 159.5, 147.14, 140.1, 134.6, 134.2, 130.8, 130.1, 129.8, 129.5, 128.5, 128.1, 127.3, 126.5, 124.0, 114.9, 114.4, 83.4, 78.34, 55.5, 55.2, 45.6, 43.0, 42.5. UPLC-DAD-QTOF: C<sub>33</sub>H<sub>31</sub>N<sub>2</sub>O<sub>9</sub> [M+HCOOH–H]<sup>-</sup> calcd.: 599.2030, found: 599.2028. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 21.5 min (major) and 28.4 min (minor)).

#### 2-Benzyl-2-hydroxy-5-(3-methoxyphenyl)-6-nitro-4-(4-nitrophenyl)-1-phenylhexan-3one (9Ag)



The title compound **9Ag** was prepared from 3-benzyl-3-hydroxy-1-(4-nitrophenyl)-4-phenylbutan-2-one (**4A**) (37.5 mg, 0.1 mmol) and 3-methoxynitrostyrene (**5g**) (35.8mg, 0.2 mmol) according to the general procedure. White solid, yield: 44.4 mg, 0. 080 mmol, 80%.  $[\alpha]_D^{25} = -114.8$  (c = 0.46, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 201–202 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.86 (d, J = 8.8 Hz, 2H), 7.38–7.21 (m, 4H), 7.15 (d, J = 8.8 Hz, 2H), 7.03–6.74 (m, 8H), 6.58 (d, J = 7.1 Hz,

2H), 5.01 (d, J = 10.9 Hz, 1H), 4.49–4.32 (m, 1H), 4.33–4.09 (m, 2H), 3.80 (s, 3H), 3.01 (d, J = 13.5 Hz, 1H), 2.32 (t, J = 13.3 Hz, 2H), 2.20–1.96 (m, 1H), ), 1.78 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 208.9, 160.0, 147.2, 140.0, 138.9, 134.6, 134.2, 130.8, 130.1, 130.1, 129.8, 128.5, 128.1, 127.3, 126.5, 124.0, 120.4, 115.1, 113.4, 83.4, 78.2, 55.3, 55.2, 46.2, 42.9, 42.6. UPLC-DAD-QTOF: C<sub>33</sub>H<sub>31</sub>N<sub>2</sub>O<sub>9</sub> [M+HCCOH–H]<sup>-</sup> calcd.: 599.2030, found: 599.2015. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 23.6 min (major) and 35.4 min (minor)).

#### 2-Benzyl-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1-phenyl-5-(p-tolyl)hexan-3-one (9Ah)



The title compound **9Ah** was prepared from 3-benzyl-3-hydroxy-1-(4nitrophenyl)-4-phenylbutan-2-one (**4A**) (37.5 mg, 0.1 mmol) and 4methylnitrostyrene (**5h**) (32.6 mg, 0.2 mmol) according to the general procedure. White solid, yield: 45.8 mg, 0. 085 mmol, 85%. [ $\alpha$ ]<sub>D</sub><sup>25</sup>= – 46.6 (c = 0.47, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 214–215 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.86 (d, *J* = 8.7 Hz, 2H), 7.28–7.26 (m, 3H), 7.21– 7.14 (m, 6H), 6.95–6.91 (m, 3H), 6.84–6.79 (m, 2H), 6.59 (d, *J* = 7.2 Hz, 2H), 4.99 (d, *J* = 11.0 Hz, 1H), 4.47–4.32 (m, 1H), 4.29–4.08 (m,

2H), 3.00 (d, J = 13.5 Hz, 1H), 2.46–2.01 (m, 3H), 1.75 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 208.9, 147.1, 140.1, 138.3, 134.6, 134.3, 134.2, 130.8, 130.1, 129.8, 129.7, 128.5, 128.3, 128.1, 127.3, 126.5, 124.0, 83.4, 78.3, 55.4, 45.9, 43.0, 42.5, 21.1. UPLC-DAD-QTOF: C<sub>33</sub>H<sub>31</sub>N<sub>2</sub>O<sub>8</sub> [M+HCOOH–H]<sup>-</sup> calcd.: 583.2080, found: 583.2075. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 18.0 min (major) and 20.1 min (minor)).

#### 2-Benzyl-2-hydroxy-5-(nitromethyl)-4-(4-nitrophenyl)-1-phenyldecan-3-one (9Ai)



The title compound **9Ai** was prepared from 3-benzyl-3-hydroxy-1-(4nitrophenyl)-4-phenylbutan-2-one (**4A**) (37.5 mg, 0.1 mmol) and 1nitrohept-1-ene (**5i**) (42.9 mg, 0.3 mmol) according to the general procedure. White solid, yield: 38.9 mg, 0. 075 mmol, 75%.  $[\alpha]_D^{25} = -$ 

S19

47.3 (c = 0.73, 96% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 122–123 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.90 (d, J = 8.8 Hz, 2H), 7.41–7.30 (m, 5H), 7.16–6.98 (m, 5H), 6.79 (d, J = 6.9 Hz, 2H), 4.62 (d, J = 10.0 Hz, 1H), 4.37 (dd, J = 12.9, 4.3 Hz, 1H), 3.81 (dd, J = 12.9, 5.3 Hz, 1H), 3.10 (dd, J = 18.9, 13.5 Hz, 1H), 2.83 (d, J = 13.5 Hz, 1H), 2.79–2.69 (m,1H), 2.57 (d, J = 13.5 Hz, 1H), 1.95 (s, 1H), 1.41–1.17 (m, 8H), 0.93 (t, J = 6.9 Hz, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 211.5, 147.3, 141.4, 135.0, 131.2, 130.6, 129.0, 128.8, 127.8, 127.3, 124.1, 84.2, 75.8, 69.0, 54.8, 45.1, 44.0, 40.0, 31.9, 30.2, 26.6, 22.8, 14.4. UPLC-DAD-QTOF: C<sub>30</sub>H<sub>34</sub>N<sub>2</sub>O<sub>6</sub>Na [M+Na]<sup>+</sup> calcd.: 541.2315, found: 541.2325. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 9.4 min (minor) and 10.9 min (major)).

#### 2-Benzyl-2-hydroxy-5-(nitromethyl)-4-(4-nitrophenyl)-1-phenyloctan-3-one (9Aj)



The title compound **9Aj** was prepared from 3-benzyl-3-hydroxy-1-(4nitrophenyl)-4-phenylbutan-2-one (**4A**) (37.5 mg, 0.1 mmol) and 1nitropent-1-ene **5j** (34.5 mg, 0.3 mmol) according to the general procedure. White solid, yield: 37.2 mg, 0. 076 mmol, 76%.  $[\alpha]_D^{25} = -$ 41.0 (c = 1.00, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>) m.p. 128–129 °C. . <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.91 (d, *J* = 8.8 Hz, 2H), 7.44–7.31 (m, 5H), 7.19– 6.96 (m, 5H), 6.79 (d, *J* = 7.0 Hz, 2H), 4.63 (d, *J* = 10.0 Hz, 1H), 4.35

(dd, J = 13.0, 4.3 Hz, 1H), 3.81 (dd, J = 12.9, 5.3 Hz, 1H), 3.14 (d, J = 13.5 Hz, 1H), 3.06 (d, J = 13.5 Hz, 1H), 2.83 (d, J = 13.6 Hz, 1H), 2.81–2.76 (m, 1H), 2.57 (d, J = 13.5 Hz, 1H), 1.94 (s, 1H), 1.43–1.23 (m, 2H), 1.13–1.05 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 211.5, 147.4, 141.5, 135.0, 131.3, 130.7, 129.0, 128.8, 127.8, 127.3, 124.1, 84.2, 75.7, 54.9, 45.1, 44.0, 39.8, 32.4, 20.1, 14.3. UPLC-DAD-QTOF: C<sub>28</sub>H<sub>30</sub>N<sub>2</sub>O<sub>6</sub>Na [M+Na]<sup>+</sup> calcd.: 513.2002, found: 513.2000. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak AD–H, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 14.2 min (major) and 26.9 min (minor)).

## 2-Benzyl-2-hydroxy-6-methyl-5-(nitromethyl)-4-(4-nitrophenyl)-1-phenylheptan-3-one (9Ak)



The title compound **9Ak** was prepared from 3-benzyl-3-hydroxy-1-(4nitrophenyl)-4-phenylbutan-2-one (**4A**) (37.5 mg, 0.1 mmol) and 3methyl-1-nitrobut-1-ene **5k** (34.5 mg, 0.3 mmol) according to the general procedure. White solid, yield: 22.1 mg, 0. 045 mmol, 45%.  $[\alpha]_D^{25} = -24.2$  (c = 0.80, 97% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 159–160 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.92 (d, J = 8.8 Hz, 2H), 7.40–7.26 (m, 5H),

7.20 (d, *J* = 8.8 Hz, 2H), 7.13–7.00 (m, 3H), 6.77 (d, *J* = 6.9 Hz, 2H), 4.70 (d, *J* = 10.9 Hz, 1H), 4.18–3.88 (m, 2H), 3.27–3.12 (m, 1H), 3.15 (d, *J* = 13.6, 1H), 2.92 (d, *J* = 13.5 Hz, 1H),

2.79 (d, J = 13.5 Hz, 1H), 2.54 (d, J = 13.5 Hz, 1H), 1.94 (s, 1H), 1.61–1.41 (m, 1H), 0.96 (d, J = 6.9 Hz, 3H), 0.71 (d, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 211.3, 147.5, 141.3, 135.0, 134.8, 131.3, 130.9, 130.6, 129.0, 128.9, 127.8, 127.4, 124.2, 84.1, 74.1, 54.0, 44.8, 44.6, 44.3, 29.4, 21.6, 16.3. UPLC-DAD-QTOF: C<sub>28</sub>H<sub>30</sub>N<sub>2</sub>O<sub>6</sub>Na [M+Na]<sup>+</sup> calcd.: 513.2002, found: 513.2001. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 99/1, flow rate = 1.0 mL/min, retention times: 84.8 min (major) and 114.7 min (minor)).

#### 4-(5-hydroxy-5-methyl-1-nitro-4-oxo-2-phenylhexan-3-yl)benzonitrile (6Ba)



The title compound **6Ba** was prepared from 4-(3-hydroxy-3-methyl-2oxobutyl)benzonitrile (**1B**) (20.3 mg, 0.1 mmol) and nitrostyrene (17.9 mg, 1.2 mmol) according to the general procedure. White solid, yield: 31.7 mg, 0.089 mmol, 89%.  $[\alpha]_D^{25}$ = -70.0 (c = 0.19, 82% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 181–182 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.73 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 8.5 Hz, 2H), 7.40–7.29 (m, 5H), 4.88 (d, *J* 

= 11.5 Hz, 1H), 4.54 (dd, J = 12.5, 10.2 Hz, 1H), 4.40–4.28(m, 1H), 4.20 (dd, J = 12.5, 4.3 Hz, 1H), 2.21 (s,1H), 0.91 (s, 3H), 0.83 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 210.6, 140.3, 136.9, 133.1, 129.7, 129.0, 128.5, 128.3, 118.0, 112.6, 77.9, 47.0, 26.6, 25.9. UPLC-DAD-QTOF: C<sub>20</sub>H<sub>20</sub>N<sub>2</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 375.1321, found: 375.1327. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 21.5min (major) and 26.5 min (minor)).

