Mostrar el registro sencillo del ítem

dc.creatorMartínez Echeverri, Álvaroes_ES
dc.creatorAstrain Ulibarrena, Davides_ES
dc.creatorAranguren Garacochea, Patriciaes_ES
dc.date.accessioned2016-10-27T09:15:29Z
dc.date.available2018-10-01T23:00:11Z
dc.date.issued2016
dc.identifier.issn0360-5442 (Print)
dc.identifier.issn1873-6785 (Electronic)
dc.identifier.urihttps://hdl.handle.net/2454/22502
dc.description.abstractThermoelectric self-cooling was firstly conceived to increase, without electricity consumption, the cooling power of passive cooling systems. This paper studies the combination of heat pipe exchangers and thermoelectric self-cooling, and demonstrates its applicability to the cooling of power electronics. Experimental tests indicate that source-to-ambient thermal resistance reduces by around 30% when thermoelectric self-cooling system is installed, compared to that of the heat pipe exchanger under natural convection. Neither additional electric power nor cooling fluids are required. This thermal resistance reaches 0.346 K/W for a heat flux of 24.1 kW/m2, being one order of magnitude lower than that obtained in previous designs. In addition, the system adapts to the cooling demand, reducing this thermal resistance for increasing heat. Simulation tests have indicated that simple system modifications allow relevant improvements in the cooling power. Replacement of a thermoelectric module with a thermal bridge leads to 33.54 kW/m2 of top cooling power. Likewise, thermoelectric modules with shorter legs and higher number of pairs lead to a top cooling power of 44.17 kW/m2. These results demonstrate the applicability of thermoelectric self-cooling to power electronics.en
dc.description.sponsorshipThe authors would like to thank the Spanish Ministry of Economy and Competitiveness (DPI2014-53158-R) and FEDER Funds (European Union) for supporting this work.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofEnergy 112 (2016) 1-7en
dc.rights© 2016 Elsevier B.V. The manuscript version is made available under the CC BY-NC-ND 4.0 license.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectThermoelectric self-coolingen
dc.subjectPower electronicsen
dc.subjectSeebeck effecten
dc.subjectHeat pipe exchangeren
dc.titleThermoelectric self-cooling for power electronics: increasing the cooling poweren
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.contributor.departmentIngeniería Mecánica, Energética y de Materialeses_ES
dc.contributor.departmentMekanika, Energetika eta Materialen Ingeniaritzaeu
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.embargo.terms2018-10-01
dc.identifier.doi10.1016/j.energy.2016.06.007
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//DPI2014-53158-R/ES/en
dc.relation.publisherversionhttps://dx.doi.org/10.1016/j.energy.2016.06.007
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2016 Elsevier B.V. The manuscript version is made available under the CC BY-NC-ND 4.0 license.
La licencia del ítem se describe como © 2016 Elsevier B.V. The manuscript version is made available under the CC BY-NC-ND 4.0 license.

El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt