Influence of the aging model of lithium-ion batteries on the management of PV self-consumption systems
Date
2018Author
Version
Acceso abierto / Sarbide irekia
xmlui.dri2xhtml.METS-1.0.item-type
Contribución a congreso / Biltzarrerako ekarpena
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
ES/1PE/DPI2013-42853-R ES/1PE/DPI2016-80641-R ES/1PE/DPI2016-80642-R
Impact
|
10.1109/EEEIC.2018.8493778
Abstract
Lithium-ion batteries are gaining importance for a variety of applications due to their improving characteristics and decreasing price. An accurate knowledge of their aging is required for a successful use of these ESSs. The vast number of models that has been proposed to predict these phenomena raise doubts about the suitability of a model for a particular battery application. The performance of ...
[++]
Lithium-ion batteries are gaining importance for a variety of applications due to their improving characteristics and decreasing price. An accurate knowledge of their aging is required for a successful use of these ESSs. The vast number of models that has been proposed to predict these phenomena raise doubts about the suitability of a model for a particular battery application. The performance of three models published for a Sanyo 18650 cylindrical cell in a self-consumption system are compared in this work. Measured photovoltaic production and home consumption with a sampling frequency of 15 minutes are used for this comparison. The different aging predictions calculated by these three models are analyzed, compared and discussed. These comparison is particularized for two management strategies. The first of them maximizes the self-consumption PV energy, while the second reduces the maximum power peak demanded from the grid. [--]
Publisher
IEEE
Published in
2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Palermo, 2018, pp. 1-5
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektriko, Elektroniko eta Telekomunikazio Saila /
Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. ISC - Institute of Smart Cities
Publisher version
Sponsorship
The authors would like to acknowledge the support of the Spanish State Research Agency (AEI) and FEDER-UE under grants DPI2013-42853-R, DPI2016-80641-R and DPI2016-80642-R; of Government of Navarra through research project PI038 INTEGRA-RENOVABLES; and the FPU Program of the Spanish Ministry of Education, Culture and Sport (FPU13/00542).