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a b s t r a c t

This paper addresses a physician scheduling problem in an Emergency Room (ER) requiring a long-
term work calendar to allocate work days and types of shift among all the doctors. The mathematical
model is created without simplifications, using the real calendar, including holidays. This precludes the
possibility of cyclic-type solutions, and involves numerous and varied constraints (demand, workload,
ergonomics, fairness, etc.). An effective solution to this very difficult practical problem cannot be
obtained, for large instances, with exact solution methods. We formulate a mathematical repre-
sentation of a real-world ER physician scheduling problem featuring a hybrid algorithm combining
continuous linear programming with a greedy randomized adaptive search procedure (GRASP). Linear
programming is used to model a general physician-demand covering problem, where the solution is
used to guide the construction phase of the GRASP, to obtain initial full schedules for subsequent
improvement by iterative application of Variable Neighborhood Descent Search (VNDS) and Network
Flow Optimization (NFO). A computational study shows the superiority of our approach over the
Integer Linear Programming method in a set of instances of varying size and difficulty inspired by a
real setting. The methodology is embedded in a software tool for generating one-year-ahead physician
schedules for a local ER. These solutions, which are now in use, outperform the manually-created
schedules used previously.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Emergency Room (ER) of a hospital is where medical
nd/or surgical care is given to patients arriving in need of im-
ediate attention. An ER is therefore a 24/7 service. Physicians
re required to work night, day and weekend shifts, and to take
n different ER assignments. Complex constraints add to the diffi-
ulty of finding good and equitable schedules for the physicians.
xamples of ergonomic constraints are described in Knauth [1],
hile Gendreau et al. [2] offer an overview of other typical con-
traints to classifying them into four categories: (1) supply and
emand, (2) workload, (3) fairness and (4) ergonomics, based on
ive case studies performed in Canadian hospitals. This paper ad-
resses a real physician scheduling problem in which constraints
f all four categories are considered.
Although the physician scheduling problem shares many char-

cteristics with the nurse scheduling problem (and other work-
orce planning problems, see, for example, De Bruecker et al. [3]
nd Van den Bergh et al. [4]), it has received much less attention
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in the literature. A review of the nurse rostering problem can be
found in Burke et al. [5] and Cheang et al. [6]. One can, of course,
expect the type of techniques that work well in one problem to
do just as well in another, but, despite their basic similarity, they
also have differences that can condition the solution. A thorough
analysis of such differences is provided in Erhard et al. [7], which
highlights the importance of modeling preferences and fairness,
among other issues. Their conclusion is that its combined charac-
teristics make the physician scheduling problem highly unique,
and thus distinct from general personnel scheduling problems. A
similar line of reasoning is given in Damcı-Kurt et al. [8], where
it is also pointed out that, in physician scheduling, the issue of
staffing costs is not as relevant as that of minimizing deviations
from the soft scheduling requirements. The same paper also
reports on an analysis of over 5500 department schedules involv-
ing a total of 57 medical specialties, concluding that the most
complex physician scheduling problems arise in cases where
patient care coverage is provided 24/7 in variable settings such
as Emergency Medicine departments.

The physician scheduling problem addressed in this paper
is complex because it addresses each and every detail of the
real-life situation, including the real work calendar and a one-
year planning horizon. Managing public holiday shifts remains
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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major problem because they preclude the possibility of using
cyclic schedule [9]. In addition to demand constraints, the
odel considers all mandatory constraints, as well as staff hetero-
eneity, and personnel preferences. The objective function also
ays attention to the fairness of the schedules among physicians,
hich entails balancing the distribution of different types of shifts
mong physicians under a range of often conflicting criteria [2].
oreover, as stated in Bruni and Detti [10], a perfect workload
alance would only be obtainable when considering long plan-
ing horizons (with the above-mentioned public holiday shifts
airly distributed, or irregular daily demand for physicians).

Our study addresses a one-year planning horizon because
welve-month work calendars are a legal requirement in some
ountries, including Spain, where they are drawn up annually by
he company (after consultation and a subsequent report to the
orkers’ representatives) and posted in a visible area of the work-
lace (Article 36 of Workers’ Statute, BOE-A-2015-11430, [11]).
his calendar must contain both the work schedule and annual
istribution of working days and holidays. It may undergo mod-
fication throughout the year due to changes affecting the staff,
amily care leave, sickness, etc. In such cases, the manager has
o meet staffing demand with minimum change to the original
alendar. However, the operational management of the work
alendar is a different problem and lies beyond the scope of this
rticle.
Because of the many factors taken into account when planning

chedules for ER physicians, it is not easy to ensure equity or
airness in shift distribution. Some shifts are less desirable than
thers, such as those worked on holidays, on weekends and at
ights. An unbalanced distribution of these shifts can affect the
ynamics of the physicians’ group, their job satisfaction, and the
ffectiveness of the healthcare received by patients [12]. Sched-
les failing at achieving a fair distribution of shifts can create
eelings of injustice and the existence of favoritism in the work
ssignment. This can happen, for example, when some physicians
ave to work more weekends, and in a consecutive way, than
ther colleagues do. This lack of equity can create dissatisfac-
ion with life-work balance and, ultimately, push physicians to
urn-out [13].
Manually created schedules at Hospital Compound of Navarre

HCN) in Spain, failed at getting a fair distribution of these less
esired shifts, not because of favoritism but because of the com-
lexity of the task and the difficulty to obtain a balanced distri-
ution. For example, at HCN physicians should work an average
f 25 weekends per year, the best manual solution gets ranges
rom 21 to 28 working weekends with many consecutive worked
eekends. Similar inequities were found in the distribution of
ights and holidays. This situation was perceived as unfair and
ave the scheduler a hard time to justify the distribution choices.
omputer-implemented algorithms, as the one proposed in this
aper, can obtain better solutions (in the previous example, so-
utions with no physicians working two consecutive weekends).
hese schedules improve the equity in the distribution of shifts,
nd physicians perceive them as fairer and unbiased, improv-
ng the group dynamics, the quality of physician life and the
ealthcare provided to patients.
The physician scheduling problem is a combinatorial opti-

ization problem that falls into the category of NP-hard prob-
ems [14], which are intractable for large instances. Metaheuris-
ics are powerful algorithmic approaches, which have been ap-
lied with great success to many difficult combinatorial optimiza-
ion problems [15]. Good solutions can be obtained by designing
euristic algorithms, usually guided by metaheuristics, or by a
ombination of heuristics and exact methods (see Karp [16]).
he last type of algorithm is known as matheuristics [17], which

ntegrates (meta)heuristics and Mathematical Programming (MP)

2

strategies. The hybridization benefits the performance of the al-
gorithm by exploiting the structure of the optimization problem
to get better solutions (contribution of MP) while keeping a
reasonable computation time to reach the solution (contribution
of heuristics).

We initially modeled the physician scheduling problem as
an Integer Linear Programming (ILP) problem, but, after a real
instance of this problem remains unsolved by CPLEX in one week,
using a powerful computer, the need to solve the problem by
using a different type of algorithms arises. We design a hybrid
algorithm that combines the metaheuristic Greedy Randomized
Adaptive Search Procedure (GRASP), Variable Neighborhood De-
scent (VNDS), and MP. The resulting algorithm falls in the cat-
egory of matheuristic algorithms. In general, hybrid algorithms
presents a ‘‘master–slave’’ structure, with one of the techniques
guiding the other. In our case, the heuristic is the master and
the MP is the slave. The GRASP construction phase provides full
schedules, which are subsequently improved through a VNDS
type algorithm, in combination with Network Flow Optimization
(NFO) models. Besides, the fitness function used in the GRASP
algorithm depends on the result of a Linear Programming (LP)
problem, which solves a general physicians’ demand-covering
problem. The contribution of MP is double: on the one hand, the
solution of a linear programming problem guides the constructive
phase to promising solutions and, on the other hand, solutions of
a series of small network flow problems build up the local search.

The main practical contributions of this paper are, firstly, to
present a mathematical model accounting for all types of con-
straints and objectives considered in practice by a manager when
creating a hospital ER physicians’ schedule for a one-year plan-
ning horizon, and secondly, to provide a hybrid algorithm with
the capacity to obtain near optimal solutions to large instances
of a real physician scheduling problem within minutes. The main
methodological contributions of this paper are the design of a
greedy constructive method with a randomized component de-
pendent upon the exact solution to a general covering problem
which is solved by LP. This hybridization provides high quality
solutions, in terms both of feasibility and of Objective Func-
tion Value (OFV). The proposed VNDS method, in combination
with NFO, is applied to repair feasibility when it is necessary.
Once feasibility is achieved, NFO is used alone to explore large
neighborhoods to improve the OFV.

The proposed methodology is tested on a real problem by
solving the physician scheduling problem in a hospital ER with 42
physicians and a one-year planning horizon. From 2018 to 2020,
the solution was directly used in practice, being deemed by the
scheduler as sufficiently superior to replace the manually-created
schedule, which was not able even to fulfill all hard ergonomic
constraints.

The paper is organized as follows. Next section provides a
revision of the related literature. In Section 3, the physician
scheduling problem is defined and modeled as an ILP problem.
Section 4 presents and explains the hybrid methodology with its
four components: (1) the covering problem solved by continuous
LP, (2) the construction of a full solution by a greedy random
algorithm, and (3–4) the two local search procedures (VNDS and
NFO). A computational study is carried out in Section 5, which
also includes the case study, a sensitivity analysis of the algorithm
parameters and an analysis of the contribution of each compo-
nent of the algorithm in obtaining good solutions. The paper
ends with some conclusions. All the notation is summarized in

Appendix B.
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. Related work

The major solution approaches for solving the physician
cheduling problem involve MP, metaheuristics, constraint pro-
ramming, and column generation (reviewed in Gendreau et al.
2]). Similar results are presented by Carter and Lapierre [18],
ho analyze the characteristics of the problem and scheduling
echniques based on Linear Programming (LP) and metaheuristics
mainly Tabu Search). See Erhard et al. [7] for a recent review
f 68 relevant papers addressing different types of physician
cheduling problem in hospitals. They are classified diversely
s staffing, rostering, or re-planning problems. The majority, 61
apers, use MP models. They can be exactly solved for small in-
tances or for problems that are not highly constrained [10,19,20].
n Topaloglu [21], resident physicians in a hospital’s pulmonary
nit are scheduled for a 6-month period. The author considers 29
nstances with the number of variables ranging from 486 to 1995
nd the number of constraints ranging from 552 to 2907. Most
f the instances are exactly solved within seconds by commercial
olvers, but not in all cases, even when the problems are small in
ize. In other cases, as in Beaulieu et al. [22], where ILP model
ould not be solved by a modified version of the branch and
ound method, a heuristic approach based on a partial branch
nd bound was used. In fact, when the problem at hand is
arge (a large number of physicians to be scheduled over a long
lanning horizon) and very detailed models are formulated, exact
olution approaches are usually impractical, being necessary to
pply heuristic or heuristic-based hybrid algorithms. For example,
uente et al. [23] solved the physician rostering problem by using
genetic algorithm for a one-month planning horizon and a

mall/medium size ER with 16 physicians. In Carrasco [24], a
imple heuristic is used to assign guard shifts over a one-year
orizon. The problem is not highly constrained and the number
f shifts assigned per day is small: two or three depending on the
ay type.
The table in Appendix A compares several characteristics of

hysician rostering problems addressed by different studies. Their
asic goal is to assign employees to work shifts, taking into
onsideration organizational and regulatory rules, employee skills
nd preferences, staffing requirements, and other
roblem-specific issues. Staffing and re-planning problems are
ot taken into account.
The planning horizon considered in most published studies

ends to be small, ranging from two to four weeks. In Brun-
er, Bard, and Kolisch [25], for example, the physicians in an
nesthesia department are scheduled to cover a two-week plan-
ing horizon, later extended to six weeks in Brunner, Bard, and
olisch [26]. The need for long-term schedules is not exclusive to
pain (as reported in Carrasco [24]); it also occurs in countries
uch as Germany [27], Canada [18], and the United States [8,
8,29]. When a long-term schedule is obtained by means of
xact solution methods, it is often necessary to partition the full
roblem into a sequence of interlinked medium-term scheduling
roblems to be solved by ILP, as in Beaulieu et al. [22] and
opaloglu [21]. This approach is criticized by some authors, who
laim that a good solution cannot be obtained by combining
artial solutions [24]. One-year-ahead planning is also consid-
red for a variety of staffing problems, as in Brunner, Bard, and
olisch [25,26] and Brunner and Edenharter [30]; and 39-week
chedules are obtained in Green et al. [31].
Generally, the number of different shifts considered in the

iterature is small (<10). Problems involving a one-year planning
orizon, in particular, consider few shift types. Carrasco [24]
ssigns only on-call shifts, Bruni and Detti [10] two different shift
ypes, and Cohn et al. [28] five. Schoenfelder and Pfefferlen’s [32]
s the only study that schedules a large number of shift types.
3

Since few shift-assignment studies consider the real calendar,
few direct implementations of the solution in real settings are
reported. Sometimes, considerable additional manual scheduling
is required to enable the use of the model solution. In Ferrand
et al. [33] for example, after obtaining a yearly calendar by
rolling out an 8-week cycle, public holiday shifts are manually
assigned independently by the scheduler, which also requires the
manual adjustment of assigned shifts adjacent to the holidays to
overcome incompatibilities.

In addition to the size of the problem — in terms of the
number of physicians, the planning horizon, variability and het-
erogeneity in the number of shifts to be assigned each day, types
of days (workdays, weekends, and holidays), shifts lengths, and
other characteristics all add to the difficulty of obtaining balanced
schedules. When shifts vary greatly in length, the equitable dis-
tribution of the annual working hours among physicians becomes
in itself a difficult task. This problem is related to the optimal
multi-way partitioning problem, which is one of the original 21
problems that Richard Karp proved NP-complete [34]. Until now,
only Schoenfelder and Pfefferlen’s [32] process plans monthly
schedules taking into account the hours worked in the previous
22 weeks.

The GRASP metaheuristic, introduced by Feo and Resende [35]
and formally presented by Feo and Resende [36], is a multi-
start method, with each iteration of the algorithm comprising
a construction phase and a local search phase. The first phase
leads to a complete solution, and the second is the improve-
ment phase, which continues until a locally optimal solution is
reached. After several iterations of the construction phase and
the local search procedure, the best overall solution is kept as
the result. The construction phase is guided by a greedy function
that measures the benefit of including each new element. The
benefit of selecting each element changes at each step of the
construction. The method is randomized by randomly choosing
the next element from a list of candidates. GRASP can be easily
hybridized with other approaches and optimization strategies,
such as Tabu Search, Simulated Annealing, Variable Neighborhood
Search (VNS), and population-based heuristics [37].

The VNS metaheuristic method, introduced by Mladenović and
Hansen [38], is based on performing systematic changes of neigh-
borhoods during the search space exploration. The application of
VNS is quite simple, requiring only the choice of a metric to mea-
sure the distance among solutions in the solution space, which
induces the neighborhood structure. A guide to the application
of VNS to various classic problems can be found in Hansen and
Mladenović [39]. The basic principles of VNS have been extended
to provide new versions of the algorithm, which have been suc-
cessfully applied for solving hard optimization problems. One of
the most relevant variants is VNDS which explores neighborhoods
in a deterministic way [40].

The choice of neighborhood structure is critical to the perfor-
mance of a local search algorithm. Basically, observation shows
that the larger the neighborhood, the better the local optimal so-
lutions. However, the larger the neighborhood, the longer it takes
to explore. Thus, efficient search procedures are required to get
the most out of exploring large neighborhoods. One useful option
for exploring very large-scale neighborhoods is to use network
flow techniques, as discussed and applied in the context of the
traveling salesman and routing problems by Ahuja et al. [41]. The
result of such a combination is a matheuristic algorithm. In this
and other similar cases (see, for example, Punnen [42] and Dror
and Levy [43]), the so-called related graph or improvement graph
is a bipartite graph used to represent assignment and matching
problems.

The development of mathematics-based heuristics has focused
on studies related to the Vehicle Routing Problem, in general,
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nd to the home health care problem, in particular, in the con-
ext of health, where patients are assigned to worker-teams,
atient health services are scheduled and routing decisions are
ade [44–46]. In a related field, Hernández-Leandro et al. [47]
eveloped a matheuristic based on Lagrangian relaxation for the
ulti-activity shift scheduling problem. Some matheuristic algo-

ithms have been proposed for addressing the nurse rostering
roblem: A VNS to accelerate a column generation method is
eveloped and also used in [48] and [49], respectively. San-
os et al. [50] proposed a Mixed Integer Programming (MIP)
odel and a heuristic to decomposed the problem to facili-

ate a local search procedure. The first phase builds a feasible
olution by solving the problem considering only the hard con-
traints, this solution is improved by a VNS with neighborhoods
efined by fixing some decision variables of the incumbent solu-
ion and optimizing the others by using a MIP solver. This idea has
een adapted recently by Wikert et al. [51] to solve a physician
cheduling problem for a month time period and three types of
hifts.

. Definition and mathematical modeling of the scheduling
roblem

The solution to the physician scheduling problem lies in de-
ermining which physician will work in each shift of each day
hroughout the planning horizon. Shifts vary in type: there are
ay and night shifts, workday and holidays shifts, short and long
hifts, etc. Even within these categories, there are differences in
erms of the task requirement: from the triage area, to the resus-
itation room, to consultation for patients with milder symptoms,
tc. There is also variation in the availability and annual working
ime of the physicians, such that they are not all able to work all
ypes of shifts. Age or work/life balance issues may prevent cer-
ain physicians from working night shifts, for example. Physicians
an therefore be grouped by availability and annual working time,
uch that all members of each group are able to work the same
umber of hours and types of shift.
The objective of the problem is to obtain the fairest feasi-

le schedule. A fair schedule is one that is evenly distributed
mong physicians, with all members of a group working the
ame number of hours, public holidays, weekends, nights (unless
xempt), and each type of shift, etc. A balance between groups
s also required: the ratio of worked to workable shifts for each
hysician should be kept proportional across the groups. This
orkload balancing idea is further developed in Section 4.
To offer some idea of the magnitude of this problem, a

edium/large size public hospital might have approximately 40
hysicians, and approximately 20 different shifts per day. Over a
welve-month planning horizon, this amounts to 365×20 = 7300
assignments, each with 40 possibilities. The theoretical number
of different assignments (407300) is considerably reduced when
different types of constraints are included. However, the number
of feasible solutions is still huge.

The general formulation of this scheduling problem considers
N physicians groupable into M types with nr physicians of type
Gr , r = 1, . . . ,M , and L types of shifts Sj, j = 1, . . . , L, each
efined by its duration dj (in hours), and other characteristics
uch as night shift, workday shift, the physician’s location during
he shift, and types of duties required, among others. There are
j shifts of type Sj in the planning period. Let T be the number

f days for the planning horizon.

4

Each physician type Gr , r = 1, . . . ,M can work a maximum
f hr = ρrH hours during the planning horizon (where H is the
umber of working hours of a full time physician and ρr ≤ 1), in
subset of shifts determined by binary indicators γrj:

rj =

{
1 if a physician of type Gr can work in shift type Sj
0 otherwise

∀ r = 1, . . . ,M; ∀ Sj; j = 1, . . . , L (1)

Without loss of generality, it is assumed that a subset of shifts
(t) ⊆

{
Sj, j = 1, . . . , L

}
needs to be assigned each day and that

he demand for each type of shift is one. This assumption reflects
he high diversity of shifts in the ER, and places the definition of
he problem in a worst case scenario, but the algorithm developed
n this research can be straightforwardly adapted for a demand
evel greater than one. This physician scheduling problem can be
athematically modeled as an ILP problem by using the following
ecision variables Xijt :

Xijt =

{
1 if physician Pi works Sj on day t
0 otherwise

∀ i = 1, . . . ,N; ∀ Sj ∈ S (t) ; ∀ t = 1, . . . , T (2)

Feasible schedules need to cover all shifts, observe the maximum
working hours of each physician, and comply with ergonomic
constraints (especially those relating to the length of rest period
after some types of shifts). Therefore, constraints are classified by
type into (1) coverage, (2) ergonomic, and (3) work balance.

• Coverage constraints. The demand rules are the most basic
compulsory requirements: each physician can be assigned a max-
imum of one shift per day, and each shift must be assigned to a
single physician.∑
Sj∈S(t)

Xijt ≤ 1 ∀ i = 1, . . . ,N; ∀ t = 1, . . . , T (3)

N∑
i=1

Xijt = 1 ∀ Sj ∈ S (t) ; ∀ t = 1, . . . , T (4)

• Ergonomic constraints. ER Services are available at all hours
of the day and night, every day of the year. Having to work
long shifts at any part of the day without reasonably-spaced
rest periods between shifts turns a poor work schedule into a
potential health threat for physicians. To mitigate the effects of a
chaotic work shift calendar, further constraints are added (both
to meet legal requirements and to accommodate suggestions
from physicians) to enable physical and mental recovery as well
as a normal social and family life. Specifically, these so-called
ergonomic constraints are designed, among other purposes, to
avoid consecutive night shifts, to program rest periods after a long
or night shift, to plan weekends off, to avoid an excessive number
of rest days between working days, to alternate shift lengths, etc.

Ergonomic constraints are classified into three types according
to their purpose: to leave a time interval between shifts, to
limit the number of shifts within a time window, and to limit
the number of consecutive working days. These constraints can
be formulated for each shift type, for all shifts in general, or
for subsets of DC− shifts with C− characteristics. For example,
DC ={night shifts worked on public holidays} contains all shifts
with C− characteristics={night, public holiday}.

(i) Minimum days’ interval between shifts. There must be a
minimum interval of δc days between two shifts belonging to the
set DC .

q∑ ∑
Xijt ≤ 1 ∀ q = δc + 1, . . . , T ; ∀ i = 1, . . . ,N; ∀Dc (5a)
t=q−δc j∈Dc
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or example, in the event of having to spread out night shifts
y imposing a two-day interval between two worked night shifts
such that there can be only one night shift in a period of 3 days),
c = 2.
This category of constraints includes a compulsory number of

ays off after certain types of shifts and is formulated as follows
hen δc days’ rest are required after a shift Sj in a set DC .

