Artículos de revista DIEC - IEKS Aldizkari artikuluak

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 20 of 488
  • PublicationOpen Access
    Assessment of performance of one-turn inductors in series configuration through a transmission-line modeling approach
    (IEEE , 2024) Álvarez Botero, Germán Andrés; Moctezuma-Pascual, Eduardo; Gómez Laso, Miguel Ángel; Torres-Torres, Reydezel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    In this paper, transmission-line theory is applied to implement a physical model for compact one-turn inductors, which simultaneously incorporates the frequency-dependent effects introduced by the conductor skin effect and the loss originated by the coupling with the ground plane. For this purpose, S-parameter measurements are processed to extract the associated parameters, which exhibit scalability with the turn radius. This allows the model to be used for interpolation and extrapolation analyses. In this regard, the device performance is assessed for one-turn inductors in series connection, for different load impedances, and when the turn is narrowed. To validate the proposal, agreement between the model and the experimental transmission line RLGC parameters, the return loss, and the Q-factor is obtained up to 20 GHz.
  • PublicationOpen Access
    Design of an additively-manufactured self-supported all-metal coaxial-line X-band bandpass filter
    (IEEE, 2024) Pons Abenza, Alejandro; Arregui Padilla, Iván; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Martín Iglesias, Petronilo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    In this contribution, the design and manufacturing of an all-metal coaxial-line X-band bandpass filter is discussed. The device is 3D-printed as a self-supported structure without any dielectric inside the coaxial. The mechanical support between the inner and outer coaxial-line conductors is provided by means of λ/4 short-circuited stubs, which are also used in the bandpass filter design. The real transmission zeros (TZs) produced by the short-circuited stubs are responsible for a high filter selectivity. In order to enhance the filter performance, a second stage consisting in a coaxial-line stepped-impedance low-pass filter is integrated in the design to provide the rejection level required for the out-of-band behaviour. Following our design method, the bandpass and low-pass filters are designed separately, and a final matching step is performed to connect both and to achieve the aimed frequency specifications. In this way, a monoblock coaxial filter with very good in-band and out-of-band performance can by obtained by using an additive manufacturing (AM) procedure. Only the input/output (I/O) coaxial connectors will need to be assembled to the filter to perform the frequency measurements. The filters in this work can be seen as a first proposal towards more complex multi-functional monoblock structures using additively-manufactured coaxial technology, for highly-integrated RF chains. Other expected benefits beyond the compactness or lightweight are an increased RF shielding, electrostatic discharge risk reduction, and Passive Intermodulation (PIM) protection. In the paper, a prototype with a passband between 8 and 12 GHz is designed and manufactured, using a bandpass filter with three stubs and an integrated 15th-order low-pass filter, providing rejection for spurious frequencies up to 30 GHz. The filter is manufactured using Selective Laser Melting (SLM) and measurements show an excellent agreement with the simulations.
  • PublicationOpen Access
    W-band filtering antenna based on a slot array and stacked coupled resonators using gap waveguide technology
    (IEEE, 2024) Santiago Arriazu, David; Fang, Mu; Zaman, Ashraf Uz; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Arregui Padilla, Iván; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    This letter proposes a new design approach for filtering antennas. The novel matching reflection coefficient based method allows the integration of filters and antennas without compromising the frequency behavior of either of these components. Moreover, this integration is done avoiding the need of lengthy optimization processes and provides a high degree of flexibility in the types of antennas that can be used. In order to validate it, two examples are provided. In both cases, a 4 th -order Chebyshev bandpass filter at 101.5 GHz implemented in stacked groove gap waveguide (GGW) configuration is used, firstly along with a single aperture antenna and, subsequently, with a slotted ridge gap waveguide (RGW) array. This second example has been manufactured to demonstrate the usefulness of the new design methodology. Excellent measured performance has been obtained for a filtering antenna at W-band for the first time.
  • PublicationOpen Access
    Comprehensive characterisation of a low-frequency-vibration energy harvester
    (MDPI, 2024) Plaza Puértolas, Aitor; Iriarte Goñi, Xabier; Castellano Aldave, Jesús Carlos; Carlosena García, Alfonso; Ingeniería; Ingeniaritza; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    In this paper, we describe a measurement procedure to fully characterise a novel vibration energy harvester operating in the ultra-low-frequency range. The procedure, which is more thorough than those usually found in the literature, comprises three main stages: modelling, experimental characterisation and parameter identification. Modelling is accomplished in two alternative ways, a physical model (white box) and a mixed one (black box), which model the magnetic interaction via Fourier series. The experimental measurements include not only the input (acceleration)–output (energy) response but also the (internal) dynamic behaviour of the system, making use of a synchronised image processing and signal acquisition system. The identification procedure, based on maximum likelihood, estimates all the relevant parameters to characterise the system to simulate its behaviour and helps to optimise its performance. While the method is custom-designed for a particular harvester, the comprehensive approach and most of its procedures can be applied to similar harvesters.