#### 4-(2-Hydroxy-2,7-dimethyl-5-(nitromethyl)-3-oxooctan-4-yl)benzonitrile (6Bk)



The title compound **6Bk** was prepared from 4-(3-hydroxy-3-methyl-2oxobutyl)benzonitrile (**1B**) (20.3 mg, 0.1 mmol) and 4-methyl-1nitropent-1-ene (38.7 mg, 0.3 mmol) according to the general procedure. Colorless oil, yield: 21.3 mg, 0. 064 mmol, 64%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.68 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H), 4.69 (d, J = 10.6 Hz, 1H), 4.44 (dd, J = 13.2, 4.6 Hz, 1H), 3.91(dd, J = 13.2, 3.3 Hz, 1H), 2.92–2.86 (m, 1H), 1.80–1.70 (m,

1H), 1.45–1.37 (m, 1H), 1.35 (s, 3H), 1.21 (s,3H), 1.12–1.03 (m, 1H), 0.95 (t, J = 6.6 Hz, 6H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 213.0, 141.4, 133.2, 130.5, 118.5, 112.7, 78.2, 75.3, 54.4, 39.8, 39.6, 27.5, 27.1, 25.7, 24.1, 21.3. UPLC-DAD-QTOF: C<sub>18</sub>H<sub>24</sub>N<sub>2</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 355.1634, found: 355.1639. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 95/5, flow rate = 1.0 mL/min, retention times: 26.5 min (minor) and 33.1 min (major)).

#### 4-(4-Fluorophenyl)-2-hydroxy-2-methyl-6-nitro-5-phenylhexan-3-one (6Ca)



The title compound **6Ca** was prepared from 1-(4-fluorophenyl)-3hydroxy-3-methylbutan-2-one (**1C**) (19.6 mg, 0.1 mmol) and nitrostyrene (44.7 mg, 0.3 mmol) according to the general procedure. White solid, yield: 24.2 mg, 0.070 mmol, 70%. m.p. 135–136 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.49–7.42 (m, 2H), 7.40–7.26 (m, 5H), 7.20–7.08 (m, 2H), 4.70 (d, J = 11.3 Hz, 1H), 4.56 (dd, J = 12.3, 10.3

Hz, 1H), 4.41–4.28 (m, 1H), 4.24 (dd, J = 12.3, 4.3 Hz, 1H), 2.53 (s,1H) 0.89 (s, 6H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 211.2, 164.3, 161.0, 137.4, 130.5, 130.4, 128.9, 128.3, 116.7, 116.5, 78.1, 77.5, 54.8, 47.1, 26.4, 25.9. UPLC-DAD-QTOF: C<sub>19</sub>H<sub>20</sub>FNO<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 368.1274, found: 368.1271. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 9.3 min (major) and 11.0 min (minor)).

#### 2-Hydroxy-2-methyl-6-nitro-4,5-diphenylhexan-3-one (6Da)



The title compound **6Da** was prepared from 3-hydroxy-3-methyl-1phenylbutan-2-one (**1D**) (17.8 mg, 0.1 mmol) and nitrostyrene (**5a**) (29.8 mg, 0.2 mmol) according to the general procedure. White solid, yield: 12.1 mg, 0. 037 mmol, 37%. m.p. 128–130 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.58–7.10 (m, 10H), 4.62 (d, *J* = 11.3 Hz, 1H), 4.57–

4.50 (m, 1H), 4.42–4.28 (m, 1H), 4.18 (dd, J = 12.5, 4.2 Hz, 1H), 2.63 (s, 1H), 0.87 (s, 3H), 0.85 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 211.1, 137.7, 134.7, 129.6, 128.9, 128.7, 128.7, 128.3, 128.1, 78.3, 75.9, 55.9, 47.0, 26.4, 25.9. UPLC-DAD-QTOF: C<sub>19</sub>H<sub>20</sub>NO<sub>4</sub> [M–H]<sup>-</sup> calcd.: 326.1392, found: 326.1380. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 10.4 min (major) and 13.0 min (minor)).

#### 4-(5-Benzyl-5-hydroxy-1-nitro-4-oxo-2,6-diphenylhexan-3-yl)benzonitrile (9Ba)



The title compound **9Ba** was prepared from 4-(3-benzyl-3-hydroxy-2-oxo-4-phenylbutyl)benzonitrile (**4B**) (35.5 mg, 0.1 mmol) and nitrostyrene (17.9 mg, 1.2 mmol) according to the general procedure. White solid, yield: 35.3 mg, 0. 070 mmol, 70%.  $[\alpha]_D^{25} = -66.1$  (c = 1.00, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 220–221 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.42–7.21 (m, 10H), 7.13 (d, J = 8.3 Hz, 2H), 7.04 (t, J =

7.4 Hz, 1H), 6.96 (dd, J = 6.5, 2.9 Hz, 2H), 6.89 (t, J = 7.6 Hz, 2H), 6.60 (d, J = 7.1 Hz, 2H), 4.94 (d, J = 11.0 Hz, 1H), 4.50–4.35 (m, 1H), 4.32–4.13 (m, 2H), 3.03 (d, J = 13.5 Hz, 1H), 2.34 (d, J = 13.5 Hz, 1H), 2.22 (d, J = 13.7 Hz, 1H), 1.99 (d, J = 13.7 Hz, 1H), 1.75 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 209.0, 138.0, 137.4, 134.5, 134.2, 132.6, 130.8, 130.0, 129.6,

129.0, 128.5, 128.4, 128.1, 127.2, 126.6, 118.2, 111.5, 83.4, 78.1, 55.6, 46.1, 42.7, 42.3. UPLC-DAD-QTOF:  $C_{32}H_{28}N_2O_4Na$  [M+Na]<sup>+</sup> calcd.: 527.1947, found: 527.1942. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 15.1 min (major) and 18.6 min (minor)).

## 4-(2-Benzyl-2-hydroxy-7-methyl-5-(nitromethyl)-3-oxo-1-phenyloctan-4-yl)benzonitrile (9Bk)



The title compound **9Bk** was prepared from 4-(3-benzyl-3-hydroxy-2oxo-4-phenylbutyl)benzonitrile (**4B**) (35.5 mg, 0.1 mmol) and 4methyl-1-nitropent-1-ene **5k** (38.7 mg, 0.3 mmol) according to the general procedure. White solid, yield: 17.4 mg, 0. 036 mmol, 36%.  $[\alpha]_D^{25} = -61.9^\circ$  (c = 0.21, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). M.p. 121-122 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.41–7.24 (m, 7H), 7.21–7.00 (m, 5H), 6.80 (d, *J* = 7.1 Hz, 2H), 4.56 (d, *J* = 9.9 Hz, 1H), 4.36 (dd, *J* = 13.0,

4.5 Hz, 1H), 3.75 (dd, J = 13.0, 4.2 Hz, 1H), 3.12 (d, J = 13.5 Hz, 1H), 3.00 (d, J = 13.5 Hz, 1H), 2.84–2.69 (m, 2H), 2.56 (d, J = 13.5 Hz, 1H), 1.91 (s, 1H), 1.06–0.96 (m, 2H), 0.92 (d, J = 6.5 Hz, 3H), 0.82 (d, J = 6.6 Hz, 3H).<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 211.6, 139.7, 135.1, 135.0, 132.7, 131.3, 130.7, 129.0, 128.9, 127.8, 127.4, 118.8, 111.7, 84.1, 75.7, 55.5, 44.9, 44.1, 39.4, 37.8, 25.5, 24.0, 21.5. UPLC-DAD-QTOF: C<sub>30</sub>H<sub>32</sub>N<sub>2</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 507.2260, found: 507.2263. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 98/2, flow rate = 1.0 mL/min, retention times: 29.4 min (minor) and 32.0 min (major)).

#### 2-Benzyl-4-(4-fluorophenyl)-2-hydroxy-6-nitro-1,5-diphenylhexan-3-one (9Ca)



The title compound **9Ca** was prepared from 3-benzyl-1-(4-fluorophenyl)3-hydroxy-4-phenylbutan-2-one (**4C**) (34.8 mg, 0.1 mmol) and nitrostyrene (44.7 mg, 0.3 mmol) according to the general procedure. White solid, yield: 24.4 mg, 0. 049 mmol, 49%.  $[\alpha]_D^{25} = -65.7^\circ$  (c = 1, 96% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). M.p. 198-199 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.41–7.22 (m, 8H) 7.08–6.90 (m, 7H), 6.79 (t,

J = 8.7 Hz, 2H), 6.66 (d, J = 7.0 Hz, 2H), 4.83 (d, J = 10.7 Hz, 1H), 4.60–4.35 (m, 1H), 4.33– 4.15 (m, 2H), 3.05 (d, J = 13.4 Hz, 1H), 2.36 (d, J = 13.4 Hz, 1H), 2.27–2.09 (m, 2H), 1.77 (s, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 210.1, 164.2, 138.4, 135.0, 131.2, 131.0, 130.8, 130.5, 123.3, 128.9, 128.6, 127.4, 127.0, 116.7, 116.4, 83.8, 78.9, 55.4, 46.6, 43.0, 42.5. UPLC-DAD-QTOF: C<sub>31</sub>H<sub>28</sub>FNO<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 520.1900, found: 520.1895. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IB, hexane/isopropanol 98/2, flow rate = 1.0 mL/min, retention times: 14.1 min (minor) and 15.9 min (major)).

#### 2-Benzyl-2-hydroxy-6-nitro-1,4,5-triphenylhexan-3-one (9Da)



The title compound **9Da** was prepared from 3-benzyl-3-hydroxy-1,4diphenylbutan-2-one (**4D**) (33.0 mg, 0.1 mmol) and nitrostyrene (44.7 mg, 0.3 mmol) according to the general procedure. White solid, yield: 22.1 mg, 0. 046 mmol, 46%.  $[\alpha]_D^{25} = -98.6^\circ$  (c= 0.23, 96% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). M.p. 194–195 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.41–

6.87 (m, 18H), 6.68 (d, J = 6.9 Hz, 2H), 4.80 (d, J = 10.7 Hz, 1H), 4.54–4.39 (m, 1H), 4.37– 4.15 (m, 2H), 3.03 (d, J = 13.4 Hz, 1H), 2.38 (d, J = 13.4 Hz, 1H) 2.34–2.17 (m, 2H).<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 210.2, 138.6, 135.2, 135.0, 133.1, 131.2, 130.5, 129.7, 129.3, 128.9, 128.6, 128.6, 128.5, 128.3, 127.3, 127.0, 83.8, 79.1, 56.5, 46.6, 42.9, 42.5. UPLC-DAD-QTOF: C<sub>31</sub>H<sub>29</sub>NO<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 502.1994, found: 502.1993. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 98/2, flow rate = 1.0 mL/min, retention times: 18.1 min (major) and 21.6 min (minor)).

#### 2-Hydroxy-4-(4-methoxyphenyl)-2-methyl-6-nitro-5-phenylhexan-3-one (6Ea)



The title compound **6Ea** was prepared from 3-hydroxy-1-(4-methoxyphenyl)-3-methylbutan-2-one (**1E**) (20.83 mg, 0.1 mmol) and nitrostyrene (**5a**) (44.7 mg, 0.3 mmol) according to the general procedure. White solid, yield: 16.1 mg, 0.045 mmol, 45%. M.p. 142–143 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.42–7.25 (m, 7H), 6.96 (d, *J* = 8.8 Hz, 2H), 4.64–4.49 (m, 2H), 4.42–4.20 (m, 2H), 3.85 (s, 3H),

0.91 (s, 3H), 0.88 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 210.8, 159.3, 137.4, 129.4, 128.4, 127.8, 127.8, 127.6, 125.9, 114.6, 77.9, 54.9, 54.6, 46.6, 26.0, 25.6. UPLC-DAD-QTOF: C<sub>20</sub>H<sub>23</sub>NO<sub>5</sub>Na [M+Na]<sup>+</sup> calcd.: 380.1474, found: 380.1470. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 16.5min (major.) and 21.6 min (min.)).

#### 5. Catalytic conjugate addition of alkenyl ketols 16-18 to nitroalkenes.



To a solution of the corresponding hydroxyketone **16–18** (0.2 mmol, 1 equiv.) and trans- $\beta$ -nitrostyrene (32.8 mg, 0.22 mmol, 1.1 equiv.) in dichloromethane (0.4 mL), catalyst **C5** (11.9 mg, 0.02 mol, 10 mol %) was added at room temperature or –20 °C and the resulting mixture was stirred to completion of the reaction (2–20 h, TLC). Then the reaction mixture was submitted to flash column chromatography (eluent hexane/ethyl acetate 90:10).

The same procedure was employed for the reactions involving catalyst C6, but with a molar ratio of ketone/5/catalyst of 1.5:1:0.1.

#### (E)-2-Benzyl-2-hydroxy-4(S)-(2-nitro-1(S)-phenylethyl)-1,6-diphenylhex-5-en-3-one (19)

Prepared according to the general procedure starting from 16 (71.3 NO<sub>2</sub> HO mg, 0.2 mmol) and C5 as catalyst. The title compound was purified Bn Bn by flash column chromatography on silicagel (eluting with hexane/ethyl acetate 1/20) and isolated as a white solid. Yield: 63.7 mg (63%). m.p. = 168–171°C.  $[\alpha]_D^{22} = -126.7^\circ$  (c= 0.5, >98% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34–7.20 (m, 11H), 7.03–6.92 (m, 8H), 6.84–6.80 (m, 1H), 6.21 (d, J = 15.6 Hz, 1H), 5.33 (dd, J = 15.6 Hz, J' = 10.0 Hz, 1H), 4.76 (dd, J = 12.8 Hz, J' = 4.8 Hz, 1H), 4.58 (dd, J = 12.8 Hz, J' = 10.4 Hz, 1H), 4.30 (t, J = 10.0 Hz, 1H), 3.97 (td, J = 10.2 Hz, J' = 10.4.6 Hz, 1H), 3.20 (d, J = 13.2 Hz, 1H), 2.49 (d, J = 13.2 Hz, 1H), 2.36 (d, J = 13.6 Hz, 1H), 2.28 (d, J = 13.6 Hz, 1H), 2.12 (sb, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  210.9, 138.2, 136.9, 135.5, 134.9, 134.8, 130.9, 130.3, 128.8, 128.4, 128.3, 128.0, 127.1, 127.0, 126.6, 121.6, 83.6, 78.2, 54.6, 44.7, 43.0, 42.9. UPLC-DAD-QTOF: C<sub>33</sub>H<sub>32</sub>NO<sub>4</sub>. [M+H]<sup>+</sup> calcd.: 506.2331, found: 506.2337.

### (E)-2-Benxyl-2-hydroxy-4(S)-[2-nitro-1(S)-phenylethyl]-1-phenyl-6-*p*-tolylhex-5-en-3-one (20)



Prepared according to the general procedure starting from (74.1 mg, 0.2 mmol) and **C5** as catalyst. The title compound was purified by flash column chromatography on silicagel (eluting with hexane/ethyl

acetate 1:20) and isolated as a white solid. Yield: 72.7 mg (70%). m.p. =  $170-173 \,^{\circ}$ C. [ $\alpha$ ]<sub>D</sub><sup>24</sup>=  $-174.5^{\circ}$  (c= 0.5, >98% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32–6.84 (m, 19H), 6.18 (d, *J* = 15.6 Hz, 1H), 5.25 (dd, *J* = 15.6 Hz, *J'* = 10.0 Hz, 1H), 4.75 (dd, *J* = 13.0 Hz, *J'* = 4.8 Hz, 1H), 4.57 (dd, *J* = 13.0 Hz, *J'* = 10.8 Hz, 1H), 4.25 (t, *J* = 9.6 Hz, 1H), 3.94 (dt, *J* = 10.0 Hz, *J'* = 4.6 Hz, 1H), 3.20 (d, *J* = 13.4 Hz, 1H), 2.49 (d, *J* = 13.4 Hz, 1H), 2.37 (d, *J* = 13.6 Hz, 1H), 2.13 (sb, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  211.0, 138.3, 138.2, 136.9, 135.0, 134.9, 132.8, 130.8, 130.3, 129.0, 128.8, 128.4, 128.3, 128.0, 127.1, 127.0, 126.6, 120.5, 83.6, 78.2, 54.7, 44.7, 43.0, 42.9, 21.2. UPLC-DAD-QTOF: C<sub>34</sub>H<sub>33</sub>NO<sub>4</sub>Na. [M+Na]<sup>+</sup> calcd.: 542.2307, found 542.2315.

#### (*S*,*E*)-2-hydroxy-2-methyl-4-((*S*)-2-nitro-1-phenylethyl)-6-phenylhex-5-en-3-one (21a)



Prepared according to the general procedure starting from 2-hydroxy-2-methyl-6-phenylhex-5-en-3-one **18** (41 mg, 0.2 mmol) and nitroalkene **5a** (32 mg, 0.22 mmol) and **C5** as catalyst. The title compound was isolated as as a white solid. Yield: 60 mg (85 %). m. p.: 143 - 145 °C.  $[\alpha]_D^{25} = -60.3^\circ$  (c= 1, 97 % *ee*, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR

(300 MHz, Chloroform-*d*)  $\delta$  7.48 – 7.24 (m, 10H), 6.73 (d, *J* = 15.9 Hz, 1H), 6.10 (dd, *J* = 15.9, 9.5 Hz, 1H), 4.95 – 4.69 (m, 2H), 4.37 – 4.11 (m, 2H), 1.08 (s, 3H), 0.90 (s, 3H). <sup>13</sup>C NMR (75 MHz, Chloroform-*d*)  $\delta$  211.6, 128.9, 128.8, 128.6, 128.3, 126.5, 124.3, 78.0, 54.5, 45.7, 26.1, 25.9. UPLC-DAD-QTOF: C<sub>21</sub>H<sub>23</sub>NO<sub>4</sub> [M+H]<sup>+</sup> calcd.: 354.1705, found: 354.1707. The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol 90/10, flow rate= 1.0 mL/min; retention times: 17.6 min (minor) and 27.1 min (major)).

### (*S*,*E*)-4-((*S*)-1-(4-chlorophenyl)-2-nitroethyl)-2-hydroxy-2-methyl-6-phenylhex-5-en-3-one (21b)



Prepared according to the general procedure starting from 2-hydroxy-2-methyl-6-phenylhex-5-en-3-one **18** (41 mg, 0.2 mmol) and nitroalkene **5b** (40 mg, 0.22 mmol) and **C5** as catalyst. The title compound was isolated as as a white solid. Yield: 64 mg (82 %). m. p.: 166 – 168 °C.  $[\alpha]_D^{25} = -102.6^\circ$  (c= 0.5, 95 % *ee*, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, Chloroform-*d*)  $\delta$  7.44 – 7.17 (m, 9H), 6.72 (d, *J* = 15.9 Hz, 1H), 6.06 (dd, *J* = 15.9, 9.5 Hz, 1H), 4.86 – 4.60 (m, 2H),

4.28 (dd, J = 10.8, 9.5 Hz, 1H), 4.18 (dd, J = 10.3, 4.8 Hz, 1H), 1.08 (s, 3H), 0.97 (s, 3H). <sup>13</sup>C NMR (75 MHz, Chloroform-*d*)  $\delta$  211.1, 136.5, 135.7, 135.1, 133.9, 129.4, 128.8, 128.6, 128.5, 126.3, 123.5, 77.7, 53.9, 44.7, 26.1, 26.0. UPLC-DAD-QTOF: C<sub>21</sub>H<sub>22</sub>ClNO<sub>4</sub> [M+H]<sup>+</sup> calcd.: 388.1316, found: 388.1323. The enantiomeric purity was determined by HPLC

analysis (Daicel Chiralpak IB hexane/isopropanol 95/5, flow rate= 1.0 mL/min; retention times: 44.7 min (minor) and 66.2 min (major)).

#### 4-(1-(3-Chlorophenyl)-2-nitroethyl)-2-hydroxy-2-methyl-6-phenylhex-5-en-3-one (21c)



The title compound **21c** was prepared from 2-hydroxy-2-methyl-6phenylhex-5-en-3-one **18** (40.8 mg, 0.2 mmol) and nitrostyrene (**5c**) (40.4 mg, 0.22 mmol) according to the general procedure for **C5**. White solid, yield: 73.7 mg, 0.19 mmol, 95%.  $[\alpha]_D^{25} = -117.94^\circ$  (c= 0.5, 96% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 158–160 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.42–7.24 (m, 8H), 7.20–7.12 (m, 1H), 6.73 (d, J = 15.9 Hz, 1H), 6.05 (dd, J = 15.9, 9.6 Hz, 1H), 4.81 (dd, J = 13.2, 4.9 Hz, 1H), 4.68

(dd, J = 13.2, 10.0 Hz, 1H), 4.35–4.24 (m, 1H), 4.16 (td, J = 10.4, 4.9 Hz, 1H), 2.74 (s, 1H), 1.09 (s, 3H), 0.97 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 211.1, 139.5, 136.7, 135.2, 134.6, 130.0, 128.7, 128.6, 128.3, 128.2, 126.5, 126.4, 123.6, 77.7, 54.0, 45.0, 26.2, 26.1. UPLC-DAD-QTOF: C<sub>21</sub>H<sub>22</sub>NO<sub>4</sub>ClNa [M+Na]<sup>+</sup> calcd.: 410.1135, found: 410.1125. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IB, hexane/isopropanol 90/10, flow rate = 1.0 mL/min, retention times: 19.5 min (minor) and 25.3 min (major)).

