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Abstract
Aggregation operators are unvaluable tools when different pieces of information have to be
taken into account with respect to the same object. They allow to obtain a unique outcome
when different evaluations are available for the same element/object. In this contribution we
assume that the opinions are not given in form of isolated values, but intervals. We depart
from two “classical” aggregation functions and define a newoperator for aggregating intervals
based on the two original operators. We study under what circumstances this new function is
well defined and we provide a general characterization for monotonicity. We also study the
behaviour of this operator when the departing functions are the most common aggregation
operators. We also provide an illustrative example demonstrating the practical application of
the theoretical contribution to ensemble deep learning models.

Keywords Aggregation function · Intervals · Monotonicity · Injectivity

Mathematics Subject Classification 90B50 · 26B99

1 Introduction

When different assessments are available on the same element, a procedure that merges
all the information and provides a unique and representative final output is necessary. This
is well known, for example, in Descriptive Statistics that provides functions that allow to
summarize the information retrieved from a (large) sample. Aggregation functions (Grabisch
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et al. 2009; Beliakov et al. 2007) are the formalization of the summary process described
above. They allow to obtain a final unique outcomewhen different inputs have to be taken into
account. They are therefore a cornerstone in Descriptive Statistics. Other classical examples
of application can be found in classification problems (see Bustince et al. (2016); Sanz et al.
(2014); Castiblanco et al. (2017) among many others), or decision making (see, for example,
Pap (2015); Drygas et al. (2020)). A very common situation in decision making is that
different experts provide their evaluation on an item and a final (unique) decision must be
made based on those assessments. Aggregation functions are very present in Economics and
Business too. One of the most interesting applications in finance is in modeling aggregate
risk [8] (Belles-Sampera et al. 2017).

They have also been widely used in image processing (Beliakov et al. 2011; Galar et al.
2011; Paternain et al. 2015).

On the other hand, interval valued fuzzy sets (IVFSs, in short) (Bustince et al. 2015)
express knowledge or opinions by an interval and not with an isolated value, as fuzzy (or
crisp) sets do. They are widely used since they allow to capture the uncertainty inherent to
real life situations in a more realistic way, by describing the membership function in a more
ambiguous way. They were introduced in 1973 by Zadeh (1973) as a necessary extension of
fuzzy sets. Two years later Sambuc (Sambuc 1975) used them as the mathematical basis in
medical diagnosis in thyroidian pathology. Since then, IVFSs have been applied in multiple
areas as image processing (Barrenechea et al. 2011), decision making (Barrenechea et al.
2014; Bentkowska et al. 2015) or medicine (Choi et al. 2012).

In the context of intervals a wide range of contributions have been devoted to the problem
of aggregating these elements in the last two decades. In Yager (2004) Yager introduced
OWA operators to aggregate intervals and in 2007 Xu and Chen studied the use of geometric
operators to accomplish the aggregation of intervals in the context of intuitionistic fuzzy sets
(Xu and Chen 2007). Deschrijver (Deschrijver 2007) introduced representable aggregation
operators defined on the unit interval and generated by two aggregation functions F and G
with F ≤ G, quite often with F = G. In 2011 Beliakov et al. studied averaging operators
(Beliakov et al. 2011) in the context of intuitionistic fuzzy sets, and ayear later, they focusedon
the studyof themeanas an aggregationoperator in the samecontext (Beliakov et al. 2012).The
results presented in da Cruz Asmus et al. (2022) are based on the representation of intervals
by mid-points and half of their length. One aggregation function is applied to mid-points and
another appropriate function is defined on half-lengths. In 2018Bentkowska introduced a new
type of aggregation functions in the context of interval-valued sets (Bentkowska 2018). In
Bustince et al. (2020) interval-valued aggregation functions are used tomeasure the similarity
between interval-valued fuzzy sets. Asmus et al. (2022) obtain interval-valued aggregation
operators in a more general framework of fusion processes. Mesiar et al. (2015) provide an
overview of the classical aggregation functions.

In this contribution we provide a new aggregation operator for intervals built from two
“classical” aggregation operators.We provide necessary and sufficient conditions in order for
this new operator to be well defined and monotone. We also show an example of application
in the context of deep learning.

The paper is organized as follows. In Sect. 2we recall some basic definitions and properties
that will be useful in the following sections. In Sect. 3 we provide our new definition in the
most general setting and in Sect. 4 we focus on the very important case of the aggregation
operator being defined by the operators given by Atanassov (Atanassov 1983). In this context
we characterize which of these operators lead to well defined and monotone functions when
the departing aggregation operators are the most important classical functions: the minimum,
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the maximum and the arithmetic and geometric means. Section5 contains an example of
application and Sect. 6 draws conclusions.

2 First definitions

We first fix some basic ideas and notations.

Definition 1 • Given apartially ordered set (D,≤D),wedenote (d1, . . . , dn) ≤ (d ′
1, . . . , d

′
n)

if di ≤D d ′
i for all i . It is clear that this is a partial order on Dn .

• Given two functions f , g : D → I , where (I ,≤I ) is a partially ordered set, we denote
f ≤ g if f (d) ≤I g(d) for all d ∈ D.

• Given (D,≤D) and (I ,≤I ) twopartially ordered sets,we say that the function f : D → I
is increasing if f (d1) ≤I f (d2) for all d1 ≤D d2.

The following generalized definition of aggregation function can be found inKomorníková
and Mesiar (2011). For an indepth study on aggregation functions we refer to Grabisch et al.
(2009); Beliakov et al. (2007) [32] among others.

Definition 2 Given a bounded partially ordered set (D,≤D) with minimal and maximal
elements denoted as 0D and 1D , respectively, an n-ary aggregation function on D is an
application f : Dn → D such that

• f is increasing and
• f (0D, . . . , 0D) = 0D and f (1D, . . . , 1D) = 1D .

For the sake of simplicity of notation, we drop n-ary in aggregation function on D. And,
unless otherwise stated, we assume that n ∈ N and n > 1 in what remains.

The weakest and strongest aggregation functions on [0, 1] are denoted Aw and As , respec-
tively (see Calvo et al. (2002)), and defined as

Aw(a1, . . . , an) =
{
1 for (a1, . . . , an) = (1, . . . , 1),
0 otherwise.

As(a1, . . . , an) =
{
0 for (a1, . . . , an) = (0, . . . , 0),
1 otherwise.

Special relevance is given to aggregation functions that are idempotent. Let us recall that
an application f : Dn → D is idempotent if f (d, . . . , d) = d for every d ∈ D.

As already commented, the aim of this contribution is to aggregate intervals. We denote
L[0, 1] the set of all closed intervals in [0, 1], this is,

L[0, 1] = {[a, b] | a, b ∈ [0, 1], a ≤ b}.
With the usual order given by

[a, b] ≤ [a′, b′] if a ≤ a′ and b ≤ b′, (1)

L[0, 1] is a bounded lattice with minL[0, 1] = [0, 0] and maxL[0, 1] = [1, 1].We set

AL[0,1] = {μ : L[0, 1] → [0, 1] | μ is increasing, μ[0, 0] = 0 and μ[1, 1] = 1}.
A particular and important family of these functions are the operators that assign to each
interval a linear combination of its extreme values. They were introduced by Atanassov in
1983 Atanassov (1983) in order to associate a fuzzy set with each interval valued fuzzy set:
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Definition 3 Let α ∈ [0, 1]. We consider the map kα : L[0, 1] → [0, 1] given by

kα[a, b] = (1 − α)a + αb

if [a, b] ∈ L[0, 1].
It is direct to check that kα is increasing and kα[0, 0] = 0 and kα[1, 1] = 1, that is,

kα ∈ AL[0,1]. A direct check also allows us to see that kα[x, x] = x for every α, x ∈ [0, 1].
Remark 4 Observe that kα can also be written as

kα[a, b] = a + α(b − a).

It is direct to check that k0[a, b] = a and k1[a, b] = b and kα[0, 1] = α.

Definition 5 Given μ, ν ∈ AL[0,1] such that μ ≤ ν, we call reallocation on L[0, 1] to any
function of the type

(μ, ν) : L[0, 1] → L[0, 1] given by

(μ, ν)[a, b] = [μ[a, b], ν[a, b]]
Observe that μ ≤ ν guarantees that (μ, ν) is a well-defined map.

Proposition 6 Every reallocationonL[0, 1] is an increasing function such that (μ, ν)[0, 0] =
[0, 0] and (μ, ν)[1, 1] = [1, 1].
Proof As μ and ν are increasing, also (μ, ν) is increasing. And (μ, ν)[0, 0] = [μ[0, 0],
ν[0, 0]] = [0, 0] and, analogously, (μ, ν)[1, 1] = [1, 1]. So (μ, ν) is a 1-ary aggregation
function on L[0, 1]. ��

We have also immediately:

Proposition 7 Let μ ∈ AL[0,1] and let F be an aggregation function on [0, 1]. Set
μn : L[0, 1]n → [0, 1]n for the map given by,

μn([a1, b1], . . . , [an, bn]) = (μ[a1, b1], . . . , μ[an, bn]),
for ([a1, b1], . . . , [an, bn]) ∈ L[0, 1]n. Then the composition Fμn : L[0, 1]n → [0, 1] is
increasing and Fμn([0, 0], . . . , [0, 0]) = 0 and Fμn([1, 1], . . . , [1, 1]) = 1.

Proposition 8 Let F,G be two aggregation functions on [0, 1] such that F ≤ G. If
(a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n satisfy (a1, . . . , an) ≤ (b1, . . . , bn), then F(a1, . . . , an)
≤ G(b1, . . . , bn).

Proof For (a1, . . . , an) ≤ (b1, . . . , bn) it holds that F(a1, . . . , an) ≤ G(a1, . . . , an), as
F ≤ G. Moreover, G(a1, . . . , an) ≤ G(b1, . . . , bn), as G is increasing. ��
Proposition 9 Let (μ, ν) be a reallocation on L[0, 1] and F,G : [0, 1]n → [0, 1] be aggre-
gation functions on [0, 1] such that F ≤ G. The map

(Fμn,G νn) : L[0, 1]n → L[0, 1]
given by, if ([a1, b1], . . . , [an, bn]) ∈ L[0, 1]n,

(Fμn,G νn)([a1, b1], . . . , [an, bn]) = (2)

[F(μ[a1, b1], . . . , μ[an, bn]),G(ν[a1, b1], . . . , ν[an, bn])] (3)

is an aggregation function on L[0, 1].
Proof It is immediate. ��
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Fig. 1 Graphical description of the new aggregation function

3 A newway to aggregate IVFSs

Once we have introduced the necessary concepts and notation, we are ready to define the new
aggregation function. Given a reallocation (μ, ν) on L[0, 1] and two aggregation functions
F and G on [0, 1], such that F ≤ G, we introduce the operator

(F,G)(μ,ν) : L[0, 1]n → L[0, 1] given by
(F,G)(μ,ν)([a1, b1], . . . , [an, bn]) = (μ, ν)−1(Fμn,G νn)([a1, b1], . . . , [an, bn]).

It is represented in Fig. 1.
In order for this function to be well defined it must satisfy that

i) there exists (μ, ν)−1, in other words, that the reallocation (μ, ν) is injective.
ii) (Fμn,G νn)([a1, b1], . . . , [an, bn]) belongs to the domain of (μ, ν)−1, in other words,

to the image of (μ, ν). Formally, im(Fμn,G νn) ⊆ im(μ, ν).

Then, the definition becomes

Definition 10 Let (μ, ν) be a reallocation onL[0, 1] and F,G aggregation functions on [0, 1]
such that F ≤ G. Assume moreover that

(REQ1) (μ, ν) : L[0, 1] → L[0, 1] is an injective map, and
(REQ2) im(Fμn,G νn) ⊆ im(μ, ν).

Then we define the map (F,G)(μ,ν) as

(F,G)(μ,ν) : L[0, 1]n → L[0, 1] given by
(F,G)(μ,ν)([a1, b1], . . . , [an, bn]) = (μ, ν)−1(Fμn,G νn)([a1, b1], . . . , [an, bn]).

In the case F = G, we set F(μ,ν) = (F,F)(μ,ν).
Assuming F ≤ G, we denote (F,G) the operator that assigns to an element u =

([a1, b1], . . . , [an, bn]) ∈ L[0, 1]n the element (F(a1, . . . , an),G(b1, . . . , bn)) ∈ L[0, 1].
Proposition 11 Let F and G be any two aggregation operators such that F ≤ G then
(F,G)(k0,k1) = (F,G).

Proof Call u = ([a1, b1], . . . , [an, bn]).
(F,G)(k0,k1)(u) = (k0, k1)

−1[F kn0 (u),G kn1 (u)]
As recalled in Remark 4, k0[a, b] = a and k1[a, b] = b, so (k0, k1)[a, b] = [a, b]. Also,

(k0, k1)−1[a, b] = [a, b].
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It follows that,

F kn0 (u) = F(k0[a1, b1], . . . , k0[an, bn]) = F(a1, . . . , an),
G kn1 (u) = G(k1[a1, b1], . . . , k1[an, bn]) = G(b1, . . . , bn).

Then,

(F,G)(k0,k1)(u) = (k0, k1)
−1[F(a1, . . . , an),G(b1, . . . , bn)]

= [F(a1, . . . , an),G(b1, . . . , bn)] = (F,G)(u).

��
Since aggregation operators are increasing, an immediate consequence of this result is

that (F,F)(k0,k1) = (F,F) is the best interval representation of the operator F. Recall that
the best interval representation of an operator f : [a, b]n → [c, d] is the interval function
f̂ : L[a, b]n → L[c, d] defined by Dimuro et al. (2011):

f̂ (u) =
[

inf
ci∈[ai ,bi ]

{ f (c1, . . . , cn)}, sup
ci∈[ai ,bi ]

{ f (c1, . . . , cn)}
]

,

where u = ([ai , b1], . . . , [an, bn]) ∈ L[a, b]n .
Proposition 12 Let (F,G)(μ,ν) be the operator introduced in Definition 10 where F and G
are idempotent. Then

(i) im(Fμn,G νn) = im(μ, ν).
(ii) (F,G)(μ,ν) : L[0, 1]n → L[0, 1] is an idempotent map.
Proof (i) The content im(Fμn,G νn) ⊆ im(μ, ν) holds by definition. To check that also

im(μ, ν) ⊆ im(Fμn,G νn), take [c, d] ∈ L[0, 1] such that (μ, ν)[a, b] = [c, d] for
some [a, b] ∈ L[0, 1]. Then,

(Fμn,G νn)([a, b], n. . ., [a, b]) = [F(c, n. . ., c),G(d, n. . ., d)] = [c, d],
this is, [c, d] ∈ im(Fμn,G νn).

(ii) Take [a, b] ∈ L[0, 1].
(F,G)(μ,ν)([a, b], n. . ., [a, b]) = (μ, ν)−1[F(μ[a, b], n. . ., μ[a, b]),G(ν[a, b], n. . ., ν[a, b]]

= (μ, ν)−1[μ[a, b], ν[a, b]] = [a, b].
��

Next result is a direct consequence of Propositions 11 and 12.

Corollary 13 For F,G idempotent aggregation functions on [0, 1], (F,G)(k0,k1) is an idem-
potent aggregation function on L[0, 1].

Proposition 12 does not necessarily hold if F or G are not idempotent:

Example 14 Take μ = ν the arithmetic mean and F = G as half of the arithmetic mean for
(a1, . . . , an) 	= (0, . . . , 0), (1, . . . , 1), this is, F = G = am

2 defined as am
2 (0, . . . , 0) = 0,

am
2 (1, . . . , 1) = 1 and am

2 (a1, . . . , an) = a1+···+an
2n otherwise.