  • PublicationOpen Access
    Metallic-dielectric layer based hyperbolic mode resonances in planar waveguides
    (IEEE, 2024) González Salgueiro, Lázaro José; Del Villar, Ignacio; Corres Sanz, Jesús María; Goicoechea Fernández, Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this research article, we present a comprehensive investigation into the integration of dielectric and metallic layers on optical waveguides, specifically targeting sensing applications. By utilizing a single bilayer of metal and dielectric on a planar waveguide that meets the conditions of a hyperbolic metamaterial, we significantly enhance the visibility of lossy mode resonances generated with a single dielectric layer, in what can be considered as a hyperbolic mode resonance (HMR), without compromising sensitivity. This improvement leads to an enhanced figure of merit and a reduction of the signal-to-noise ratio. Real-time evolution of spectra during the dielectric layer deposition allows us to establish a map of the multiple phenomena involved, such as surface plasmon resonance, lossy mode resonance, and mode transition. Combining these phenomena in a single structure leads to an unprecedented enhancement in sensing capabilities, demonstrating the potential of dielectric-metallic layer integration on optical waveguides for advanced sensing applications. Moreover, the optimized sensing performance offers promising opportunities for on-chip sensing devices and various applications in biomedicine, environmental monitoring, and chemical analysis.
  • PublicationOpen Access
    An antibacterial surface coating composed of PAH/SiO2 nanostructurated films by layer by layer
    (Wiley, 2010) Urrutia Azcona, Aitor; Rivero Fuente, Pedro J.; Ruete Ibarrola, Leyre; Goicoechea Fernández, Javier; Fernández Valdivielso, Carlos; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería; Ingeniaritza; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC
    In this work we propose a novel antibacterial coating composed of SiO2 and the polymer Poly(allylamine hydrochloride) (PAH). The coating was fabricated by the technique Layer-by-Layer (LbL). This technique has already been used in previous works, and it has the advantage that it allows to control the construction of nanosized and well organized multilayer films. Here, the new nanotexturized LbL SiO2 surface acts as antibacterial agent. The fabricated coatings have been tested in bacterial cultures of genus Lactobacillus to observe their antibacterial properties. It has been demonstrated these PAH/SiO2 coating films have a very good antimicrobial behaviour against this type of bacteria.
  • PublicationOpen Access
    Magneto-dielectric composites characterization using resonant sensor and neural network modeling
    (IEEE, 2024) Álvarez Botero, Germán Andrés; Lobato-Morales, Humberto; Hui, Katherine; Tarabay, Naji; Sánchez-Vargas, Jeu; Vélez, Camilo; Méndez-Jerónimo, Gabriela; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    This article presents a novel way to estimate magnetodielectric composites’ complex permittivity (ε) and permeability (µ). A methodology based on artificial neural network (ANN) modeling is proposed to determine ε and µ from S-parameter measurements around 2.45 GHz, obtained using a new microstrip split ring resonator (SRR)-based resonant sensor.
  • PublicationOpen Access
    Novel two-stage three-level converter with inherently-balanced dc voltage for EV fast-charging applications
    (IEEE, 2023) Elizondo Martínez, David; Barrios Rípodas, Ernesto; Galdeano Bujanda, Mikel; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The design of EV fast chargers faces a new challenge due to the boost in the battery voltage of electric cars and heavyduty electric vehicles. Two-stage converters, that consist of an isolated dc-dc stage and an extra regulated dc-dc converter, are attracting an increasing attention thanks to their outstanding performance. The potential benefits of multilevel converters, such as lower power losses and more compact filters, can be incorporated to two-stage architectures at the expense of simplicity due to the need of a voltage balancing method. In this article, a novel dc-dc two-stage three-level (2S3L) architecture is presented, which guarantees that the multilevel input dc voltages are balanced without any specific balancing technique or extra components. Moreover, it accomplishes lossless switching in the isolated dc-dc stage, enabling a high efficiency. A 15 kW test bench is built in order to experimentally verify the inherentlybalanced voltages. The experimental tests demonstrate that the dc-link voltages are inherently-balanced (no control needed) in both transient and steady states, and that it is robust against tolerances and faulty operation. The test bench is able to provide a wide output voltage, from 200 to 900 V, and reaches a high peak efficiency of 98.2% at rated power.