### (*S*,*E*)-2-hydroxy-4-((*S*)-1-(4-methoxyphenyl)-2-nitroethyl)-2-methyl-6-phenylhex-5-en-3-one (21f)



Prepared according to the general procedure starting from 2-hydroxy-2-methyl-6-phenylhex-5-en-3-one **18** (41 mg, 0.2 mmol) and nitroalkene **5f** (39 mg, 0.22 mmol) and **C5** as catalyst. The title compound was isolated as as a white solid. Yield: 58 mg (75 %). m. p.:  $154 - 156 \,^{\circ}$ C.  $[\alpha]_{D}^{25} = -94.1^{\circ}$  (c= 1.2, 94 % *ee*, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, Chloroform-*d*)  $\delta$  7.42 – 7.29 (m, 4H), 7.24 – 7.13 (m, 2H), 6.90 – 6.83 (m, 2H), 6.70 (d, J = 15.9 Hz, 1H), 6.08 (dd, J = 15.9, 9.6

Hz, 1H), 4.87 - 4.61 (m, 2H), 4.24 (dd, J = 10.8, 9.6 Hz, 1H), 4.12 (td, J = 10.4, 5.0 Hz, 1H), 3.79 (s, 3H), 1.00 (d, J = 53.0 Hz, 6H). <sup>13</sup>C NMR (75 MHz, Chloroform-*d*)  $\delta$  212.4, 160.0, 136.9, 136.2, 130.0, 129.8, 129.5, 129.3, 127.2, 125.2, 115.0, 79.0, 55.9, 55.3, 45.7, 26.9, 26.7. UPLC-DAD-QTOF: C<sub>22</sub>H<sub>25</sub>NO<sub>5</sub> [M+H]<sup>+</sup> calcd.: 384.1811, found: 384.1807. The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol 95/5, flow rate= 1.0 mL/min; retention times: 48.8 min (minor) and 76.2 min (major)).

#### 2-Hydroxy-2-methyl-5-(nitromethyl)-4-styryldecan-3-one (21i)



The title compound **21i** was prepared from 2-hydroxy-2-methyl-6phenylhex-5-en-3-one **18** (40.8 mg, 0.2 mmol) and nitrostyrene (**5i**) (31.5 mg, 0.22 mmol) according to the general procedure for **C5**. Yellow oil, yield: 65.3 mg, 0.19 mmol, 94%.  $[\alpha]_D^{25} = -64.4^\circ$  (c = 1, 98% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.40–7.26 (m, 5H), 6.64 (d, *J* = 15.9 Hz, 1H), 6.00 (dd, *J* = 15.9, 9.8 Hz, 1H), 4.67 (dd, *J* = 13.0, 4.6 Hz, 1H), 4.46 (dd, *J* = 13.0, 5.6 Hz, 1H), 4.10 (t, *J* = 9.3 Hz, 1H), 3.36 (s, 1H), 2.72 (s, 1H), 1.44 (s, 3H), 1.40 (s, 3H), 1.37–1.24 (m, 8H), 0.91 (t, *J* = 6.8 Hz, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 215.6, 138.2, 137.7, 130.7, 130.4, 128.4, 126.2, 79.4, 77.7, 53.4, 41.7, 33.5, 32.1, 28.9, 28.8, 28.3, 24.3, 15.9. UPLC-DAD-QTOF: C<sub>20</sub>H<sub>29</sub>NO<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 370.1994, found: 370.1994. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IC hexane/isopropanol 95/5, flow rate = 1.0 mL/min, retention times: 9.0 min (minor) and 10.5 min (major)).

#### 2-Hydroxy-2-methyl-8-nitro-6,7-diphenyloct-4-en-3-one (21'a)



The title compound **21'a** was prepared from 2-hydroxy-2-methyl-6phenylhex-5-en-3-one **18** (40.8 mg, 0.2 mmol) and nitrostyrene (**5a**) (19.4 mg, 0.13 mmol) according to the general procedure for **C6**. White solid, yield: 7.78 mg, 0.022 mmol, 11%. m.p. 138–139 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.39–7.15 (m, 7H), 7.07–6.96 (m,

4H), 6.59 (d, J = 15.2 Hz, 1H), 4.78–4.63 (m, 2H), 4.00 (td, J = 8.8, 6.5 Hz, 1H), 3.82 (t, J = 9.6 Hz, 1H), 3.70 (s, 1H), 1.41 (s, 3H), 1.36 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 202.9, 149.0, 139.3, 137.4, 129,9, 129.7, 129.0, 128.6, 125.1, 79.4, 76.6, 54.0, 49.8, 27.3. UPLC-DAD-QTOF: C<sub>21</sub>H<sub>23</sub>NO<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 376.1525, found: 376.1526.

#### 7-(4-Chloropheynyl)-2-hydroxy-2-methyl-8-nitro-6-phenyloct-4-en-3-one (21'b)



The title compound **21'b** was prepared from 2-hydroxy-2-methyl-6phenylhex-5-en-3-one **18** (40.8 mg, 0.2 mmol) and nitrostyrene (**5b**) (23.9 mg, 0.13 mmol) according to the general procedure for **C6**. Orange solid, yield: 14.6 mg, 0.04 mmol, 29%. m.p. 145–147 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.37–7.17 (m, 7H), 7.04 (dd, *J* = 7.8, 1.6 Hz, 2H), 6.95 (d, *J* = 8.5 Hz, 2H), 6.63 (d, *J* = 15.7 Hz,

1H), 4.80–4.60 (m, 2H), 3.99 (td, J = 9.3, 5.8 Hz, 1H), 3.79 (t, J = 9.7 Hz, 1H) 3.66 (s, 1H), 1.43 (s, 3H), 1.38 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 202.9, 148.6, 139.0, 136.0, 134.9, 130.6, 130.1, 130.0, 129.1, 128.8, 125.3, 79.4, 76.6, 53.9, 49.3, 27.3, 27.3 UPLC-DAD-QTOF: C<sub>21</sub>H<sub>22</sub>NO<sub>4</sub>ClNa [M+Na]<sup>+</sup> calcd.: 410.1135, found: 410.1133. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol 90:10, flow rate = 1.0 mL/min, retention times: 17.7 min (minor) and 19.8 min (major)).

#### 7-(3-Chloropheynyl)-2-hydroxy-2-methyl-8-nitro-6-phenyloct-4-en-3-one (21'c)



The title compound **21'c** was prepared from 2-hydroxy-2-methyl-6phenylhex-5-en-3-one **18** (40.8 mg, 0.2 mmol) and nitrostyrene (**5c**) (23.9 mg, 0.13 mmol) according to the general procedure for **C6**. Yellow oil, yield: 18.2 mg, 0.05 mmol, 36%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.36–7.09 (m, 5H), 7.07–6.99 (m, 2H), 6.89 (d, *J* = 6.8 Hz, 1H), 6.62 (d, *J* = 15.7 Hz, 1H), 4.80–4.60 (m, 2H), 3.97 (td, *J* = 9.2, 6.0 Hz, 1H), 3.79 (t, *J* = 9.7 Hz, 1H), 1.41 (s, 3H), 1.36 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 201.5, 146.9, 138.3, 137.6, 134.2, 129.6, 128.6, 127.8, 127.7, 127.4, 126.2, 77.7, 75.2, 52.4, 48.1, 25.8. UPLC-DAD-QTOF: C<sub>21</sub>H<sub>22</sub>ClNO<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 410.1135, found: 410.1138. The enantiomeric purity of the major diastereomer was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol 90:10, flow rate = 1.0 mL/min, retention times: 19.2 min (minor) and 24.9 min (major)).

#### 6. Control experiments using as donors 10, 12, and 14



Catalytic conjugate addition of 2-(4-nitrophenyl)ethanethioate to nitrostyrene

To a mixture of phenyl 2-(4-nitrophenyl)ethanethioate **10** (27.3 mg, 1 eq., 0.1 mmol) and nitrostyrene (**5a**) (29.8 mg, 0.2 mmol) in dichloromethane (0.3 mL) at room temperature, catalyst **C5** (5.9 mg, 10 mol %, 0.01 mmol) was added. The resulting solution was stirred at room temperature, until consumption of the phenyl 2-(4-nitrophenyl)ethanethioate as monitored by <sup>1</sup>H NMR. The mixture was quenched with HCl 2M (1 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 2 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 80:20) to afford phenyl 4-nitro-2- (4-nitrophenyl)-3-phenylbutanethioate **11** as a 73:27 mixture of diastereomers (50 % *ee*, major; 20% *ee*, minor). Yield: 21.9 mg, 0.052 mmol, 52%. The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane/isopropanol 80/20, flow rate = 1.0 mL/min, retention times: major diastereomer: 13.6 min (minor.) and 17.4 min (major.)); minor diastereomer: 15.6 min (major) and 24.6 min (minor)).

The corresponding racemic compound was prepared following the above procedure at room temperature, but using as catalyst achiral thiourea **S9** (3.6 mg, 10 mol%, 0.01 mmol).<sup>14</sup>



<sup>&</sup>lt;sup>14</sup> Synthesis adapted from: R. C. Pratt, B. G. Lohmeijer, D. A. Long, P. N. Lundberg, A. P. Dove, H. B. Li, C. G. Wade, R. M. Waymouth, J. L. Hedrick, *Macromolecules*, **2006**, *39*, 7863–7871.



Daicel Chiralpak AD-H, hexane/isopropanol 80/20 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.



| 2 15.614 6.44   3 17.426 41.88   4 24.640 6.81 |
|------------------------------------------------|
| 3 17.426 41.88                                 |
| 1 24 640 6 91                                  |
| 4 24.049 0.01                                  |



|   | Retention Time | % Area |
|---|----------------|--------|
| 1 | 13.152         | 18.17  |
| 2 | 15.041         | 15.79  |
| 3 | 16.749         | 55.04  |
| 4 | 24.213         | 11.00  |

#### Catalytic conjugate addition of 2-phenylacetaldehyde to 4-bromo nitrostyrene



To a mixture of 2-phenylacetaldehyde 12 (12 mg, 1 eq., 0.1 mmol) and 4-bromonitrostyrene (5b) (45.6 mg, 0.2 mmol) in dichloromethane (0.3 mL) at room temperature, catalyst C5 (5.9 mg, 10 mol %, 0.01 mmol) was added. The resulting solution was stirred at room temperature, until consumption of the 2-phenylacetaldehyde as monitored by <sup>1</sup>H NMR. The mixture was quenched with HCl 2M (1 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 2 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 90:10) to afford 3-(4-bromophenyl)-4-nitro-2-phenylbutanal 13 as a diastereomeric mixture dr 59:41, major diastereomer 60 % ee, minor diastereomer 40% ee. White solid. Yield: 33.0 mg, 0.095 mmol, 95%. m.p. 152-153 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 9.72 (d, J = 1.0 Hz, 1H), 9.55 (d, J = 1.7 Hz, 1H), 7.52–7.38 (m, 3H), 7.34–7.21 (m, 5H), 7.15 (d, J = 8.4 Hz, 2H), 6.99–6.92 (m, 2H), 6.85 (d, J = 8.4 Hz, 2H), 4.91 (dd, J =12.7, 5.5 Hz, 1H), 4.73 (dd, J = 12.7, 8.9 Hz, 1H), 4.54–4.38 (m, 2H), 4.33 (dd, J = 18.6, 4.8 Hz, 1H), 4.27–4.21 (m, 1H), 4.05 (dd, J = 10.1, 1.7 Hz, 1H), 3.98 (d, J = 9.2 Hz, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>), δ: <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 197.9, 196.4, 136.2, 135.3, 132.2, 131.7, 130.0, 130.0, 129.8, 129.8, 129.4, 129.2, 129.1, 129.1, 128.4, 128.4, 122.2, 121.8, 78.0, 77.8, 61.5, 60.8, 43.7, 43.6. UPLC-DAD-QTOF: C<sub>16</sub>H<sub>13</sub>BrNO<sub>3</sub> [M–H]<sup>-</sup> calcd.: 346.0079, found: 346.0078.

The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 90:10, flow rate = 1.0 mL/min, retention times: major diastereomer: 19.5 min (minor) and 21.6 min (major)); minor diastereomer: 12.1 min (major) and 17.8 min (minor)).



