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A B S T R A C T

Spatio-temporal image fusion aims to increase the frequency and resolution of multispectral satellite sensor im-
ages in a cost-effective manner. However, practical constraints on input data requirements and computational
cost prevent a wider adoption of these methods in real case-studies. We propose an ensemble of strategies
to eliminate the need for cloud-free matching pairs of satellite sensor images. The new methodology called
Unpaired Spatio-Temporal Fusion of Image Patches (USTFIP) is tested in situations where classical requirements
are progressively difficult to meet. Overall, the study shows that USTFIP reduces the root mean square error
by 2-to-13% relative to the state-of-the-art Fit-FC fusion method, due to an efficient use of the available
information. Implementation of USTFIP through parallel computing saves up to 40% of the computational
time required for Fit-FC.
1. Introduction

Satellite sensor images provide valuable information in many re-
search areas such as ecology (Pettorelli et al., 2018), agriculture (Weiss
et al., 2020), urban studies (Zhao and Wentz, 2020), and economics
(Donaldson and Storeygard, 2016). Many of these studies rely on
data from publicly available sources like the Landsat (Arvidson et al.,
2006; Roy et al., 2014), MODIS (ORNL DAAC, 2017) and Sentinel
programs (Drusch et al., 2012; Donlon et al., 2012). The constellations
of satellites from each program need to compromise between swath-
width and revisiting time leading to trade-offs between spatial and
temporal resolutions. For example, the optical bands from Landsat-8
and MODIS have an approximate spatial resolution of 30 m and 500 m,
and their revisit frequencies are 16-days and daily, respectively (Roy
et al., 2014; ORNL DAAC, 2017). Similarly, Sentinel-2 and Sentinel-3
scan the Earth’s surface every 10 and 2 days at 10 m or 20 m and 300 m
resolution, respectively (Drusch et al., 2012; Donlon et al., 2012). Many
applications can benefit from denser spatial and temporal information
to support more detailed analyses (Fritz et al., 2015). A cost-effective
manner to achieve this goal is by blending images from complementary
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programs through spatio-temporal image fusion (STIF ) methods. STIF
techniques obtain finer spatial resolution images for a target date based
on the coarse-resolution counterpart and fine-coarse image pairs from
other dates (Ghamisi et al., 2019).

The high demand for more detailed images and the complexity
of the problem being addressed by STIF has resulted into a myriad
of methods. STIF techniques are generally grouped into three ma-
jor categories depending on the principles applied during the fusion
process (Chen et al., 2015; Belgiu and Stein, 2019): reconstruction-
based, unmixing-based, and learning-based methods. Reconstruction-
based techniques predict fine spatial resolution pixels from a weighted
sum of similar pixels around spatio-temporal neighborhoods. One of
the first reconstruction-based methods (Belgiu and Stein, 2019) is the
spatial and temporal adaptive reflectance fusion model (STARFM) (Gao
et al., 2006). Over the years, this method has been updated to better
deal with spatial heterogeneity (Zhu et al., 2010) and abrupt temporal
changes (Zhao et al., 2018). STARFM -like methods are very popu-
lar and they have been used in crop productivity assessments (Dong
et al., 2016), forest monitoring (Walker et al., 2012) and land cover
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mapping (Senf et al., 2015). Unmixing-based methods assume that a
coarse resolution pixel is a linear combination of spectral end-members
and their abundances. The spatial and temporal data fusion algorithm
(STDFA) (Wu et al., 2012) is one of the most widespread unmixing-
based methods. The STDFA was improved recently to better handle
inconsistencies between sensors (Wu et al., 2016). STDFA-like methods
have been used in practice to generate more frequent and spatially
denser data products like the normalized difference vegetation index
(NDVI) (Wu et al., 2018), leaf area index (LAI) (Wu et al., 2015b),
and land surface temperature (Wu et al., 2015a). Finally, learning-
based techniques capture the spatio-temporal patterns between fine and
coarse images through empirical relationships. Learning-based meth-
ods are increasingly gaining attention through application of artificial
neural networks, including convolutional neural networks (Song et al.,
2018; Tan et al., 2018), and support vector regression (Moosavi et al.,
2015). Some of these methods have been used recently, achieving
promising results (Song et al., 2022; Chen et al., 2021). Additionally,
hybrid methods combine theories and techniques from several cate-
gories. In this category, the Fit-FC (Wang and Atkinson, 2018) and
he flexible spatiotemporal data fusion (FSDAF ) (Zhu et al., 2016) are

two of the most robust techniques (Liu et al., 2019a; Zhou et al.,
2021). In recent years, FSDAF has been improved to better account for
temporal shifts (Guo et al., 2020) and spatially complex areas (Li et al.,
2020a). The FSDAF was applied for fire detection (Borini Alves et al.,
2018), crop yield estimation (Meng et al., 2018) and leaf area index
derivation (Zhai et al., 2020).

Despite the above-mentioned applications, there are operational
barriers for the widespread adoption of STIF methods in real-case
studies. The most relevant limitations are the strict input data require-
ments and the long processing times. The use of cloud-free images is
a common requirement amongst STIF methods. However, depending
on the location and time of year, cloud-free images can be difficult
to find (Ju and Roy, 2008). In addition, methods normally need pairs
of images from different sensors captured on the same dates. When
satellites have long revisiting times, matching pairs might be difficult
to find or non-existent. Both issues are generally solved by expanding
the time window for searching for candidates (Wang and Atkinson,
2018). Going further back in time increases the chances of finding a
pair of images satisfying these requirements. However, feeding STIF
methods with a temporally distant image can negatively affect their
performance (Zhu et al., 2010, 2016; Xie et al., 2018) since images
further apart normally resemble less closely the image to be pre-
dicted. Several solutions have been proposed recently to tackle each
of the above problems separately. For example, some STIF methods
like SaTellite dAta IntegRation (STAIR) (Luo et al., 2018, 2020) and
Improved Flexible Spatiotemporal DAta Fusion (IFSDAF ) (Liu et al.,
2019b) are designed specifically to work with cloudy images. To avoid
requiring matching image pairs, Wu et al. (2020) developed a new
add-in for traditional fusion methods that achieved promising results.
However, further investigation is required to devise fusion methods that
can be applied for general purposes, even with cloud-covered data,
and without requiring matching image pairs. Another practical issue
that has received less attention is the computational cost. Comparative
studies reveal that methods invest several minutes or hours to blend
information for a single image (Liu et al., 2019a; Wang et al., 2020a).
These computational times are not affordable in real-case studies where
the trend is to involve increasingly large datasets. This is an important
aspect that deserves further attention (Zhu et al., 2018).

In this paper, we propose a solution to simplify the inputs to
a series of cloud-contaminated fine-scale images and a clear coarse-
resolution image of the target date. The task of selecting the best data
from a baseline time series of cloudy images demands the use of a
formal methodology to prevent misclassified clouds and the necessity
2

for matching coarse-resolution images. On the other hand, neither
cokriging nor spatio-temporal methods appear to be suitable solutions
for this particular problem. Cokriging has limitations due to the cross
covariance matrix requirements. The utilization of stochastic spatio-
temporal methods on satellite imagery presents practical challenges due
to the data dimensionality (Das and Ghosh, 2020; Addink and Stein,
1999). As a result, there is a need to develop a new approach. First,
cloudy fine-resolution images are turned into their coarse-resolution
counterparts through upscaling. Then, we find local optimal informa-
tion patches comparing the upscaled images with the target coarse
image for selecting valid fragments from part-cloud images that the
fusion algorithm can ingest (Chen et al., 2020). The term patches
refers to small rectangular or square sub-regions extracted from a larger
image. These methods work in tandem with Fit-FC (Wang and Atkinson,
2018), an efficient and effective alternative among STIF methods (Liu
et al., 2019a; Zhou et al., 2021). As an attempt to reduce its computa-
tional time, the combination of methods is encapsulated into a single
procedure and programmed to work in parallel. We refer to this method
as Unpaired Spatio-Temporal Fusion of Image Patches (USTFIP).

The remainder of the paper is organized as follows: Section 2 intro-
duces the proposed methodological approach. Section 3 describes the
experimental set-up. Section 4 reports the results and Section 5 further
discusses the proposed approach. Concluding remarks are summarized
in Section 6.

2. Materials and methods

In the following, we simplify the mathematical expressions to a
single band since the process is analogous in all bands. Let 𝐶𝑡0 (𝐒) be
a coarse-resolution image (e.g. from MODIS), captured on a target date
𝑡0. Pixels are located at 𝐒 = {𝑆1,… , 𝑆𝑖,… , 𝑆𝑁}, where 𝑆𝑖 is a 2-D
coordinate vector, and 𝑁 is the total number of coarse-resolution pixels.
Let 𝐹𝐓(𝐬) be a time-series of fine-resolution images (e.g. from Landsat)
captured on dates 𝐓 = {𝑡1,… , 𝑡𝑘,… , 𝑡𝐾} (with 𝑡0 ∉ 𝐓). For clarity, we
refer to 𝐓 as the baseline period. The fine-resolution pixels are located
at 𝐬 = {𝑠1,… , 𝑠𝑗 ,… , 𝑠𝑀} and 𝑀 is the total number of pixels. The aim
of the proposed spatio-temporal fusion method is to predict 𝐹𝑡0 based
on 𝐶𝑡0 and 𝐹𝐓, assuming that (1) 𝐹𝐓 is a set of images with missing
information due to the presence of clouds and (2) some of the coarse
imagery 𝐶𝐓 matching 𝐹𝐓 is non-existent or unavailable.

2.1. Unpaired spatio-temporal fusion of image patches

The USTFIP method is summarized in a three-step procedure (see
Fig. 1). The first step, referred to as Coarse Harmonization (CH),
transforms the inputs (𝐹𝐓 and 𝐶𝑡0 ) into a consistent spatio-spectral
set of coarse images (𝐶̂𝐓 and 𝐶̂𝑡0 ). The CH avoids requiring matching
coarse-scale scenes corresponding to all the fine resolution images from
the baseline 𝐓. The second step, called Locally Optimal Prediction
(LOP), transfers the temporal relationships between 𝐶̂𝐓 and 𝐶̂𝑡0 to the
fine resolution. Relationships are established between sub-regions of
images, which enables considering clear-sky fragments from partially
cloudy scenes (see Fig. 1). LOP provides a first prediction of the fine-
scale image on the target date (𝐹𝐿𝑂𝑃

𝑡0
). The third and final step, named

Spatial Filtering (SF ), ensures that the output is spatially coherent by
applying spatial weights to 𝐹𝐿𝑂𝑃

𝑡0
. SF mitigates some errors due to

simplifications in the LOP process. Further details about each of the
steps can be found in Sections 2.2–2.4.

2.2. Coarse Harmonization (CH)

The aim of CH is to obtain coarse-scale images with matching
spatial and spectral resolutions for both the baseline (𝐶̂𝐓), and the
target date (𝐶̂𝑡0 ). To this end, CH aggregates the fine-scale images
to match the resolution of the coarse image (see (1) in Fig. 1) and
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Fig. 1. Methodology of the Unpaired Spatio-Temporal Fusion of Image Patches (USTFIP). Step 1 corresponds to the Coarse Harmonization (CH), Step 2 is the Locally Optimal
Prediction (LOP), and Step 3 corresponds to the Spatial Filtering (SF ).
compensates for the bandwidth differences between sensors (see (2) in
Fig. 1).

Adjusting the resolution is achieved through an average spatial
aggregation. The aggregation can include adjacency effects that can be
mitigated applying the convolution of the Point Spread Function (PSF ),
usually expressed as a Gaussian filter. The PSF represents the physical
blurring effect caused by the movement of the sensor, electronics,
atmospheric conditions and re-sampling (Huang et al., 2002; Kaiser
and Schneider, 2008). The overall upscaling process can be mimicked
through the following convolution

𝐶̂𝑡𝑘 (𝑆𝑖) = ℎ(𝑆𝑖) ∗ 𝐹𝑡𝑘 (𝑆𝑖), 𝑘 = 1,… , 𝐾 and 𝑖 = 1,… , 𝑁, (1)

where ℎ(𝑆𝑖) is a Gaussian filter with standard deviation 1 defined in
a 3 × 3 window around 𝑆𝑖 and normalized to sum to 1. Some of the
reflectances 𝐹𝑡𝑘 (𝑆𝑖) may be missing, likely due to the presence of clouds,
and then 𝐶̂𝑡𝑘 (𝑆𝑖) remains missing. This rule may cause a substantial loss
of information when clouds are scattered. However, the purpose of this
rule is twofold: (1) It avoids biased estimates of the coarse-resolution
pixel, since pixels around clouds are more likely to suffer the effect of
undetected clouds or cloud shadows, (2) It skips areas around clouds
where there might be misclassified shadows or cloud-shadows.

Remaining differences between 𝐶̂𝑡𝑘 and 𝐶𝑡0 can be attributed to
radiometric discrepancies between sensors. For example, the blue band
3

in MODIS corresponds to 459 − 479 nm while in Landsat-5 and 7 it
ranges around 450−520 nm and 441−514 nm, respectively (see Table 1).
Generally, the consistency is high, but the small spectral differences
can translate into bias. Applying relative radiometric correction meth-
ods (Chen et al., 2005) can avoid the propagation of such bias into the
spatio-temporal fusion. The linear regression method is a simple and
effective technique (Paolini et al., 2006) to re-scale the bandwidths
between sensors. The aim of the relative radiometric correction is to
transform the reflectances of 𝐶𝑡0 so they resemble those on the upscaled
fine-resolution images 𝐶̂𝑡𝑘 , 𝑡𝑘 ∈ 𝐓. For every pixel 𝑆𝑖 we define a
𝑤𝑅𝐶 × 𝑤𝑅𝐶 (5 × 5 by default) moving window surrounding 𝑆𝑖, and
estimate the 𝛽0(𝑆𝑖) and 𝛽1(𝑆𝑖) coefficients of the local linear regression

𝐶̂𝐓(𝑆𝑖) = 𝛽0(𝑆𝑖) + 𝛽1(𝑆𝑖)𝐶𝐓(𝑆𝑖) + 𝜖(𝑆𝑖), 𝑖 = 1,… , 𝑁, (2)

where 𝜖(𝑆𝑖) is a 𝑁(0, 𝜎2) random error, 𝐶̂𝐓(𝑆𝑖) = (𝐶̂𝑡1 (𝑆𝑖),… , 𝐶̂𝑡𝑘 (𝑆𝑖))
are the upscaled images obtained in Eq. (1), and some of the coarse
images 𝐶𝐓(𝑆𝑖) = (𝐶𝑡1 (𝑆𝑖),… , 𝐶𝑡𝑘 (𝑆𝑖)) are assumed to be known. When
a coarse image from the baseline is not available, we simply remove
its corresponding observations from the regression models. When the
coarse-resolution sensor is MODIS, the estimated coefficients 𝛽0(𝑆𝑖) and
𝛽 (𝑆 ) can be obtained through ordinary least squares, due to its daily
1 𝑖



Remote Sensing of Environment 295 (2023) 113709H. Goyena et al.

w
i
t
𝑣
t
s
t
e
o
t
a
p
a
H
E

𝛿

w
p
t
e
r

𝐶

b
d
t
f

𝜖
c
f
i

𝐹

b
c
t

2

t
o
i
A
b
d
t
o

𝐹

w
i
d
o
∑

s
i

o
p
𝐹
s
p
b

3

w
p
m
u
s
t
a
(
f

revisit time, and are used to provide the corrected coarse-scale image
on the target date 𝑡0 given by

𝐶̂𝑡0 (𝑆𝑖) = 𝛽0(𝑆𝑖) + 𝛽1(𝑆𝑖)𝐶𝑡0 (𝑆𝑖). (3)

When Sentinel-2 and Landsat −8 represent the fine and coarse images,
estimating the coefficients by least squares may not feasible due to their
long revisit times. In that case, 𝛽0(𝑆𝑖) and 𝛽1(𝑆𝑖) can be replaced with
the values from a continental-scale assessment (Zhang et al., 2018).

Performing each of the previous steps separately for each band
makes parallelizing the CH process straightforward. This is because
the layers corresponding to each band can be processed by a different
thread.

2.3. Locally Optimal Prediction (LOP)

The aim of the Locally Optimal Prediction (LOP) step is to obtain
a first prediction of the fine-resolution image for the target date by
capturing the change between the upscaled fine-scale images from the
baseline 𝐶̂𝑡𝑘 , 𝑡𝑘 ∈ 𝐓, and the radiometrically corrected image for
the target date 𝐶̂𝑡0 (𝐒). For this, our method automatically finds the
most suitable information within 𝐶̂𝐓 to be fused with 𝐶̂𝑡0 (see (3) in
Fig. 1). Then, USTFIP fits a linear regression between patches of 𝐶̂𝑡0
and optimal information in 𝐶̂𝐓 (see (4) in Fig. 1).

High quality input data are acknowledged as a key factor in achiev-
ing accurate results in spatio-temporal fusion. Our method measures
the quality using the similarity between 𝐶̂𝑡0 (𝐒) and the upscaled images
for the baseline 𝐶̂𝑡𝑘 , 𝑡𝑘 ∈ 𝐓. The largest correlation is a widespread
strategy used to find the most similar data. Note that this strategy will
help achieving a better fit for the linear regression, since correlation
measures the degree to which two datasets are linearly related. For each
pixel, we compute the linear correlation coefficient 𝑟𝑡𝑘 (𝑆𝑖) as follows

𝑟𝑡𝑘 (𝑆𝑖) =
𝑐𝑜𝑣(𝐶̂𝑡𝑘 (𝑆𝑖), 𝐶̂𝑡0 (𝑆𝑖))

√

𝑣𝑎𝑟(𝐶̂𝑡𝑘 (𝑆𝑖)) 𝑣𝑎𝑟(𝐶̂𝑡0 (𝑆𝑖))
, 𝑡𝑘 ∈ 𝐓, (4)

here 𝑐𝑜𝑣(𝐶̂𝑡𝑘 (𝑆𝑖), 𝐶̂𝑡0 (𝑆𝑖)) is the covariance between the reflectances
nside the 𝑤𝐿𝑅 × 𝑤𝐿𝑅 window for a date 𝑡𝑘 in the baseline 𝐓, and
he reflectances in the same window for the target date 𝑡0. Both
𝑎𝑟(𝐶̂𝑡𝑘 (𝑆𝑖)) and 𝑣𝑎𝑟(𝐶̂𝑡0 (𝑆𝑖)) are the variances of the reflectances inside
he 𝑤𝐿𝑅 × 𝑤𝐿𝑅 window for 𝑡𝑘 and 𝑡0, respectively. To compute the
ample correlation coefficient, there must be no missing values inside
he window. To select the maximum correlated date, we need that for
ach pixel 𝑆𝑖 there is a window without missing values for at least
ne date in the baseline. This requirement ensures that we are able
o capture temporal changes between the most similar windows while
lso avoiding any pixels close to clouds, as these are known to be more
rone to errors. If there is any pixel without a correlation value for
ny date, we need to expand the baseline 𝐓 and repeat the Coarse
armonization (Step 1) for the new images. Using the results from
q. (4), the optimal information can be determined as follows

(𝑆𝑖, 𝑡𝑘) =

{

1 if 𝑟𝑡𝑘 (𝑆𝑖) = 𝑚𝑎𝑥{𝑟𝐓(𝑆𝑖)}.
0 otherwise.

(5)

here 𝛿 is a mask indicating which 𝑡𝑘 is the optimal observation for
ixel 𝑆𝑖. Then, USTFIP captures the change between the baseline and
arget time frames using the same moving window as in Eq. (4) to
stimate the 𝛼0(𝑆𝑖) and 𝛼1(𝑆𝑖) coefficients in the following local linear
egression

̂𝑡0 (𝑆𝑖) = 𝛼0(𝑆𝑖) + 𝛼1(𝑆𝑖)
𝐾
∑

𝑘=1
𝛿(𝑆𝑖, 𝑡𝑘)𝐶̂𝑡𝑘 (𝑆𝑖) + 𝜖(𝑆𝑖) 𝑖 = 1,… , 𝑁, (6)

where 𝜖(𝑆𝑖) is the white noise process. The coefficients can be estimated
by ordinary least squares. The selection mask 𝛿(𝑆𝑖, 𝑡𝑘) ensures that only
4

pixels with the largest correlation are involved in the linear regression
etween 𝐶̂𝑡𝑘 (𝑆𝑖) and 𝐶̂𝑡0 (𝑆𝑖). To obtain a fine-scale prediction, USTFIP
ownscales the estimated coarse-resolution coefficients 𝛼̂0(𝐒) and 𝛼̂1(𝐒),
he regression residuals 𝜖(𝐒) and the selection mask 𝛿(𝐒,𝐓) to the
ine-resolution, to obtain 𝛼̂0(𝐬), 𝛼̂1(𝐬), 𝜖(𝐬) and 𝛿(𝐬,𝐓). USTFIP uses the

nearest neighbor method to resample 𝛼̂0(𝐒), 𝛼̂1(𝐒) and 𝛿(𝐒,𝐓), and
̂(𝐒) is resampled through a bicubic interpolation. Assuming that the
oarse-resolution change obtained in Eq. (6) can be applied over the
ine-resolution images, we obtain a first estimate of the fine-resolution
mage for the target date 𝐹𝐿𝑂𝑃

𝑡0
(𝐬), namely

̂𝐿𝑂𝑃
𝑡0

(𝑠𝑖) = 𝛼̂0(𝑠𝑖) + 𝛼̂1(𝑠𝑖)
𝐾
∑

𝑘=1
𝛿(𝑠𝑖, 𝑡𝑘)𝐹𝑡𝑘 (𝑠𝑖) + 𝜖(𝑠𝑖). (7)

Performing all of the steps in the LOP step separately for each
and enables direct parallelization. Similar to the CH process, we
an process the information corresponding to each band in a separate
hread without the need for additional steps.