δcXijq +

q+δc∑
t=q+1

∑
j

Xijt ≤ δc ∀ q = 1, . . . , T − δc;

∀ i = 1, . . . ,N; ∀ Sj ∈ Dc

(5b)

(ii) Maximum number of shifts worked within a time window. This
constraint limits the maximum number of shifts in a set Dc
assigned to physicians over a time window of w1c days.

q∑
t=q−w1c+1

∑
j∈Dc

Xijt ≤ ν1c

∀ i = 1, . . . ,N; ∀ q = 1c, . . . , T ; ∀Dc

(6)

This type of constraint is used, say, to limit the number of public
holidays worked within a certain period. Suppose that a physician
cannot be assigned more than 5 public holiday shifts over a time
window of 30 days. Then, ν1c = 5 and w1c = 30.
(iii) Maximum number of consecutive working days. Physicians
cannot work more than w2c consecutive days on any type of shift
belonging to a set Dc .

q∑
t=q−w2c

∑
j∈Dc

Xijt ≤ w2c

∀ i = 1, . . . ,N; ∀ q = w2c + 1, . . . , T ; ∀Dc (7)

Here also, there may be constraints imposing a maximum on the
number of days’ gap between shifts, a minimum on the number of
a certain type of shift that can be assigned within a time window,
and a minimum on the number of consecutive days on shifts
belonging to a set Dc . The formulation of these constraints is
similar to that given in (5a), (6), and (7).

• Workload balancing constraints. These constraints are de-
signed to guarantee a fair distribution of the different types of
shifts among all physicians.

(i) Fair distribution of working hours on shifts belonging to a
set Dc among all physicians.∑
t=1,...,T

∑
j∈Dc

djXijt ≤ ρrHU
c ∀ i = 1, . . . ,N (Pi ∈ Gr ); ∀Dc (8)∑

t=1,...,T

∑
j∈Dc

djXijt ≥ ρrHL
c ∀ i = 1, . . . ,N (Pi ∈ Gr ); ∀Dc (9)

HU
c and HL

c are variables representing the maximum and
minimum number of hours worked on shifts with charac-
teristics in C , respectively. These constraints could also be
applied to a single type of shifts Sj or to the entire set of
shifts.

(ii) Fair distribution among all physicians of shifts in a set Dc∑
t=1,...,T

∑
j∈Dc

Xijt ≤ ρr JUc ∀ i = 1, . . . ,N (Pi ∈ Gr ); ∀Dc (10)∑
t=1,...,T

∑
j∈Dc

Xijt ≥ ρr JLc ∀ i = 1, . . . ,N (Pi ∈ Gr ); ∀Dc (11)

These constraints are similar to the previous ones, but are
now aimed at balancing the number of shifts rather than
the number of working hours. The variables JUc and JLc ,
respectively, limit the maximum and minimum number of

shifts worked by all physicians.

5

(iii) Fair distribution of shifts from a set Dc among physicians
in the same group. Constraints for balancing the number of
shifts can be assigned to particular types of physicians.∑
t=1,...,T

∑
j∈Dc

Xijt ≤ JUrc ∀ i = 1, . . . ,N (Pi ∈ Gr ); ∀Dc (12)∑
t=1,...,T

∑
j∈Dc

Xijt ≥ JLrc ∀ i = 1, . . . ,N (Pi ∈ Gr ); ∀Dc (13)

The variables JUrc and JLrc limit the maximum and minimum
number of shifts in set Dc worked by physicians Pi in group
Gr , r = 1, . . . ,M , respectively.

The objective function is defined to reach the fairest distribu-
tion of the workload among physicians by minimizing the range
of the limiting variables HL

c and HU
c , J

U
c and JLc , J

U
rc and JLrc . Thus, the

objective function is the minimization of the sum of all ranges:

min
#D∑
i=1

(HU
ci − HL

ci ) +

#D∑
i=1

(JUci − JLci ) +

#D∑
i=1

M∑
r=1

(JUrci − JLrci ), (14)

where #D is the number of sets of shifts Dci involved in the fair-
ness constraints. Different weights may be used in the objective
function to reflect the relative importance of the fairness of the
shift distribution and working hours among physicians.

Thus, the ILP model for the physician scheduling problem in-
volves the minimization of the objective function (14) subject to a
set of constraints (3)–(13), which is fully presented in Appendix C.

4. The hybrid GRASP based algorithm

This section explains the hybrid methodology. Section 4.1
provides a general overview of the algorithm. In Section 4.2 a
general covering problem, modeled as an LP problem, is solved
to obtain the average number of shifts of each type that should
be worked by physicians of each type. These averages are used
in Section 4.3 by a greedy random algorithm to construct a full
solution. Finally Section 4.4 presents two local search procedures
to improve the solution obtained by the greedy algorithm.

4.1. General description of the algorithm

The proposed heuristic algorithm comprises three stages: the
first solves a global covering and balancing problem formulated
as an LP model; the second is a construction phase, in which a full
solution is obtained by applying a greedy randomized algorithm
(guided by the solution of the first phase); and the third is an
improvement stage, in which the solution provided by the previ-
ous stage is used as the input to a cyclic optimization alternating
between VNDS and NFO which continues until a feasible solution
is obtained; this solution is then improved by means of NFO
alone. The first stage is executed only once, while the other two
stages are iterated several times to define a multi-start procedure,
as illustrated in Fig. 1. This hybrid GRASP-type algorithm will be
identified as ‘‘Algorithm G+NO’’.

The proposed methodology starts by determining the number
of each type of shift that each physician should work over the
entire planning horizon, in order to guarantee coverage of all
shifts and a workload balance among physicians, based on a fair
distribution of the different types of shifts (nights, weekends,
holidays, etc.). This problem is formulated as a continuous LP
problem, which, at a very low computational cost, provides the
solution to be used in the next phase.

The construction phase is the implementation of a GRASP
algorithm to build a solution by assigning shifts to physicians
sequentially. The procedure starts with the first day of the plan-

ning horizon, assigning all the shifts for that day and progressing
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ay by day until a full assignment is obtained. The list of candi-
ates for each shift assignment is first defined by the feasibility
onstraints and then by elitism based on a fitness function. This
unction takes into account the assignments made so far to all
hysicians and the theoretical number of shifts of each type that
ach physician should work (obtained as the solution of the LP
ormulated in the first phase of the algorithm).

The full scheduling obtained in the previous phase is improved
y alternating VNDS to repair violations of the constraints (re-
uired if the constructive step provides an infeasible solution)
ith NFO to balance the distribution of shifts and working hours
mong the physicians. Once a feasible solution is obtained, im-
rovements to the fair distribution of the workload are sought
sing NFO only.
In the following subsections, a detailed mathematical and

lgorithmic description is provided for the three components of
he heuristic method.

.2. A linear programming model to solve the general covering prob-
em

The purpose of this optimization step is to obtain the average
umber Zrj of shifts of type Sj, j = 1, . . . , L, that should be worked
y physicians of type Gr , r = 1, . . . ,M , in order to cover service
emand within the regulatory working hours. Variables Zrj can be

positive only if γrj = 1, that is, (1 − γrj)Zrj = 0. In addition, this
general planning has to distribute the shifts among physicians as
evenly and fairly as possible, for which the decision variables Zrj
must fulfill the following constraints:

• Demand Covering constraint
M∑
r=1

nrZrj = mj ∀ Sj; j = 1, . . . , L (15)

• Working hours constraint
L∑

j=1

djZrj ≤ hr ∀ r = 1, . . . ,M (16)

• Equitable distribution of shifts
Some sets of shifts have to be evenly distributed among those
physicians who are able to work them. These include holi-
day shifts (Dhol = {shifts on holidays}), night shifts (Dnig =

{shifts at nights}), weekend shifts (Dwee = {shifts on
weekends}), etc.
Let Dc be the set of shifts to be fairly distributed, and let

Uc =

∑
Sj∈Dc

mj∑
r ρrnr

(
1 −

∏
Sj∈Dc

(
1 − γrj

))
be the average number of shifts in Dc per full-time physician
able to work such shifts. Some shifts belong to one or more sets
Dc while others might belong to none. To impose the equitable
distribution of all shifts, two constraints are considered for
each set Dc and physician type Gr :∑
Sj∈Dc

Zrj − ρrUc ≤ F1 ∀ r = 1, . . . ,M; ∀Dc (17)

ρrUc −

∑
Sj∈Dc

Zrj ≤ F1 ∀ r = 1, . . . ,M; ∀Dc (18)

The deviation variable F1 bounds the absolute value of the
differences between the average number of shifts assigned to
each group of physicians and the value of reference ρrUc for all
sets of shifts Dc . The deviation variable F1 is minimized in the
objective function of the LP problem.
6

• Even distribution of each type of shift among all physicians. Let

Wj =
mj∑

r γrjρrnr

be the number of shifts of type Sj that should be worked by
each full time physician eligible to do so.

◦ Shifts that do not participate in balancing constraints (17)
and (18) should also be distributed as fairly as possible.
Then,

Zrj − ρrWj ≤ FjρrWj ∀ r = 1, . . . ,M; ∀ Sj /∈
⋃
c

{Dc} (19)

ρrWj − Zrj ≤ FjρrWj ∀ r = 1, . . . ,M; ∀ Sj /∈
⋃
c

{Dc} (20)

Fj ≤ FU
2 ∀ Sj /∈

⋃
c

{Dc} (21)

Fj ≥ F L
2 ∀ Sj /∈

⋃
c

{Dc} (22)

Each deviation variable Fj bounds the absolute value of
the difference between the average number of shifts Sj
assigned to each group of physicians and the value of
reference ρrUj for all shifts of type Sj that do not belong
to any set Dc . These deviation variables are also bounded
in the interval (F L

2, F
U
2 ). The amplitude and maximum value

of this interval are minimized in the objective function of
the LP problem.

◦ Shifts that do participate in balancing constraints (17) and
(18) should be distributed as evenly as possible among all
physicians.

Zrj − ρrWj ≤ F3ρrWj ∀ r = 1, . . . ,M; ∀ Sj ∈

⋃
c

{Dc} (23)

ρrWj − Zrj ≤ F3ρrWj ∀ r = 1, . . . ,M; ∀ Sj ∈

⋃
c

{Dc} (24)

The deviation variable F3 bounds the absolute value of
the differences between the average number of shifts Sj
assigned to each group of physicians and the value of
reference ρrUj for all shifts of type Sj that are included in
any set Dc . The deviation variable F3 is minimized in the
objective function of the LP problem.
The following objective function (25) minimizes the value
of auxiliary variables introduced in constraints (17)–(24),
which measure the deviations from both above and below
the target that represents the equal distribution of shifts
and provide a goal programming approach to this covering
problem:

minβF1 +
(
2FU

2 − F L
2

)
+ F3 (25)

The purpose of the weighting factor β is to give more
importance to the first objective than to the others. The
first objective balances the distribution of shifts in sets Dc ,
which are set explicitly by the scheduler, while the other
two objectives balance each type of shifts individually,
those that belong to a set Dc , and those that do not. The
optimization finds the best proportional shift distributions
among all those distributions that are optimal in the equi-
table distribution of shifts in sets Dc . A large enough value
for factor β would be the total number of shifts to be
assigned.
The average number of shifts, Zrj, of each type Sj that should
be worked by physicians in group Gr is obtained as the
solution of the LP problem with objective function (25)
and constraints (15)–(24). The full formulation of the LP
problem is included in Appendix C.
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Fig. 1. The three stages of the proposed heuristic algorithm as applied to physician scheduling.
For ease of notation, from this subsection forward, the
theoretical average number of each type of shift Sj that
should be worked by a physician Pi ∈ Gr will be denoted
by Zij, which is equal to Zrj.

