• Login
    View Item 
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ingeniería - Ingeniaritza Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Comunicaciones y ponencias de congresos DING - INGS Biltzarretako komunikazioak eta txostenak
    • View Item
    •   Academica-e
    • Departamentos y Centros - Sailak eta Ikastegiak
    • Dpto. Ingeniería - Ingeniaritza Saila [desde mayo 2018 / 2018ko maiatzetik]
    • Comunicaciones y ponencias de congresos DING - INGS Biltzarretako komunikazioak eta txostenak
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automatic detection of high-voltage power lines in LiDAR surveys using data mining techniques

    Thumbnail
    View/Open
    2020060150_Chasco_AutomaticDetection.pdf (455.0Kb)
    Read access available from
    2021-03-10
    Date
    2020
    Author
    Chasco Hernández, Daniel 
    Sanz Delgado, José Antonio Upna
    García Morales, Víctor 
    Álvarez-Mozos, Jesús Upna
    Version
    Acceso embargado / Sarbidea bahitua dago
    xmlui.dri2xhtml.METS-1.0.item-type
    Contribución a congreso / Biltzarrerako ekarpena
    Version
    Versión aceptada / Onetsi den bertsioa
    Project Identifier
    ES/1PE/MTM2015-63608-P 
    ES/1PE/ECO2015-65031 
    Impact
     
     
     
    10.1007/978-3-030-41200-5_62
     
     
     
    Show full item record
    Abstract
    The correct classification of power lines in LiDAR point clouds has attracted the interest of the mapping community in the last years. The objective of this research is the detection and automatic extraction of high-voltage transmission lines from LiDAR data using data mining techniques. With this aim, a Single Photon LiDAR (SPL) survey acquired over the region of Navarre (Spain) in 2017 was used ... [++]
    The correct classification of power lines in LiDAR point clouds has attracted the interest of the mapping community in the last years. The objective of this research is the detection and automatic extraction of high-voltage transmission lines from LiDAR data using data mining techniques. With this aim, a Single Photon LiDAR (SPL) survey acquired over the region of Navarre (Spain) in 2017 was used, with a mean point density of 14 pt/m2. Different data mining techniques were evaluated, including decision trees (C4.5 and CART) and ensemble learning algorithms (Random Forests, Bagging and AdaBoost). Fifteen test sites were studied corresponding to areas with high-voltage power lines over different conditions regarding the underlying vegetation and topography. For these sites 92,104 LiDAR points were identified as power lines and more than 4M points as not power lines using existing cartography. This dataset was randomly split in train and test sets and then balanced two obtain a similar amount of data for the two classes. The results obtained show the importance of balancing the training data with improvements in accuracy of ~10% with respect to the imbalanced case. Accuracies higher than 87% were obtained in all balanced cases, with particularly successful results for ensemble learning techniques, being AdaBoost the technique with the highest accuracy 91%. These results suggest that the combination of SPL surveys and data mining tools can be successfully used for the operational mapping of high voltage power lines. [--]
    Subject
    LiDAR Data mining, Single Photon LiDAR, Power lines, Supervised classification
     
    Publisher
    Springer
    Published in
    Cavas-Martínez, F., Sanz-Adan, F., Morer Camo, P., Lostado Lorza, R., Santamaría Peña, J. (Eds.) Advances in Design Engineering: Proceedings of the XXIX International Congress INGEGRAF, 20-21 June 2019, Logroño, Spain. Cham: Springer, 2020, pp. 568-575. ISBN 978-3-030-41199-2
    Departament
    Universidad Pública de Navarra. Departamento de Ingeniería / Nafarroako Unibertsitate Publikoa. Ingeniaritza Saila / Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas / Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematikak Saila
     
    Publisher version
    https://doi.org/10.1007/978-3-030-41200-5_62
    URI
    https://hdl.handle.net/2454/37313
    Sponsorship
    The Government of Navarre and Tracasa are acknowledged for the provision of the SPL LiDAR data, the TerraScan software license and their expertise.
    Appears in Collections
    • Comunicaciones y ponencias de congresos DING - INGS Biltzarretako komunikazioak eta txostenak [5]
    • Comunicaciones y ponencias de congresos DEIM - EIMS Biltzarretako komunikazioak eta txostenak [21]
    • Comunicaciones y ponencias de congresos - Biltzarrak eta Argitalpenak [450]
    Items in Academica-e are protected by copyright with all rights reserved, unless otherwise noted.

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback
     

     

    Browse

    All of Academica-eCommunities & CollectionsAuthorsAuthors By Issue DateTitlesSubjectsBy DegreeThis CollectionAuthorsAuthors By Issue DateTitlesSubjectsBy Degree

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

     © Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
         Repositorio basado en DSpace

    Contact Us | Send Feedback