Mostrar el registro sencillo del ítem

dc.contributor.advisorAstrain Ulibarrena, Davides_ES
dc.contributor.advisorSánchez González, Marcelinoes_ES
dc.creatorZaversky, Fritzes_ES
dc.date.accessioned2015-03-16T13:11:10Z
dc.date.available2015-03-16T13:11:10Z
dc.date.issued2014
dc.date.submitted2014-06-05
dc.identifier.urihttps://hdl.handle.net/2454/16705
dc.description.abstractLa intención de este trabajo es extender las técnicas actuales de modelización del almacenamiento térmico activo directo y activo indirecto, con dos tanques y sales fundidas como medio de almacenamiento. Con el objetivo de conseguir aumentar el conocimiento sobre su comportamiento térmico y los aspectos operacionales, los modelos desarrollados deben permitir la evaluación del sistema de almacenamiento térmico en condiciones transitorias. Así, la parte principal de este trabajo (la Parte II) se centra en la modelización y evaluación del comportamiento de los intercambiadores de calor para la tecnología de almacenamiento térmico activo indirecto, que emplea sales fundidas (60% en peso de nitrato sódico, NaNO3, y 40% en peso de nitrato potásico, KNO3) como medio de almacenamiento y aceite térmico (una mezcla de difenilo, C12H10, y oxido de difenilo, C12H10O) como fluido caloportador. Asumiendo un diseño de intercambiador de calor del tipo carcasa y tubos, el comportamiento del proceso de intercambio de calor entre el medio de almacenamiento y el fluido caloportador se analiza en detalle, considerando condiciones de operación estacionarias y transitorias bajo cargas nominales y parciales. El modelo estacionario proporciona información útil sobre el coeficiente global de transmisión de calor y los rangos de variación de pérdidas de carga para dos configuraciones de intercambiadores de calor específicas. Se demuestra que la configuración de dos intercambiadores en paralelo supera a la configuración convencional de un único intercambiador en funcionamiento. Por otro lado, la evaluación del modelo transitorio suministra paráametros típicos del proceso como la ganancia, el tiempo muerto y la constante del tiempo para el modo de carga y descarga, en condiciones nominales y parciales. Además, se ha obtenido un modelo transitorio del tanque de almacenamiento a alta temperatura razonablemente simple, el cual es muy adecuado para simulaciones del comportamiento de centrales CSP en su conjunto. En el estudio se ha demostrado que las pérdidas térmicas por convección natural en la atmosfera de gas encima de la superficie libre de las sales fundidas se pueden omitir en el modelo, causando errores despreciables. También, se pueden asumir coeficientes de convección constantes entre la superficie de las paredes del tanque y las sales fundidas. Sin embargo, la transmisión de calor por radiación entre la superficie libre de las sales fundidas y las paredes interiores del tanque, que no están en contacto con las sales, deben de ser consideradas, dada su importante influencia en las pérdidas totales. Además, debido al modelado de la trasmisión de calor por las paredes del tanque en modo transitorio y al cálculo preciso de la temperatura de la superficie exterior, la influencia que las condiciones de contorno ambientales tienen sobre las pérdidas de calor, pueden ser caracterizadas de manera mucho más adecuada que mediante métodos cuasi-estacionarios, que solo tienen en cuenta la temperatura ambiente. Finalmente, la Parte III trata de la aplicación de los modelos desarrollados para los componentes del almacenamiento térmico, a un modelo exhaustivo y completo de una central de captadores cilindro-parabólicos a nivel global. De este modo se simula, no solo el comportamiento del sistema de almacenamiento térmico activo indirecto, sino también las respuestas de la central solar térmica al completo, debido a los cambios en las condiciones de contorno ambientales. Se observa que la inercia térmica del sistema de almacenamiento activo indirecto es muy considerable, influyendo de manera notable en los rápidos cambios de carga necesarios para capturar la mayor cantidad posible de la energía solar disponible, y para alimentar el bloque de potencia con una potencia térmica constante, independientemente de la actual radiación solar. Por último pero no menos importante, los modelos presentados han sido desarrollados de manera flexible, bien estructurada y con una programación orientada a objetos, particularmente dando importancia a una implementación independiente de la plataforma de simulación, hecho que ha sido llevado a cabo utilizando el lenguaje de modelación Modelica. Este es un lenguaje de modelizado de sistemas físicos multiobjetivo, que ha sido desarrollado en un esfuerzo internacional para unificar las técnicas de simulación ya existentes y para permitir el intercambio fácil de los modelos y librerías de modelos que se desarrollen. El concepto de Modelica se basa en modelos no causales que utilizan ecuaciones diferenciales ordinarias y algebraicas.es_ES