.3. Construction of a full scheduling solution by a greedy random-
zed algorithm

This subsection presents a heuristic to generate solutions by
probabilistic greedy construction method. The heuristic follows
he constructive step of the GRASP metaheuristic method [52],
hich builds a solution one element at a time. In the physician
cheduling problem, this is done by successively assigning each
f the shifts that must be covered each day, starting with a shift
rom the first day of the planning horizon and ending with a shift
rom the last day of the planning horizon. Each day’s shifts are
ssigned in random order.
Let T be the number of days in the planning horizon, nshifts(t)

he number of shifts for the t-th day, and At the set of physicians
working on day; then the construction phase proceeds in general
as shown in Algorithm 1:
7

The following subsection gives the details for the definition of
the List of Candidates, LoC , the definition of the greedy function,
and the selection of a physician by a roulette wheel mechanism.

4.3.1. Definition of the list of candidates
A LoC is defined for each shift assignment. A physician is

included in the LoC for a shift assignment when all the applicable
constraints are fulfilled. If the resulting LoC is empty, then all
physicians will be included in the LoC . This process is summarized
in Algorithm 2.
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4.3.2. Definition of a greedy function g(i)
Suppose that a shift of type j has to be assigned on a day t . Let

z∗

ij be the number of shifts of type j assigned so far to physician Pi
and let k be the index of the physician with the maximum value
in the following set of ratios:

k = argmax
i

{ z∗

ij

Zij
such that Zij > 0

}
(26)

Then, for each physician Pi in the LoC(j, t), the following
reedy function gj(i) is evaluated:

gj (i) =
z∗

kj

Zkj
−

z∗

ij

Zij
such that Zkj, Zij > 0 (27)

This greedy function measures the difference between the
aximum proportion of shifts of type Sj already assigned to a

physician (z∗

kj/Zkj) and the ratio of shifts assigned to a particular
physician. This value is then normalized to the target value for the
whole planning horizon, Zij. Thus, the greater the value of gj (i) for
physician Pi, the greater his/her need to work this shift Sj in order
to meet the reference values Zij. By definition, this greedy function
is a non-negative definite function. However, it could occur that
gj (i) = 0 for all physicians in the LoC(j, t).

Enhancement of the greedy function. The greedy function was
defined based only on already assigned shifts of type Sj. Neverthe-
less, some shifts are important for the even distribution of other
general shift characteristics among physicians. For example, if the
shift that is being assigned is a weekend shift and all physicians
have to work the same number of weekends within the planning
horizon; thus, the greedy function must also take into account
the consequences of the assignment for the even distribution of
weekend shifts. For this purpose, for each set of shifts Dc that
has to be evenly distributed among physicians and Sj ∈ Dc , the
following greedy function gDc (i) is defined:

gDc (i) =

(
maxl

{ z∗lDc
ZlDc

}
−

z∗lDc
ZlDc

)
(
maxl

{ z∗lDc
ZlDc

}
− minl

{ z∗lDc
ZlDc

}) (28)

here,

lDc =

∑
Sj∈Dc

Zlj and z∗

lDc
=

∑
Sj∈Dc

z∗

lj (29)

A normalized greedy function gNj(i), which ranges in (0,1), is
efined as follows:

Nj(i) =
gj(i)(

maxl
{ z∗lj

Zlj

}
− mink

{ z∗lj
Zlj

}) (30)

The new enhanced greedy function gj (i) is defined as:

gj (i) = gNj (i) +

∑
c

gDc (i) (31)

where the summation is extended to all sets Dc of shifts that need
to be balanced and that include the shift Sj.

Then, this greedy function balances the participation of each
physician in all shifts and shift characteristics included in the
objective function by assigning the shift to the physician who
is farthest from meeting all the balancing conditions in which
the shift is involved. The balancing assessment takes into account
the theoretical values determined by the LP covering problem
(Appendix C).
8

4.3.3. Roulette wheel for the selection of a physician n
In the construction procedure of the basic GRASP, the proba-

bility p(i) of selecting a physician Pi ∈ LoC(j, t) would be chosen
at random, with equal probability of being chosen. However, we
propose to bias the selection toward the candidates that con-
tribute the most to keep the solution balanced at that moment.
The idea of using probability distributions different from the
uniform was proposed by Bresina [53]. In particular, we use a
power function that extends the polynomial function of order n
[54]

p (i) =

(
gj (i)

)α∑
Pl∈LoC(j,t)

(
gj (l)

)α (32)

Observe that, if α = 0, we will have a random construction;
if α = 1, the probability will be proportional to the greedy
value. The greater the value of α is, the more elitist the selection
mechanism.

If all physicians in the LoC (j, t) have gj (i) = 0, then the
probability of being chosen is equal among them. We recom-
mend choosing large values for α (≥ 0.9) to obtain better initial
solutions.

4.4. Improvement of a solution

The feasibility of a solution is improved by decreasing the
number of unfulfilled ergonomic constraints by means of a VNDS
algorithm, which is followed by a NFO procedure to better ful-
fill the balancing objectives. These two search mechanisms are
applied iteratively (see Fig. 2) until a stop criterion is met (op-
timization time or iterations with no improvement). The fol-
lowing subsections offer a detailed description of each of these
improvement steps.

4.4.1. Variable neighborhood descent search for repairing infeasibil-
ity

The construction phase is driven by the solution of the general
covering problem and is particularly oriented toward construct-
ing a feasible solution because the LoC in each shift assignment is
first defined by physicians who fulfill all constraints. However, in
problems with little slack for finding feasible solutions (too small
a surplus with respect to the total demand for working hours
and very tough ergonomic requirements), the construction phase
could provide a solution that fails to meet certain constraints.
In this case, the first step of the improvement phase is a repair
process, whereby a shift contributing to the infeasibility of one
physician’s schedule is transferred to another physician. These
shift transfers successively involve several physicians and are
repeated several times. Fig. 3 represents the logic of these move-
ments: shift S1, which causes the infeasibility of the sequence
S1–S2 in physician P14’s schedule (after shift S1, there must be
a day off), is transferred to physician P23 (causing infeasibility
because, two days off are compulsory after shift S7); this requires
transferring shift S7 to physician P9 (again causing an infeasibil-
ity), and this, in turn, results in the transfer of shift S3 to physician
P18. After these transfers, the initial infeasibility of physician P14 is
solved without detriment to the total number of non-compliances
of the remaining physicians.

The search for sequences of transfers leading to the improve-
ment of the current schedule falls into the category of a VNDS
algorithm with rationale as follows.

Let Xi be the set of shifts assigned to physician Pi in the incum-
bent solution, that is, Xi =

{
Sj ∈ S (t) |Xijt = 1

}
and ρ(Xi, X ′

i ) be
the distance between solutions for scheduling a physician defined
as

′ ′
ρ(Xi, Xi ) = |Xi∆Xi | (33)
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Fig. 2. Flowchart of the solution improvement phase.
Fig. 3. Example of shift (Sj : S1− S7) transfer among physicians (Pi : Physician 9, 14, 18, 23) on different days (Dt :D1− D5). Ergonomic requirements for the different
ypes of shifts: S7 must be followed by two days off; S1, S5 must be followed by one day off; and S2, S3, S4 do not require the next day to be a rest day.
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here |Xi∆X ′

i | represents the number of shifts that form part of
chedule Xi but not of X ′

i and those which form part of schedule
′

i but not of Xi. Let us observe that when a physician Pi with
chedule Xi transfers a shift to another physician, the resulting
chedule for Pi, denoted by X ′

i , verifies ρ
(
Xi, X ′

i

)
= 1.

A full schedule X is the aggregation of all the physicians’
chedules: X = (X1, X2, . . . , XN ), and then, ρ

(
X,X′

)
=

∑N
i=1(

X , X ′
)
represents the distance between two schedules for all
i i

9

hysicians. The transfer of a shift from one schedule X to obtain
nother schedule X ′ is denoted by X ′

= h(X). The schedule
olution X ′ resulting from a sequence of k transfers of shifts in
hich the transferee in one shift transfer becomes the transferor

n the next shift transfer is denoted by X ′
= hk

p(X). The index
p refers to the path p, which determines the transfers of shifts
between physicians. For example, in Fig. 3, the path is P

S1 of D3
−−−−→
14
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23
S7 of D1
−−−−→ P9

S3 of D2
−−−−→ P18. The length of a path is the number of

ransfers, in the case of Fig. 3 the length is 3.
A neighborhood of depth k is defined as

k (X) = {X ′
|∃ p of length k such that X ′

= hk
p(X)}

Let us consider a certain type of constraint that is not fulfilled
by a solution X and thus requires repair. Let Q > 0 denote the
maximum number of unfulfilled constraints among all physicians
and PQ the set of physicians that reach this maximum number of
non-fulfillments.

PQ = {physicians with a number Q of non − fulfillments}

A recursive function enables fairly easy implementation of this
VNDS procedure. In each step, each physician with an infeasible
schedule tries to transfer a shift (which is problematic because it
causes an infeasibility) to another physician, who is able to accept
it, even if this results in an additional infeasibility, and then
the infeasibility improvement problem is transferred to another
physician, and the process is repeated. The steps of this VNDS
algorithm are detailed in Algorithm 3.

4.4.2. A network flow optimization problem for balancing the distri-
bution of shifts and working hours

The goal of this optimization procedure is to transfer shifts
of a certain type from physicians with surplus workload, who
are working significantly more than average hours and a greater
number of that type of shift, to physicians with slack in that
type of shift, who are working significantly fewer than average
hours. The term ‘‘significantly’’ is used in relation to a zone of
indifference surrounding the average number of hours worked,
which is defined in order to stabilize the procedure as it pro-
gresses. A physician Pi is considered to have an acceptable total
of working hours, Hi (X) =

∑T
t=1

∑L
j=1 djXijt , in a schedule X

when as long as it belongs to this interval of indifference. To
formalize this idea, for each iteration l of this optimization proce-
dure (1 ≤ l ≤ maxiter_NFO), the lower and upper boundaries of the
indifference interval, LH and UH respectively, around the average
number of working hours are defined as follows:

LH = ρrH
(
1 −

(
l

maxiter_NFO

)
ε

)
(34)

H = ρrH
(
1 +

(
l

maxiter_NFO

)
ε

)
(35)

here ε is the factor defining the final window of indifference.
or example, ε = 0.0015 and an average H = 1750 and a full-

time physician (ρr = 1); the indifference window is UH − LH ≈

h. The average H for a full-time physician can be estimated as
H =

∑
j djmj∑
r ρrnr

Given a schedule solution X , these two limits classify the
hysicians into three groups:

PTS (X) = {Pi|Hi (X) > UH}

RS (X) = {Pi|Hi (X) < LH}

PIN (X) = {Pi|LH ≤ Hi (X) ≤ UH}

The physicians in set PTS (X) can transfer shifts, and those in
set PRS (X) can receive shifts. Physicians in the balanced set PIN (X)
can play an intermediate role by both receiving and transferring
shifts. This condition for transferring a shift is called the working
hours’ condition (WHC).

A physician of type Gr can transfer a shift of a certain type Sj
when the number of assignments of this type exceeds the theo-
retical number Zij determined in the pre-processing optimization
phase; and, conversely, a physician can receive a shift of a certain
type when the number of assignments of this type is below
10
Fig. 4. Example of work-flow network. Physicians 1, 2 and 3 can transfer one
shift; physicians 4, 5 and 6 can receive and transfer one shift, and physicians 7
and 8 can receive one shift.

this theoretical figure. In terms of the notation introduced in
Section 4.2, a physician Pi is allowed to transfer a shift , Sj, when
z∗

iDc
> ZiDc , and a physician Pi is allowed to receive a shift Sj when

z∗

iDc
< ZiDc for all sets Dc with relevance in the objective function

and in which shift Sj participates. This shift transfer condition is
named the balancing shift condition(BSC).

Building the network structure. The nodes represent physicians,
and each arc (i, k) represents a possible transfer of a shift Sj
from physician Pi to physician Pk. The physician Pi belongs to
set PTS (X), and Pk belongs to set PRS (X) ∪ PIN (X), or Pi belongs
to set PIN (X), and Pk belongs to set PRS (X). To plot an arc on
the graph, both physicians, transferor and transferee, must meet
the conditions WHC and BSC defined earlier and the transferee
must be feasibly able to work this shift. When there exists more
than one arc verifying the conditions between a pair of physi-
cians, one of them is chosen at random (since it is the case that
more than one shift could feasibly be transferred from physician
Pi to physician Pk). Therefore, the network structure is built
randomly and successive iterations of this procedure provide
different networks.

Assigning demands, capacities, and costs to the network. Nodes
representing a physician in PTS (X) have a demand of −1, nodes
representing a physician in PRS (X) have a demand of +1, and
nodes representing a physician in PIN (X) have a demand of 0
(trans-shipment nodes).

The network is expanded by unfolding each node in the set
PIN (X), into two nodes that are connected by an arc.

All arcs in the network have a maximum capacity of 1 and a
minimum capacity of 0.
Costs:

- the arcs between a physician in PTS (X) and a physician in
PRS (X) have a cost of −2,

- the arcs between a physician in PTS (X) and a physician in
PIN (X), or between a physician in PIN (X) and a physician in
PRS (X) have a cost of −1,

- the arcs between nodes representing the same physician in
PIN (X) have a cost of 0.

Fig. 4 shows a simple example of a flow network with 3 physi-
cians in set PTS (X), 3 physicians in set PIN (X), and 2 physicians
in set P X .
RS ( )
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Solving the network flow problem. The problem is solved by us-
ng an algorithm to find the minimum-cost feasible flow. The
esulting networks are small in size and can be solved quickly
y efficient algorithms such as Network Simplex, Out of Kilter,
ycle Canceling, or Successive Shortest Path (see Thulasiraman
t al. [55]). Our implementation uses a successive shortest path
lgorithm, as described in Ahuja, Magnanti, and Orlin [56]. After
etwork optimization, each physician can transfer and receive, at
ost, one shift. For this reason, this optimization step is repeated
axiter_NFO times. In each iteration, the limits that define the
artition of physicians into sets PTS (X), PRS (X), and PIN (X) are
odified, starting with small values, which are gradually in-
reased. Any fluctuation of the zone of indifference between two
alues contributes to the variability of the created networks and
he stabilization of the shift transfers as the algorithm progresses.

Consecutive iterations of this procedure lead to different net-
orks, which gradually improve the balancing of shifts and work-

ng hours. When this NFO phase is iterated with the VNDS algo-
ithm because the solution is still infeasible, the NFO helps the
NDS algorithm by providing new starting solutions from which
o search for good shift transfer chains (as in a shaking procedure)
nd also helping to redress any imbalance in the shift distribution
hat may be introduced due to the application of VNDS.

. Computational analysis

This section reports the results of the empirical assessment of
he algorithm presented above, which was implemented in Java.
ts practical effectiveness is tested in Section 5.1 by solving the
roblem of scheduling all the ER shifts for the year 2018 among
2 physicians in the Hospital Compound of Navarre (HCN) in
pain. In addition, in Section 5.2, a set of synthetic scheduling
roblems of varying degrees of difficulty is used to assess the per-
ormance of the algorithm under different conditions. The results
11
are compared with those obtained by CPLEX. Finally, Section 5.3
investigates the influence of the different phases of the algorithm
on the solutions to the physician scheduling problem as well as
the value of its parameters for obtaining good solutions.

5.1. The physician scheduling problem at the Hospital Compound of
Navarre (HCN)

The ED of the HCN, which is located in Pamplona (Spain),
serves a population of half a million people, and attends to over
140,000 patients per year. This ED is staffed 24 h per day by
42 board-certified emergency physicians. Currently, each year’s
shift schedule is planned manually by one of the physicians,
who dedicates three weeks’ work to this task. Although, this
person is an experienced physician and has been in charge of
schedule planning for many years, the task becomes more com-
plicated every year, because new labor laws create new con-
straints and new categories of workers with different working
conditions. This physician creates the schedule without any tech-
nological/computational support, using only large spread sheets,
similar to the one shown in Fig. 5, where there is a row for
each physician and a column for each day. Starting with simple
rotational rules, the scheduler uses his/her own heuristics to
consecutively balance holiday shifts, weekend shifts, nights, and,
finally, regular shifts, while also trying, to satisfy a large set
of constraints (ergonomic, workload, etc. as described in Sec-
tion 3). The resulting schedule violates many conditions as well
as provoking numerous complaints from other physicians, who
consider the schedule unbalanced and conditioned by subjective
preferences.

Staff characteristics. The staff comprises 42 physicians who can be
grouped into two types: (1) a first group G1 of 3 physicians who
are exempt from night shifts (denoted by O, A5, G1, G2 and G3 in
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Fig. 5. The hospital’s current scheduling method.
f
Z
1

able 1) for reasons of age or various other reasons such as work-
amily reconciliation and (2) a second group G2 of 39 physicians
ho can work any shift.

hift characteristics. Shifts differ in length and task characteristics.
n the ER of the HCN, physicians can be assigned to different areas,
uch as the resuscitation room, the triage zone, the observation
one, or the severe patient circuit. Each of these locations involves
ifferent tasks and responsibilities. In addition, different numbers
nd types of shifts are scheduled for different types of days.
able 1 includes relevant information about shift length, the type
f shifts worked per type of day, and the number of days off after
ach shift. A balanced distribution of all types of shifts among the
hysicians must be achieved.

onstraints. There are some compulsory requirements for individ-
al schedules: two days off have to be scheduled after a long shift
19/20 h) and one day off after a 14-hour-shift; schedules must
ot allow more than two consecutive weekend shifts; or more
han 5 holiday shifts in a month (these include Saturdays and
undays); and must allow a four-day gap between night shifts.
n addition, all physicians’ schedules must fulfill certain balanced
istribution criteria based on the number of shifts of each type
orked yearly (13 balance conditions, B1 to B13, defined in
able 2, each one associated to a set of shifts Dc), and all these
hifts have to be evenly distributed over the year. There are 5
ight shifts (G1, G2, G3, A and O) which should be balanced
ndividually, except G1 and G2, that only require balancing their
um.

esults. The problem was first formulated as a Mixed Integer
inear Programming model (see Appendix C) with over 200,000
ariables and 70,000 constraints. CPLEX 12.6.2 solved this prob-
em on an Intel (R) Xeon (R) CPU E5-1630 v4 3.70 GHz and 64.0
B RAM, and after an entire week of execution time, the best-
ound integer solution provided an objective function value of 43
see Table 3), which was obtained after 168 computation hours
nd remained unchanged for 54 h, until the end of the experiment
see Fig. 6). However, CPLEX was not able to prove optimality of
12
that best-found solution within the computational time limit. In
fact, it is not optimal, because the G+NO algorithm obtained a
solution with an OFV of 15 within seconds. Fig. 6 shows the best-
found solutions obtained by both CPLEX and the G+NO algorithm
over time (note that the time axis is expressed in seconds for the
G+NO algorithm and in hours for CPLEX).

To apply the G+NO algorithm, the initial LP problem was first
ormulated in order to obtain the optimum theoretical values of
ij for each type of shift and physician group Zij, i = 1, 2; j =

, . . . , 19, which was solved within seconds. Table 3 shows, in
row 3, the theoretical optimum value for each shift-balancing
goal Bk, k = 1, . . . , 13 for the two groups of physicians. These
values guided the construction phase and the objective function
improvement. The maximum and minimum numbers of shifts
worked by a physician in either group according to the solution
obtained by CPLEX, in one hour and in one week, are given in
rows 4–5, and 6–7, respectively; and in rows 8–9 for a G+NO
solution obtained after five minutes’ computation time. The col-
umn for B13 shows the hours worked annually, and it is here
that the G+NO clearly outperforms CPLEX, thus demonstrating
the efficacy of the Network improvement phase. The best bound
obtained by CPLEX in one week is 4.547. A straightforward anal-
ysis of the objective function can provide better bounds; superior
to those provided by CPLEX (see Table 3).

The notion underlying this target bound is the following:
when the number of shifts participating in a balancing goal is
not a multiple of the number of possible shift candidates, it is
impossible for them all to be assigned the same number of shifts
of this type, and the balanced solution will, therefore, necessarily
fall within a range of at least one. However, when the number
of shifts is a multiple of the number of candidates then an even
distribution among all physicians is possible. This simple analysis
provides a minimum bound for the objective function. In the case
study, this bound is 11 and G+NO and CPLEX solutions provide a
relative gap (36) of 0.27 and 0.74, respectively.

GAP =
{OFV } − {Theoretical bound}

(36)

{OFV }
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able 1
hift coverage requirements by type of day. The shift labels (S1–S19) are those used by the ER of HCN (row 2: local description).

Shifts S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19

Local description G1 G2 G3 A5 O C B1 B2 B3 A6 A7 A8 A9 OM R OR RF RA RB
Length in hours 19 19 19 19 20 14 14 14 14 14 14 8 8 8 3 14 14 14 14
Workdays X X X X X X X X X X X X X X X
Mondaysa X X X X X X X X X X X X X X X X X
Holidays X X X X X X X X X X
Days off after shift 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 1 1 1 1

aMondays or any other day following a holiday.
Table 2
The 13 balancing objectives.

Balancing
objective name

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

Type of shifts to
be balanced

C B1 + B2 + B3 A6 + A7 A8 + A9 OM (A6 + A7)
−(OR + RF)

O A5 G3 G1 + G2 DC =

{weekends}
DC =

{holidays}
AWH
Table 3
Case study results: heuristic algorithm and CPLEX results for balancing the different shift sets (B1–B13) included in the objective function OFV. Max. and Min. refer
to the maximum and minimum number of balancing goals involving physicians in the respective group. The relative gap (last column) is calculated according to
formula (36).

Obj G1 Obj G2 Obj G1&G2

Objectives B11 B21 B31 B41 B51 B61 B12 B22 B32 B42 B52 B62 B7 B8 B9 B10 B11 B12 B13 OFV Rel.
Gap

Theoretical values 17.38 35 32.59 23.33 11.67 0 8 16.15 16.21 10.77 5.38 0 9.36 9.36 9.36 18.72 25 3.57 1750.95
CPLEX
(1 h)

Max. 174 133 41 0 0 41 51 46 44 62 138 19 52 43 56 70 36 8 2515 3451 1Min. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78

CPLEX
(1 week)

Max. 25 31 36 23 7 1 8 20 17 12 7 3 10 11 10 21 26 4 1756 43 0.74Min. 25 31 36 23 7 0 7 15 14 10 4 0 8 8 8 17 24 3 1745

G + NO
(5 min)

Max. 17 35 33 24 12 0 9 17 17 11 6 1 10 10 10 19 26 4 1752 15 0.27Min. 17 35 33 24 12 0 8 16 16 10 5 0 9 9 9 18 24 3 1750
Fig. 6. CPLEX and G+NO algorithm performance: best found solutions obtained by both over time.
The solution obtained with the heuristic obtains the bound for
ach balancing criterion except for B6, which could theoretically
btain a value of 0 but in fact obtains a range of 1; criterion B11,
hich could theoretically obtain a value of 0 and actually obtains
range of 2; and criterion B13, which could theoretically obtain
value of 1 and actually obtains a range of 2. These differences

ncrease the global bound of 11 by 4 units to an OFV of 15. In
onclusion, the solution may be non-optimal, but, from a practical
oint of view it is, nevertheless, a very high quality solution
ompared with those obtained manually by the physician, who
ccepted solutions within a range of 2 or 3 for goals B1–B12 and
range of 20 for goal B13.
13
5.2. Additional computational experiments

In this section, the performance and efficacy of the proposed
algorithm are evaluated by creating new instances in order to
obtain problems of different sizes and degrees of difficulty, while
still maintaining the characteristics of a real problem. From the
real case detailed in Section 5.1, two more different-sized prob-
lems with 20 and 30 physicians, respectively, were created by
rescaling all the physician and shift types included in the real
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e number of physicians as well as the ratios of holidays,
e value obtained by the straightforward analysis of the
und provided by CPLEX in one hour. ‘‘G + NO solution’’
after 30 runs of the algorithm G+NO for each instance.

ided by CPLEX, divided by the latter.
G + NO solution
(MEDIAN)

Improve-
ment
G + NO
over
CPLEX

AWH OFV Rel.
Gap

AWH

3.4 11 0.36 3 0.60
2.13 10 0.2 2 0.44
2.1 9 0.22 2 0.47
1.07 10 0.1 1 0.57

3.4 12 0.25 3 0.54

5.17 13.5 0.41 5 0.73
4.73 14 0.36 5 0.63
5.87 16 0.44 5.5 0.53
6.2 16.5 0.45 5 0.52

3.13 14 0.36 3 0.82
3 15 0.2 3 0.78
2.23 15 0.4 2 0.45
3.23 15.5 0.29 3 0.46

1.83 14 0.21 2 0.48

3.03 15 0.27 3 1.00
2.2 15.5 0.42 2 0.99
3.1 15 0.27 3 1.00
1.9 16 0.38 2 1.00

2.83 16 0.25 3 1.00
3.3 16 0.31 3 1.00
1.73 16 0.25 2 1.00
3.23 16 0.31 3 1.00

1.87 16 0.31 2 1.00

3 17 0.35 3 1.00
3.5 18 0.28 3 1.00
3.53 16 0.38 4 1.00
2.93 17 0.29 3 1.00

14
Table 4
Comparison of the solution obtained in five minutes by the heuristic algorithm with the one provided by CPLEX in one hour. ‘‘Instances description’’ includes th
worked nights, and annual hours worked per physician in each solved instance with respect to the reference problem. The ‘‘theoretical bound’’ refers to th
objective function explained in the text. ‘‘CPLEX solution’’ includes the OFV, the relative gap (36), the range of annual hours worked (AWH), and the best bo
also includes the OFV, relative gap (36) and the AWH. Column ‘‘BEST’’, ‘‘AVERAGE’’, and ‘‘MEDIAN’’ show the results for the best, average, and median solution
The column ‘‘Improvement G+NO over CPLEX’’ is calculated by the difference between the solution provided by G + NO (column BEST) and the solution prov
No. of
Physi-
cians
(Phys)

Instances description
(standard = 1)

Theore-
tical
bound

CPLEX solution G + NO solution
(BEST)

G + NO solution
(AVERAGE)

Holidays
per Phys
ratio

Nights
per Phys
ratio

AWH
ratio

OFV Rel. Gap AWH Best
bound

OFV Rel.
Gap

AWH OFV Rel.
Gap

20 0.80 0.85 0.93 7 20 0.65 9 1.87 8 0.13 2 10.50 0.33
20 1.00 0.79 0.91 8 16 0.5 7 4.52 9 0.11 2 10.27 0.22
20 0.80 1.00 0.95 7 15 0.53 7 1.22 8 0.13 1 9.03 0.23
20 1.00 1.00 0.98 9 23 0.61 6 3.88 10 0.1 1 10.27 0.12

20 1.00 1.00 1.00 9 24 0.63 6 3.03 11 0.18 2 12.20 0.26
20 1.00 1.00 1.07 8 41 0.8 6 2.88 11 0.27 3 14 0.43
20 1.20 1.00 1.05 9 32 0.72 7 1.34 12 0.25 2 14.17 0.36
20 1.00 1.21 1.09 9 30 0.7 7 1.26 14 0.36 4 16.67 0.46
20 1.20 1.15 1.07 9 23 0.61 14 0.75 11 0.18 2 17.63 0.49

30 0.86 0.91 0.95 9 67 0.87 49 0.52 12 0.25 2 14.47 0.38
30 1.00 0.87 0.94 12 63 0.81 9 3.18 14 0.14 2 14.97 0.2
30 0.86 1.00 0.97 9 22 0.59 11 0.32 12 0.25 1 14.87 0.39
30 1.00 1.00 0.97 11 26 0.58 13 1.34 14 0.21 2 15.53 0.29

30 1.00 1.00 1.00 11 25 0.56 12 0.63 13 0.15 1 14.00 0.21
30 1.00 1.00 1.03 11 3151 1 2402 1.59 14 0.21 1 15.43 0.29
30 1.14 1.00 1.03 9 2355 1 1932 1.21 13 0.31 1 15.47 0.42
30 1.00 1.13 1.06 11 3077 1 2379 1.28 14 0.21 3 15.30 0.28
30 1.14 1.09 1.04 10 3038 1 2359 1.06 14 0.29 1 16.13 0.38

42 0.90 0.93 0.97 12 3387 1 2379 0 14 0.14 1 15.53 0.23
42 1.00 0.91 0.96 11 3352 1 2427 0 15 0.27 3 16.27 0.32
42 0.90 1.00 0.98 12 3309 1 2379 0 14 0.14 1 15.67 0.23
42 1.00 1.00 0.97 11 3129 1 2379 0 14 0.21 3 15.67 0.3

42 1.00 1.00 1.00 11 3451 1 2437 0 15 0.27 1 16.43 0.33
42 1.00 1.00 1.02 11 3516 1 2437 0 14 0.21 2 16.77 0.34
42 1.10 1.00 1.01 13 3453 1 2379 0 16 0.19 3 17.47 0.26
42 1.00 1.09 1.04 10 3292 1 2379 0 14 0.29 2 15.47 0.35
42 1.10 1.07 1.03 12 3414 1 2413 0 15 0.2 2 16.60 0.28
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ase. These three instances (the real case with 42 physicians and
he two new rescaled instances with 20 and 30 physicians, re-
pectively) are considered normal-difficulty instances, and high-
ighted in bold in Table 4.

Eight more instances, all for different sized problems, were
esigned. Four of them are intended to increase the solving
ifficulty by increasing the number of shifts to be assigned in
otal and therefore per physician, thus making the ergonomic
onstraints more difficult to satisfy. The other four scenarios are
esigned to facilitate the process by decreasing the number of
hifts. Specifically, the new problems are obtained as follows

• The less difficult instances. The number of shifts assigned
per day is reduced by one on some days to obtain the
four new problems: workday morning shift, holiday morn-
ing shift, workday night shift, and holiday night shift, re-
spectively. Thus, the ratio of average annual working hours
(AWH) with respect to the initial scenario is less than one.

• The more difficult instances. The number of shifts assigned
per day is increased by one on some days to obtain the
four new problems: workday morning shift, holiday morn-
ing shift, workday night shift, and holiday night shift, re-
spectively. Thus, the ratio of average annual working hours
(AWH) with respect to the initial scenario is greater than
one.

he increases and reductions in the number of shifts can also
hange the number of holidays and number of nights worked
y a physician, thereby affecting the difficulty of solving the
roblem. Table 4 compares the results of all instances provided
n 5 min by the heuristic algorithm and in one hour by CPLEX on
he same computer. The table includes the ratios of physicians,
olidays, worked nights, and annual hours worked per physician
n each solved instance with respect to the reference problem.
he results provide the objective function value (OFV), the range
f annual hours worked (explicitly included because of the diffi-
ulty involved in balancing it) and the gap with respect to the
heoretical bound. The best bound obtained by CPLEX is also
ncluded. The heuristic G+NO algorithm is run 30 times for 5 min
ach. The heuristic algorithm is a multi-start algorithm, set to
enerate 10 solutions and improve them for a total of 30 s each
easiest problems with AWH ratio < 1), or 5 solutions with an
mprovement time of 1 min (harder problems with AWH ratio ≥

). The algorithm returns the best of these 5 or 10 solutions.
able 4 presents the results for the best of the 30 runs, the
verage solution and the median solution. The heuristic algorithm
utperforms CPLEX in all instances: the mean and median of the
0 runs of the heuristic algorithm are much lower than the OFV
btained by CPLEX. In all instances, moreover, the 30 runs of the
+NO algorithm provide a better solution than CPLEX.
Observe that, in problems with 20 physicians and

ewer/weaker constraints (first four scenarios), the best G+NO
olution is only one unit’s distance from the theoretical bound,
nd in all scenarios this distance is less than or equal to 4, except
n one where it is 5. As already mentioned, these results are very
ood from a practical point of view, since they considerably im-
rove the manually designed schedules which were not feasible
nd had wider-ranging balancing criteria.
The quality of each solution in Table 4 is assessed by the

elative gap (36), and the improvement of G+NO over CPLEX
s calculated by the difference between the solution provided
y G+NO (column BEST) and the solution provided by CPLEX,
ivided by this latter solution.
15
5.3. Parameter tuning

In this section we investigate the influence of the different
phases of the algorithm and the value of its parameters for ob-
taining good solutions to the physician scheduling problem. Some
parameters are fixed, parameter β in the objective function (25),
and parameter α in choice of physicians from the LoC (32). The
alue of parameter β was set to 1000, large enough to guarantee
he balanced distribution of shifts at weekends, nights, holidays,
nd other types of shifts specified as important to balance by the
cheduler. We implemented an elitist choice of physicians from
he LoC by fixing a value α = 0.95. In the rest of the Subsection,
we deal with the capacity of the algorithm first to achieve feasible
solutions and then to improve the value of the objective function.