.4. Spatial Filtering (SF)

Simplifications made during the transition from Eqs. (6) to (7) lead
o errors in 𝐹𝐿𝑂𝑃

𝑡0
. Blocky artifacts may appear in 𝐹𝐿𝑂𝑃

𝑡0
as a result

f the scale-invariant assumption in Eq. (7). Additionally, the bicubic
nterpolation of 𝜖 can cause over-smoothed residuals (see Wang and
tkinson (2018)). A spatial weighting filter can mitigate both issues
y canceling-out contrasting errors in similar land-use classes. USTFIP
efines the spatial filter like that in Wang and Atkinson (2018). Thus,
he second prediction of the fine-scale pixels 𝐹𝑡0 (𝑠𝑖) is the weighted sum
f 𝑛 neighboring pixels that are spectrally similar to 𝑠𝑖

̂𝑡0 (𝑠𝑖) =
𝑛
∑

𝑖=1
𝑊𝑖𝐹

𝐿𝑂𝑃
𝑡0

(𝑠𝑖), (8)

here 𝑊𝑖 is the inverse distance weight for each of the 𝑛 most sim-
lar pixels, and similarity is defined as the inverse of the reflectance
ifference between the central pixel 𝑠𝑖 and those within the extent
f a 𝑤 × 𝑤 window around it. Weights are subject to the condition
𝑛
𝑖=1 𝑊𝑖 = 1. The main difference with the Fit-FC method is that

imilarity is measured in the optimal patch from 𝐹𝐓 that is involved
n Eq. (7) through the selection mask 𝛿.

Performing SF jointly for all bands hinders direct parallelization
f this step. Therefore, additional steps are required to compute it in
arallel. To accomplish this, USTFIP divides the first prediction image,
̂𝐿𝑂𝑃
𝑡0

, into equal-sized sub-images or chunks and builds a buffer of
ize 𝑤 around each of them to ensure filtering can be performed on all
ixels within the chunk. These buffered chunks can then be processed
y different threads.

. Experimental analysis

The performance of the proposed USTFIP method is illustrated
ith real data in situations where the classical data requirements are
rogressively difficult to meet in terms of cloud coverage and finding
atching pairs. More specifically, Section 3.1 describes the datasets
sed for the experiment and Section 3.2 describes the experimental
cenarios used for the quality assessment. We tested USTFIP against
he Fit-FC, STARFM and FSDAF methods. Since Fit-FC achieves better
ccuracy than STARFM and FSDAF in all the experimental scenarios
see Tables A.6, A.7 A.8 and A.9), in the remainder of this article we
ocus on comparing USTFIP and Fit-FC.



Remote Sensing of Environment 295 (2023) 113709H. Goyena et al.

o
H
a
t
t
2
5
7
M
r
c
o
D

k
S
c
f
m
a
n
i

r
b
H
A
i
e

Table 1
Band wavelengths of sensors onboard the Landsat-5, Landsat-7, and MODIS Terra/Aqua
satellites.

Name Wavelengths (nm)

Landsat-5 (TM) Landsat-7 (ETM) MODIS

Red 630–690 631–692 620–670
Green 520–600 519–601 545–565
Blue 450–520 441–514 459–479
Near Infrared (NIR) 760–900 772–898 841–876
Shortwave Infrared (SWIR) 1 1550–1750 1566–1651 1628–1652
Shortwave Infrared (SWIR) 2 2080–2350 2107–2294 2015–2155

Spatial resolution 30 m 30 m 500 m

Table 2
Band wavelengths of Sentinel-2 and Sentinel-3 images.

Name Sentinel-2 (MSI) Sentinel-3 (OLCI)

Wavelength Spatial
resolution

Wavelength Spatial
resolution

Red 650–680 nm 10 m 660–670 nm 300 m
Green 543–578 nm 10 m 555–565 nm 300 m
Blue 458–523 nm 10 m 485–495 nm 300 m
Near Infrared (NIR) 855–875 nm 20 m 855–875 nm 300 m

3.1. Datasets

The experimental datasets consist of cloud-free satellite sensor im-
ages for four different regions. The first two datasets correspond to
Landsat and MODIS surface reflectance images for two widely studied
areas (Emelyanova et al., 2013; Zhu et al., 2016; Cheng et al., 2017;
Zhao et al., 2018; Li et al., 2020b; Wang and Atkinson, 2018; Liu et al.,
2019a): the Coleambally Irrigation Area (Coleambally henceforth) and
the Gwydir catchment (Gwydir henceforth). The last two datasets
correspond to Sentinel-2 and Sentinel-3 bottom-of-atmosphere images
for two square regions in North Dakota, America (Tang et al., 2021).

The Coleambally region intersects with the paths 92/93 and row 84
f the tilling system of Landsat-7 and the MODIS tiles H: 29/V: 12 and
: 30/V: 12 (top row in Fig. 2). Gwydir is covered by the paths 91/92
nd rows 80/81 from the tiling system of Landsat-5 and the MODIS
iles H: 30/V: 11 and H: 31/V: 11 (bottom row in Fig. 2). The size of
he images from Coleambally and Gwydir are 1400 × 1391 pixels and
399 × 2400 pixels, covering areas of approximately 1753 km2 and
182 km2, respectively. The period of analysis spans around October
th, 2001 to May 3rd, 2002 in Coleambally and March 16th, 2004 to
arch 3rd, 2005 in Gwydir, with a total number of 17 and 14 images,

espectively (see Table 3). In Coleambally, the time of analysis is
entered around the austral summer to encapsulate the development
f summer crops, while in Gwydir it focuses on flooding events on
ecember, 2004. Table 1 shows the bands included in these images.

Both locations in North Dakota cover two different 15 km by 15
m sites clipped from the Sentinel-2 Multispectral Imager (MSI) and
entinel-3 Ocean and Land Color Imager (OLCI) time-series images
overing the same 109.5 km by 109.5 km area (see Fig. 3). Fine images
or both regions are 750 × 750 pixels, with a spatial resolution of 20
, independent of the original resolution. The period of analysis spans

round June 6th, 2019 to October 10th, 2020 in both sites, with a total
umber of 11 images (see Table 3). Table 2 shows the bands included
n these images.

Before fusion, images from each dataset were coregistered and
adiometrically corrected. Misalignment between satellite sensors has
een recognized as an important source of error (Gevaert and García-
aro, 2015; Tang et al., 2020; Wang et al., 2020b; Zhou et al., 2021).
sharper description of the exact preprocessing steps can be found

n Emelyanova et al. (2013) for Coleambally and Gwydir and in Tang
t al. (2021) for the North Dakota datasets. According to Zhou et al.
5

Table 3
Time-series of cloud-free imagery in Coleambally, Gwydir and North Dakota.

No. Coleambally Gwydir North Dakota

1 2001-10-07 2004-04-16 2019-06-06
2 2001-10-16 2004-05-02 2019-07-18
3 2001-11-01 2004-07-05 2019-08-20
4 2001-11-08 2004-08-06 2019-09-16
5 2001-11-24 2004-08-22 2020-03-27
6 2001-12-03 2004-10-25 2020-06-07
7 2002-01-04 2004-11-26 2020-08-11
8 2002-01-11 2004-12-12 2020-08-24
9 2002-02-12 2004-12-28 2020-09-10
10 2002-02-21 2005-01-13 2020-09-25
11 2002-03-09 2005-01-29 2020-10-10
12 2002-03-16 2005-02-14 –
13 2002-04-01 2005-03-02 –
14 2002-04-10 2005-04-03 –
15 2002-04-17 – –
16 2002-04-26 – –
17 2002-05-03 – –

(2021), Fit-FC is highly sensitive to bias between sensors and correction
algorithms from different satellite programs. Therefore, images were
also radiometrically normalized assuming a linear relationship between
the coarse and fine scenes (MODIS and Landsat, and Sentinel-3 and
Sentinel-2) captured on the same dates.

The experiments simulated the presence of clouds by masking the
scenes in Table 3 artificially. For this, the cloud masks were extracted
from the quality bands of other fine scenes, either from Landsat or
Sentinel-2. The fraction of cloud-covered pixels ranged between 4−73%
and 1−86% in Coleambally and Gwydir, respectively, and between
15.5−88.2% for North Dakota. Information about the coverage, shape
and distribution of clouds can be found in Appendix A. Simulating the
presence of clouds offers several advantages over using actual cloud-
covered images. Notably, it provides greater flexibility and allows for
greater control over the missing data. Additionally, it enables the
perfect detection of clouds and cloud-shadows, a topic which falls
outside the scope of this manuscript.

3.2. Experimental scenarios

The assessment comprised several scenarios representing increas-
ingly challenging situations for finding matching pairs of cloud-free
images. That is, for a given date of prediction (target), it is necessary to
go further back in time to locate a clear fine image and its coarse coun-
terpart (reference image, henceforth). The images between the target
and reference images are assumed partially cloud-covered according to
Figs. A.7, A.8 and A.9 in Appendix A.

Each scenario involves several experiments changing the date of the
target image from image no. 7 onward, in sequence along the time-
series in Table 3. The starting point at image no. 7 ensures that all
scenarios predict the same images which facilitates their comparison.

Overall, the assessment comprised 55 experiments in Coleambally
(11 targets × 5 scenarios), 40 experiments (8 targets × 5 scenarios) in
Gwydir, and 25 experiments in the North Dakota regions (5 targets × 5
scenarios). In each experiment, Fit-FC predicted the fine-scale image on
the target date using the fine-coarse pair of images from the reference
date plus the coarse image from the target date. In contrast, USTFIP
considered the fine images available from the reference to the target
and the coarse image from the target date. For example, in scenario 1,
the first experiment in Coleambally targeted the prediction of image no.
7 assuming that the clean reference image is image no. 5 and image no.
6 is contaminated by clouds (47%). Subsequent scenarios increase the
temporal separation between the reference and target image, expanding
the baseline period and increasing the number of cloud-covered scenes.
Thus, in the first experiment in scenario 2 in Coleambally, the reference
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Fig. 2. False color representation (NIR, red and green as RGB) of the fine-scale (left) and coarse-scale (right) imagery at Coleambally (top) and Gwydir (bottom). The images
correspond to images no. 7 and 8 of the corresponding time-series, captured on January 4th 2002 and December 12th, 2004, respectively.
and target correspond to images no. 4 and 7, while no. 5 and 6 are
cloudy (22% and 47%, respectively). The scenarios are named accord-
ing to the number of cloudy scenes that exist between the reference and
target images. Therefore, scenario 1 groups experiments where there is
a single cloud-covered image between the reference and target images.
Scenario 2 corresponds to experiments where there are two cloud-
covered scenes between the cloud-free reference and target images.
Scenarios 3 to 5 group experiments with 3 to 5 cloud-covered images
between the cloud-free reference and target. The study examined up
to five scenarios, which in the North Dakota sites represents almost a
year between the reference and target. In every experiment, Fit-FC used
a 5 × 5 neighborhood for the regression model fitting (RM) stage and
31 × 31 pixel window and 20 similar pixels for the spatial filtering (SF )
and residual compensation (RC) steps. We also used the same set of
parameters as in Liu et al. (2019a) for the STARFM and FSDAF. USTFIP
also used a 31 × 31 pixel window and 20 similar pixels for the spatial
filtering.

We measured the computational time spent for each method to
carry out the spatio-temporal fusion and contrasted the outputs against
the actual fine-scale image. The evaluation metrics chosen for the
experiment are the Root Mean Square Error (RMSE) and the Relative
6

Root Mean Square Error Difference (RRMSED) to evaluate the spectral
accuracy, and the Robert’s Edge (Edge) to evaluate the spatial accuracy.