dc.description.abstractThis work's intention is to extend the current state-of-the-art regarding the modeling of the active direct and the active indirect two-tank moltensalt- based thermal energy storage (TES) concept. The aim is to widen the knowledge about their thermal behavior and operational aspects. In particular, the developed models shall enable the evaluation of the storage system's transient behavior. Thus, the main part of this work (Part II) focuses on the modeling and the performance evaluation of oil-to-molten salt heat exchangers for the active indirect thermal energy storage technology, applying molten salt (60%, by weight, sodium nitrate, NaNO3, and 40%, by weight, potassium nitrate, KNO3) as storage medium and thermal oil (a mixture of diphenyl, C12H10, and diphenyl oxide, C12H10O) as heat transfer fluid. Assuming a shell-andtube heat exchanger design, the performance of the heat exchange process between the storage medium and the heat transfer fluid is discussed in detail, considering steady-state as well as transient operating conditions under nominal as well as partial loads. On the one hand, the steady-state model gives useful information about overall heat transfer coefficient and pressure drop ranges for two specific heat exchanger setups. In particular, it is shown that two separate heat exchanger trains in parallel exceed the conventional single train setup in performance. On the other hand, the evaluation of the transient performance model yields typical process parameters as process gain, dead time and time constant for charging as well as for discharging mode at representative heat exchanger loads. In addition to this, a reasonable simple transient high-temperature storage tank model is derived, which is well suited for CSP performance simulations on system level due to reasonable model simplifications. For example, it is found in this work that the convective heat losses via the tank's gas atmosphere (usually nitrogen at ambient pressure) above the molten salt surface can be neglected by only introducing negligible calculation errors. Also, the convective heat transfer coefficients between the molten salt and the wetted parts of the tank's inner steel jacket may be set to constant values. However, the important radiative heat transfer between the surface of the molten salt and the non-wetted parts of the tank's inner steel jacket must be considered, which is done assuming an ideal cylindrical geometry. Furthermore, due to the transient modeling of the storage tank walls and a detailed estimation of the exterior surface temperature, the influence of altering environmental boundary conditions can be captured more accurately than by quasi-steadystate methods that only account for the current ambient air temperature. Finally, Part III treats the application of the developed TES model components in a comprehensive model of a parabolic trough collector plant on system level, showing not only the behavior of a typical active indirect twotank TES system under transient operating conditions, but also the responses of the entire solar thermal power plant to changing environmental boundary conditions. It is shown that the thermal inertia of the active indirect TES concept is considerable and forms a major obstacle for rapid load changes that are crucial for capturing as much solar energy as possible, and to supply the power block with constant thermal power, independently of the current solar irradiance. Last but not least, the presented models have been developed in a flexible, well-structured and object-oriented way, particularly giving importance to a simulation-platform-independent implementation, which has been accomplished applying Modelica, a multi-purpose physical system modeling language, developed in an international effort in order to unify already existing similar modeling approaches, and to enable developed models and model libraries to be easily exchanged. Modelica's concept is based on non-causal models featuring true ordinary differential and algebraic equations.en
dc.format.extentXXXI, 332 p.es_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.relation.urihttps://biblioteca.unavarra.es/abnetopac/abnetcl.cgi?TITN=432701
dc.subjectAlmacenamiento térmicoes_ES
dc.subjectIntercambiadores de calores_ES
dc.subjectCentrales solares térmicases_ES
dc.subjectThermal energy storageen
dc.subjectHeat exchangersen
dc.subjectSolar thermal power plantsen
dc.titleObject-oriented modeling for the transient performance simulation of solar thermal power plants using parabolic trough collectors: a review and proposal of modeling approaches for thermal energy storageen
dc.typeTesis doctoral / Doktoretza tesiaes
dc.typeinfo:eu-repo/semantics/doctoralThesisen
dc.contributor.departmentIngeniería Mecánica, Energética y de Materialeses_ES
dc.contributor.departmentMekanika, Energetika eta Materialen Ingeniaritzaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.description.doctorateProgramPrograma Oficial de Doctorado en Ingeniería y Arquitectura (RD 1393/2007)es_ES
dc.description.doctorateProgramIngeniaritzako eta Arkitekturako Doktoretza Programa Ofiziala (ED 1393/2007)eu


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt