A radio channel model for D2D communications blocked by single trees in forest environments
Date
2019Author
Version
Acceso abierto / Sarbide irekia
xmlui.dri2xhtml.METS-1.0.item-type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Project Identifier
ES/1PE/TEC2017-85529
Impact
|
10.3390/s19214606
Abstract
In this paper we consider the D2D (Device-to-Device) communication taking place between Wireless Sensor Networks (WSN) elements operating in vegetation environments in order to achieve the radio channel characterization at 2.4 GHz, focusing on the radio links blocked by oak and pine trees modelled from specimens found in a real recreation area located within forest environments. In order to fit a ...
[++]
In this paper we consider the D2D (Device-to-Device) communication taking place between Wireless Sensor Networks (WSN) elements operating in vegetation environments in order to achieve the radio channel characterization at 2.4 GHz, focusing on the radio links blocked by oak and pine trees modelled from specimens found in a real recreation area located within forest environments. In order to fit and validate a radio channel model for this type of scenarios, both measurements and simulations by means of an in-house developed 3D Ray Launching algorithm have been performed, offering as outcomes the path loss and multipath information of the scenarios under study for forest immersed isolated trees and non-isolated trees. The specific forests, composed of thick in-leaf trees, are called Orgi Forest and Chandebrito, located respectively in Navarre and Galicia, Spain. A geometrical and dielectric model of the trees were created and introduced in the simulation software. We concluded that the scattering produced by the tree can be divided into two zones with different dominant propagation mechanisms: an obstructed line of sight (OLoS) zone far from the tree fitting a log-distance model, and a diffraction zone around the edge of the tree. 2D planes of delay spread value are also presented which similarly reflects the proposed two-zone model. [--]
Subject
Publisher
MDPI
Published in
Sensors, 2019, 19 (21), 4606
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektriko, Elektroniko eta Telekomunikazio Saila /
Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. ISC - Institute of Smart Cities
Publisher version
Sponsorship
This research was funded by Xunta de Galicia under grant ED431C-2019/26, Spanish Government under grant TEC2017-85529-C03-3R, AtlantTIC Research Center and project RTI2018-095499-B-C31, Funded by Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER, UE).