The RMSE for a fusion method 𝑚 is given by

𝑅𝑀𝑆𝐸𝑚 =

√

∑𝑛
𝑖 (𝐹𝑡0 (𝑠𝑖) − 𝐹𝑚

𝑡0
(𝑠𝑖))2

𝑛
(9)

where 𝐹𝑚
𝑡0

is the prediction of the target fine image given by method 𝑚.
The RRMSED is given by

𝑅𝑅𝑀𝑆𝐸𝐷 =
𝑅𝑀𝑆𝐸𝐹𝐹𝐶 − 𝑅𝑀𝑆𝐸𝑈𝑆𝑇𝐹𝐼𝑃

𝑅𝑀𝑆𝐸𝐹𝐹𝐶
(10)

where 𝑅𝑀𝑆𝐸𝐹𝐹𝐶 and 𝑅𝑀𝑆𝐸𝑈𝑆𝑇𝐹𝐼𝑃 are the RMSE obtained for the
Fit-FC and USTFIP methods, respectively.

The spatial accuracy is evaluated based on the normalized differ-
ence of the Robert’s Edge spatial feature, between the output and the
reference images given by:

𝑆𝑚(𝑠𝑖) = (𝑆𝑡0 (𝑠𝑖) − 𝑆̂𝑚
𝑡0
(𝑠𝑖))∕(𝑆𝑡0 (𝑠𝑖) + 𝑆̂𝑚

𝑡0
(𝑠𝑖)), 𝑠𝑖 ∈ 𝐬 (11)

where 𝑆𝑡0 is the spatial feature obtained from 𝐹𝑡0 and 𝑆̂𝑚
𝑡0

is the spatial
feature obtained from 𝐹𝑚

𝑡0
. Then, we average the 𝑆𝑚(𝑠𝑖) values corre-

sponding to pixels with 𝑆̂𝑚(𝑠 ) values greater than the 90th percentile,
𝑡0 𝑖
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Fig. 3. False color representation (NIR, red and green as RGB) of the fine-scale (left) and coarse-scale (right) imagery at both regions in North Dakota. The images correspond to
images no. 3 and 4 of the corresponding time-series, captured on August 20th 2019 and September 16th, 2019, respectively.
to obtain a single value for the spatial accuracy, denoted by 𝐸𝑑𝑔𝑒𝑚. A
spatial accuracy of 0 represents a feature that is the same in both the
real and the output images, negative values indicate over-smoothing
in the feature for the prediction, and positive values indicate over-
sharpening. For a sharper description of the Edge feature see Zhu et al.
(2022). These metrics are calculated for each band and averaged across
the bands described in Tables 1 and 2. The analysis was carried out on
a computer with an Intel(R) Core(TM) i7-6700 @3.40 GHz processor
and four cores.

4. Results

4.1. Visual inspection

The visual inspection focuses on the 7th image from Coleambally
(Fig. 4), the 8th image of the time-series from Gwydir (Fig. 5) and
the 7th image from both North Dakota regions. The target image from
Coleambally corresponds to January 4th, 2002, a time in the season
when crops experience rapid vegetative growth. In Gwydir, the target
scene is from December 12th, 2004, a date in which the area was
flooded. In the North Dakota regions, the target image corresponds to
August 24th, 2020, the date that should be the most affected by the
huge temporal gaps around the 4th image. Figures display a general
7

overview of the location and a smaller area for detailed analysis. In
each sub-group, the top and bottom rows correspond to predictions
from USTFIP and Fit-FC, respectively. Images are represented in false-
color. Coleambally and the North Dakota regions use NIR, red, and
green as RGB, which highlights the presence of vegetation and water.
Images from Gwydir use SWIR, NIR, and green as RGB to emphasize
the flooding. The predictions are labeled using the date of the reference
image which is increasingly distant from the target date. Note that, in
addition to the reference image, USTFIP also takes advantage of the
cloudy scenes between the reference and target dates.

The detailed area in Fig. 4 shows that, in general, USTFIP makes pre-
dictions closer to the actual image than Fit-FC. This is especially evident
in the white field at the top and the dark areas in the central parts of
the image (yellow rectangles). As the clear-sky input image separates
from the target image, the similarity between the real and predicted
images decreases. Colors and boundaries degrade more quickly with
Fit-FC than with USTFIP.

The impression from the visual inspection is supported by quantita-
tive assessment for the overall region. The RMSE from Fit-FC increases
in 0.0086 units (from 0.0389 to 0.0475) as the reference moves from
November 24th to October 7th. Instead, the error from USTFIP in-
creased by 0.0075 units (from 0.0376 to 0.0452) in the same situation.
The detailed area demonstrates that using additional information from
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Fig. 4. Comparison of the target image and the predictions from USTFIP and Fit-FC for the different scenarios for Coleambally on January 4th, 2002. On the far left, an overview of
the Landsat-7 target image and below, a detail of the yellow region within the overview image. From left to right, predictions based on reference images captured on increasingly
separated dates. The first two rows show the entire region. Last two rows are zoomed from the specific yellow area, where new yellow squares are added for visual inspection.
Representations use a false-color palette (NIR, red and green as RGB).
cloudy images captured closer in time makes the USTFIP predictions
exhibit a slower decline in contrast and a more gradual increase in
blurriness compared to Fit-FC.

The results of the experiment in Gwydir can be seen in Fig. 5. The
flooding event makes the target image very different from the previous
ones, as reflected by the small correlation between them (always lower
than 0.2519). The images from USTFIP and Fit-FC are very similar to
each other regardless of the separation between the baseline and target.
The predictions represent well the colors of the real image, but the
boundaries and shapes of the flooded area differ from the original (see
rightmost yellow rectangle in the last two rows from Fig. 5). The poor
prediction of shapes is expected since fine-scale images from previous
moments do not provide evidence about the location of flooded terrain .
This suggests that using recent data to predict transient abrupt changes
does not bring an improvement in prediction power. In line with visual
perception, the RMSE between the predictions and the actual image
remain nearly constant for the different experiments (0.0320−0.0323 for
Fit-FC and 0.0317−0.0320 for USTFIP). Nevertheless, USTFIP performs
moderately more accurately than Fit-FC in non-flooded areas.

The results of the experiments in both North Dakota regions can be
seen in Fig. 6. The images from USTFIP and Fit-FC are very similar to
each other when the gap between the baseline and target is a single
image, however, USTFIP more accurately preserves the shapes in the
original image, as evidenced by the difference in the Edge feature
presented in Table 5. In addition, the USTFIP predictions deprecate at
8

a slower rate than the ones from Fit-FC, due to the use of intermediate
images, which makes the predictions much less sensitive to the large
temporal gap between images 3 to 5.

4.2. Quantitative assessment

Tables 4 and 5 summarize the performance of the USTFIP and Fit-FC
methods as the temporal gap between the reference and target images
increases. Table 4 shows the average results of the eleven and eight
experiments in each experimental scenario in Coleambally and Gwydir,
respectively. As expected, the reference-target resemblance decreases
with time in both locations. In Coleambally, the correlation between
these images decreases from 0.75 to 0.40 as their temporal separation
increases from 28 to 86 days. Similarly, in Gwydir, the correlations
decrease from 0.54 to 0.28 as time separation increases from 44 to
158 days. In general, images from Coleambally have a slightly larger
correlation with the target image than those from Gwydir. This suggests
that subsequent images are more alike in Coleambally. Yet, the larger
decrease in correlation in a shorter time-span in Coleambally implies
that images change more quickly. Table 5 shows the average results
of the five experiments in each experimental scenario in both North
Dakota sites. Images from these sites have much smaller correlations,
probably due to the long temporal gaps between reference and target
images.
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Fig. 5. Comparison of the target image and the predictions from USTFIP and Fit-FC for the different scenarios for Gwydir on December 12th, 2004. On the far left, an overview of
the Landsat-5 target image and below, a detail of the yellow region within the overview image. From left to right, predictions based on reference images captured on increasingly
separated dates. The first two rows show the entire region. Last two rows are zoomed from the specific yellow area, where new yellow squares are added for visual inspection.
Representations use a false-color palette (SWIR, NIR and green as RGB).
The disparity between the reference and target images negatively
affects the prediction accuracy of Fit-FC. In Coleambally, the RMSE
increases from 0.0281 to 0.0340 as the correlation declines from 0.75
to 0.40. Similarly, in Gwydir the RMSE increases from 0.0235 to 0.0273
when the correlation declines from 0.54 to 0.28. The prediction error
of USTFIP also depends on the baseline-target similarity, but to a lesser
extent. In both Coleambally and Gwydir, the RMSE escalates with
smaller correlation (from 0.0269 to 0.0293 in Coleambally and from
0.0229 up to 0.0238 in Gwydir), but the growth tends to stagnate
more rapidly. The results from the North Dakota regions show that
USTFIP is much less sensitive to small correlations and large temporal
gaps, particularly when referring to spatial accuracy. The Robert’s Edge
feature is preserved much better by USTFIP than by Fit-FC (see Table 5).

In this algorithm, other aspects such as the distribution of clouds
in space and time may play a critical role. For example, predicting
the image from January 4th, 2002, in Coleambally results in a slightly
larger RMSE, 0.0456 vs. 0.0452 from scenario 𝑁 = 4 to 𝑁 = 5. The
fact that the image from October 16th has a clear-sky fragment at the
bottom right corner, where the remaining images are contaminated by
9

clouds, might be an advantage over having a closer clear-sky image. In
general, the prediction accuracy of USTFIP improves when the number
of available observations grows because this increases the chances of
finding a suitable observation in LOP (see Tables A.6, A.7, A.8 and A.9
in Appendix A).

As Table 4 reveals, the USTFIP framework increases the accuracy
from the Fit-FC method in all scenarios. Increases in accuracy are
around 2-to-13% depending on the location and temporal gap. At
short distances (scenario 1), USTFIP surpasses Fit-FC with a decrease
in the RMSE of 5% in Coleambally and 2% in Gwydir and both
North Dakota regions. In Coleambally and Gwydir, the difference in
performance between USTFIP and Fit-FC increases as the reference-
target separation increases. In scenario 5, the decrease in RMSE reaches
13% for Coleambally and Gwydir and 8% in both North Dakota regions.
The larger gap between the methods as scenarios evolve confirms that
the predictions from USTFIP deprecate at a slower rate than for Fit-
FC. Note that USTFIP predictions take advantage of the increasingly
available partial information between the baseline and target, so they
rely less and less on the reference image. Individual experiments reveal
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Fig. 6. Comparison of the target image and the predictions from USTFIP and Fit-FC for the different scenarios for both sites in North Dakota on August 24th, 2020. On the left,
the original Sentinel-2 target images, both for the full region and a zoomed-in view of the yellow squares. From left to right, predictions for the zoomed region based on reference
images captured on increasingly separated dates. The first two rows show the first region. Last two rows show the results for the second region. Representations use a false-color
palette (NIR, red and green as RGB).
Table 4
Averages of the quality metrics for each scenario, where GapN is the number of cloud-covered scenes between the reference (clear-sky) and the target image. Gap represents
the number of days between the reference and the target date, CC𝑟𝑡 is the correlation coefficient between the reference and target images. Clouds represents the average cloud
coverage during the baseline period. RMSE is the root mean squared error of the prediction either from Fit-FC (FFC) or USTFIP. Edge is the mean of the normalized difference in
the Robert’s Edge feature and 𝑡 is the computational time dedicated to fuse the images for Coleambally (1400 × 1391 pixels) and Gwydir (2399 × 2400 pixels).

Coleambally

GapN Gap CC𝑟𝑡 Clouds RMSE𝐹𝐹𝐶 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RRMSED Edge𝐹𝐹𝐶 Edge𝑈𝑆𝑇𝐹𝐼𝑃 t𝐹𝐹𝐶 t𝑈𝑆𝑇𝐹𝐼𝑃
no days – % – – % – – min min

1 28 0.75 17 0.0281 0.0266 5.07 −0.1438 −0.1121 1.97 1.69
2 42 0.66 22 0.0302 0.0279 7.10 −0.1659 −0.1234 1.87 1.64
3 57 0.58 25 0.0320 0.0286 10.24 −0.1557 −0.1181 1.89 1.75
4 72 0.50 29 0.0331 0.0290 11.70 −0.1758 −0.1429 1.91 1.86
5 86 0.40 31 0.0340 0.0293 13.33 −0.1909 0.1556 1.93 1.97

Gwydir

GapN Gap CC𝑟𝑡 Clouds RMSE𝐹𝐹𝐶 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RRMSED Edge𝐹𝐹𝐶 Edge𝑈𝑆𝑇𝐹𝐼𝑃 t𝐹𝐹𝐶 t𝑈𝑆𝑇𝐹𝐼𝑃
no days – % – – % – – min min

1 44 0.54 23 0.0235 0.0229 2.05 −0.1278 −0.1281 6.56 3.92
2 68 0.46 32 0.0252 0.0235 6.53 −0.1543 −0.1398 6.48 4.39
3 94 0.38 38 0.0263 0.0237 9.63 −0.1707 −0.1573 6.28 5.07
4 126 0.33 40 0.0271 0.0238 12.18 −0.1849 −0.1699 6.15 5.55
5 158 0.28 42 0.0273 0.0237 13.40 −0.1767 −0.1682 6.23 5.94
10
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Table 5
Averages of the quality metrics for each scenario, where GapN is the number of cloud-covered scenes between the reference (clear-sky) and the target image. Gap represents
he number of days between the reference and the target date, CC𝑟𝑡 is the correlation coefficient between the reference and target images. Clouds represents the average cloud
overage during the baseline period. RMSE is the root mean squared error of the prediction either from Fit-FC (FFC) or USTFIP. Edge is the mean of the normalized difference in

the Robert’s Edge feature and 𝑡 is the computational time (in seconds) dedicated to fuse the (750 × 750 pixel) images for both sites in North Dakota.
Site 1

GapN Gap CC𝑟𝑡 Clouds RMSE𝐹𝐹𝐶 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RRMSED Edge𝐹𝐹𝐶 Edge𝑈𝑆𝑇𝐹𝐼𝑃 t𝐹𝐹𝐶 t𝑈𝑆𝑇𝐹𝐼𝑃
no days – % – – % – – seconds seconds

1 61 0.24 27 0.0456 0.0447 1.73 −0.1652 −0.1260 32.81 54.42
2 133 0.10 36 0.0469 0.0460 2.46 −0.1917 −0.1407 32.43 55.29
3 207 0.07 39 0.0471 0.0459 3.09 −0.1777 −0.1328 31.53 56.00
4 285 0.12 40 0.0472 0.0464 2.48 −0.2042 −0.1685 32.01 56.32
5 359 0.12 39 0.0517 0.0472 7.88 −0.2261 −0.1859 30.53 54.90

Site 2

GapN Gap CC𝑟𝑡 Clouds RMSE𝐹𝐹𝐶 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RRMSED Edge𝐹𝐹𝐶 Edge𝑈𝑆𝑇𝐹𝐼𝑃 t𝐹𝐹𝐶 t𝑈𝑆𝑇𝐹𝐼𝑃
no days – % – – % – – seconds seconds

1 61 0.24 27 0.0427 0.0418 2.77 −0.1472 −0.0595 28.00 45.89
2 133 0.10 36 0.0437 0.0427 3.16 −0.1513 −0.0706 27.91 46.65
3 207 0.08 39 0.0438 0.0429 2.27 −0.1677 −0.1048 27.96 47.19
4 285 0.16 40 0.0440 0.0431 2.06 −0.1726 −0.0963 27.93 47.49
5 359 0.15 39 0.0487 0.0436 7.73 −0.1916 −0.1220 28.14 47.83
a
a
c
m
a
a
l
w
S

that USTFIP does not provide more accurate results than Fit-FC in all
situations. As Tables A.6, A.7, A.8 and A.9 in Appendix A show, Fit-FC
ives more accurate predictions than USTFIP for the pixels with a single
vailable observation in the baseline. As a consequence, in 7.3% and
7.5% of the experiments in Coleambally and Gwydir, Fit-FC predicts
ore accurately than USTFIP. In these situations, the RRMSED is 0.79%

0.47-to-1.02%) in Coleambally and 1.98% (0.13-to-7.74%) in Gwydir.
hese results transfer well to a band-by-band analysis (see Appendix B),
here again USTFIP outperforms the rest of the methods.
USTFIP runs faster than Fit-FC in most scenarios even when consid-

ring the generation of coarse-scale images, reducing the computational
ime by up to 40% (Table 4). The reduction is accomplished through the
arallel application of linear model fitting, filtering and compensation
o each band or image sub-region. Note that the computational cost
f the Fit-FC remains approximately constant, around 2 and 6 min in
ll experiments in Coleambally and Gwydir. Instead, USTFIP running
imes increase with the number of fine-scale input images, from 1.69
o 1.97 min in Coleambally and 3.92 to 5.94 min in Gwydir. Longer
aselines entail a greater number of calculations in USTFIP to generate
ynthetic coarse-scale images and select the optimal information within
greater pool of data. Naturally, the number of pixels of the image is

nother factor to consider, since the additional steps required for the
arallel processing can make it counterproductive for small images,
uch as those of the North Dakota regions (750 × 750 pixels). On
verage, the time saved by USTFIP is 7% in Coleambally (1400 × 1391

pixels) and 21% in Gwydir (2399 × 2400).

5. Discussion

STIF methods impose strict input data requirements that make them
less functional for real-case studies. In this manuscript, we proposed
combining two strategies to relax these demands. The first involves
optimal information selection (Xie et al., 2018) in sub-areas of images,
which eliminates the need for clear-sky images and, additionally, makes
use of partly covered scenes. The second one is the generation of
synthetic coarse images (Wu et al., 2020) which avoids the necessity
of matching pairs of fine-coarse images. Here, both strategies were
coupled with the Fit-FC method (Wang and Atkinson, 2018), creating
an overall framework referred to as the Unpaired Spatio-Temporal
Fusion of Image Patches (USTFIP). The Fit-FC and USTFIP methods
11

were tested and compared using two widely analyzed MODIS-Landsat
time-series datasets (Emelyanova et al., 2013) and two Sentinel-2 and
3 datasets (Tang et al., 2021). In successive simulation scenarios, the
experiments assumed that a clear pair of coarse-fine images is available
further apart from the time of prediction as a consequence of frequent
clouds or the absence of overlapping images between sensors.

Results showed that the strategies not only make USTFIP more
dapted to real conditions, but also led to increased accuracy. The
ssimilation of partially cloudy images enables consideration of data
loser to the time of prediction. These data are sometimes more infor-
ative than the data from further away in time which increases fusion

ccuracy. In our simulation experiments, USTFIP achieved on average
smaller RMSE than Fit-FC in all scenarios. Moreover, relying on the

atest observations, if available and adequate, makes the framework
ithin USTFIP more robust to challenging conditions than traditional
TIF methods. The slower growth of RMSE from USTFIP with dis-

tance between the latest clear-sky image and the target image suggests
that our proposal is especially advantageous in cloud prone seasons
or regions. Using the latest observations available is also important
in progressively and rapidly changing landscapes. Similarity between
images, a key contributor to prediction accuracy, declines quickly
in this type of environment. Thus, USTFIP is likely to be preferable
over the rest of the benchmark methods. Finally, in line with the
conclusions from Wu et al. (2020), our findings challenge the idea
that matching pairs of images are essential in spatio-temporal fusion.
The benefits of using the most recent information can offset the errors
from the generation of synthetic coarse-scale images. Our experiments
demonstrate how parallel computing techniques can better exploit the
available computational resources to reduce running times. Here, the
time reductions achieved through parallel computing counteracts the
higher computational demands from achieving flexibility in the input
requirements. The generation of coarse scale images and the selection
of optimal information require further calculations than using a single
clear-sky image which may trigger estimation errors in the fusion
model. This is more evident in the less restrictive scenario (scenario 1).
However, even in this case, our method outperforms Fit-FC on average
(see Tables 4 and 5).

Matching pixel locations is a crucial step for achieving accurate
predictions using linear regression models. Extending the CH step to
include a coregistration step, could greatly improve the prediction
when input images are not already coregistered. Furthermore, as the

method was originally developed for MODIS-Landsat fusion, the PSF
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filter was defined as a Gaussian filter (Huang et al., 2002; Kaiser and
Schneider, 2008) with specific window size and standard deviation
that provided the best balance between avoiding areas obstructed by
clouds and minimizing data loss. Remarkably, we found that this PSF
filter also performed well when downscaling Sentinel-3 images (see
Tables 4 and 5). Since a primary objective of the USTFIP method is
to reduce input requirements by eliminating the need for matching
pairs of images, it is specifically designed to execute the LOP step from
upscaled images. Interestingly, our previous experiments showed that
even when the original coarse imagery is available, the predictions
derived from upscaled images are superior in most cases. Our method
may also have problems retrieving abrupt changes, as illustrated by the
flooded area from Fig. 5. One way to overcome this potential problem
is by considering a baseline period containing information about these
changes. In cases where these changes are periodic, extending the
baseline to include the same period from previous years may facilitate
the fusion.

We also assessed the impact of false negatives on predictions by
simulating false negatives in the cloud masks. Our results suggested
that they have little-to-no effect on the second predictions. In fact, to
mitigate this issue, our method avoids areas around clouds in the CH
step, and to some extent when selecting optimal information in the LOP
tep. To have an effect on the second prediction, the false negatives
ould need to be isolated from the predicted clouds while still being

he most similar to the observation from the target date.
The above considerations highlight the general suitability of our

ethod. Nevertheless, the method may be better suited for certain types
f problems than for others, depending on the requirements of the par-
icular problem. Firstly, while our method is well-suited for applications
hat do not need a dense temporal resolution, such as agriculture or
eology, it may be less optimal for applications that require denser
emporal resolutions. In such cases, it is advisable to explore alternative
odels that can accommodate the desired temporal resolutions. Despite

his, it is important to acknowledge that our method leverages the
est available temporal resolution between two series of images, as
s usual in STIF methods, which is typically predetermined by the
atellite programs. Secondly, our method excels in making predictions
or various types of image time-series, especially in cloud-prone re-
ions where finding cloud-free images can be challenging. However,
n regions with completely cloud-free date ranges, alternative methods
hat operate under the assumption of cloud-free data may be better
uited. In such cases, leveraging the data from the entire time-series
ight provide minimal additional information compared to the nearest

loud-free image, while requiring the processing of significantly larger
mounts of data. Thus, for regions with consistently cloud-free date
anges, methods that specifically consider the cloud-free assumption
ay offer more efficiency and optimal results.

. Conclusions

Spatio-temporal fusion methods usually impose severe restrictions
n the input data, such as the need for clear-sky images and finding
atching pairs of images from the involved sensors. These restrictions,

long with long computational times, prevent wider adoption of fusion
ethods in applied research. As a consequence, a significant amount

f valuable data is discarded, which contravenes a fundamental sta-
istical principle of utilizing all available data. Our research explored
he adaptation and combination of two strategies to mitigate these
estrictions on the inputs; the selection of local optimal information
nd an information degradation model to generate synthetic coarse-
cale images. This innovative combination of methods produces a new
ethodology for selecting valuable data from time series of images

hat circumvents misclassified clouds and eliminates the requirement
or matching coarse-scale images. Both strategies are integrated with
12
the Fit-FC fusion method to create a novel approach termed Unpaired
Spatio-Temporal Fusion of Image Patches (USTFIP). USTFIP is able to
apply these component methods in parallel to increase computational
efficiency. USTFIP and Fit-FC were compared as benchmarks in a
simulation exercise where scenarios assumed that finding matching
pairs of cloud-free images is progressively more difficult, so they are
from a date further apart from the prediction date.

Our results demonstrate that USTFIP makes the fusion more con-
venient, accurate, robust and efficient. Depending on the boundary
conditions, relaxing the input data requirements reduces the error
between 2 and 13%. As the fusion becomes more challenging in terms
of cloud frequency and lack of matching pairs, the proposed USTFIP
preserves accuracy to a larger extent than the original Fit-FC method.
In the experiments, the RMSE from Fit-FC increased by 21% and
16% versus the 10% and 4% for USTFIP in Coleambally and Gwydir,
respectively, as the distance between the reference pair and the target
image expands. For the Sentinel-2 time series, the increases were
13% and 14% for Fit-FC and 5% and 4% for USTFIP. The flexibility
achieved through optimal data selection and coarse image generation
required additional calculations. However, the results here suggest that
advanced programming techniques could not only compensate for the
additional computational cost, but also reduce running times relative to
Fit-FC. In our case, parallelization saved up to 40% of the computational
time. Further experiments are needed to quantify the benefits of USTFIP
to a wide range of case studies.
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Appendix A. Simulated cloud masks

The cloud masks for Coleambally and Gwydir were interpreted from the quality band (QA) of Landsat images. These Landsat images were
different from those in Table 3. The masks represent actual clouds observed in Coleambally and Gwydir during 2019−2020. Figs. A.7 and A.8 show
the fraction of the image covered (white area) and the shape or distribution of the clouds.

The cloud masks for the North Dakota regions represent actual clouds from Sentinel-2 images. Fig. A.9 show the fraction of the image covered
(white area) and the shape or distribution of the clouds.

Tables A.6, A.7, A.8 and A.9 show the average quality metrics for each scenario conditional on the number of available observations for each
pixel. For example, 𝐺𝑎𝑝𝑁 = 1 and 𝑛𝑜𝑏𝑠 = 2 are the average metrics across all the pixel locations for which there are two available observations in
the baseline for scenario 1.

Fig. A.7. Cloud-masks to simulate the presence of clouds in Coleambally. White and gray pixels represent cloud-covered and clear-sky areas respectively. The date of the mask is
specified on the top panel together with the fraction of missing pixels.

Fig. A.8. Cloud-masks to simulate the presence of clouds in Gwydir. White and gray pixels represent cloud-covered and clear-sky areas respectively. The date of the mask is
specified on the top panel together with the fraction of missing pixels.

Fig. A.9. Cloud-masks to simulate the presence of clouds in the North Dakota sites. White and gray pixels represent cloud-covered and clear-sky areas respectively. The date of
the mask is specified on the top panel together with the fraction of missing pixels.
13
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Table A.6
Averages of the quality metrics for each scenario GapN and number of clean observation nobs in Coleambally. RMSE is the root mean squared error of the prediction either from
FSDAF, USTFIP, Fit-FC (FFC) or STARFM. Edge is the average normalized difference in the Robert’s Edge spatial feature of the prediction either from FSDAF, USTFIP, Fit-FC (FFC)
or STARFM.

GapN nobs Gap RMSE𝐹𝑆𝐷𝐴𝐹 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RMSE𝐹𝐹𝐶 RMSE𝑆𝑇𝐴𝑅𝐹𝑀 Edge𝐹𝑆𝐷𝐴𝐹 Edge𝑈𝑆𝑇𝐹𝐼𝑃 Edge𝐹𝐹𝐶 Edge𝑆𝑇𝐴𝑅𝐹𝑀
no no days – – – – – – – –

1 1 28 0.0296 0.0272 0.0278 0.0311 −0.2210 −0.1108 −0.1008 −0.2564
2 28 0.0292 0.0258 0.0276 0.0307 −0.1996 −0.0818 −0.0876 −0.2488

2 1 42 0.0322 0.0290 0.0296 0.0340 −0.2675 −0.1376 −0.1222 −0.2964
2 42 0.0328 0.0284 0.0306 0.0357 −0.2400 −0.1004 −0.1063 −0.2832
3 42 0.0315 0.0268 0.0289 0.0340 −0.2244 −0.0842 −0.0872 −0.2759

3 1 57 0.0328 0.0297 0.0289 0.0369 −0.2755 −0.1386 −0.1217 −0.3141
2 57 0.0358 0.0291 0.0327 0.0399 −0.2742 −0.1166 −0.1070 −0.3103
3 57 0.0347 0.0280 0.0314 0.0387 −0.2520 −0.0951 −0.0939 −0.3015
4 57 0.0338 0.0264 0.0297 0.0369 −0.2368 −0.0839 −0.0816 −0.2914

4 1 72 0.0353 0.0294 0.0286 0.0380 −0.2602 −0.1167 −0.0902 −0.3200
2 72 0.0366 0.0293 0.0320 0.0412 −0.2871 −0.1221 −0.1046 −0.3194
3 72 0.0372 0.0287 0.0323 0.0422 −0.2778 −0.1069 −0.0993 −0.3234
4 72 0.0382 0.0289 0.0330 0.0433 −0.2723 −0.0984 −0.0941 −0.3246
5 72 0.0365 0.0257 0.0300 0.0399 −0.2693 −0.0864 −0.0864 −0.3180

5 1 82 0.0333 0.0304 0.0289 0.0390 −0.3168 −0.1710 −0.1098 −0.3606
2 86 0.0387 0.0288 0.0316 0.0436 −0.2944 −0.1287 −0.1063 −0.3225
3 86 0.0397 0.0291 0.0330 0.0454 −0.2957 −0.1179 −0.1044 −0.3338
4 86 0.0403 0.0285 0.0331 0.0459 −0.2809 −0.1005 −0.0939 −0.3293
5 86 0.0421 0.0290 0.0342 0.0476 −0.2822 −0.0950 −0.0914 −0.3322
6 86 0.0383 0.0249 0.0295 0.0417 −0.2796 −0.0876 −0.0813 −0.3172

Table A.7
Averages of the quality metrics for each scenario GapN and number of clean observation nobs in Gwydir. RMSE is the root mean squared error of the prediction either from
FSDAF, USTFIP, Fit-FC (FFC) or STARFM. Edge is the average normalized difference in the Robert’s Edge spatial feature of the prediction either from FSDAF, USTFIP, Fit-FC (FFC)
r STARFM.
GapN nobs Gap RMSE𝐹𝑆𝐷𝐴𝐹 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RMSE𝐹𝐹𝐶 RMSE𝑆𝑇𝐴𝑅𝐹𝑀 Edge𝐹𝑆𝐷𝐴𝐹 Edge𝑈𝑆𝑇𝐹𝐼𝑃 Edge𝐹𝐹𝐶 Edge𝑆𝑇𝐴𝑅𝐹𝑀
no no days – – – – – – – –

1 1 44 0.0279 0.0248 0.0245 0.0278 −0.3243 −0.1485 −0.1347 −0.2747
2 44 0.0268 0.0223 0.0231 0.0265 −0.3144 −0.1109 −0.1149 −0.2588

2 1 68 0.0287 0.0244 0.0244 0.0302 −0.3679 −0.1331 −0.1255 −0.3283
2 68 0.0299 0.0235 0.0253 0.0307 −0.3659 −0.1504 −0.1662 −0.3199
3 68 0.0286 0.0223 0.0246 0.0291 −0.3174 −0.1097 −0.1333 −0.2840

3 1 96 0.0295 0.0248 0.0248 0.0329 −0.4207 −0.1992 −0.1635 −0.3797
2 94 0.0317 0.0244 0.0269 0.0330 −0.4052 −0.1736 −0.1842 −0.3448
3 94 0.0304 0.0226 0.0256 0.0313 −0.3970 −0.1520 −0.1715 −0.3283
4 94 0.0297 0.0217 0.0251 0.0299 −0.3658 −0.1224 −0.1499 −0.3029

4 1 128 0.0313 0.0251 0.0247 0.0340 −0.4436 −0.2207 −0.2451 −0.4153
2 126 0.0331 0.0248 0.0276 0.0352 −0.4442 −0.1862 −0.1951 −0.3774
3 126 0.0322 0.0236 0.0268 0.0338 −0.4357 −0.1753 −0.1933 −0.3633
4 126 0.0313 0.0223 0.0257 0.0319 −0.4314 −0.1582 −0.1731 −0.3419
5 126 0.0313 0.0215 0.0256 0.0307 −0.4063 −0.1406 −0.1651 −0.3260

5 1 166 0.0315 0.0258 0.0250 0.0330 −0.4510 −0.2644 −0.2269 −0.4340
2 158 0.0335 0.0249 0.0282 0.0360 −0.4342 −0.1798 −0.1768 −0.3856
3 158 0.0324 0.0239 0.0271 0.0349 −0.4463 −0.1837 −0.1942 −0.3801
4 158 0.0324 0.0229 0.0266 0.0339 −0.4301 −0.1688 −0.1712 −0.3578
5 158 0.0311 0.0215 0.0258 0.0323 −0.4225 −0.1505 −0.1593 −0.3440
6 158 0.0294 0.0207 0.0246 0.0303 −0.3898 −0.0843 −0.1697 −0.3164
14
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Table A.8
Averages of the quality metrics for each scenario GapN and number of clean observation nobs in Site 1 in North Dakota. RMSE is the root mean squared error of the prediction
either from FSDAF, USTFIP, Fit-FC (FFC) or STARFM. Edge is the average normalized difference in the Robert’s Edge spatial feature of the prediction either from FSDAF, USTFIP,
it-FC (FFC) or STARFM.
GapN nobs Gap RMSE𝐹𝑆𝐷𝐴𝐹 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RMSE𝐹𝐹𝐶 RMSE𝑆𝑇𝐴𝑅𝐹𝑀 Edge𝐹𝑆𝐷𝐴𝐹 Edge𝑈𝑆𝑇𝐹𝐼𝑃 Edge𝐹𝐹𝐶 Edge𝑆𝑇𝐴𝑅𝐹𝑀
no no days – – – – – – – –

1 1 61 0.0487 0.0450 0.0456 0.0514 −0.2728 −0.1227 −0.1609 −0.2921
2 61 0.0488 0.0447 0.0459 0.0513 −0.2669 −0.1265 −0.1636 −0.2873