  • PublicationOpen Access
    Digital twin modelling of open category UAV radio communications: a case study
    (Elsevier, 2024) Aláez Gómez, Daniel; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The modeling of radio links plays a crucial role in achieving mission success of unmanned aerial vehicles (UAVs). By simulating and analyzing communication performance, operators can anticipate and address potential challenges. In this paper, we propose a full-featured UAV software-in-the-loop digital twin (SITL-DT) for a heavy-lifting hexacopter that integrates a radio link module based on an experimental path loss model for ‘Open’ category Visual Line of Sight (VLOS) conditions and drone-antenna radiation diagrams obtained via electromagnetic simulation. The main purpose of integrating and simulating a radio link is to characterize when the communication link can be conflicting due to distance, the attitude of the aircraft relative to the pilot, and other phenomena. The system architecture, including the communications module, is implemented and validated based upon experimental flight data.
  • PublicationOpen Access
    Reconfigurable millimeter-wave reflectarray based on low loss liquid crystals
    (IEEE, 2024) Pérez Quintana, Dayan; Aguirre Gallego, Erik; Olariaga Jauregui, Eduardo; Kuznetsov, Sergei A.; Lapanik, Valeri I.; Sutormin, Vitaly S.; Zyryanov, Victor Ya; Marcotegui, José Antonio; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    This article reports on the development and evaluation of a reconfigurable millimeter-wave reflectarray (RA) based on liquid-crystal (LC) substrate operating in the D-band (105–125 GHz). The RA is composed of a high-impedance surface (HIS) with a meta-array of 33 × 29 patches on a 2-mm-thick quartz substrate, separated from the ground plane (GP) by a 40-µm-thick LC layer. A novel LC composition with low dielectric losses (<0.003) and high dielectric anisotropy (>1.3) has been developed for operation at millimeter waves. The results demonstrate a reflection phase tunability of 210◦ and low insertion losses of 2.5 dB. Furthermore, the device was demonstrated as a proof of concept for 1-D beam-steering applications, exhibiting an operational bandwidth of 12 GHz.
  • PublicationOpen Access
    Humidity sensor based on silver nanopartlcles embedded in a polymeric coating
    (Sciendo, 2012) Rivero Fuente, Pedro J.; Urrutia Azcona, Aitor; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería; Ingeniaritza; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC
    In this work, it is presented a novel optical fiber humidity sensor based on silver nanoparticle-loaded polymeric coatings built onto an optical fiber core. The polymeric film was fabricated using the Layer-by-Layer assembly technique. The silver nanoparticles (Ag NPs) were characterized using transmission electron microscopy (TEM and UV-VIS spectroscopy. A Localized Surface Plasmon Resonance (LSPR) attenuation band is observed when the thickness of the coating increases, and showed a very good sensitivity to Relative Humidity (RH) variations, suitable for high performance applications such as human breathing monitoring.
  • PublicationOpen Access
    In vitro modeling of polyclonal infection dynamics within the human airways by Haemophilus influenzae differential fluorescent labeling
    (American Society for Microbiology, 2023) Rapún Araiz, Beatriz; Sorzabal-Bellido, Ioritz; Asensio López, Javier; Lázaro-Díez, María; Ariz Galilea, Mikel; Sobejano de la Merced, Carlos; Euba, Begoña; Fernández Calvet, Ariadna; Cortés-Domínguez, Iván; Burgui Erice, Saioa; Toledo Arana, Alejandro; Ortiz de Solórzano, Carlos; Garmendia García, Juncal; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Standardized clinical procedures for antibiotic administration rely on pathogen identification and antibiotic susceptibility testing, often performed on single-colony bacterial isolates. For respiratory pathogens, this could be questionable, as chronic patients may be persistently colonized by multiple clones or lineages from the same bacterial pathogen species. Indeed, multiple strains of nontypeable Haemophilus influenzae, with different antibiotic susceptibility profiles, can be co-isolated from cystic fibrosis and chronic obstructive pulmonary disease sputum specimens. Despite this clinical evidence, we lack information about the dynamics of H. influenzae polyclonal infections, which limits the optimization of therapeutics. Here, we present the engineering and validation of a plasmid toolkit (pTBH, toolbox for Haemophilus), with standardized modules consisting of six reporter genes for fluorescent or bioluminescent labeling of H. influenzae. This plasmid set was independently introduced in a panel of genomically and phenotypically different H. influenzae strains, and two of them were used as a proof of principle to analyze mixed biofilm growth architecture and antibiotic efficacy, and to visualize the dynamics of alveolar epithelial co-infection. The mixed biofilms showed a bilayer architecture, and antibiotic efficacy correlated with the antibiotic susceptibility of the respective single-species strains. Furthermore, differential kinetics of bacterial intracellular location within subcellular acidic compartments were quantified upon co-infection of cultured airway epithelial cells. Overall, we present a panel of novel plasmid tools and quantitative image analysis methods with the potential to be used in a whole range of bacterial host species, assay types, and¿or conditions and generate meaningful information for clinically relevant settings.
  • PublicationOpen Access
    High frequency vibration sensor using a fiber laser with a multicore fiber interferometer
    (IEEE, 2024) Correa Serrano, Ángel Ignacio; Galarza Galarza, Marko; Dauliat, Romain; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Pérez Herrera, Rosa Ana; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    We present an interferometric vibration sensor that uses three-core fibers. The transducer is constructed by splicing a segment 20 mm long of a multicore optical fiber (MCF) to a single-mode optical fiber (SMF). The end of the MCF segment is cut off and painted using silver metallic paint. The sensor head is operated in reflection mode. The structure is placed on a polyvinyl chloride (PVC) plate, which is excited with a wide range of frequency signals. The vibrations induce cyclic bending in the MCF segment, resulting in periodic oscillations of the reflected interference spectrum. This device is demonstrated to be suitable to measure vibrations in a frequency range of the order of 300 kHz detecting deformations as small as 0.40μm .
  • PublicationEmbargo
    Biosensing based on lossy mode resonances
    (Elsevier, 2024) Matías Maestro, Ignacio; Imas González, José Javier; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Lossy mode resonance (LMR)-based sensors have experienced an important development in the last decade. Among the different domains in which LMR-based sensors have been used, biosensing is one of the fields that has attracted more interest in recent years. Here, LMR properties and some biosensing concepts are reviewed in the first place. Then, the progress of LMR-based biosensors is described, starting with cladding-removed multimode fibers (CRMMF), and evolving towards the employment of D-shaped single mode fibers, which have led to better biosensors in terms of performance and limit of detection (LOD). More recent advances, such as the development of biosensors that combine the optical and electrochemical domains, or the introduction of planar waveguides as the biosensor substrate, are also discussed. In all the cases, examples of biosensors are included, indicating the detected biomarker, biofunctionalization protocol, dynamic range, LOD, and specificity assays. Finally, some conclusions about LMR-based biosensors are presented, as well as future perspectives and some ideas to advance in this field.
  • PublicationOpen Access
    Time-restricted eating and supervised exercise for improving hepatic steatosis and cardiometabolic health in adults with obesity: protocol for the TEMPUS randomised controlled trial
    (BMJ Publishing Group, 2024) Camacho-Cardenosa, Alba; Clavero-Jimeno, Antonio; Martín-Olmedo, Juan J.; Amaro Gahete, Francisco J.; Cupeiro, Rocío; González Cejudo, María Trinidad; García Pérez, Patricia Virginia; Hernández-Martínez, Carlos; Sevilla-Lorente, Raquel; O, Alejandro de la; López-Vázquez, Alejandro; Molina-Fernández, Marcos; Carneiro-Barrera, Almudena; García, Federico; Rodríguez-Nogales, Alba; Gálvez Peralta, Julio Juan; Cabeza Laguna, Rafael; Martín-Rodríguez, José L.; Muñoz-Garach, Araceli; Muñoz Torres, Manuel; Labayen Goñi, Idoia; Ruiz, Jonatan R.; Ciencias de la Salud; Osasun Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Introduction. Metabolic dysfunction-associated steatotic liver disease is a major public health problem considering its high prevalence and its strong association with extrahepatic diseases. Implementing strategies based on an intermittent fasting approach and supervised exercise may mitigate the risks. This study aims to investigate the effects of a 12-week time-restricted eating (TRE) intervention combined with a supervised exercise intervention, compared with TRE or supervised exercise alone and with a usual-care control group, on hepatic fat (primary outcome) and cardiometabolic health (secondary outcomes) in adults with obesity. Methods and análisis. An anticipated 184 adults with obesity (50% women) will be recruited from Granada (south of Spain) for this parallel-group, randomised controlled trial (TEMPUS). Participants will be randomly designated to usual care, TRE alone, supervised exercise alone or TRE combined with supervised exercise, using a parallel design with a 1:1:1:1 allocation ratio. The TRE and TRE combined with supervised exercise groups will select an 8-hour eating window before the intervention and will maintain it over the intervention. The exercise alone and TRE combined with exercise groups will perform 24 sessions (2 sessions per week+walking intervention) of supervised exercise combining resistance and aerobic high-intensity interval training. All participants will receive nutritional counselling throughout the intervention. The primary outcome is change from baseline to 12 weeks in hepatic fat; secondary outcomes include measures of cardiometabolic health. Ethics and dissemination. This study was approved by Granada Provincial Research Ethics Committee (CEI Granada—0365-N-23). All participants will be asked to provide written informed consent. The findings will be disseminated in scientific journals and at international scientific conferences. Trial registration number NCT05897073.