Fine-tuning of parameters to obtain feasible solutions. The
onstruction phase of the algorithm includes feasibility as the
irst condition for defining the LoC from which a physician will
e selected at random to be assigned a shift. Thus, in problems
ith no heavy constraints, the construction phase is expected to
rovide a feasible solution. However, this does not occur in prob-
ems heavily constrained by strict ergonomic requirements and
eavy workloads. To illustrate this, we conducted an experiment
sing the 27 problems solved in the previous section, obtaining,
or each one, 100 different solutions using only the construction
hase of the algorithm. Table 5 contains the number of feasible
olutions. Clearly, when one extra holiday and night shift are
dded, and there are fewer physicians to share the extra work,
he problem becomes harder to solve. However, when feasibility
s not achieved, the number of infeasibilities is low, usually one
r two (out of the several tens of thousands of constraints). In
he case of the 20-physician problem, with one night shift added
n every holiday, none of the 100 solutions provided by the
onstruction phase is feasible. In this worst-case scenario, the
umber of infeasibilities could reach around 10–15 (Fig. 7 shows
he distribution of the number of unfulfilled constraints in the
ne hundred solutions of the two worst instances: when an extra
ight shift or an extra day shift is added on holidays for an ED
ith 20 physicians). In instances with no heavy constraints, the
onstruction phase obtains a feasible solution within 100 runs.
To analyze the performance of the feasibility improvement

hase, we use the most difficult problem that of scheduling shifts
or 20 physicians, for which no feasible solution was obtained
nitially. Specifically, we study the influence of two parameters:
he number of iterations maxiter_VND of the VNDS algorithm; and
he number of iterations maxiter_NFO of the NFO step. The re-
ursion depth parameter is set as 10, which is large enough to
ermit a wide search and small enough to avoid excessive mem-
ry consumption (higher values can lead to memory allocation
roblems).
For each combination of the values 1, 5, 10, 20 and 50 for

axiter_VND and 1, 5, 25, 50, 100, and 200 for maxiter_NFO, 50
olutions are obtained by running the algorithm G+NO for 30 s.
hus, 1500 different solutions are obtained for the same problem.
able 6 shows the percentage of feasible solutions obtained with
ach combination of parameters. A two-way ANOVA reveals the
nfluence of the value maxiter_NFO in the results (p-value<0,001)
ut not the influence of maxiter_VND (p-value = 0,915). The results
f a post-hoc analysis of a one-way ANOVA, using only maxiter_NFO,
nd the graph of means (Fig. 8) reveals that results for 1 and 5
re much worse and that significantly better results are obtained
or values of 25, 50 and 100 (after which they deteriorate slowly
s the number of iterations increases). An explanation for these
esults is the following: given a schedule, the VNDS tries to
equentially find shift-transfer chains to repair infeasibilities; but,
n heavily constrained problems, it is possible that no (or only
ery few) such chains exist in the current solution. Therefore, it
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able 5
ercentage of feasible solutions reached in the construction phase of the G+NO algorithm.

Instances

Shifts added 0 + 1 + 1 + 1 + 1 −1 −1 −1 −1
ime-slot Day Night Day Night Day Night Day Night
ype of day Holiday Holiday Work day Work day Holiday Holiday Work day Work day

N◦ . physicians
20 100 28 0 100 84 100 100 100 100
30 99 89 19 99 81 100 100 100 100
40 100 99 92 100 99 100 100 100 100
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Table 6
% of feasible solutions reached by G+NO algorithm for each configuration.

maxiter_VNDS
1 5 10 20 50

maxiter_NFO

1 4 6 12 10 4
5 26 24 28 22 14
25 78 82 82 90 82
50 80 78 88 72 78
100 72 74 74 74 84
200 76 66 62 78 82

Table 7
Mean, median and minimum values of the 50 iterations of G + NO algorithm.
Mean maxiter_VND

1 5 10 20 50

maxiter_NFO
25 22.76 21.46 20.93 19.84 20.10
50 24.12 20.19 25.33 23.82 22.52
100 20.67 23.82 22.55 20.63 22.28

Median maxiter_VND
1 5 10 20 50

maxiter_NFO
25 19.0 19.0 18.0 17.5 18.0
50 22.0 19.0 23.0 22.0 21.0
100 18.5 21.5 21.0 18.0 19.5

Minimum maxiter_VND
1 5 10 20 50

maxiter_NFO
25 13 13 13 12 13
50 13 13 13 12 12
100 12 13 13 12 13

is necessary to shake the current solution to obtain a new one
and then resume the search for the required feasibility-repairing
chains. These new schedules are provided by applying the NFO
step. The results show that too few iterations maxiter_NFO (1–5)
o not create significantly different solutions; whereas, above a
ertain number of iterations, the changes in the solution through
he network are minor. These iterations consume computational
ime and thus influence the total number of global iterations
f the algorithm (constructive step, maxiter_VND and maxiter_NFO).
omputational tests, included in Fig. 8, show that above 100
terations for maxiter_NFO the global efficiency decreases. From
his analysis, values of 25, 50, and 100 could be considered
ppropriate.

ine-tuning to obtain good objective function values. Table 7
hows the average, median, and minimum of the feasible so-
utions obtained after running the algorithm 50 times for one
inute for each combination of maxiter_NFO and maxiter_VND pa-

ameters. We consider the best values (25, 50, and 100) for
axiter_NFO and (1, 5, 10, 20, and 50) for maxiter_VND. The results
how no statistically significant differences. However, in order
o fix parameter values, we choose 25 for maxiter_NFO and 20 for
axiter_VND, because they provide the lowest mean, median, and
inimum values.

xecution time. Several experiments were conducted to analyze
he computational time required to obtain good solutions. We
ound that 1 min per solution in the multi-start G+NO algorithm
16
s enough time to achieve the greatest possible improvement of
he solution obtained from the construction phase. Fig. 9 shows
hree 1-minute runs of the real instance, the best solution in each
un being obtained in 13.6, 36.5, and 22.58 s.

Fig. 10 shows the G+NO performance for the most difficult
roblem; that is, scheduling shifts for 20 physicians, as used in
he previous analysis. The upper graphs show three 1 min G+NO
uns of the instance, which obtains their best values in 18.191,
2.264, and 56.83 s. The second graph is a zoom of the previous
raph, showing the points at which feasibility is recovered. The
olutions achieve feasibility in 2.359, 1.512, and 3.641 s. The
ower graph shows the G+NO run that provided the best solution
or that instance in isolation. It reaches feasibility in 2.359 s and
ts best solution in 18.191 s, which is a value of 12 (the theoretical
olution is 9, and the minimum solution provided by CPLEX in an
our is 23).

. Conclusions

In this paper, we have developed a new hybrid algorithm for
olving the physician scheduling problem.
The characteristics of the problems reviewed in the table

hown in Appendix A reveal that the problem addressed in our
ork is one of unique complexity. It has to assign many different
ypes of shifts – of varying lengths –, to accommodate a non-
niform daily shift demand dependent on day type, a one-year
lanning horizon, a real calendar interspersed with public hol-
days, and many ergonomic and balancing constraints imposed
y mandatory and personnel requirements. Besides, the solution
as been implemented in practice the last years, and it will be
n the subsequent ones, which is not very common because, as
an be seen from the table shown in Appendix A, most papers
olve problems based on real data, but only a few report on
he practical implementation of the solution. In recent years,
he problem has become more complex because there are more
ifferent groups of physicians regarding their working hours and
he exemption from working certain shifts. This is due to laws on
he balance between work and family life and better working con-
itions for the elderly (for example, exemption of working night
hifts). In the words of the scheduler, ‘‘currently it is impossible
o find, not a good solution, but a solution that could approach
he fulfilling of ergonomic constraints, and minimally balanced,
o be accepted by the physician staff’’.

One of the main features of the algorithm is that the number
f shifts of each type that must be worked by each physician over
he whole planning horizon is used to define the fitness function
hich determines his/her probability of being selected from the
oC . In this way, the construction step creates balanced solutions.
n addition, the algorithm also prioritizes the construction of
easible solutions by including in the LoC physicians who can
feasibly work the shift being assigned in that step. As a result,
the construction phase usually obtains good quality solutions,
because even infeasible solutions failing in only a few constraints
can generally be repaired in the local search step. This step works
by combining a shift-transfer process to reduce the number of
infeasibilities, with a NFO process, to create new solutions to
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Fig. 7. Distribution of the number of infeasibilities for the two hardest scenarios (they both have 33379 constraints).
Fig. 8. Graph of the mean % of feasible solutions reached by algorithm for each maxiter_NFO parameter value and results of the post-hoc analysis of a one-way ANOVA.
Fig. 9. Three examples of 1 min run of the G+NO algorithm for the real instance.
ontinue the search for shift-transfer chains. Once feasibility is
chieved, the procedure continues with the NFO process alone in
rder to improve the balance of the solution.
The algorithm is a multi-start algorithm with a greedy con-

tructive phase that looks for good but diversified solutions, that
ontributes to explore the solution space in the promising ar-
as. This phase takes a very small computational time. For each
nitial solution, its neighborhood is searched in two ways: the
irst one, only applied when the incumbent solution is infeasible,
t is based on the transfer of single shifts between physicians,
o the neighborhood explored is not very large (although the
ecurrence of the transfer chain can involve several physicians);
17
the second one, it is made by the NFO phase to improve the
objective function, which allows for simultaneous transferring
of shifts among physicians and explores larger neighborhoods.
Computational results show that with the tuned parameters, a
few seconds are enough to retrieve a feasible solution and less
than one minute to conduct exploitation of the neighborhood of
an initial solution (in problems of similar complexity to those
more difficult analyzed in this paper).

The results show a clear superiority over ILP for realistically-
sized instances; better results being achieved in a few minutes,
as opposed to the 168 h (an entire week) taken by CPLEX when
real instances are solved. The resolution time, which can be up to
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Fig. 10. G+NO performance for the most difficult problem.
everal minutes in relatively large, heavily constrained problems,
ith little slack for physicians’ working hours, can be considered
atisfactory for use in practice. The algorithm can be applied for
olving any scheduling problem that fits the general mathemat-
cal model presented in Section 3. It can handle different types
f physicians and different types of shifts, with different types of
onstraints for each pairing (physician type, shift type). Thus, this
eneral framework can fit other contexts, such as the scheduling
f physicians in other health departments or police and fire
epartment staff. In fact, the initial motivation of this research
as the design of a general physician scheduling algorithm for
ny hospital department; the ER being the first department for
hich it was tested.
18
This study treats ergonomic constraints as hard constraints,
although some could also be treated as soft constraints by penal-
izing any deviation beyond the bounds of the objective function.
In this case, weights could be used in the objective function
to prioritize the different objectives relative to each other and
to other balancing criteria. This extension is quite common and
straightforward to apply in the original MIP, but not in the pro-
posed heuristic algorithm. The latter would require adaptation
in its three main steps. In the construction step, the LoC would
include those physicians whose assignment would have the least
negative effect on the objective function. In the VNDS step, the
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deling
hnique

Solving algorithm Real
data

Imple-
menta-
tion

An iterative
branch-and-bound
(constraints
addition)

X

P Branch-and-cut
(CPLEX)

X

P Greedy-random X X

A multiphase,
interactive,
iterative
branch-and-bound

X X

P Enhanced
branch-and-cut

X

Branch-and-cut
(CPLEX)

X X (MA)

LP and
QP

Branch-and-cut
(CPLEX)

X X

P - Branch-and-cut
(CPLEX): small
instances
- Greedy + Local
Search based
algorithm:
large-scale
problem instances

X

Branch-and-cut X X

Branch-and-bound
(LINGO)

X

P A hybrid SCA-VNS X

Tabu Search X X

Tabu Search X

t
orted

Genetic X X

(continued on next page)
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Table A.1
Summary of physician rostering problems literature.
Authors, year Journal Problem characteristics Mo

tec

Planning
horizon

Real
calendar

Fairness Employee
preferences

N. of
different
shifts

Variability
in shift
length

Variability
in demand

Working
hours
balancing

[22] Beaulieu
et al. 2000

HCMS 6 months
(SM)

