Show simple item record

dc.creatorLi, Yuees_ES
dc.creatorLiberal Olleta, Íñigoes_ES
dc.creatorEngheta, Naderes_ES
dc.date.accessioned2020-05-19T06:57:59Z
dc.date.available2020-05-19T06:57:59Z
dc.date.issued2019
dc.identifier.issn2375-2548
dc.identifier.urihttps://hdl.handle.net/2454/36924
dc.description.abstractThe field of plasmonics has substantially affected the study of light-matter interactions at the subwavelength scale. However, dissipation losses still remain an inevitable obstacle in the development of plasmonic-based wave propagation. Although different materials with moderate losses are being extensively studied, absorption arguably continues to be the key challenge in the field. Here, we theoretically and numerically investigate a different route toward the reduction of loss in propagating plasmon waves. Rather than focusing on a material-based approach, we take advantage of structural dispersion in waveguides to manipulate effective material parameters, thus leading to smaller losses. The potential of this approach is illustrated with two examples: plane-wave propagation within a bulk epsilon-near-zero medium and surface plasmon polariton propagation at the interface of a medium with negative permittivity. We provide the recipe for a practical implementation at mid-infrared frequencies. Our results might represent an important step toward the development of low-loss plasmonic technologies.en
dc.description.sponsorshipThis work was supported, in part, by the U.S. Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) (grant number N00014-10-1-0942), the U.S. Air Force Office of Scientific Research (AFOSR) MURI (grant number FA9550-14-1-0389), and the Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through grant N00014-16-1-2029. Y.L. was partially supported by the National Natural Science Foundation of China (NSFC) under grant 61771280. I.L. acknowledged support from the Juan de la Cierva Incorporation Fellowship project RTI2018-093714-J-I00 sponsored by MCIU/AEI/FEDER/UE.en
dc.format.extent10 p.
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherAmerican Association for the Advancement of Scienceen
dc.relation.ispartofScience Advances, 2019, 5 (10), eaav3764en
dc.rights© 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).en
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.es
dc.subjectPlasmon wavesen
dc.subjectLow-loss plasmonic technologiesen
dc.subjectMaterialsen
dc.titleStructural dispersion-based reduction of loss in epsilon-near-zero and surface plasmon polariton wavesen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentUniversidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentNafarroako Unibertsitate Publikoa. Ingeniaritza Elektriko, Elektroniko eta Telekomunikazio Sailaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.identifier.doi10.1126/sciadv.aav3764
dc.relation.publisherversionhttps://doi.org/10.1126/sciadv.aav3764
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.type.versionVersión publicada / Argitaratu den bertsioaes


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Except where otherwise noted, this item's license is described as © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).