Daicel Chiralpak IC, hexane/isopropanol 90/10 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 12.094                | 21.54  |
| 2 | 17.771                | 20.21  |
| З | 19.548                | 28.80  |
| 4 | 21.604                | 29.45  |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 12.338                | 35.33  |
| 2 | 18.224                | 6.19   |
| 3 | 20.046                | 11.68  |
| 4 | 22.186                | 46.81  |

# 7. Reaction profiles of hydroxy (1A/1B, OH) and silyloxy (1'A/1'B, OSiMe<sub>3</sub>) ketones



| 31 | n 🕂 🚽 |    |       |    |    | ** |
|----|-------|----|-------|----|----|----|
| 5  | ° 1/  |    |       |    |    |    |
| 20 | 0 🚻   |    |       |    |    |    |
| 1( | o 📕   |    |       |    |    |    |
| 1  | × 🚹   |    |       |    |    |    |
| (  | 0 —   | 1  |       | 1  |    |    |
|    | 0     | 20 | 40    | 60 | 80 |    |
|    |       |    | * (h) |    |    |    |
|    |       |    | t (n) |    |    |    |
|    |       |    |       |    |    |    |

|       | 1A       |       | 1'A      |
|-------|----------|-------|----------|
| t (h) | Conv (%) | t (h) | Conv (%) |
| 0.25  | 7        | 1     | 5        |
| 0.5   | 23       | 5     | 33       |
| 1     | 32       | 10    | 41       |
| 2     | 46       | 20    | 50       |
| 3     | 61       | 30    | 65       |
| 6     | 84       | 44    | 72       |
| 8     | 95       | 72    | 74       |



---

--

---

44 h

28%
# 8. Chemical elaboration of adducts



#### 8.1. Ketol cleavage in adduct 9Aa to yield carboxylic acid 22 and conversion to 11

To a suspension of **9Aa** (1 eq., 52 mg, 0.1 mmol) in dioxane (3 mL), periodic acid (10 eq., 228 mg, 1 mmol) was added. The resulting mixture was stirred at 60 °C for 24 h and afterwards the reaction was quenched with water (5 mL) and extracted with ethyl acetate (3 x 5 mL). The combined organic extracts were dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated. The crude was suspended in dioxane (3 mL), periodic acid (10 eq., 228 mg, 1 mmol) was added. The resulting mixture was stirred at 60 °C for 24 h and afterwards the reaction was quenched with water (5 mL) and extracted with ethyl acetate (3 x 5 mL). The combined organic extracts were dried over MgSO<sub>4</sub>, filtered and the solvent was the reaction was quenched with water (5 mL) and extracted with ethyl acetate (3 x 5 mL). The combined organic extracts were dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated. The crude was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 50/50) to give the title compound **22** as a white solid. Yield: 29.4 mg, 0.089 mmol, 89%. [ $\alpha$ ]<sub>D</sub><sup>25</sup>= -22.0° (c= 1.47, 99% *ee*, MeOH). M.p. 174–176 °C. <sup>1</sup>H NMR (300 MHz, CD<sub>3</sub>OD),  $\delta$ : 8.29 (d, *J* = 8.9 Hz, 2H), 7.81 (d, *J* = 8.9 Hz, 2H), 7.53–7.17 (m, 5H), 4.65 (dd, *J* = 12.8, 9.8 Hz, 1H), 4.44–4.07 (m, 3H). <sup>13</sup>C NMR (75 MHz, CD<sub>3</sub>OD),  $\delta$ : 173.5, 149.2, 144.9, 139.0, 131.0, 129.7, 129.5, 129.0, 125.1, 79.3, 56.0, 48.4. UPLC-DAD-QTOF: C<sub>16</sub>H<sub>14</sub>N<sub>2</sub>O<sub>6</sub>Na [M+Na]<sup>+</sup> calcd.: 355.0750, found: 353.0739.

# Conversion of carboxylic acid 22 into thioester 11<sup>15</sup>



<sup>&</sup>lt;sup>15</sup> E. C. Garnier-Amblard, S. G. Mays, R. F. Arrendale, M. T. Baillie, A. S. Bushnev, D. G. Culver, T. J. Evers, J. J. Holt, R. B. Howard, L. S. Liebeskind, D. S. Menaldino, M. G. Natchus, J. A. Petros, H. Ramaraju, G. P. Reddy, D. C. Liotta, *Med. Chem. Lett.* **2011**, *2*, 438–443.

To a solution of carboxylic acid 22 (1 eq., 33 mg, 0.1 mmol) and 1-hydroxybenzotriazole hydrate (1 eq., 13.5 mg, 0.1 mmol) in ethyl acetate (1 mL) under argon, at 0 °C, thiophenol (2 eq., 20 µL, 0.2 mmol) was added. After 5 min, dicyclohexylcarbodiimide (1.1 eq., 23 mg, 0.11 mmol) was added. After stirring overnight, a 50% solution of acetic acid in ethyl acetate (0.3 mL) was added. The reaction mixture was filtered throughouth a pad of celite and solvent was removed under vacuum. The residue was purified by flash column chromatography on silica gel (eluting with Hexane/ AcOEt 80:20) to give the title compound 11 as a white solid. Yield: 36.3 mg, 0.086 mmol, 86%.  $[\alpha]_D^{25} = -38.8^\circ$  (c= 0.5, 98% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 152–153 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.30 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 8.7 Hz, 2H), 7.49– 7.30 (m, 3H), 7.03–6.93 (m, 2H), 4.58–4.41 (m, 2H), 4.37–4.24 (m, 2H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>), δ: 195.0, 148.2, 141.5, 135.7, 134.1, 129.9, 129.6, 129.3, 129.1, 128.6, 128.2, 126.1, 124.5, 77.8, 62.0, 47.3. UPLC-DAD-QTOF: C<sub>22</sub>H<sub>17</sub>N<sub>2</sub>O<sub>5</sub>S [M–H]<sup>-</sup> calcd.: 421.0858, found: 421.0858. The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane/isopropanol 80/20, flow rate = 1.0 mL/min, retention times: major diastereomer: 13.6 min (minor) and 17.4 min (major)); minor diastereomer: 15.6 min (major) and 24.6 min (minor)).

# 8.2. Nef reaction in adduct 9Aa to yield carboxylic acid 23<sup>16</sup>



A solution of 2-benzyl-2-hydroxy-6-nitro-4-(4-nitrophenyl)-1,5-diphenylhexan-3-one (**9Aa**) (104.9 mg, 0.2 mmol, 1 eq.), NaNO<sub>2</sub> (82.8 mg, 1.2 mmol, 6 eq.) and AcOH (120.1 mg, 2 mmol, 10 eq.) in DMSO (2 mL) was stirred overnight at 35 °C. The reaction mixture was poured into H<sub>2</sub>O (20 mL) and extracted with EtOAc (3 x 20 mL). The combined organic layers were washed successively with brine (20 mL), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluting with hexane/ AcOEt 90:10  $\rightarrow$  70:30). Yield 36.7 mg, 0.072 mmol, 36%. [ $\alpha$ ]<sub>D</sub><sup>25</sup>= -30.3° (c= 0.40, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 169–170 °C. <sup>1</sup>H NMR (300 MHz, (CD<sub>3</sub>OD),  $\delta$ : 7.77 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 7.2 Hz, 2H), 7.53–7.28 (m, 4H), 7.27–7.15 (m, 5H), 6.85–6.62 (m,7H), 5.51 (d, *J* = 12.0 Hz, 1H), 4.40 (d, *J* = 12.0 Hz, 1H), 2.82 (d, *J* = 13.5 Hz, 1H), 2.36 (d, *J* =

<sup>&</sup>lt;sup>16</sup> Addapted from: Gong, L., Adv. Synth. Catal. 2013, 355, 2531-2537

13.5 Hz, 1H), 2.27 (d, J = 13.5 Hz, 1H), 2.08 (d, J = 13.5 Hz, 1H).<sup>13</sup>C NMR (75 MHz, CD<sub>3</sub>OD),  $\delta$ : 211.0, 175.1, 147.9, 143.4, 138.8, 137.3, 136.4, 134.0, 132.0, 131.7, 131.4, 130.7, 130.5, 129.8, 129.4, 129.1, 128.9, 128.3, 127.6, 126.6, 123.9, 84.7, 56.6, 56.1, 45.7, 43.7.UPLC-DAD-QTOF: C<sub>31</sub>H<sub>27</sub>NO<sub>6</sub>Na [M+Na]<sup>+</sup> calcd.: 532.1736, found: 532.1732.

#### 8.3 Conversion of 9Aa into aldehyde 24 and alcohol 25



To a suspension of **9Aa** (1 eq., 105 mg, 0.2 mmol) in tetrahydrofuran (2 mL), borane tetrahydrofuran solution complex 1.0 M (4 eq., 0.8 mL, 0.8 mmol) was added. The resulting mixture was stirred at room temperature for 24 h and afterwards methanol (1 mL) was added at 0 °C and the solvent was evaporated. The resulting crude material was suspended in dioxane (4 mL), periodic acid (10 eq., 456 mg, 2 mmol) was added and the mixture was stirred at room temperature for 24 h. The reaction was quenched with water (10 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic extracts were dried over MgSO4, filtered and the solvent was evaporated. The crude product was crushed with diethyl ether to give the title compound **24** as a white solid. Yield 42.2 mg, 0.13 mmol, 67%.  $[\alpha]_D^{25}$ = -9.9° (c= 0.40, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 140–142 °C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.30 (d, *J* = 8.8 Hz, 2H), 7.46 (d, *J* = 8.8 Hz, 2H), 7.42–7.31 (m, 3H), 7.30–7.21 (m, 2H), 4.63–4.40 (m, 2H), 4.34–4.20 (m, 2H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>),  $\delta$ : 196.2, 148.1, 140.0, 135.8, 130.4, 129.4, 128.7, 128.1, 124.6, 77.8, 60.1, 45.0. UPLC-DAD-QTOF: C<sub>16</sub>H<sub>13</sub>N<sub>2</sub>O<sub>5</sub> [M–H]<sup>-</sup> calcd.: 313.0824, found: 313.0821.



A solution of aldehyde, 4-nitro-2-(4-nitrophenyl)-3-phenylbutanal (**24**) (62.9 mg, 0.2 mmol, 1 eq.), NaBH<sub>4</sub> (15.1 mg, 0.4 mmol, 2 eq.) in MeOH (0.4mL) was stirred overnight at -40 °C during 2 h. Then the reaction was quenched with NH4Cl and extracted with DCM (3 x 2 mL). The combined organic layers were dried over MgSO<sub>4</sub> and concentrated under reduced

pressure. The crude product was purified by silica gel chromatography (eluting with hexane/ AcOEt 90:10). Orange solid, yield 50.6 mg, 0.16 mmol, 80%.  $[\alpha]_D^{25}$ = +3.21° (c= 0.51, 99% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 128–129 °C. <sup>1</sup>H NMR (300 MHz, (CDCl3),  $\delta$ : 8.31 (d, *J* = 8.8 Hz, 2H), 7.60 (d, *J* = 8.8 Hz, 2H), 7.48–7.31 (m, 5H), 4.58 (dd, *J* = 12.6, 10.5 Hz, 1H), 4.43–4.31 (m, 1H), 4.00 (td, *J* = 10.6, 4.5 Hz, 1H), 3.68 (d, *J* = 5.6 Hz, 2H), 3.26 (dt, *J* = 10.6, 5.1 Hz, 1H). <sup>13</sup>C NMR (75 MHz, CD<sub>3</sub>OD),  $\delta$ : 147.9, 137.3, 129.7, 128.9, 128.3, 124.7, 79.6, 64.5, 51.1, 46.5. UPLC-DAD-QTOF: C<sub>16</sub>H<sub>15</sub>N<sub>2</sub>O<sub>5</sub> [M-H]<sup>-</sup> calcd.: 315.0981, found: 315.0976.

# 8.4 Hydrogenation of 20 to 26 and subsequent ketol cleavage (27 and 28)

### (S)-2-hydroxy-2-methyl-4-((S)-2-nitro-1-phenylethyl)-6-phenylhexan-3-one (26)



To a solution of (S,E)-2-hydroxy-2-methyl-4-((S)-2-nitro-1-phenylethyl)-6-phenylhex-5-en-3one **20** (206.6 mg, 0.58 mmol) in dry EtOAc (20 mL), Pd/C (Pd 10% in activated carbon) was added (21 mg). The air was evacuated by vacuum and H<sub>2</sub> was introduced (this process was carried out three times). The reaction mixture was stirred under H<sub>2</sub> atmosphere at room temperature for 1 h. Then, the mixture was filtered over celite and the filtrate was concentrated under reduced pressure to afford the hydrogenated product as a solid.

Yield: 196 mg (95%).  $[\alpha]_D^{25}$ = +5.5° (c= 0.32, 94% *ee*, CH<sub>2</sub>Cl<sub>2</sub>). m.p. 94–96 °C. <sup>1</sup>H NMR (300 MHz, (CDCl<sub>3</sub>),  $\delta$ : 7.41–7.19 (m, 8H), 7.14–7.06 (m, 2H), 4.90–4.76 (m, 2H), 4.09–4.01 (m, 1H), 3.70–3.64 (m, 1H), 2.64–2.39 (m, 2H), 2.12–1.97 (m, 1H), 1.96–1.81 (m, 1H), 1.30 (s, 1H), 1.25 (s, 3H), 1.18 (s, 3H). <sup>13</sup>C NMR (75 MHz, CD<sub>3</sub>OD),  $\delta$ : 215.3, 140.6, 138.0, 129.0, 128.6, 128.1, 128.0, 128.0, 126.3, 75.9, 48.7, 44.2, 33.2, 29.8, 26.6. UPLC-DAD-QTOF: C<sub>21</sub>H<sub>25</sub>NO<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 378.1681, found: 378.1686.



To a suspension of **26** (1 eq., 49 mg, 0.12 mmol) in dioxane (3 mL), periodic acid (10 eq., 274 mg, 1.2 mmol) was added. The resulting mixture was stirred at room temperature for 1 h and afterwards the reaction was quenched with water (5 mL) and extracted with ethyl acetate (3 x 5 mL). The combined organic extracts were dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated to give the title compound **27** as an orange oil. Yield: 34.9 mg, 0.11 mmol, 93%.

<sup>1</sup>H NMR (300 MHz, CD<sub>3</sub>OD), δ: 7.38–7.14 (m, 10H), 4.91–4.69 (m, 2H), 3.90–3.82 (m, 1H), 2.92–2.52 (m, 3H), 2.11–1.98 (m, 1H), 1.93–1.82 (m, 1H). <sup>13</sup>C NMR (75 MHz, CD<sub>3</sub>OD), δ: 177.9, 139.9, 135.8, 128.2, 127.9, 127.7, 127.6, 127.3, 125.7, 77.0, 47.4, 44.9, 32.8, 30.6. UPLC-DAD-QTOF:  $C_{18}H_{19}NO_4Na$  [M+Na]<sup>+</sup> calcd.: 336.1212, found: 336.1215.



# (2S, 3S)-4-Nitro-2-phenethyl-3-phenylbutanal (28)

BH<sub>3</sub>·THF complex (1 M, 1.5 mL, 1.5 mmol) was added to a solution of  $\alpha$ -hydroxy ketone **26** (178 mg, 0.5 mmol) in dry THF (1.5 mL) at 0 °C and the resulting solution was stirred at room temperature for 24 h. Then MeOH (2.5 mL) was added and the resulting mixture was stirred at room temperature for 30 min. The solvents were removed under reduced pressure and the residue thus obtained was subjected to oxidative scission by treatment with NaIO<sub>4</sub>.

A suspension of sodium periodate NaIO<sub>4</sub> (535 mg, 2.5 mmol) in water (1.25 mL) was added to a solution of the corresponding diol (0.5 mmol) in methanol (2.5 mL). The mixture was stirred overnight at room temperature. Then the solvent was removed under reduced pressure. Water (4.5 ml) was added to the crude product and the resulting mixture was extracted with  $Et_2O$  (3 x 6 mL) and  $CH_2Cl_2$  (2 x 6 mL). The combined organic extracts were dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated to afford the corresponding aldehyde. The crude product was purified by flash column chromatography on silicagel (eluting with hexane/ethyl acetate 1/20) to afford a colorless oil.

Yield: 110 mg (74%). <sup>1</sup>H NMR (400 MHz, (CDCl<sub>3</sub>),  $\delta$ : 9.54 (d, J = 2.8 Hz, 1H), 7.36–7.14 (m, 10H), 4.80 (dd, J = 6.8, 13.2 Hz, 1H), 4.76 (dd, J = 8.4, 13.2 Hz, 1H), 3.85 (dt, J = 6.8, 8.4 Hz, 1H), 2.75–2.60 (m, 1H), 2.64–2.39 (m, 3H), 2.06 (m, 1H), 1.90 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : 202.9, 140.3, 136.0, 135.9, 129.2, 128.7, 128.3, 128.2, 126.5, 77.7, 52.7, 44.5, 33.2, 29.2. UPLC-DAD-QTOF: C<sub>18</sub>H<sub>19</sub>NO<sub>3</sub>Na [M+Na]<sup>+</sup> calcd.: 320.1263, found: 320.1272.

#### 8.5 Michael-aldol reaction of 28 with acrolein (cycloadducts 29 and 30)





DIPEA (10.2 µL, 0.06 mmmol) was added to a solution of aldehyde **28** (59.4 mg, 0.2 mmol) and acrolein (26.6 µL, 0.4 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (0.8 mL) and the solution was stirred overnight at room temperature. CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was added and the mixture was washed with 1 M HCl (5 mL). The organic extract was dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated to afford the corresponding dialdehyde. The crude product was used in the next step. <sup>1</sup>H NMR (400 MHz, (CDCl<sub>3</sub>),  $\delta$ : 9.68 (s, 1H), 9.61 (d, J = 2.4 Hz, 1H), 7.40–7.13 (m, 10H), 5.28 (m, 1H), 3.52 (dd, *J* = 5.6, 10.4 Hz, 1H), 2.65 (m, 2H), 2.53 (m, 1H), 2.48 (t, *J* = 6.8 Hz, 2H), 1.94 (m, 1H), 1.90 (t, *J* = 6.8 Hz, 2H), 1.74 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : 203.0, 199.3, 140.5, 134.4, 129.3, 129.2, 128,6, 128,5, 128,4, 126.4, 88.8, 51.6, 51.0, 39.5, 33.3, 29.6, 24.4.

L-Proline (2.1 mg, 0.02 mmol) was added to a solution of dialdehyde in THF (0.4 mL) at 0 °C and the mixture was stirred at the same temperature for 8 h. CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was added and the mixture was washed with water (2 x 5 mL). The organic extract was dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated to afford the corresponding cyclohexanecarbaldehyde epimers **29** and **30** in a ratio 90:10 respectively. Each isomer was separated as colorless oil by a quick flash column chromatography on silica gel (eluting with hexane/ethyl acetate 1:1). The product was unstable at room temperature and was stored at -30 °C. Yield: 49.5 mg (70%, two steps, both isomers). Major isomer 29: <sup>1</sup>H NMR (400 MHz, (CDCl<sub>3</sub>), δ: 10.04 (s, 1H), 7.35– 6.98 (m, 10H), 4.91 (dt, J = 6.0, 11.6 Hz, 1H), 4.50 (dd, J = 6.0, 10.8 Hz, 1H), 4.00 (t, J = 5.6Hz, 1H), 3.36 (dt, J = 4.4, 5.6 Hz, 1H), 2.67 (m, 1H), 2.60 (m, 2H), 2.50 (m, 1H), 2.15–2.00 (m, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ : 204.5, 141.4, 134.3, 130.4, 128.8, 128.6, 128.4, 128.2, 126.0, 82.8, 70.1, 50.2, 47.7, 44.2, 33.0, 30.5, 23.1. UPLC-DAD-QTOF: C<sub>21</sub>H<sub>23</sub>NO<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 376.1525, found: 376.1527. Minor isomer **30**: <sup>1</sup>H NMR (400 MHz, (CDCl<sub>3</sub>),  $\delta$ : 9.92 (s, 1H), 7.36–7.00 (m, 10H), 4.83 (ddd, J = 4.4, 5.6, 12.0 Hz, 1H), 4.33 (t, J = 10.4 Hz, 1H), 4.06 (t, J = 5.6 Hz, 1H), 2.70–2.66 (m, 1H), 2.57–2.38 (m, 4H), 2.17 (m, 1H), 2.00 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ: 202.7, 141.4, 133.6, 130.6, 128.9, 128.4, 128.3, 128.2, 126.0, 85.6, 68.8, 54.2, 47.9, 45.5, 32.8, 30.2, 23.0. UPLC-DAD-QTOF: C<sub>21</sub>H<sub>23</sub>NO<sub>4</sub>Na [M+Na]<sup>+</sup> calcd.: 376.1525, found: 376.1527.

# 8.6 Double Michael-Henry approach to cycloadducts 33 and 34 from 18 (4S,5S,6R,7S)-2-Hydroxy-2-methyl-6,8-dinitro-4-phenethyl-5,7-diphenyloctan-3-one (31)



1) To a solution of hydroxyketone **18** (40.9 mg, 0.2 mmol, 1 equiv.) and trans- $\beta$ -nitrostyrene (89.5 mg, 0.6 mmol, 3 equiv.) in dichloromethane (0.4 ml), catalyst **C6** (23.8 mg, 0.04 mmol, 20 mol %) was added at room temperature and the resulting mixture was stirred to completion of the reaction (5 days). When the reaction was finished, the mixture was directly submitted to flash column chromatography (hexane/ethyl acetate 90:10). The organic solvent

evaporation yielded the double addition product 2-hydroxy-2-methyl-6,8-dinitro-5,7diphenyl-4-(styryl)octan-3-one. White solid, yield: 75.4 mg, 0.15 mmol, 78%. Decomp. temp. 185–187 °C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>),  $\delta$ : 7.48 (t, *J*= 7.3 Hz, 2H), 7.41 (t, *J*= 7.3 Hz, 1H), 7.36–7.29 (m, 7H), 7.27–7.24 (m, 3H), 7.03–6.95 (m, 2H), 6.65 (d, *J*= 15.8 Hz, 1H), 5.80 (dd, *J*= 15.8, 9.9 Hz, 1H), 5.10 (dd, *J*= 10.6, 4.0 Hz, 1H) 5.00–4.83 (m, 2H), 4.52 (t, *J*= 10.2 Hz, 1H), 4.14 (t, *J*= 10.5 Hz, 1H), 3.77 (dt, *J*= 11.0, 3.6 Hz, 1H), 2.46 (s, 1H), 0.94 (s, 3H), 0.89 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>),  $\delta$ : 211.2, 136.8, 136.6, 135.6, 134.6, 129.8, 129.3, 129.0, 128.7, 128.8, 128.5, 128.3, 127.1, 126.5, 122.6, 93.7, 77.6, 73.4, 56.6, 47.9, 44.0, 26.8, 26.3. UPLC-DAD-QTOF: C<sub>29</sub>H<sub>30</sub>N<sub>2</sub>O<sub>6</sub>Na [M+Na]<sup>+</sup> calcd.: 525.2002, found: 525.2007.