Then (F,G)(μ,ν) is not idempotent. Take a ∈ (0, 1) and recall that in this case
F(a, . . . , a) = a

2 . Then

(F,G)(μ,ν)([a, a] . . . , [a, a]) =
(μ, ν)−1([ am2 (a, . . . , a), am

2 (a, . . . , a)]) =
(μ, ν)−1([a/2, a/2]) = [a/2, a/2].
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Concerning the monotonicity of the compositions we are studying, we have the following
partial result.

Proposition 15 Letμ, ν ∈ AL[0,1] withμ ≤ ν and F,G aggregation functions on [0, 1] such
that F ≤ G. Then (Fμn,G νn) is an increasing function.

Proof Since they are aggregation functions, F andG are increasing.Also,μ anν are increasing
by definition, so (Fμn,G νn) is the composition of increasing functions. Therefore, it is
increasing. ��

4 The case � = k˛, � = kˇ

In the remainder of this contribution we focus on the particular family of functions inAL[0,1]
denoted kα forα ∈ [0, 1] andwe studywhen (F,G)(kα,kβ ) is an aggregation function assuming
that F andG are aggregation functions.We use the notation (F,G)(α,β) to refer to (F,G)(kα,kβ )

andwe simplywrite F(α,β) for the case F = G, this is, F(α,β) stands for (F,F)(kα,kβ ). In general
we have the following results.

In order to study whether (F,G)(α,β) is an aggregation function we first have to check
if it is well defined. As discussed above, this means that we have to check if kα ≤ kβ and
Conditions REQ1 and REQ2 are satisfied. The next results will be useful to this end.

Proposition 16 If α, β ∈ [0, 1], kα ≤ kβ if and only if α ≤ β.

Proof Observe that

kβ [a, b] − kα[a, b] = (β − α)(b − a) . (4)

��
Proposition 17 Let α, β ∈ [0, 1], α ≤ β and (kα, kβ) the following map:

(kα, kβ) : L[0, 1] → L[0, 1] given by

(kα, kβ)[a, b] = [kα[a, b], kβ [a, b]]
Then (kα, kβ):

a) is an idempotent increasing function such that (kα, kβ)[0, 0] = [0, 0]and (kα, kβ)[1, 1] =
[1, 1].

b) is injective if and only if α < β,
c) is surjective if and only if α = 0 and β = 1,
d) is the identity function if and only if α = 0 and β = 1, that is, (k0, k1) = idL[0,1].

Proof a) Trivial by Proposition 6.
b) Concerning injectivity,

the system

{
(1 − α)a + αb = c

(1 − β)a + βb = d
in a, b, as

∣∣∣∣1 − α α

1 − β β

∣∣∣∣ = β − α, has unique solution

for each c, d if and only if α 	= β. Thus, if and only if α < β.
c) Assume (kα, kβ) is surjective, then [0, 1] ∈ Im(kα, kβ). Equation4 implies 1 = (β −

α)(b − a) for some [a, b] ∈ L[0, 1]. Then, necessarily β = 1 and α = 0.
d) It is a simple computation from Remark 4.

��

123



17 Page 8 of 27 S. Diaz-Vazquez et al.

Corollary 18 Condition REQ1 holds if and only if α < β.

Proof Follows from Proposition 17 b). ��
Since Condition REQ1 is basic in order for (F,G)(α,β) to be well defined, we will assume

α < β hereafter.
Concerning Condition REQ2, it must hold that

im(F knα,G knβ) ⊆ im(kα, kβ).

We next study the image of (kα, kβ) (see Fig. 2).

Proposition 19 Let α, β ∈ [0, 1], α < β and [c, d] ∈ L[0, 1]. Then [c, d] ∈ im(kα, kβ) if
and only if

i) αd ≤ βc

ii) d ≤ (1−β)c+(β−α)
1−α

Proof The element [c, d] is in the image of (kα, kβ) if and only if there exists [a, b] ∈ L[0, 1]
such that (kα, kβ)[a, b] = [c, d]. Explicitly,

{
(1 − α)a + αb = c,

(1 − β)a + βb = d.

Since α < β, the system has a unique solution and the explicit expressions are

a = βc − αd

β − α
, b = (1 − α)d − (1 − β)c

β − α
.

Since [a, b] ∈ L[0, 1], it must satisfy (1) a ≥ 0, (2) a ≤ b and (3) b ≤ 1.

(1) Condition a ≥ 0 is equivalent to βc ≥ αd .
(2) Condition a ≤ b is equivalent to βc−αd

β−α
≤ (1−α)d−(1−β)c

β−α
and this is equivalent to c ≤ d ,

that holds since [c, d] ∈ L[0, 1].
(3) b ≤ 1 is equivalent to (1−α)d−(1−β)c

β−α
≤ 1 and equivalent to d ≤ (1−β)c+(β−α)

1−α
.

��
If we denote u = ([a1, b1], . . . , [an, bn]), it holds that
(F knα,G knβ)(u) = [F(kα[a1, b1], . . . , kα[an, bn]),G(kβ [a1, b1], . . . , kβ [an, bn])].

We denote F knα(u) and G knβ(u) the first and second components above, respectively:

F knα(u) := F(kα[a1, b1], . . . , kα[an, bn])
G knβ(u) := G(kβ [a1, b1], . . . , kβ [an, bn])

Then, according to Proposition 19 and in order for (F,G)(α,β) to satisfy REQ2, it must hold
that

αG knβ(u) ≤ β F knα(u) and Gknβ(u) ≤ (1 − β)Fknα(u) + (β − α)

1 − α
.

We can therefore settle the conditions that (F,G)(α,β) must satisfy in order to be well
defined.
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Fig. 2 A graphical representation of the image of (kα, kβ)

Corollary 20 Given F and G two aggregation functions on [0, 1] and α, β ∈ [0, 1], the
function (F,G)(α,β) is well defined if and only if:

(WDi) α < β ,
(WDii) αG knβ(u) ≤ β F knα(u) ,

(WDiii) G knβ(u) ≤ (1 − β)F knα(u) + (β − α)

1 − α

for any u = ([a1, b1], . . . , [an, bn]) in L[0, 1]n, where we use the notation
F knα(u) := F(kα[a1, b1], . . . , kα[an, bn]),
G knβ(u) := G(kβ [a1, b1], . . . , kβ [an, bn]).

Proof The operator (F,G)(α,β) is well defined if and only if Conditions REQ1 andREQ2 hold
(see Definition 10). We prove that the conditions above are equivalent to Conditions REQ1
and REQ1.
(WDi) is equivalent to REQ1 by Proposition 17 b).

Condition REQ2 is im(Fμn,G νn) ⊆ im(μ, ν). We can write this as (Fμn,G νn)(u) ∈
im(μ, ν) for all u ∈ L[0, 1]n . It follows from Proposition 19 that this is equivalent to (WDii)
and (WDiii). ��

For the particular case F = G and using the notation aaa = (a1, . . . , an) and bbb =
(b1, . . . , bn), Eq. (WDii) becomes

F(aaa + β(bbb − aaa))

F(aaa + α(bbb − aaa))
≤ β

α

for α 	= 0, that means that function F should not show drastic increases.

Example 21 An examplewhere all the conditions in Corollary 20 are satisfied is the following
one: take 0 ≤ α < β ≤ 1

F(a1, . . . , an) =
⎧⎨
⎩
1 , if ai = 1 ∀i,
0 , if ai = 0 ∀i,
α , otherwise.

and G(a1, . . . , an) =
⎧⎨
⎩
1 , if ai = 1 ∀i,
0 , if ai = 0 ∀i,
β , otherwise.
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It holds that

(WDi) α < β by definition.
(WDii) If α = 0 the inequality holds trivially. Now, for al > 0, we distinguish three cases:

– If G knβ(u) = 0, the inequality holds trivially.
– If 0 < G knβ(u) = β, then ai +β(bi −ai ) > 0 for some i . This inequality with α > 0

guarantee that ai +α(bi − ai ) > 0 for some i and this implies that F knα(u) ≥ α. The
inequality follows.

– Assume G knβ(u) = 1. This happens if and only if knβ(u) = 1. This implies bi = 1
for all i and either β = 1 or ai = 1 for all i . In both cases knα(u) = (1, . . . , 1) and
the inequality holds since it looks as α ≤ β.

(WDiii) In order to prove this inequality we distinguish two scenarios since the case
G Kn

β(u) = 0 is trivial:

– Assume G Kn
β(u) = 1. This is equivalent to Kn

β(u) = 1. This can only happen in
one of the two following cases:

* If u = ([1, 1], . . . , [1, 1]), then knα(u) = (1, . . . , 1) and F knα(u) = 1, whereas

(1 − β)F knα(u) + (β − α)

1 − α
= 1 = (1 − β) + (β − α)

1 − α
= 1

and the inequality holds.
* If u 	= ([1, 1], . . . , [1, 1]) then necessarily β = 1 and again

(1 − β)F knα(u) + (β − α)

1 − α
= 1

– Assume G Kn
β(u) = β > 0. Assume also first that F knα(u) = 0. This equality can only

hold if α = 0 or bi = 0 for all i . If α = 0, the righ-hand side of (WDiii) becomes β, so
the inequality holds. The other case (bi = 0 for all i) contradicts G Kn

β(u) = β.
Then necessarily F knα(u) > 0. If we assume F knα(u) = α, the right-hand side of (WDiii)
becomes β. For F knα(u) = 1, the right-hand side of (WDiii) becomes 1. In any case, the
inequality holds.

The conditions proven in Corollary 20 are quite restrictive. If we consider F = am
2 , the

function defined in Example 14, and G the arithmetic mean, Condition (WDii) is not satisfied
for any α > 0.

Example 22 If we take F = am
2 , G = am, the arithmetic mean, and 0 < α < β ≤ 1,

Condition (WDii) does not hold. It suffices to take u = ([0, b1], . . . , [0, bn]) with bi > 0 for
at least some i ∈ {1, . . . , n}. A simple calculus leads us to

αG knβ(u) = αβ

∑n
i=1 bi
n

	≤ αβ

∑n
i=1 bi
2n

= β F knα(u).

Proposition 23 Let u = ([a1, b1], . . . , [an, bn]) be any element in L[0, 1]n. Let α < β and
F,G two aggregation operators on [0, 1] and let (F,G)(α,β) be the function introduced in
Definition 10, then (F,G)(α,β)(u) = [A, B] with

A = β F knα(u) − αG knβ(u)

β − α
, (5)

B = (1 − α)G knβ(u) − (1 − β)F knα(u)

β − α
. (6)
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Proof

(F,G)(α,β)(u) = (kα, kβ)−1[F knα(u),G knβ(u)] =: [A, B].
Considering the inverse function in the last equation, we obtain that

(kα, kβ)[A, B] = [kα[A, B], kβ [A, B]] = [F knα(u),G knβ(u)],
so

kα[A, B] = F knα(u) and kβ [A, B] = G knβ(u).

Using the definition of kα and kβ , we obtain the system:{
(1 − α)A + αB = x,

(1 − β)A + βB = y,

being x = F knα(u) and y = G knβ(u). Since α < β, the system has a unique solution and its
explicit expression is

A =

∣∣∣∣x α

y β

∣∣∣∣
β − α

= βx − αy

β − α
, B =

∣∣∣∣1 − α x
1 − β y

∣∣∣∣
β − α

= (1 − α)y − (1 − β)x

β − α
.

Replacing x by F knα(u) and y by G knβ(u), we get the desired result. ��
The objective of this contribution is to study when (F,G)(α,β) is an aggregation func-

tion. A necessary condition is monotonicity. We have already proven (see Proposition 15)
that (Fμn,G νn) is increasing. However, the following result proves that monotonicity of
(kα, kβ)−1 can only be warrantied for a very specific case of α and β.

Proposition 24 Let α, β ∈ [0, 1], α < β. Then

(kα, kβ)−1 : im(kα, kβ) → L[0, 1]
is increasing if and only if α = 0 and β = 1.

Proof Since (k0, k1) = idL[0,1], it is clear that the function is increasing in this case. We next
prove that it is not increasing for any other (α, β).

• First assume α > 0 and take [α, α], [α, β] ∈ im(kα, kβ). It holds that [α, α] ≤ [α, β].
However,

(kα, kβ)−1[α, α] = [α, α] 	≤ [0, 1] = (kα, kβ)−1[α, β].
• For α = 0 consider [0, β], [β, β] ∈ im(kα, kβ). We have [0, β] ≤ [β, β] but

(kα, kβ)−1[0, β] = [0, 1] 	≤ [β, β] = (kα, kβ)−1[β, β].
��

The case α = 0 and β = 1 is a very special one since for the pair (α, β) = (0, 1) we
obtain the original aggregation function.

Proposition 24 is quite disappointing since, in case (kα, kβ)−1 were monotone, the com-
position (F,G)(kα,kβ ) would be monotone too. Fortunately, the converse is not true.

The following proposition shows what inequalities must satisfy F and G in this case.
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Proposition 25 (Monotonicity) Let α, β ∈ [0, 1] with α < β. The function (F,G)(α,β) is
monotone if and only if:

αG knβ(v) − β F knα(v) ≤ αG knβ(u) − β F knα(u), (7)

and

(1 − α)G knβ(u) − (1 − β)F knα(u) ≤ (1 − α)G knβ(v) − (1 − β)F knα(v). (8)

for every u, v ∈ L[0, 1]n such that u ≤ v.

Proof In order for (F,G)(α,β) to be monotone, we must have

(F,G)(α,β)(u) ≤ (F,G)(α,β)(v)

whenever u ≤ v. Using Eqs. 5 and 6 the previous inequality is equivalent to

β F knα(u) − αG knβ(u)

β − α
≤ β F knα(v) − αG knβ(v)

β − α

and

(1 − α)G knβ(u) − (1 − β)F knα(u)

β − α
≤ (1 − α)G knβ(v) − (1 − β)F knα(v)

β − α
.

And Eqs. 7 and 8 are simplified versions of these two inequalities. ��
Example 26 The functions included in Example 21 satisfy this condition. The checking is
tedious because different cases have to be considered, but straightforward.

4.1 Some particular cases. The case F = G

In this subsection we study some particular cases and we explore if we obtain an aggregation
operator for intervals when both F and G are replaced by the same aggregation function.

We first present a general result concerning aggregation functions that are linear. We say
that an aggregation function F is linear if for any (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n and
β ∈ [0, 1] it holds that

F(a1 + βb1, . . . , an + βbn) = F(a1, . . . , an) + β F(b1, . . . , bn).

Proposition 27 Let α, β ∈ [0, 1], α < β and F a linear aggregation function. Then F(α,β) =
(F,F).

Proof Call u = ([a1, b1], . . . , [an, bn]).
(F,F)(α,β)(u) = (kα, kβ)−1[F knα(u),G knβ(u)]

On the other hand,

F knα(u) = F(a1 + β(b1 − a1), . . . , an + β(bn − an))
F knβ(u) = F(a1 + β(b1 − a1), . . . , an + β(bn − an))

Since F is linear,

F knα(u) = F(a1, . . . , an) + α F((b1 − a1), . . . , (bn − an))
F knβ(u) = F(a1, . . . , an) + β F((b1 − a1), . . . , (bn − an))
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Now call c := F(a1, . . . , an) and d := F(((b1 − a1), . . . , (bn − an)) then

(F,F)(α,β)(u) = (kα, kβ)−1([c + αd, c + βd]) = [c, c + d].
Finally, since F is linear,

c + d = F(a1, . . . , an) + F((b1 − a1), . . . , (bn − an))

= F(a1 + (b1 − a1), . . . , an + (bn − an)) = F(b1, . . . , bn).

So,

(F,F)(α,β)(u) = [F(a1, . . . , an),F(b1, . . . , bn)],
equivalently, (F,F)(α,β) = (F,F). ��
A relevant particular case is the arithmetic mean.

Corollary 28 Let [a1, b1], . . . , [an, bn] ∈ L[0, 1] and α, β ∈ [0, 1], α < β. Then we have,
for the arithmetic mean am,

am(α,β)([a1, b1], . . . , [an, bn]) = [am(a1, . . . , an), am(b1, . . . , bn)].
Proof Follows from Proposition 27 and the fact that am is a linear aggregation function. ��

The remaining of this subsection concerns the most classical aggregation functions. We
first consider the weakest and strongest aggregation operators (Calvo et al. 2002) but we later
focus on the cases most used in practical situations, those that are idempotent: the minimum,
the maximum and the arithmetic and geometric means.

Proposition 29 Let α, β ∈ [0, 1], α < β. Let Aw be the weakest aggregation function. Then
Aw(α,β) : L[0, 1]n → L[0, 1] is well defined forβ < 1 and ifβ = 1 forα = 0. It is increasing
whenever it is well defined.

Proof Consider the case β < 1. We first prove that in this case, for any α < β we have that:

knβ(u) = (1, . . . , 1) if and only if knα(u) = (1, . . . , 1). (9)

Observe that if u = ([1, 1], . . . , [1, 1]), then knβ(u) = knα(u) = (1, . . . , 1).
In case u = ([a1, b1], . . . , [an, bn]) 	= ([1, 1], . . . , [1, 1]), there exists ai < 1. Since

both α, β < 1, it holds that both kβ([ai , bi ]) < 1 and kα([ai , bi ]) < 1, whereas both
knβ(u) 	= (1, . . . , 1) and knα(u) 	= (1, . . . , 1).

It follows from Eq. 9 that for β < 1, then

G knβ(u) = 1 ⇔ F knα(u) = 1, G knβ(u) = 0 ⇔ F knα(u) = 0, (10)

since in our case G = F = Aw .
Once proved the previous equivalences, it is easy to check that Conditions (WDii)

and (WDiii) hold:
Condition (WDii) becomes α ≤ β if u = ([1, 1], . . . , [1, 1]). And 0 ≤ 0 for u 	=
([1, 1], . . . , [1, 1]). The inequality holds in any case.

Condition (WDiii) becomes 1 ≤ (1 − β) + (β − α)

1 − α
= 1 − α

1 − α
if u = ([1, 1], . . . , [1, 1]).

And 0 ≤ β − α

1 − α
for u 	= ([1, 1], . . . , [1, 1]). The condition holds in both cases too. So the

operator is well defined.
Let us recall that in order to prove monotonicity, we have to check Eqs. 7 and 8. We

distinguish three situations:
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• If u = ([1, 1], . . . , [1, 1]), then v = ([1, 1], . . . , [1, 1]) and
G knβ(u) = 1 = G knβ(v) = F knα(u) = F knα(v).

Eqs. 7 and 8 become α − β ≤ α − β and (1 − α) − (1 − β) ≤ (1 − α) − (1 − β),
respectively, so both hold.

• If u 	= ([1, 1], . . . , [1, 1]) and v = ([1, 1], . . . , [1, 1]), then
G knβ(u) = 0 = F knα(u) and G knβ(v) = 1 = F knα(v).

Eqs. 7 and 8 become α − β ≤ 0 and 0 ≤ (1 − α) − (1 − β), so both hold.
• Finally, if u ≤ v 	= ([1, 1], . . . , [1, 1]), then

G knβ(u) = 0 = G knβ(v) = F knα(u) = F knα(v),

and both Eqs. 7 and 8 become 0 ≤ 0, so they are satisfied.

Let us assume now β = 1. We first prove that for α > 0 the operator Aw(α,β) is not well
defined.

Take u = ([a1, 1], . . . , [an, 1]) with ai < 1, then knβ(u) = (1, . . . , 1) but knα(u) 	=
(1, . . . , 1) since kα([ai , bi ]) < 1.

It follows that

G knβ(u) = 1 and F knα(u) = 0

and Condition (WDii) becomes α ≤ 0, that only holds for α = 0.
For the case α = 0 and β = 1 it follows from Proposition 11 that Aw(α,β) = Aw and

therefore it is well defined and monotone. ��
Proposition 30 Let α, β ∈ [0, 1], α < β. Let As be the strongest aggregation function. Then
As (α,β) : L[0, 1]n → L[0, 1] is well defined whenever α > 0. For the case α = 0 it is only
well defined if β = 1. Moreover, it is increasing whenever it is well defined.

Proof It is analogous to the previous one. ��
Proposition 31 Let α, β ∈ [0, 1], α < β. Let min be the aggregation function which returns
the smallest value. Thenmin(α,β) : L[0, 1]n → L[0, 1] is well defined. It is increasing if and
only if α = 0 and β = 1.

Proof Let us see that min(α,β) is well defined. Since Condition (WDi) holds trivially, it
suffices to check Conditions (WDii) and (WDiii), that is, it suffices to check that

αmin knβ(uuu) ≤ β min knα(uuu) and min knβ(uuu) ≤ (1 − β)min knα(uuu) + (β − α)

1 − α
,

for every uuu = ([a1, b1], . . . , [an, bn]) ∈ L[0, 1].
Assume that [ai , bi ] and [a j , b j ] satisfy that

(1 − α)ai + αbi = min((1 − α)a1 + αb1, . . . , (1 − α)an + αbn) = min knα(uuu),

(1 − β)a j + βb j = min((1 − β)a1 + βb1, . . . , (1 − β)an + βbn) = min knβ(uuu).

In order to prove Condition (WDii), that reads as,

α[(1 − β)a j + βb j ] ≤ β[(1 − α)ai + αbi ],
and since (1−β)a j +βb j = mink((1−β)ak +βbk) ≤ (1−β)ai +βbi , it suffices to prove

α[(1 − β)ai + βbi ] ≤ β[(1 − α)ai + αbi ].
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Operating in this last expression we can see that it is equivalent to αai ≤ βai , so it holds.

We next prove that Condition (WDiii) holds. It reads as

(1 − α)[(1 − β)a j + βb j ] ≤ (1 − β)[(1 − α)ai + αbi ] + (β − α).

Then, since (1 − β)a j + βb j ≤ (1 − β)ai + βbi it suffices to prove that

(1 − α)[(1 − β)ai + βbi ] ≤ (1 − β)[(1 − α)ai + αbi ] + (β − α).

This is equivalent to prove that
�������(1 − α)(1 − β)ai + βbi − ���αβbi ≤ �������(1 − α)(1 − β)ai + αbi − ���αβbi + (β − α)

and equivalent to (β − α)bi ≤ β − α . So it holds.
We now see when min(α,β) is increasing.

The case α = 0 and β = 1 was studied in Proposition 11. Assume then, that α 	= 0 or β 	= 1.

(1) If β = 1 but 0 < α < 1, then for any t ∈ (0, 1) we have that 0 < αt < t and
therefore, there exists s ∈ (0, 1) such that αt < s < t . Thus, if we consider

u = ([0, t], [s, s], [1, 1], . . . , [1, 1]) ,

v = ([0, t], [s, t], [1, 1], . . . , [1, 1]) .

then u < v and

min knα(u) = min(αt, s, 1, . . . , 1) = αt ,

min kn1 (u) = min(t, s, 1, . . . , 1) = s ,

min knα(v) = min(αt, (1 − α)s + αt, 1, . . . , 1) = αt ,

min kn1 (v) = min(t, t, 1, . . . , 1) = t .