2 1 133 0.0501 0.0463 0.0468 0.0536 −0.2414 −0.1473 −0.2039 −0.2951
2 133 0.0495 0.0461 0.0474 0.0529 −0.2383 −0.1419 −0.1921 −0.2834
3 133 0.0499 0.0461 0.0466 0.0533 −0.2203 −0.1392 −0.1798 −0.2794

3 1 207 0.0518 0.0470 0.0485 0.0546 −0.2123 −0.1201 −0.1692 −0.2718
2 207 0.0509 0.0460 0.0472 0.0541 −0.2091 −0.1371 −0.1753 −0.2674
3 207 0.0512 0.0458 0.0469 0.0545 −0.2108 −0.1347 −0.1720 −0.2622
4 207 0.0505 0.0447 0.0454 0.0531 −0.2062 −0.1147 −0.1715 −0.2563

4 1 285 0.0516 0.0478 0.0484 0.0533 −0.2090 −0.1719 −0.2035 −0.2656
2 285 0.0497 0.0465 0.0472 0.0522 −0.2156 −0.1685 −0.2043 −0.2691
3 285 0.0495 0.0464 0.0473 0.0521 −0.2035 −0.1636 −0.1999 −0.2598
4 285 0.0493 0.0463 0.0473 0.0517 −0.2013 −0.1833 −0.2054 −0.2566
5 285 0.0485 0.0450 0.0465 0.0505 −0.1937 −0.1560 −0.1953 −0.2399

5 1 359 0.0549 0.0497 0.0551 0.0555 −0.2346 −0.1625 −0.2321 −0.2500
2 359 0.0511 0.0477 0.0532 0.0525 −0.2408 −0.1773 −0.2342 −0.2613
3 359 0.0506 0.0477 0.0524 0.0522 −0.2341 −0.1822 −0.2242 −0.2522
4 359 0.0498 0.0471 0.0516 0.0515 −0.2305 −0.1891 −0.2290 −0.2497
5 359 0.0489 0.0462 0.0508 0.0506 −0.2239 −0.1923 −0.2219 −0.2489
6 359 0.0509 0.0480 0.0497 0.0523 −0.1908 −0.1154 −0.1572 −0.2396

Table A.9
Averages of the quality metrics for each scenario GapN and number of clean observation nobs in Site 2 in North Dakota. RMSE is the root mean squared error of the prediction
either from FSDAF, USTFIP, Fit-FC (FFC) or STARFM. Edge is the average normalized difference in the Robert’s Edge spatial feature of the prediction either from FSDAF, USTFIP,
it-FC (FFC) or STARFM.
GapN nobs Gap RMSE𝐹𝑆𝐷𝐴𝐹 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RMSE𝐹𝐹𝐶 RMSE𝑆𝑇𝐴𝑅𝐹𝑀 Edge𝐹𝑆𝐷𝐴𝐹 Edge𝑈𝑆𝑇𝐹𝐼𝑃 Edge𝐹𝐹𝐶 Edge𝑆𝑇𝐴𝑅𝐹𝑀
no no days – – – – – – – –

1 1 61 0.0465 0.0418 0.0430 0.0502 −0.2373 −0.0565 −0.1476 −0.2942
2 61 0.0463 0.0416 0.0425 0.0499 −0.2270 −0.0591 −0.1485 −0.2952

2 1 133 0.0495 0.0426 0.0438 0.0534 −0.2190 −0.0599 −0.1395 −0.2901
2 133 0.0487 0.0421 0.0429 0.0528 −0.2119 −0.0618 −0.1408 −0.2861
3 133 0.0490 0.0431 0.0443 0.0530 −0.1961 −0.0830 −0.1611 −0.2764

3 1 207 0.0478 0.0411 0.0421 0.0520 −0.2200 −0.1016 −0.1621 −0.2939
2 207 0.0482 0.0431 0.0441 0.0516 −0.2044 −0.0968 −0.1608 −0.2613
3 207 0.0476 0.0426 0.0434 0.0514 −0.2039 −0.1057 −0.1665 −0.2668
4 207 0.0495 0.0454 0.0462 0.0529 −0.1819 −0.0934 −0.1491 −0.2358

4 1 285 0.0453 0.0416 0.0423 0.0481 −0.2244 −0.0915 −0.1681 −0.2877
2 285 0.0458 0.0425 0.0435 0.0481 −0.1967 −0.0843 −0.1689 −0.2512
3 285 0.0457 0.0429 0.0439 0.0481 −0.1927 −0.1011 −0.1746 −0.2502
4 285 0.0463 0.0432 0.0439 0.0490 −0.1879 −0.0796 −0.1565 −0.2455
5 285 0.0500 0.0463 0.0472 0.0526 −0.1581 −0.0729 −0.1320 −0.2259

5 1 359 0.0478 0.0437 0.0461 0.0511 −0.2034 −0.1106 −0.1467 −0.2734
2 359 0.0465 0.0429 0.0469 0.0485 −0.1961 −0.1170 −0.1810 −0.2383
3 359 0.0460 0.0430 0.0470 0.0476 −0.1987 −0.1245 −0.1922 −0.2367
4 359 0.0461 0.0432 0.0479 0.0479 −0.2001 −0.1200 −0.1846 −0.2347
5 359 0.0481 0.0444 0.0499 0.0497 −0.1872 −0.1121 −0.1757 −0.2244
6 359 0.0523 0.0470 0.0522 0.0536 −0.1505 −0.1031 −0.1559 −0.1979
15
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Appendix B. Band metrics

Tables B.10, B.11, B.12 and B.13, show the averages of the quality metrics by band in the study regions. The general conclusions from Section 4
are well represented for most of the bands.

Table B.10
Averages of the quality metrics by band for each scenario in Site 1 in North Dakota, where GapN is the number of cloud-covered scenes between the reference (clear-sky) and the
target image. CC𝑟𝑡 is the correlation coefficient between the reference and target images. RMSE is the root mean squared error of the prediction either from Fit-FC (FFC), USTFIP,
TARFM or FSDAF. Edge is the spatial accuracy regarding the Robert’s Edge feature of the prediction either from Fit-FC (FFC), USTFIP, STARFM or FSDAF.
GapN Band CC𝑟𝑡 RMSE𝐹𝐹𝐶 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RMSE𝑆𝑇𝐴𝑅𝐹𝑀 RMSE𝐹𝑆𝐷𝐴𝐹 Edge𝐹𝐹𝐶 Edge𝑈𝑆𝑇𝐹𝐼𝑃 Edge𝑆𝑇𝐴𝑅𝐹𝑀 Edge𝐹𝑆𝐷𝐴𝐹
no – – – – – – – – – –

1 Red 0.19 0.0483 0.0486 0.0537 0.0537 −0.1898 −0.2074 −0.2881 −0.3488
Green 0.32 0.0336 0.0316 0.0367 0.0367 −0.1863 −0.1295 −0.2750 −0.2432
Blue 0.25 0.0307 0.0283 0.0321 0.0321 −0.1795 −0.0143 −0.3007 −0.2406
NIR 0.21 0.0697 0.0703 0.0821 0.0821 −0.1053 −0.1525 −0.3027 −0.2597

2 Red 0.00 0.0512 0.0509 0.0565 0.0565 −0.2063 −0.2112 −0.2815 −0.2998
Green 0.18 0.0343 0.0332 0.0370 0.0370 −0.2177 −0.1631 −0.2513 −0.1947
Blue 0.12 0.0325 0.0291 0.0340 0.0340 −0.2185 −0.0320 −0.2812 −0.1864
NIR 0.11 0.0695 0.0708 0.0847 0.0847 −0.1243 −0.1564 −0.3255 −0.2490

3 Red 0.06 0.0505 0.0500 0.0541 0.0541 −0.2023 −0.2093 −0.2282 −0.2380
Green 0.08 0.0351 0.0337 0.0392 0.0392 −0.1809 −0.1251 −0.2372 −0.2095
Blue 0.09 0.0318 0.0291 0.0356 0.0356 −0.2083 −0.0254 −0.2468 −0.1486
NIR 0.04 0.0712 0.0709 0.0876 0.0876 −0.1192 −0.1714 −0.3356 −0.2355

4 Red 0.18 0.0501 0.0496 0.0517 0.0517 −0.2234 −0.2336 −0.2211 −0.2156
Green 0.12 0.0348 0.0339 0.0372 0.0372 −0.2153 −0.1744 −0.2534 −0.2181
Blue 0.14 0.0315 0.0289 0.0342 0.0342 −0.2358 −0.0565 −0.2589 −0.1720
NIR 0.03 0.0725 0.0731 0.0838 0.0838 −0.1424 −0.2094 −0.3004 −0.2065

5 Red 0.16 0.0546 0.0502 0.0531 0.0531 −0.2383 −0.2528 −0.2132 −0.2515
Green 0.12 0.0379 0.0341 0.0382 0.0382 −0.2424 −0.1875 −0.2560 −0.2336
Blue 0.11 0.0307 0.0290 0.0331 0.0331 −0.2326 −0.0793 −0.2494 −0.2112
NIR 0.09 0.0834 0.0756 0.0823 0.0823 −0.1912 −0.2241 −0.2834 −0.2240

Table B.11
Averages of the quality metrics by band for each scenario in Site 2 in North Dakota, where GapN is the number of cloud-covered scenes between the reference (clear-sky) and the
target image. CC𝑟𝑡 is the correlation coefficient between the reference and target images. RMSE is the root mean squared error of the prediction either from Fit-FC (FFC), USTFIP,
TARFM or FSDAF. Edge is the spatial accuracy regarding the Robert’s Edge feature of the prediction either from Fit-FC (FFC), USTFIP, STARFM or FSDAF.
GapN Band CC𝑟𝑡 RMSE𝐹𝐹𝐶 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RMSE𝑆𝑇𝐴𝑅𝐹𝑀 RMSE𝐹𝑆𝐷𝐴𝐹 Edge𝐹𝐹𝐶 Edge𝑈𝑆𝑇𝐹𝐼𝑃 Edge𝑆𝑇𝐴𝑅𝐹𝑀 Edge𝐹𝑆𝐷𝐴𝐹
no – – – – – – – – – –

1 Red 0.19 0.0483 0.0486 0.0537 0.0537 −0.1898 −0.2074 −0.2881 −0.3488
Green 0.32 0.0336 0.0316 0.0367 0.0367 −0.1863 −0.1295 −0.2750 −0.2432
Blue 0.25 0.0307 0.0283 0.0321 0.0321 −0.1795 −0.0143 −0.3007 −0.2406
NIR 0.21 0.0697 0.0703 0.0821 0.0821 −0.1053 −0.1525 −0.3027 −0.2597

2 Red 0.00 0.0512 0.0509 0.0565 0.0565 −0.2063 −0.2112 −0.2815 −0.2998
Green 0.18 0.0343 0.0332 0.0370 0.0370 −0.2177 −0.1631 −0.2513 −0.1947
Blue 0.12 0.0325 0.0291 0.0340 0.0340 −0.2185 −0.0320 −0.2812 −0.1864
NIR 0.11 0.0695 0.0708 0.0847 0.0847 −0.1243 −0.1564 −0.3255 −0.2490