  • PublicationOpen Access
    Side-polished photonic crystal fiber sensor with ultra-high figure of merit based on Bloch-like surface wave resonance
    (Elsevier, 2024) González Valencia, Esteban; Reyes-Vera, Erick; Del Villar, Ignacio; Torres, Pedro; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    A Bloch surface wave (BSW) resonance configuration is introduced for biosensing with an ultra-high figure of merit (FOM). The BSW excitation is realized through the evanescent field of the core-guided fundamental mode of a side-polished photonic crystal fiber (PCF). By taking advantage of the air hole periodic microstructure of the PCF cladding, the BSW platform can be achieved with only a single high refractive index dielectric layer on its flat surface. The dielectric layer deposited on the polished surface of the PCF modifies the local effective refractive index, allowing direct manipulation of the BSWs, whereby the resonance wavelength of the surface wave can be adjusted by choosing the material and thickness of this layer. Here, we numerically investigate Bloch-like surface wave (BLSW) resonance conditions around telecom wavelengths for silicon, titanium dioxide, copper monoxide, and aluminum oxide termination layers. The BLSW excitation platform materials have low loss, which results in higher surface field enhancements and narrower resonances, which are advantageous properties for the sensors. The obtained results open new avenues for the application of optical surface waves in biosensing with high FOM. Furthermore, these results show a much higher figure of merit (FOM) than traditional approaches, allowing for increased sensitivity and accuracy.
  • PublicationOpen Access
    Synplex: in silico modeling of the tumor microenvironment from multiplex images
    (IEEE, 2023) Jiménez Sánchez, Daniel; Ariz Galilea, Mikel; Andrea, Carlos de; Ortiz de Solórzano, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    Multiplex immunofluorescence is a novel, high-content imaging technique that allows simultaneous in situ labeling of multiple tissue antigens. This technique is of growing relevance in the study of the tumor microenvironment, and the discovery of biomarkers of disease progression or response to immune-based therapies. Given the number of markers and the potential complexity of the spatial interactions involved, the analysis of these images requires the use of machine learning tools that rely for their training on the availability of large image datasets, extremely laborious to annotate. We present Synplex, a computer simulator of multiplexed immunofluorescence images from user-defined parameters: i. cell phenotypes, defined by the level of expression of markers and morphological parameters; ii. cellular neighborhoods based on the spatial association of cell phenotypes; and iii. interactions between cellular neighborhoods. We validate Synplex by generating synthetic tissues that accurately simulate real cancer cohorts with underlying differences in the composition of their tumor microenvironment and show proof-of-principle examples of how Synplex could be used for data augmentation when training machine learning models, and for the in silico selection of clinically relevant biomarkers. Synplex is publicly available at https://github.com/djimenezsanchez/Synplex.