Then Eq. (7) is not satisfied because it becomes

αt − αt ≤ αs − αt .

But s − t < 0, whereas min(α,1) is not increasing.
(2) Assume now that α = 0 and β 	= 1, then for any t ∈ (0, 1), then βt > 0 and

therefore, there exists s ∈ (0, βt), that is, 0 < s < βt and

u = ([0, t], [s, s], [1, 1], . . . , [1, 1]) ,

w = ([t, t], [s, s], [1, 1], . . . , [1, 1]) .

So u < w and

min kn0 (u) = min(0, s, 1) = 0 ,

min knβ(u) = min(βt, s, 1) = s ,

min kn0 (w) = min(t, s, 1) = s ,

min knβ(w) = min(t, s, 1) = s .

hence Eq. (8) is not satisfied since β < 1:

(1 − α)s − (1 − β)0 > (1 − α)s − (1 − β)s.

And therefore the operator min(0,β) is not increasing.
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(3) Let now α 	= 0, β 	= 1. Take

x = ([0, 1], [α, β], [1, 1], . . . , [1, 1]) ,

y = ([0, 1], [β, β], [1, 1], . . . , [1, 1])
We have x < y and

min knα(x) = min(α, (1 − α)α + αβ, 1) = α ,

min knβ(x) = min(β, (1 − β)α + β2, 1) = (1 − β)α + β2 ,

min knα(y) = min(α, β, 1) = α ,

min knβ(y) = min(β, β, 1) = β .

The last equality in the first row follows from (1 − α)α + αβ = α + α(β − α) > α

and the last equality in row two from (1 − β)α + β2 = β − (1 − β)(β − α) < β.
Then Eq. (7) is not satisfied:

αβ − βα 	≤ α[(1 − β)α + β2] − βα,

since, once simplified, this inequality becomes β ≤ (1− β)α + β2 and we have just
proven that this one does not hold.

��
Proposition 32 Let α, β ∈ [0, 1], α < β. Let gm be the geometric mean. Then gm(α,β) is
well defined if and only if β = 1. It is also increasing if and only if, in addition, α = 0.

Proof Let us see that gm(α,1) is well defined. According to Corollary 20 we have to check
Conditions (WDi), (WDii) and (WDiii).

(WDi) holds by hypothesis.
(WDii) the second condition that must be satisfied becomes α gm k1(u) ≤ gm kα(u).

Call u = ([a1, b1], . . . , [an, bn]), then gm k1(u)) = n
√∏n

i=1 bi and gm kα(u) =
n
√∏n

i=1((1 − α)ai + αbi ) and therefore,

α gm k1(u) ≤ gm kα(u)

⇔ α n

√√√√ n∏
i=1

bi ≤ n

√√√√ n∏
i=1

((1 − α)ai + αbi )

⇔ αn
n∏

i=1

bi =
n∏

i=1

αbi ≤
n∏

i=1

((1 − α)ai + αbi ) .

And this inequality holds since αbi ≤ (1 − α)ai + αbi for all i .
(WDiii) holds trivially since for β = 1 it becomes

(1 − α) gm k1(u) ≤ 1 − α.

So gm(α,1) is well defined.
We now prove that for β < 1 it is not. In particular, Condition (WDiii) fails for any α, β such
that α < β < 1.

Set u = ([0, 1], [1, 1], n−1. . . , [1, 1]).
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For this element, Condition (WDiii) becomes

(1 − α)β1/n ≤ (1 − β)α1/n + (β − α).

This inequality is equivalent to (1− β)α1/n + (β − α) − (1− α)β1/n ≥ 0 and equivalent to

(1 − α)
[
1 − β1/n] − (1 − β)

[
1 − α1/n] ≥ 0

Set s = α1/n , t = β1/n , so that α = sn , β = tn , where s, t ∈ [0, 1], s < t (hence s < 1).
Thus

1 − β

1 − α
= 1 − tn

1 − sn
= (1 − t)(1 + t + · · · + tn−1)

(1 − s)(1 + s + · · · + sn−1)
>

1 − t

1 − s
= 1 − β1/n

1 − α1/n ,

whereas

(1 − α)
[
1 − β1/n] − (1 − β)

[
1 − α1/n] 	≥ 0.

Let us see the assertion on the monotonicity. For it we show that if α 	= 0, then gm(α,1) is
not increasing. Take

v = ([α, α], [0, 1], . . . , [0, 1]), w = ([α, 1], [0, 1], . . . , [0, 1]).
Then u < v and

gm knα(v) = gm(α, . . . , α) = α,

gm kn1 (v) = gm(α, 1, . . . , 1) = α1/n,

gm knα(w) = gm(α(2 − α), α, . . . , α) = α(2 − α)1/n,

gm kn1 (w) = gm(1, . . . , 1) = 1.

Thus, Eq. (7) does not hold: it becomes

α − α(2 − α)1/n ≤ αα1/n − α.

And this is equivalent to

2 − α1/n ≤ (2 − α)1/n .

However, this inequality does not hold: Take x := α1/n . In order for Eq. (7) to hold, we should
have (2− x)n ≤ 2− xn . However, the function f (x) = 2− xn −(2− x)n is continuous and it
verifies that f ′(x) = n[(2− x)n−1 − xn−1] > 0 for any x ∈ [0, 1], this is, f is increasing in
[0, 1] and f (1) = 0, whereas f (x) ≤ 0 for every x < 1. In particular, 2−α1/n > (2−α)1/n

for every α < 1 . ��
The study of am(α,β) operator was carried out in Corollary 28. It was proven there that

am(α,β) is well defined for every α < β and in particular, that am(α,β) = (am, am) for all
α < β.

Proposition 33 Let α, β ∈ [0, 1], α < β. Letmax be the aggregation function which returns
the greatest value. Thenmax(α,β) : L[0, 1]n → L[0, 1] is well defined. It is increasing if and
only if α = 0 and β = 1.

Proof (A) Let us see that it is well defined.
Set u = ([a1, b1], . . . , [an, bn]) ∈ L[0, 1]n and assume that [ai , bi ] and [a j , b j ] satisfy

that

kα[ai , bi ] = max knαu, kβ [a j , b j ] = max knβu.

Then kα[a j , b j ] = (1 − α)a j + αb j ≤ (1 − α)ai + αbi = kα[ai , bi ].
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(WDi) holds by hypothesis.
(WDii) With the notation above, αmax knβu ≤ β max knαu can be written as:

α((1 − β)a j + βb j ) ≤ β((1 − α)ai + αbi ).

Since (1− α)a j + αb j ≤ (1− α)ai + αbi , it suffices to prove that α((1− β)a j +
βb j ) ≤ β((1 − α)a j + αb j ) . Equivalently,

α(1 − β)a j + αβb j ≤ β(1 − α)a j + αβb j .

And this becomes equivalent to αa j ≤ βa j . So Condition (WDii) holds for every
a j ∈ [0, 1].

(WDiii) Using the convention above, Condition (WDiii) becomes

(1 − α)
[
(1 − β)a j + βb j

] ≤ (1 − β) [(1 − α)ai + αbi ] + (β − α).

Since (1 − α)a j + αb j ≤ (1 − α)ai + αbi , it suffices to prove

(1 − α)
[
(1 − β)a j + βb j

] ≤ (1 − β)
[
(1 − α)a j + αb j

] + (β − α).

Equivalently,

(1 − α)(1 − β)a j + (1 − α)βb j ≤ (1 − α)(1 − β)a j + (1 − β)αb j + β − α

This is also equivalent to

βb j − αβb j ≤ αb j − αβb j + β − α ⇔ (β − α)b j ≤ β − α.