2) This product was dissolved in dry EtOAc (40 ml) and Pd/C (Pd 10% in activated carbon) was added (10.1 mg). The air was evacuated by vacuum and H<sub>2</sub> was introduced (this process was carried out three times). The reaction mixture was stirred under H<sub>2</sub> atmosphere at room temperature for 2 h. Then, the mixture was filtered over celite and the filtrate was concentrated under reduced pressure to afford the hydrogenated product **31** as an oil. Yield: 70.6 mg (70%).  $[\alpha]_D^{24} = +13.9^{\circ}$  (c= 0.5, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49–7.05 (m, 15H), 5.49 (dd, *J* = 11.2 Hz, 3.6 Hz, 1H), 5.02 (dd, *J* = 14.0, 11.2 Hz, 1H), 4.88 (dd, *J* = 14.0, 3.6 Hz, 1H), 3.93 (dd, *J* = 11.2, 5.2 Hz, 1H), 3.84 (dt, *J* = 10.8, 3.4 Hz, 1H), 3.71–3.67 (m, 1H), 3.00 (sb, 1H), 2.56–2.42 (m, 2H), 2.23–2.12 (m, 1H), 1.87–1.75 (m, 1H), 1.22 (s, 3H), 1.21 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 214.8, 141.0, 136.3, 135.1, 129.5, 129.4, 128.9, 128.7, 128.5, 128.4, 127.2, 126.2, 93.0, 73.5, 48.9, 47.8, 43.9, 33.3, 30.4, 28.1, 27.1. UPLC-DAD-QTOF: C<sub>29</sub>H<sub>36</sub>N<sub>3</sub>O<sub>6</sub>. [M+NH<sub>4</sub>]<sup>+</sup> calcd.: 522.2604, found: 522.2611.

### (2S,3S,4R,5S)-4,6-Dinitro-2-phenethyl-3,5-diphenylhexanal (32)



BH<sub>3</sub>·THF complex (1 M, 1.5 mL, 1.5 mmol) was added to a solution of  $\alpha$ -hydroxy ketone **31** (252 mg, 0.5 mmol) in dry THF (1.5 mL) at 0 °C and the resulting solution was stirred at room temperature for 24 h. Then MeOH (2.5 mL) was added and the resulting mixture was stirred at room temperature for 30 min. The solvents were removed under reduced pressure and the residue thus obtained was subjected to oxidative scission by treatment with NaIO<sub>4</sub>.

A suspension of sodium periodate NaIO<sub>4</sub> (535 mg, 2.5 mmol) in water (1.25 mL) was added to a solution of the corresponding diol (0.5 mmol) in methanol (2.5 mL). The mixture was stirred overnight at room temperature. Then the solvent was removed under reduced pressure. Water (4.5 ml) was added to the crude product and the resulting mixture was extracted with Et<sub>2</sub>O (3 x 6 mL) and CH<sub>2</sub>Cl<sub>2</sub> (2 x 6 mL). The combined organic extracts were dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated to afford the corresponding aldehyde. The crude product was purified by flash column chromatography on silicagel (eluting with hexane/ethyl acetate 1/20) to afford the tittle product as a colorless oil. Yield: 179 mg (80%).  $[\alpha]_D^{23} = +16.4^\circ$  (c= 0.5, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.58 (dd, *J* = 2.0 Hz, *J*' = 0.8 Hz, 1H), 7.49–6.98 (m, 15H), 5.62 (dd, *J* = 11.6 Hz, *J*' = 3.6 Hz, 1H), 5.02 (dd, *J* = 14.0 Hz, *J*' = 11.0 Hz, 1H), 4.83 (dd, *J* = 4.2 Hz, 1H), 2.74–2.60 (m, 2H), 2.47–2.42 (m, 1H), 2.01–1.92 (m, 1H), 1.75–1.66 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  203.0, 140.2, 134.9, 133.3, 129.9, 129.5, 129.3, 129.2, 129.0, 128.7, 128.4, 127.1, 126.5, 92.9, 73.6, 51.2, 49.3, 43.5, 33.5, 29.7. UPLC-DAD-QTOF: C<sub>26</sub>H<sub>26</sub>N<sub>2</sub>NaO<sub>5</sub>. [M+Na]<sup>+</sup> calcd.: 469.1739, found: 469.1730.

# (1R,2S,3R,4R,5S,6S)-2,4-Dinitro-6-phenethyl-3,5-diphenylcyclohexanol (33)



DIPEA (3.5 µL, 0.02 mmol) was added to a solution of aldehyde **32** (44.6 mg, 0.1 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) at 0 °C and the resulting mixture was stirred at room temperature for 20 h. CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was added and the mixture was washed with 1M HCl (5 mL). The organic extract was dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated to afford the corresponding cyclohexanols epimers **33** and **34** in a ratio 92:8 respectively. The mayor isomer was separated as a white solid by a quick flash column chromatography on silicagel (eluting with hexane/ethyl acetate 20:1). Yield: 37 mg (82%). m.p.= 191–193 °C.  $[\alpha]_D^{25} = -38.3^{\circ}$  (c= 0.65, CH<sub>2</sub>Cl<sub>2</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38–7.05 (m, 15H), 6.17 (dd, *J* = 12.6 Hz, *J*' = 2.2 Hz, 1H), 5.26 (t, *J* = 5.2 Hz, 1H), 4.74 (t, *J* = 2.4 Hz, 1H), 4.42 (dd, *J* = 12.4 Hz, *J*' = 5.2 Hz, 1H), 4.03 (t, *J* = 5.2 Hz, 1H), 2.81–2.74 (m, 1H), 2.56–2.48 (m, 1H), 2.47–2.42 (m, 1H), 2.22-2.09 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  140.5, 136.3, 133.8, 129.3, 129.0, 128.8, 128.5, 128.4, 128.3, 127.9, 127.2, 126.2, 91.6, 83.5, 71.1, 45.4, 42.4, 42.1, 35.4, 27.6. UPLC-DAD-QTOF: C<sub>26</sub>H<sub>30</sub>N<sub>3</sub>O<sub>5</sub>. [M+NH4]<sup>+</sup> calcd.: 464.2185, found: 464.2190.

### 9. Stereochemical determinations

Diastereomeric ratios (dr's) were determined by <sup>1</sup>H NMR (300Hz) spectroscopy analysis of the respective crude reaction product. Diastereomeric ratio  $dr \ge 95:5$  denotes that no peaks assignable to any additional stereisomer appear within the <sup>1</sup>H NMR limit of detection. Enantioselectivities (*ee*'s) were determined by HPLC using chiral columns as specified for each entry. Both the absolute and relative configurations of adduct **9Ab** were established by X-Ray structure analysis. Configuration of the remaining adducts was assigned by analogy and by assuming a uniform reaction mechanism.

The stereochemistry of cyclic products 29/30 and 33/34 could be primarily assigned by <sup>1</sup>H-NMR taking into account the known configurations R and S for carbons C3 and C4, respectively, and then the configuration of 33 was unequivocally assigned by X-Ray analysis. Initial assignment was made based on the coupling constants measured among the skeletal protons, applying the following rules for cyclohexane skeleton:  $J_{ax,ax} = 8-13$  Hz,  $J_{eq,ax}$  and  $J_{eq,eq} = 2-6$  Hz. Thus, in the spectrum of major isomer 29, the H2 proton (4.50 ppm) gives a well-resolved doublet of doublet signal with coupling constants (ca. 6 Hz and 11 Hz) referring to a relative 1,2-diequatorial relationship for the hydroxyl and phenethyl groups and a relative axial-equatorial relationship for the formyl and hydroxyl groups, respectively. In the spectrum of minor isomer 30, the H2 proton (4.33 ppm) gives a well-resolved triplet signal with coupling constant (ca. 10 Hz) referring to a relative 1,2-diequatorial relationship for the hydroxyl group and both phenethyl and formyl groups. On the other hand, a coupling constant of 12 Hz of the proton H5 in both isomers 29 and 30 (4.91 ppm and 4.83 ppm respectively) indicates a relative *equatorial* relationship for the nitro group in both cases. Finally, the two small coupling constants (5.6 and 4.4 Hz) of the H1 signal in 29 (3.36 ppm) fit well with an axial position for formyl group. Any other conformation and configuration do not fit well the observed <sup>1</sup>H-NMR coupling constants.



The stereochemistry of major and minor isomers 33 and 34, respectively, was initially assigned following a similar reasoning, based on the measured coupling constants pattern.

Accordingly, both products 33 and 34 would present a differente conformational bias as compared with 29/30. Both structures and the relevant coupling constant values are shown below.



The stereochemistry of product **33** was unequivocally determined by a single crystal X-ray structure determination (see section 13, page S137).

#### **10.** Catalytic reaction of α-hydroxy ketone 1A with vinyl 1,1-bis(sulfone) 35.



То mixture of α-hydroxy ketone **1A** (22.3)0.1 mmol) 1,1a mg, and bis(phenylsulfonyl)ethylene 35 (92.5 mg, 3.0 eq., 0.3 mmol) in dichloromethane (0.3 mL) at room temperature, catalyst C5 (5.9 mg, 10 mol %, 0.01 mmol) was added. The resulting suspension was stirred at room temperature, until consumption of the  $\alpha$ -hydroxyketone as monitored by <sup>1</sup>H NMR (40 h). The mixture was quenched with HCl 2M (1 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 2 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent Hexane/AcOEt 90:10  $\rightarrow$  70:30) to afford the desired product. (2-Hydroxy-2-methyl-4-(4-nitrophenyl)-6,6-bis(phenylsulfonyl)hexan-3-one, **36**). White foam, yield: 47.8 mg, 0.090 mmol, 90%. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>),  $\delta$ : 8.08 (d, J = 8.8 Hz, 2H), 7.95–7.87 (m, 2H), 7.78–7.68 (m, 4H), 7.63–7.49 (m, 4H), 7.31 (d, J = 8.7 Hz, 2H), 5.18 (t, J = 7.7 Hz, 1H), 4.13–4.02 (m, 1H), 2.73 (s, 1H), 2.70–2.59 (m, 2H), 1.28 (s, 3H), 1.27 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>), δ: 212.2, 147.5, 143.2, 140.4, 137.6, 137.0, 135.0, 134.9, 129.5, 129.3, 129.3, 128.5, 124.2, 80.2, 77.9, 48.4, 29.8, 27.2, 26.6. UPLC-DAD-QTOF: C<sub>25</sub>H<sub>29</sub>N<sub>2</sub>O<sub>8</sub>S<sub>2</sub> [M+NH<sub>4</sub>]<sup>+</sup> calcd.: 549.1365, found: 549.1368.

The enantiomeric purity was determined to be 38% *ee* by HPLC analysis (Daicel Chiralpak IA, hexane/isopropanol 50/50, flow rate= 1.0 mL/min, retention times: 8.4 min (major) and 10.5 min (minor)).

# 11. NMR Spectra

















0

Ph

НΟ

S53



Me






























































































































160

180 170

200 190

210

150 140 130 120 110 100 90 80 70 60 50 40 30 f1 (ppm)

20 10



























## **12. HPLC Chromatograms**



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 24.559                | 50.77  |
| 2 | 30.063                | 49.23  |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 24.569                | 9.96   |
| 2 | 29.054                | 90.04  |



Daicel Chiralpak AD-H, hexane/isopropanol 90/10 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.

Rac-7Aa



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 25.820                | 47.81  |
| 2 | 33.397                | 52.19  |



|   | Retention Time | % Area |
|---|----------------|--------|
| 1 | 24.130         | 89.89  |
| 2 | 31.539         | 10.11  |



mL/min, λ: 210.0 nm.

Ρh

NO<sub>2</sub>

O

HO

Daicel Chiralpak IA, hexane/isopropanol 70/30 flow rate = 1.0

|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 7.183                 | 50.38  |
| 2 | 13.131                | 49.62  |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 7.161                 | 89.71  |
| 2 | 13.136                | 10.29  |


Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 16.736                | 50.24  |
| 2 | 22.732                | 49.76  |



|   | Retention Time | % Area |
|---|----------------|--------|
| 1 | . 16.829       | 99.86  |
| 2 | 22.849         | 0.14   |



| Retention Time | % Area |
|----------------|--------|
| 16.388         | 50.84  |
| 21.487         | 49.16  |

Scalemic 9Ab



| Retention Time | % Area |
|----------------|--------|
| 16.406         | 99.53  |
| 21.854         | 0.47   |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 16.578                | 49.81  |
| 2 | 22.841                | 50.19  |



| 1 | 16.280 | 99.87 |
|---|--------|-------|
| 2 | 22.722 | 0.13  |

CI

NO<sub>2</sub>

 $\mathbf{C}$ 

HO

Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 14.384                | 50.77  |
| 2 | 18.404                | 49.23  |



|   | Retention Time | % Area |
|---|----------------|--------|
| 1 | 14.344         | 99.66  |
| 2 | 18.467         | 0.34   |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 18.507                | 49.60  |
| 2 | 24.626                | 50.40  |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 18.632                | 99.90  |
| 2 | 24.760                | 0.10   |

HO Bn Bn





|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 21.486                | 50.10  |
| 2 | 28.445                | 49.90  |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 21.441                | 100.00 |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 23.648                | 50.67  |
| 2 | 35.394                | 49.33  |



|   | Retention Time | % Area |
|---|----------------|--------|
| 1 | 23.188         | 99.77  |
| 2 | 34.946         | 0.23   |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 17.912                | 99.99  |
| 2 | 20.586                | 0.01   |

Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate = 1.0 mL/min,  $\lambda$ : 256.0 nm.







|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 9.353                 | 30.42  |
| 2 | 10.900                | 53.70  |
| 3 | 12.805                | 2.84   |
| 4 | 13.871                | 13.04  |





|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 9.465                 | 1.83   |
| 2 | 11.015                | 98.17  |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 11.040                | 15.36  |
| 2 | 12.068                | 15.55  |
| 3 | 14.175                | 34.38  |
| 4 | 26.996                | 34.72  |





|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 13.730                | 99.95  |
| 2 | 26.558                | 0.05   |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 75.453                | 36.51  |
| 2 | 84.717                | 16.91  |
| 3 | 100.240               | 34.85  |
| 4 | 114.500               | 11.73  |

Scalemic 9Ak



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 85.173                | 98.65  |
| 2 | 117.698               | 1.35   |







|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 21.509                | 48.85  |
| 2 | 26.461                | 51.15  |

## Scalemic 6Ba



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 22.422                | 91.11  |
| 2 | 27.219                | 8.89   |





|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 22.478                | 22.35  |
| 2 | 24.420                | 22.34  |
| 3 | 26.553                | 27.74  |
| 4 | 33.116                | 27.57  |

Scalemic 6Bk



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 25.655                | 18.60  |
| 2 | 32.008                | 81.40  |





#### Scalemic 9Ba



18.566

49.67

|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 15.051                | 99.29  |
| 2 | 18.753                | 0.71   |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 29.450                | 34.05  |
| 2 | 31.986                | 34.56  |
| 3 | 34.740                | 15.84  |
| 4 | 39.036                | 15.55  |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 29.588                | 0.02   |
| 2 | 32.019                | 99.98  |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.

## Rac-6Ca



| Retention Time | % Area |
|----------------|--------|
| 9.267          | 50.50  |
| 10.983         | 49.50  |

# Scalemic 6Ca



| Retention Time | % Area |
|----------------|--------|
| 9.010          | 83.85  |
| 10.646         | 16.15  |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 14.081                | 49.74  |
| 2 | 15.873                | 50.26  |

Scalemic 9Ca



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 14.184                | 1.80   |
| 2 | 15.905                | 98.20  |







|   | Retention Time | % Area |
|---|----------------|--------|
| 1 | 10.405         | 50.79  |
| 2 | 12.967         | 49.21  |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 10.560                | 78.53  |
| 2 | 13.047                | 21.47  |



9Da

Rac-9Da



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 16.535                | 16.17  |
| 2 | 18.103                | 32.59  |
| 3 | 21.572                | 33.97  |
| 4 | 26.248                | 17.27  |





|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 18.610                | 98.07  |
| 2 | 22.205                | 1.93   |



Daicel Chiralpak IA, hexane/isopropanol 90/10 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.

6Ea

#### Rac-6Ea



| Retention Time | % Area |
|----------------|--------|
| 16.478         | 59.67  |
| 21.547         | 40.33  |

## Scalemic 6Ea



| Retention Time | % Area |
|----------------|--------|
| 16.586         | 88.92  |
| 21.880         | 11.08  |



Rac-19



| Retention Time | Area     | % Area | Height |
|----------------|----------|--------|--------|
| 11.420         | 10214040 | 50.17  | 386590 |
| 15.013         | 10143400 | 49.83  | 297062 |

Scalemic 19

HO

Bn Bn

Ρh

19



| Retention Time | Area     | % Area | Height |
|----------------|----------|--------|--------|
| 11.407         | 16158557 | 99.97  | 594836 |
| 15.170         | 5301     | 0.03   | 559    |



| Peak Name | СН | tR     | Area    | Height | Area%  | Height% |
|-----------|----|--------|---------|--------|--------|---------|
| Unknown   | 10 | 14,107 | 4794381 | 52923  | 57,595 | 65,444  |
| Unknown   | 10 | 15,853 | 226057  | 3644   | 2,716  | 4,506   |
| Unknown   | 10 | 21,760 | 3303864 | 24301  | 39,689 | 30,050  |



| Peak Name | СН | tR     | Area     | Height | Area%  | Height% |
|-----------|----|--------|----------|--------|--------|---------|
| Unknown   | 10 | 13,680 | 23651655 | 358669 | 99,061 | 99,262  |
| Unknown   | 10 | 20,253 | 224228   | 2668   | 0,939  | 0,738   |









| Retention Time | Area    | % Area | Height |
|----------------|---------|--------|--------|
| 16.406         | 5258530 | 48.04  | 162057 |
| 29.922         | 5687078 | 51.96  | 89779  |





| Retention Time | Area    | % Area | Height |
|----------------|---------|--------|--------|
| 16.411         | 311087  | 8.42   | 11793  |
| 29.979         | 3382553 | 91.58  | 48925  |







7331740

20086

53,378

55,543

10 67,400

Unknown

| Peak Name | СН | tR     | Area    | Height | Area%  | Height% |
|-----------|----|--------|---------|--------|--------|---------|
| Unknown   | 10 | 56,013 | 16743   | 176    | 0,210  | 0,740   |
| Unknown   | 10 | 66,280 | 7949616 | 23556  | 99,790 | 99,260  |



The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol 90/10, flow rate= 1.0 mL/min.







|  | Retention Time | % Area |
|--|----------------|--------|
|  | 17.677         | 1.67   |
|  | 27.120         | 98.33  |



The enantiomeric purity was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol 95/5, flow rate= 1.0 mL/min.





| Retention Time | % Area |
|----------------|--------|
| 44.007         | 50.81  |
| 65.905         | 49.19  |
|                |        |







Daicel Chiralpak IB, hexane/isopropanol 90/10 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.



|   | Retention Time | % Area |
|---|----------------|--------|
| 1 | 19.450         | 49.24  |
| 2 | 25.291         | 50.76  |
|   |                |        |

Scalemic 21c



|   | Retention Time | % Area |
|---|----------------|--------|
| 1 | 19.200         | 2.03   |
| 2 | 24.986         | 97.97  |









Daicel Chiralpak IB, hexane/isopropanol 90/10 flow rate = 1.0 mL/min,  $\lambda$ : 256.0 nm.





|   | Retention Time | % Area |
|---|----------------|--------|
| 1 | 8.955          | 46.92  |
| 2 | 10.464         | 53.08  |

Scalemic 21i



|   | Retention Time | % Area |
|---|----------------|--------|
| 1 | 9.016          | 1.06   |
| 2 | 10.417         | 98.94  |



Daicel Chiralpak IB, hexane/isopropanol 90/10 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.

Rac-21'b



| Retention Time | % Area |
|----------------|--------|
| 17.575         | 50.26  |
| 19.831         | 49.74  |

#### Scalemic 21'b



| Retention Time | % Area |
|----------------|--------|
| 17.685         | 17.01  |
| 19.780         | 82.99  |



Daicel Chiralpak IB, hexane/isopropanol 95/05 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.

Rac-21'c



| Retention Time | % Area |
|----------------|--------|
| 35.746         | 51.34  |
| 40.390         | 48.66  |

#### Scalemic 21'c



| Retention Time | % Area |
|----------------|--------|
| 34.776         | 14.48  |
| 38.762         | 85.52  |



Daicel Chiralpak AD-H, hexane/isopropanol 80/20 flow rate = 1.0 mL/min, λ: 210.0 nm.



Scalemic 11 (from derivatization of carboxylic acid 22)



24.649

6.81

|   | Retention Time | % Area |
|---|----------------|--------|
| 1 | 13.623         | 1.05   |
| 2 | 15.740         | 0.94   |
| 3 | 17.569         | 98.01  |



Daicel Chiralpak IA, hexane/isopropanol 50/50 flow rate = 1.0 mL/min,  $\lambda$ : 210.0 nm.

Rac-36



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 8.435                 | 52.80  |
| 2 | 10.526                | 47.20  |



|   | <b>Retention Time</b> | % Area |
|---|-----------------------|--------|
| 1 | 8.382                 | 69.09  |
| 2 | 10.542                | 30.91  |

## 13. X-Ray analysis: ORTEP diagram of compound 9Ab and 33

CCDC-1514777 (compound **9Ab**) and CCDC-1588229 (compound **33**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data\_request/cif</u>.