  • PublicationOpen Access
    Data augmentation techniques for machine learning applied to optical spectroscopy datasets in agrifood applications: a comprehensive review
    (MDPI, 2023) Gracia Moisés, Ander; Vitoria Pascual, Ignacio; Imas González, José Javier; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Machine learning (ML) and deep learning (DL) have achieved great success in different tasks. These include computer vision, image segmentation, natural language processing, predicting classification, evaluating time series, and predicting values based on a series of variables. As artificial intelligence progresses, new techniques are being applied to areas like optical spectroscopy and its uses in specific fields, such as the agrifood industry. The performance of ML and DL techniques generally improves with the amount of data available. However, it is not always possible to obtain all the necessary data for creating a robust dataset. In the particular case of agrifood applications, dataset collection is generally constrained to specific periods. Weather conditions can also reduce the possibility to cover the entire range of classifications with the consequent generation of imbalanced datasets. To address this issue, data augmentation (DA) techniques are employed to expand the dataset by adding slightly modified copies of existing data. This leads to a dataset that includes values from laboratory tests, as well as a collection of synthetic data based on the real data. This review work will present the application of DA techniques to optical spectroscopy datasets obtained from real agrifood industry applications. The reviewed methods will describe the use of simple DA techniques, such as duplicating samples with slight changes, as well as the utilization of more complex algorithms based on deep learning generative adversarial networks (GANs), and semi-supervised generative adversarial networks (SGANs).
  • PublicationOpen Access
    Analyzing implicit gender bias in Optics and Photonics at the predoctoral stage in Spain
    (Sociedad Española de Óptica, 2023) Tomás, María-Baralida; Heras, Alba de las; Santamaría Fernández, Beatriz; Gómez Varela, Ana Isabel; Benedi García, Clara; Delgado Pinar, Martina; González-Fernández, Verónica; Pérez Herrera, Rosa Ana; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    Los prejuicios de género desempeñan un papel muy importante en áreas relacionadas con la ciencia, la tecnología, la ingeniería y las matemáticas (STEM). La asociación del género con determinados atributos, comportamientos o profesiones conduce a una menor proporción de mujeres en STEM. En el campo de la Óptica y la Fotónica, podemos identificar una disparidad de género entre enfoques técnicos o bioclínicos dentro de la misma área al examinar la autoría de la tesis defendida. En este trabajo, cuantificamos el impacto del sesgo implícito de género en los programas de doctorado relacionados con la Óptica y Fotónica en España. Aquí presentamos un estudio exhaustivo sobre los descriptores UNESCO de las tesis defendidas en el periodo 2015-2020 a través del repositorio de acceso abierto TESEO, donde se recopilan todas las tesis doctorales de las universidades españolas. Se considera el programa de doctorado de cada tesis y se clasifica en una categoría técnica o bioclínica. Con esta clasificación, cuantificamos el número de autores y autoras dentro de cada categoría, y los resultados muestran un claro desequilibrio en la mayoría de los descriptores evaluados: los hombres son más propensos a elegir programas de doctorado técnicos, mientras que las mujeres están mayoritariamente presentes en programas clínicos o biológicos. Esta diferencia se observa incluso en los descriptores en los que ambos sexos están representados por igual. Por un lado, la infrarrepresentación femenina es mayor en "Física", "Astronomía y Astrofísica", "Ciencias de la Tierra y del Espacio" y "Ciencias Tecnológicas". Por el contrario, las áreas de "Química", "Ciencias de la Vida" y "Ciencias Médicas" muestran una distribución más equilibrada entre hombres y mujeres en la mayoría de los descriptores.
  • PublicationOpen Access
    Application of coherently radiating periodic structures for feeding subarrays in limited-scan arrays
    (IEEE, 2023) Juárez, Elizvan; Panduro, Marco A.; Covarrubias, David H.; Reyna, Alberto; Río Bocio, Carlos del; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza
    This paper presents a new design technique to improve the reduction of phase shifters using sub-arrays and CORPS (coherently radiating periodic structures) technology. The CORPS network generates the values of cophasal excitation with reduced input ports. These values feed an optimal sub-arrays structure. Furthermore, fixed and variable amplifiers allow a low SLL (side lobe level) by using a raised cosine amplitude distribution along sub-arrays inputs. The theoretical model of CORPS-Subarrays, numerical and experimental results of several design cases are presented. The proposed design achieves a ±14° scanning range with a higher reduction of phase shifters than other techniques presented previously in the state of art. This paper illustrates, as a contribution, the complete antenna system based on the fabrication of a prototype and experimental results to analyze the reduction capacity of phase shifters and scanning possibilities of the proposed methodology in antenna arrays. The experimental results of the BFN (beam-forming networks) prototype at 6 GHz for 11 antenna elements and 3 phase shifters are provided. The proposed design achieves a reduction of 72% of phased shifters with ±14° beam scanning and −15 dB of SLL.