That holds for every b j ∈ [0, 1].
(B) We next prove that max (α,β) is increasing if and only if α = 0 and β = 1. It follows

from Proposition 11 that max (0,1) is increasing. Assume now that α 	= 0 or β 	= 1.
(1) If α 	= 0, let 0 < a, b, e ∈ [0, 1] such that αb < a < βb and b+e < 1 (which implies

a + e < 1). Take

u = ([a, a], [0, 0], n−1. . . , [0, 0]) ,

v = ([a, a + e], [0, b + e], [0, 0], n−2. . . , [0, 0]) .

It is u < v and

max knα(u) = max(a, 0) = a ,

max knβ(u) = max(a, 0) = a ,

max knα(v) = max(a + αe, α(b + e), 0) = a + αe ,

max knβ(v) = max(a + βe, β(b + e), 0) = β(b + e) .

where the equality in the third row follows from αb < a and the equality in the fourth one
follows from a < βb.

Equation (7) does not hold in this case. We should have

αβ(b + e) − β(a + αe) ≤ αa − βa.

Since α > 0, this is equivalent to βb ≤ a, but we have chosen a and b satisfying a < βb.
(2) Let us finally assume α = 0 and β 	= 1. Take a, b, c, e ∈ [0, 1] such that 0 < a <

b < c < a + βe ≤ 1 and let

u = ([b, b], [a, a + e], [0, 0], n−2. . . , [0, 0]) ,

123



A new family of aggregation functions for intervals Page 19 of 27 17

v = ([c, c], [a, a + e], [0, 0], n−2. . . , [0, 0]) .

Then u < v and

max kn0 (u) = max(b, a, 0) = b ,

max knβ(u) = max(b, a + βe, 0) = a + βe ,

max kn0 (v) = max(c, a, 0) = c ,

max knβ(v) = max(c, a + βe, 0) = a + βe .

Then Eq. (8) does not hold. We should have a + βe− (1− β)b ≤ a + βe− (1− β)c which
is equivalent to (1 − β)c ≤ (1 − β)b and this is not true since β < 1 and c > b. ��

4.2 Some particular cases. The case F < G

Proposition 34 Let F,G ∈ {min, gm, am,max}, F < G and α, β ∈ [0, 1] with α < β. Then
(F,G)(α,β) is well defined if and only if α = 0 and β = 1.

Proof It follows from Proposition 11 that (F,G)(0,1) is well defined and is increasing for any
pair of aggregation functions F and G, in particular, for F,G ∈ {min, gm, am,max}.

Consider α, β ∈ [0, 1] such that (α, β) 	= (0, 1). We will prove that (F,G)(α,β) is not well
defined.
According to Corollary 20, the operator (F,G)(α,β) is well defined if and only if Condi-
tions (WDi), (WDii) and (WDiii) hold. We then assume α < β.

The following table shows some elements in L[0, 1]n and their images by knγ for different
γ . They are used in different sections of this proof.

Elements in L[0, 1]n knγ , γ ∈ [0, 1]

u = ([0, 1], [1, 1], n−1. . . , [1, 1]) (γ, 1, n−1. . . , 1)
v = ([0, b], [0, 1], n−1. . . , [0, 1]) (γ b, γ, n−1. . . , γ )

w = ([0, 0], [1, 1], n−1. . . , [1, 1]) (0, 1, n−1. . . , 1)
x = ([0, b], [1, 1], n−1. . . , [1, 1]) (γ b, 1, n−1. . . , 1)
y = ([0, 0], n−1. . . , [0, 0], [0, 1]) (0, n−1. . . , 0, γ )

We consider different situations.

(1) F = min, G = gm.
Take u = ([0, 1], [1, 1], n−1. . . , [1, 1]),

F knα(u) = min(α, 1) = α ,

G knβ(u) = gm(β, 1, n−1. . . , 1) = β1/n .

In order for Condition (WDii) to be satisfied, we should have

αβ1/n ≤ βα.

That does not hold unless α = 0 or β = 1.

• Assume α = 0 then in order for Condition (WDiii) to be satisfied we should have
β1/n ≤ β. But this only holds if β = 1.
So both (WDii) and (WDiii) can only hold if α = 0 and β = 1.
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• Assume now β = 1 and take v = ([0, b], [0, 1], n−1. . . , [0, 1]), where b ∈ [0, 1] with
0 < b < 1. Then

F knα(v) = min(αb, α, n−1. . . , α) = αb ,

G kn1 (v) = gm(b, 1, n−1. . . , 1) = b1/n .

Then Condition (WDii) becomes αb1/n 	≤ αb and it only holds if α = 0.

(2) F = min, G = am.
In this case

F knα(u) = min(α, 1) = α ,

G knβ(u) = am(β, 1, n−1. . . , 1) = β + (n − 1)(1 − β)

n
.

Condition (WDii) becomes

α

(
β + (n − 1)(1 − β)

n

)
≤ αβ,

that only holds if α = 0 or β = 1.

• Assume α = 0 then Condition (WDiii) becomes

β + (n − 1)(1 − β)

n
≤ β,

that implies β = 1.
• Assume β = 1 and w = ([0, 0], [1, 1], n−1. . . , [1, 1]). Then

F knα(w) = min(0, α) = 0 ,

G kn1 (w) = am(0, 1, n−1. . . , 1) = n − 1

n
.

In this case Condition (WDii) becomes α n−1
n ≤ 0 and it holds only if α = 0 as we

wanted to prove.

(3) F = min, G = max.
Let b ∈ [0, 1], 0 < b < 1, and x = ([0, b], [1, 1], n−1. . . , [1, 1]).
Then

F knα(x) = min(αb, 1) = αb ,

G knβ(x) = max(βb, 1) = 1 .

Then Condition (WDii) becomes α ≤ βαb and it can only hold if α = 0. With α = 0
Condition (WDiii) becomes 1 ≤ β, whereas β = 1.

(4) F = gm, G = am.
Take y = ([0, 0], n−1. . . , [0, 0], [0, 1]). Then

F knα(y) = gm(0, n−1. . . , 0, 1) = 0 ,

G knβ(y) = am(0, n−1. . . , 0, β) = β

n
.

SoCondition (WDiii) becomesα
β
n ≤ 0which impliesα = 0 orβ = 0 but this contradicts

α < β.
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On the other hand, considering α = 0, for the element u it holds that

F kn0 (u) = gm(0, 1, n−1. . . , 1) = 0 ,

G knβ(u) = am(β, 1, n−1. . . , 1) = β + (n − 1)(1 − β)

n
.

and Condition (WDiii), that reads β + (n−1)(1−β)
n ≤ β only holds if β = 1.

(5) F = gm, G = max.
One has

F knα(y) = gm(0, n−1. . . , 0, α) = 0 ,

G knβ(y) = max(0, n−1. . . , 0, β) = β .

and Condition (WDiii) becomes β ≤ β − α, whereas α = 0.
Now, assuming α = 0,

F kn0 (u) = gm(0, 1, n−1. . . , 1) = 0 ,

G knβ(u) =max(β, 1, n−1. . . , 1) = 1 .

And Condition (WDiii), that reads as 1 ≤ β implies β = 1.
(6) F = am, G = max

We have that

F knα(y) = am(0, n−1. . . , 0, α) = α

n
,

G knβ(y) = max(0, n−1. . . , 0, β) = β .

And Condition (WDii) becomes αβ ≤ β α
n , implying α = 0 or β = 0, but this last option

contradicts α < β. On the other hand, assuming α = 0, for the element u

F kn0 (u) = am(0, 1, n−1. . . , 1) = n − 1

n
,

G knβ(u) = max(β, 1, n−1. . . , 1) = 1 ,

and Condition (WDiii) becomes 1 ≤ (1 − β) n−1
n + β and this implies β = 1. ��

The following table summarizes the cases and functions that lead to an aggregation func-
tion.