3 Red 0.06 0.0505 0.0500 0.0541 0.0541 −0.2023 −0.2093 −0.2282 −0.2380
Green 0.08 0.0351 0.0337 0.0392 0.0392 −0.1809 −0.1251 −0.2372 −0.2095
Blue 0.09 0.0318 0.0291 0.0356 0.0356 −0.2083 −0.0254 −0.2468 −0.1486
NIR 0.04 0.0712 0.0709 0.0876 0.0876 −0.1192 −0.1714 −0.3356 −0.2355

4 Red 0.18 0.0501 0.0496 0.0517 0.0517 −0.2234 −0.2336 −0.2211 −0.2156
Green 0.12 0.0348 0.0339 0.0372 0.0372 −0.2153 −0.1744 −0.2534 −0.2181
Blue 0.14 0.0315 0.0289 0.0342 0.0342 −0.2358 −0.0565 −0.2589 −0.1720
NIR 0.03 0.0725 0.0731 0.0838 0.0838 −0.1424 −0.2094 −0.3004 −0.2065

5 Red 0.16 0.0546 0.0502 0.0531 0.0531 −0.2383 −0.2528 −0.2132 −0.2515
Green 0.12 0.0379 0.0341 0.0382 0.0382 −0.2424 −0.1875 −0.2560 −0.2336
Blue 0.11 0.0307 0.0290 0.0331 0.0331 −0.2326 −0.0793 −0.2494 −0.2112
NIR 0.09 0.0834 0.0756 0.0823 0.0823 −0.1912 −0.2241 −0.2834 −0.2240
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Table B.12
Averages of the quality metrics by band for each scenario in Coleambally, where GapN is the number of cloud-covered scenes between the reference (clear-sky) and the target
image. CC𝑟𝑡 is the correlation coefficient between the reference and target images. RMSE is the root mean squared error of the prediction either from Fit-FC (FFC), USTFIP, STARFM
or FSDAF. Edge is the spatial accuracy regarding the Robert’s Edge feature of the prediction either from Fit-FC (FFC), USTFIP, STARFM or FSDAF.

GapN Band CC𝑟𝑡 RMSE𝐹𝐹𝐶 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RMSE𝑆𝑇𝐴𝑅𝐹𝑀 RMSE𝐹𝑆𝐷𝐴𝐹 Edge𝐹𝐹𝐶 Edge𝑈𝑆𝑇𝐹𝐼𝑃 Edge𝑆𝑇𝐴𝑅𝐹𝑀 Edge𝐹𝑆𝐷𝐴𝐹
no – – – – – – – – – –

1 Red 0.73 0.0128 0.0117 0.0145 0.0145 −0.0661 −0.0840 −0.2710 −0.2251
Green 0.69 0.0158 0.0148 0.0184 0.0184 −0.0826 −0.1050 −0.2635 −0.2197
Blue 0.75 0.0241 0.0226 0.0276 0.0276 −0.0984 −0.1089 −0.2493 −0.2040
NIR 0.60 0.0420 0.0401 0.0470 0.0470 −0.0833 −0.0554 −0.2495 −0.1931
SWIR1 0.85 0.0388 0.0369 0.0426 0.0426 −0.0968 −0.0776 −0.2342 −0.1865
SWIR2 0.87 0.0352 0.0337 0.0373 0.0373 −0.1047 −0.0910 −0.2211 −0.1762

2 Red 0.65 0.0132 0.0121 0.0153 0.0153 −0.0696 −0.0814 −0.2921 −0.2456
Green 0.60 0.0170 0.0155 0.0206 0.0206 −0.0915 −0.1069 −0.2952 −0.2553
Blue 0.64 0.0270 0.0243 0.0325 0.0325 −0.1061 −0.1106 −0.2855 −0.2494
NIR 0.44 0.0450 0.0424 0.0554 0.0554 −0.0966 −0.0668 −0.2905 −0.2277
SWIR1 0.82 0.0410 0.0381 0.0471 0.0471 −0.1090 −0.0816 −0.2657 −0.2083
SWIR2 0.83 0.0378 0.0350 0.0412 0.0412 −0.1197 −0.0960 −0.2492 −0.1953

3 Red 0.58 0.0140 0.0123 0.0168 0.0168 −0.0543 −0.0785 −0.3041 −0.2564
Green 0.51 0.0180 0.0157 0.0227 0.0227 −0.0766 −0.1053 −0.3102 −0.2697
Blue 0.52 0.0291 0.0249 0.0370 0.0370 −0.0917 −0.1108 −0.3053 −0.2690
NIR 0.30 0.0472 0.0437 0.0636 0.0636 −0.0866 −0.0715 −0.3125 −0.2419
SWIR1 0.78 0.0432 0.0388 0.0517 0.0517 −0.1055 −0.0813 −0.2913 −0.2260
SWIR2 0.80 0.0405 0.0359 0.0455 0.0455 −0.1171 −0.0960 −0.2716 −0.2123

4 Red 0.50 0.0146 0.0124 0.0182 0.0182 −0.0509 −0.0835 −0.3189 −0.2744
Green 0.41 0.0183 0.0159 0.0243 0.0243 −0.0741 −0.1104 −0.3270 −0.2877
Blue 0.40 0.0297 0.0250 0.0409 0.0409 −0.0960 −0.1154 −0.3248 −0.2911
NIR 0.18 0.0470 0.0442 0.0698 0.0698 −0.0871 −0.0771 −0.3369 −0.2645
SWIR1 0.74 0.0457 0.0398 0.0570 0.0570 −0.1152 −0.0858 −0.3200 −0.2503
SWIR2 0.74 0.0433 0.0368 0.0507 0.0507 −0.1226 −0.0977 −0.2988 −0.2376

5 Red 0.41 0.0147 0.0124 0.0196 0.0196 −0.0467 −0.0855 −0.3234 −0.2836
Green 0.31 0.0185 0.0159 0.0260 0.0260 −0.0747 −0.1149 −0.3304 −0.2956
Blue 0.29 0.0298 0.0250 0.0443 0.0443 −0.0956 −0.1192 −0.3295 −0.2994
NIR 0.07 0.0470 0.0443 0.0751 0.0751 −0.0908 −0.0816 −0.3491 −0.2754
SWIR1 0.68 0.0480 0.0405 0.0624 0.0624 −0.1167 −0.0888 −0.3335 −0.2640
SWIR2 0.67 0.0458 0.0374 0.0561 0.0561 −0.1244 −0.1010 −0.3141 −0.2544

Table B.13
Averages of the quality metrics by band for each scenario in Gwydir, where GapN is the number of cloud-covered scenes between the reference (clear-sky) and the target image.
CC𝑟𝑡 is the correlation coefficient between the reference and target images. RMSE is the root mean squared error of the prediction either from Fit-FC (FFC), USTFIP, STARFM or
FSDAF. Edge is the spatial accuracy regarding the Robert’s Edge feature of the prediction either from Fit-FC (FFC), USTFIP, STARFM or FSDAF.

GapN Band CC𝑟𝑡 RMSE𝐹𝐹𝐶 RMSE𝑈𝑆𝑇𝐹𝐼𝑃 RMSE𝑆𝑇𝐴𝑅𝐹𝑀 RMSE𝐹𝑆𝐷𝐴𝐹 Edge𝐹𝐹𝐶 Edge𝑈𝑆𝑇𝐹𝐼𝑃 Edge𝑆𝑇𝐴𝑅𝐹𝑀 Edge𝐹𝑆𝐷𝐴𝐹
no – – – – – – – – – –

1 Red 0.58 0.0105 0.0100 0.0118 0.0118 −0.1086 −0.1098 −0.2700 −0.2976
Green 0.56 0.0137 0.0132 0.0155 0.0155 −0.1044 −0.0965 −0.2487 −0.2893
Blue 0.53 0.0182 0.0175 0.0208 0.0208 −0.1021 −0.0946 −0.2475 −0.2903
NIR 0.47 0.0321 0.0313 0.0408 0.0408 −0.1727 −0.1799 −0.3231 −0.4037
SWIR1 0.53 0.0354 0.0349 0.0401 0.0401 −0.1342 −0.1405 −0.2763 −0.3685
SWIR2 0.57 0.0313 0.0305 0.0349 0.0349 −0.1445 −0.1472 −0.2676 −0.3261

2 Red 0.52 0.0114 0.0102 0.0129 0.0129 −0.1438 −0.1210 −0.3061 −0.3290
Green 0.53 0.0148 0.0134 0.0166 0.0166 −0.1384 −0.1091 −0.2785 −0.3010
Blue 0.48 0.0194 0.0178 0.0228 0.0228 −0.1174 −0.1030 −0.2820 −0.3139
NIR 0.27 0.0349 0.0327 0.0500 0.0500 −0.2008 −0.1983 −0.3881 −0.4590
SWIR1 0.48 0.0373 0.0353 0.0432 0.0432 −0.1600 −0.1502 −0.3110 −0.3779
SWIR2 0.49 0.0336 0.0313 0.0386 0.0386 −0.1653 −0.1575 −0.3059 −0.3687

3 Red 0.46 0.0118 0.0103 0.0133 0.0133 −0.1689 −0.1447 −0.3298 −0.3635
Green 0.50 0.0151 0.0135 0.0170 0.0170 −0.1588 −0.1293 −0.2933 −0.3336
Blue 0.43 0.0200 0.0180 0.0237 0.0237 −0.1269 −0.1140 −0.2963 −0.3536
NIR 0.09 0.0369 0.0331 0.0546 0.0546 −0.2198 −0.2125 −0.4205 −0.5037
SWIR1 0.41 0.0388 0.0357 0.0447 0.0447 −0.1708 −0.1697 −0.3222 −0.4387
SWIR2 0.40 0.0351 0.0317 0.0405 0.0405 −0.1789 −0.1736 −0.3220 −0.4064

4 Red 0.39 0.0122 0.0104 0.0142 0.0142 −0.1754 −0.1511 −0.3615 −0.4128
Green 0.44 0.0159 0.0136 0.0181 0.0181 −0.1675 −0.1377 −0.3270 −0.3837
Blue 0.39 0.0204 0.0180 0.0248 0.0248 −0.1435 −0.1285 −0.3247 −0.3963
NIR 0.03 0.0381 0.0335 0.0564 0.0564 −0.2360 −0.2289 −0.4379 −0.5159
SWIR1 0.38 0.0394 0.0357 0.0465 0.0465 −0.1899 −0.1862 −0.3460 −0.4470
SWIR2 0.34 0.0363 0.0317 0.0434 0.0434 −0.1972 −0.1872 −0.3506 −0.4409

5 Red 0.33 0.0122 0.0103 0.0148 0.0148 −0.1623 −0.1453 −0.3795 −0.4295
Green 0.40 0.0158 0.0135 0.0187 0.0187 −0.1599 −0.1352 −0.3438 −0.3914
Blue 0.34 0.0206 0.0178 0.0258 0.0258 −0.1362 −0.1289 −0.3372 −0.3996
NIR −0.03 0.0387 0.0336 0.0574 0.0574 −0.2350 −0.2344 −0.4367 −0.5207
SWIR1 0.35 0.0398 0.0355 0.0465 0.0465 −0.1812 −0.1811 −0.3425 −0.4208
SWIR2 0.27 0.0369 0.0317 0.0446 0.0446 −0.1854 −0.1846 −0.3553 −0.4344
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