X X X 6 X X Weekly
Monthly

IP

[10] Bruni and
Detti, 2014

ORHC 4–24
Months

X X X 2 X MI

[24] Carrasco,
2010

CMPB 12
Months

X X X 2 Guard
shifts

X X MI

[28] Cohn et al.
2009

Inter-
faces

1 year X X 5 On-calls IP

[8] Damcı-Kurt
et al. 2019

Omega 1
week–12
months

X X X 4 Not
reported

X MI

[33] Ferrand
et al. 2011

Inter-
faces

8weeks X X 3 IP

[57] Gross,
Brunner, and
Blobner, 2019

HCMS 1 month X X 6
Overnights

MI
MI

[58] Gunawan
and Lau, 2013

JORS 1 week X 2 in 5
different
locations

MI

[59] Hong et al.
2019

INFORMS
on AA

1 Month X X 7 IP

[60] Huang,
Lee, and
Huang, 2016

JIPE 1 Month X X X 3 X X IP

[61] Lan et al.
2019

ASOC 1 week X X 2 MI

[18] Carter and
Lapierre, 2001

HCMS 36 weeks X X 6 Not
reported

IP

HCMS 3 Months X X X 4 + On-call. Not
reported

X IP

[23] Puente
et al. 2009

C&IE 1 Month X X 4 X X No
rep
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deling
hnique

Solving algorithm Real
data

Imple-
menta-
tion

P Branch-and-cut
(CPLEX)

X X (MA)

P Branch-and-cut
(CPLEX)

X

Branch-and-bound
(CPLEX)

X

P Branch-and-bound
(CPLEX)

X X

t
orted

Constraint logic
+ Tabu Search

X X (MA)

Matheuristic:
VNS + Small LP

X

P A hybrid GRASP
based algorithm, G
+ NO

X X
(Direct)
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Table A.1 (continued).
Authors, year Journal Problem characteristics Mo

tec

Planning
horizon

Real
calendar

Fairness Employee
preferences

N. of
different
shifts

Variability
in shift
length

Variability
in demand

Working
hours
balancing

[32]
Schoenfelder
and Pfefferlen,
2018

Service
Science

1 Month X X X 19 X X Weekly &
26-week

MI

[20] Tan, Gan,
and Ren, 2019

JHE 30 days X X 4 X Not
reported

MI

[19] Topaloglu,
2006

C&IE 1 Month X X 2 X IP

[21] Topaloglu,
2009

EJOR 6 Months
(SM)

X X 3 X X MI

[62] White and
White, 2003

LNCS 28 days X X X On-calls No
rep

[51] Wickert
et al. 2020

Annals of
OR

4 weeks X X X 36 X Weekly LP

This study ASOC 1 year X X X 19 X X Annually MI

Mixed-Integer Programming (MIP); Integer Programming (IP); Mixed Integer Linear Program (MILP); Mixed Integer Quadratic Program (MIQP).
SM: Sequence of six 1-month problems.
MA: Manual Adjustment required.



M. Cildoz, F. Mallor and P.M. Mateo Applied Soft Computing 103 (2021) 107151

c
t
b
a
b
o
r

t
t
s
a
c
m
n
w
o
b
p
n
c
d
t
T
b
s
p
c
a
a
d

a
v
S

D

c
t

A

(
c
C

A

p
t
e
p
p
p
p

‘
i
a
t
l
o

A

riterion of not transcending the maximum number of infeasibili-
ies among physicians to enable a shift transfer would be replaced
y the maximum value of the weighted function of infeasibilities
mong physicians. In the NFO step, the cost of each arc would
e modified to represent the benefit in the objective function
f transferring the associated shift from the transferor to the
eceiver.

The use of NFO models to search large neighborhoods is one of
he main features of this methodology. The use of exact methods
o solve the network guarantees good, computationally economic,
olution improvements, given the small size of the network (there
re fewer nodes than physicians). Furthermore, the randomly
onstructed network favors the repeated use of this improve-
ent step. It is worth mentioning that in the real problem, a
arrow range of feasible schedules is obtained for annual hours
orked (only two hours in the real case, with a window width
f less than 0.05% of the average hours worked, 1751), while the
est solutions obtained by the scheduler at the hospital always
rovide ranges of more than 30 h. Nevertheless, modeling with
etworks is a rich field that can be exploited to improve the pro-
edure presented here. For example, currently, the costs do not
iscriminate between arcs, but they could express preferences
o balance certain types of shifts or certain types of physicians.
he algorithm is designed to build schedules from scratch but to
e completely useful in practice; it should also be able to repair
olutions. In this case, it would also be used for staff management
urposes or for a minimal rearrangement of shifts when a physi-
ian is unable to attend work for some reason. However, this is
different problem, which, while requiring its own formulation
nd solution procedures, can usefully draw on the ideas used to
evelop the G+NO algorithm. This is a current topic of research.
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ppendix A. The literature on physician rostering problems

This appendix includes a table (see Table A.1) containing
hysician scheduling problems. Their goal is to assign employees
o work shifts, considering organizational and regulatory rules,
mployee skills and preferences, required staffing, and other
roblem-specific requirements. Column ‘‘Publication’’ cites the
aper, and column ‘‘Journal’’ displays the journal in which it is
ublished. The next columns indicate the characteristics of the
roblem solved in the paper:

- ‘‘Planning horizon’’ is the time period scheduled by the

problem (from 1 week to 24 months).
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- ‘‘Real Calendar’’: the scheduling problem includes labor days
and holidays (Saturday, Sunday and national, regional holi-
days).

- ‘‘Fairness’’: the workload is balanced (number of different
shifts across physicians).

- ‘‘Employee preferences’’: physicians’ heterogeneity accord-
ing to preferences/seniority level/etc. is considered.

- ‘‘N. of different shifts’’: the number of different shifts in the
problem solved.

- Variability in shift length: there are shifts with different
lengths.

- Variability in demand: the physician-demand is not uniform
across different types of days.

- Working hours balancing: the number of hours worked is
balanced across physicians.

‘Modeling technique’’ and ‘‘solving algorithm’’ are also included
n the table. ‘‘Real Data’’ refers to problems that are based on
ctual hospital data, and ‘‘Implementation’’ is considered when
he paper reports the use of the solution in a real setting. This
ast column also specifies if the implementation has been direct
r a manual adjustment was required.

ppendix B. Notation

Scheduling problem
Notation Definition and domain
Parameters

N Total number of physicians
Pi A physician i, i = 1, . . . ,N ,
M Number of types of physician groups
Gr Group of physicians of type r , r = 1, . . . ,M ,
nr Number of physicians of type r , r = 1, . . . ,M ,
hr Workable hours per physician in group Gr over the planning

horizon

L Number of types of shifts
Sj Group of shifts of type j, j = 1, . . . , L
dj Length (hours) of shifts of type Sj
mj Number of shifts of Sj in the planning period
γrj Denotes whether physicians of type r can work a shift Sj

(binary)

T Number of days for the planning horizon. The planning
horizon usually spans a year (T = 365)

C Set of shift characteristics

Dc Set of types of shifts with characteristics in set C

#D Number of sets of shifts Dc that generate fairness constraints

δc Minimum number of days between shifts that belong to a set
Dc

ν1c Maximum number of shifts in a set Dc assigned to physicians
over a time window of w1c days.

w1c Time window (days) in which there must be no more than a
specific number of shifts from set Dc , ν1c

w2c Time window (consecutive days) that a physician can work a
shift belonging to set Dc

Uc Average number of shifts in Dc per full-time physician able to
work such shifts

Wj Number of shifts of type Sj that should be worked by each
full-time physician eligible to do so

β Weighting factor in the objective function of the general
covering problem
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Variables of the scheduling problem formulated as Integer
Linear Programming (ILP) problem
Xijt Binary decision variable which determines whether a

physician Pi works the shift Sj on day t
HU

c Maximum number of hours worked on shifts with
characteristics in C by a physician over the planning
horizon

HL
c Minimum number of hours worked on shifts with

characteristics in C by a physician over the planning
horizon

JUc Maximum number of shifts in set Dc worked by a
physician over the planning horizon

JLc Minimum number of shifts in set Dc worked by a
physician over the planning horizon

Jrc U Maximum number of shifts in set Dc worked by a
physician Pi , i = 1, . . . ,N , of group Gr

Jrc L Minimum number of shifts in set Dc worked by a
physician Pi , i = 1, . . . ,N , of group Gr

Variables of the linear programming model formulated to
solve the general covering problem
Zrj Decision variables: average number of shifts of type

Sj, j = 1, . . . , L, that should be worked by a physician of
type Gr , r = 1, . . . ,M , in order to cover the demand
without exceeding the working hours

F1 Deviation variable that bounds the absolute value of the
differences between the average number of shifts
assigned to each group of physicians and the value of
reference ρrUc for all sets of shifts Dc .

Fj Deviation variable that bounds the absolute value of the
difference between the average number of shifts Sj
assigned to each group of physicians and the value of
reference ρrUj for all shifts of type Sj that do not belong
to any set Dc

FU
2 , F L

2 Deviation variables that bound Fj in the interval (F L
2 , F

U
2 ).

F3 Deviation variable that bounds the absolute value of the
differences between the average number of shifts Sj
assigned to each group of physicians and the value of
reference ρrUj for all shifts of type Sj that are included
in any set Dc .

Greedy random constructive algorithm
nshifts (t) The number of shifts on the tth day

LoC(j, t) List of Candidates who can be assigned shift Sj on day t

z∗

ij Number of shifts of type Sj assigned so far to physician
Pi at the moment of assignment, on day t

ZiDc Average number of types of shifts Sj in Dc – the set shift
type with characteristics in set C - that should be
worked by a physician Pi of type Gr in order to cover
the demand without exceeding the working hours

ZDc =

∑
j∈Dc

Zij

z∗

iDc
Number of shifts of type Sj in Dc – the set of shift types
with characteristics in set C - assigned so far to
physician Pi at the moment of assignment, on day t

z∗

iDc
=

∑
j∈Dc

z∗

ij

Xi Set of shifts assigned to physician Pi in the incumbent
solution, that is, Xi = {shift j of day t s.t. Xijt = 1}

gj (i) Greedy function: this is a non-negative definite function.
The greater the value of gj (i) for physician Pi , the
greater is his/her need to work this shift j in order to
meet the reference values Zij

gNj(i) Normalized greedy function

gDc (i) Greedy function for each of the characteristics affected
by the assignment of shift j on day t

gj (i) Enhanced greedy function

p(i) The probability of selecting a physician Pi ∈ LoC(j, t),
which depends on his/her value in the greedy function:
p (i) =

(g(i))α∑
Pi∈LoC(j,t)

(g(i))α

α Elitism factor of the greedy algorithm construction phase
22
VNDS: Variable Neighborhood Descent Search
ρ(Xi, X ′

i ) Distance between schedule solutions for a physician

maxdepthSearch Maximum depth in the VND

X ′
= hk

p(X) Sequence of k shift transfers in which the receiver in
one shift transfer is the transferor in the next

ℵk (X) A neighborhood of depth k

Q Maximum number of unfulfilled constraints among all
physicians

PQ The set of physicians that reach this maximum number
of non-fulfillments

maxiter_VND Maximum number of iterations in the VND

NFO: Network Flow Optimization
Hi (X) Total working hours

H Average working hours

maxiter_NFO Total iterations of the NFO procedure

LH Lower limit of the indifference interval

UH Upper limit of the indifference interval

ε Factor defining the final window of indifference

PTS (X) Group of transferors

PRS (X) Group of receivers

PIN (X) Group in the indifference interval

WHC Working hours condition

BSC Balance shift condition

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.asoc.2021.107151.
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