Conditions Conditions on F and G
on α and β

α < β F = G linear (Prop. 27)
α = 0, β = 1 F ≤ G (Prop. 11)
α < β < 1
or F = G = Aw (Prop. 29)
α = 0, β = 1
0 < α < β

or F = G = As (Prop. 30)
α = 0, β = 1
α = 0, β = 1 F = G = min (Prop. 31)

F = G = gm (Prop. 32)
F = G = max (Prop. 33)

α = 0, β = 1 F,G ∈ {min, gm, am,max}
F < G (Prop. 34)
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5 Application

In order to apply the theoretical concepts introduced in the previous sections, we propose
as an illustrative example to build an ensemble of deep learning models. The aim is to sta-
bilize classification performance, by combining the contribution of different neural network
classifiers.

To begin with, we select r different deep learning architectures. For each architecture
Ai ∈ {A1, . . . ,Ar }, we trainm differentmodelsMAi using various parameter initializations.
These models are trained to fit the training data. Once trained, they are used to predict the
classes of the objects in the testing dataset. Specifically, for a single object in the testing
dataset, each model is used to compute the probability of the object belonging to each of the
n possible classes {C1, . . . , Cn}. From now on we focus on the procedure followed by a single
object of the testing dataset, as the aim is to classify the object using an ensemble of models.
Let ζ

j
k be the probability of the object belonging to class C j according to model MAi

k that
uses the architecture Ai . The results for the object, considering all the models trained with
architecture Ai , can be expressed as

C1 C2 . . . Cn
MAi

1 ζ 1
1 ζ 2

1 . . . ζ n
1

MAi
2 ζ 1

2 ζ 2
2 . . . ζ n

2
. . .

MAi
m ζ 1

m ζ 2
m . . . ζ n

m

having that for any of the models MAi
k occurs

ζ
j
k ∈ [0, 1] and

n∑
j=1

ζ
j
k = 1,

which means that the sum of all the predicted probabilities by the model MAi
k for each

possible class C j should add up to 1, indicating that the model has assigned a probability for
the object to belong to each class and that these probabilities are normalized.

Each model selects the class that maximizes the predicted probability for classifying the
object. Since different models may predict different classes for the same object, we wish to
combine the predictions of all models available to obtain a final classification. We aim not
only to combine the outputs of these different initializations of the same model, but also to
incorporate the outputs produced by the rest of model architectures.

First of all, we start by combining themodels based on the same architecture, which would
generate a matrix such as the one presented above. The information provided by the different
models is combined into a single probability interval for each class. To obtain the interval for
each class, we select theminimum andmaximumprobabilities among the consideredmodels.
Referring to the previous matrix, we combine the values of ζ by column, resulting in a set
of intervals. For each class, the aim is to have a single probability interval that encompasses
the probabilities given by all models. This way, we adopt an epistemic point of view (Dubois
and Prade 2012): we do not know the actual probability value and the interval represents all
the possible values. The left endpoint of the interval is the minimum value in the column
corresponding to the class C j , and the right endpoint is the maximum value in the same
column. More specifically, the probability interval [γ j , γ j ]

i
for an object to belong to class

C j , generated by the m models of the same architecture Ai , is:
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[γ j , γ j ]
i
= [min{ζ j

1 , ζ
j
2 , . . . , ζ

j
m},max{ζ j

1 , ζ
j
2 , . . . , ζ

j
m}].

Applying this to all the r different architectures, we end up with:

C1 C2 . . . Cn
A1 [γ1, γ1]1 [γ2, γ2]1 . . . [γn, γn]1
A2 [γ1, γ1]2 [γ2, γ2]2 . . . [γn, γn]2
. . .

Ar [γ1, γ1]r [γ2, γ2]r . . . [γn, γn]r
At this point, we apply the theoretical concepts introduced in this paper. We use the

intervals obtained for each architecture to build a consensus opinion using Eq. 2, as described
in Fig. 1. To do this, we consider as individual inputs the probability intervals of the object
belonging to each class, with the aim to create a single interval by class that summarizes those
given by all the architectures. The interval is defined by considering all models trained with
different parameter initializations of the same architecture. The values of thesemodels impact
the width of the resulting interval. On one hand, if the models perform similarly, the interval
will be narrow, signifying greater agreement. On the other hand, in situations with greater
uncertainty, a wider interval is obtained, reflecting increased disagreement. Subsequently, the
width of the interval influences the decision-making process, which explains why we do not
employ a direct aggregation function on the numbers. To be clear, the process shown in Fig. 1
is repeated a total of n times, combining each time the probability intervals corresponding
to class C j for all models. After the n repetitions a set of n intervals is obtained, each one
corresponding to a different class.

C1 C2 . . . Cn
[�1, �1] [�2, �2] . . . [�n, �n]

We then use this information to classify the object. In classical deep learning models,
obtaining the predicted class for an object is a straight-forward process of selecting the class
associated with the highest predicted probability. However, since the intervals have different
widths and values, a simple maximum probability approach cannot be used to determine the
final class, since some of these intervals may not be comparable with one another. Instead, we
propose to use a function that takes into account both the width and values of the intervals to
determine the final class. By doing so, the proposed function for determining the final class
from the probability intervals is based on two criteria. The first criterion gives more weight to
intervals with higher kα values, since higher values could be interpreted to higher confidence
in the classification. The second criterion is inversely proportional to the width of the interval,
which rewards smaller intervals, as we understand that these represent less uncertainty among
the models building the ensemble. The weight parameter w can be adjusted to give more
weight to one criterion over the other. Overall, this approach provides a single value � j for
each class C j which allows to model a trade-off between confidence and uncertainty and can
be expressed as

� j = w · kα([� j , � j ]) + (1 − w) · (1 − (� j − � j ))
p.

In the ensemble process, the class C j with highest � j is selected as the one to which the
object belongs. The procedure described is applied to all the objects in the testing dataset.

To demonstrate the effectiveness of our approach, we apply it to the CIFAR10 dataset [36]
that contains images of real world objects, such as animals and vehicles, which can belong
to 10 possible classes. The training data consist of 50000 objects (5000 from each class) and
the testing data has 10000 objects for the evaluation of the models.
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In particular, in our application 6 different architectures have been considered. For each
one, 5 different models have been trained using different parameter initializations. The accu-
racy obtained for each model is shown in Table 1 as well as the accuracy resulting from the
ensemble process described in this section. We have set the mean function as functions F and
G, as well as kα operators for the μ and ν functions (μ = k0, ν = k1) and have used a value
of w = 0.5 giving equal importance to the kα and width of the interval. We will be happy to
share the code for result replication with anyone who requests it. In the case of the proposed
technique, the results obtained are more robust than individual models because the opinion
of many predictive models is taken into account.

To sum up, our approach aims to provide a good consensus by combining the predictions
of multiple models. While it may not result in the best possible classification performance,
it shows that the final results are not worse than the worst-performing model. Additionally,
the inclusion of multiple models helps to minimize the impact of any bad models, leading
to a more robust and reliable classification system. Overall, our approach strikes a balance
between performance and robustness, providing a useful tool for real-world applications
where accuracy and reliability are both crucial.

6 Conclusions

Aggregation functions allow to merge the information provided by different sources
(judges/decision makers) and obtain a unique final outcome that is assumed to be a con-
sensus answer. When the inputs are intervals, the result should be a new interval. We have
proposed a way to obtain new aggregation operators for fusing intervals based on two “clas-
sical” aggregation functions. We have proven under which conditions the new operator is
well defined and we have also studied the necessary and sufficient conditions in order to
guarantee that this operator is monotone and therefore an aggregation function. In addition
to the general characterization, we have provided particular expressions for the most relevant
aggregation operators handled in practice: the maximum and theminimum and the arithmetic
and geometric means. The practical value of the theoretical results has been demonstrated
with an illustrative example, specifically in constructing ensemble deep learning models
from various initializations and architectures trained on the same dataset. This application
reveals that the suggested procedure effectively stabilizes the individual outcomes, thereby
confirming their utility in real-world scenarios for information fusion.
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