Decomposition and arrow-like aggregation of fuzzy preferences
Date
2020Version
Acceso abierto / Sarbide irekia
xmlui.dri2xhtml.METS-1.0.item-type
Artículo / Artikulua
Version
Versión publicada / Argitaratu den bertsioa
Project Identifier
ES/1PE/MTM2015-63608-P ES/1PE/TIN2016-77356-P
Impact
|
10.3390/math8030436
Abstract
We analyze the concept of a fuzzy preference on a set of alternatives, and how it can be decomposed in a triplet of new fuzzy binary relations that represent strict preference, weak preference and indifference. In this setting, we analyze the problem of aggregation of individual fuzzy preferences in a society into a global one that represents the whole society and accomplishes a shortlist of comm ...
[++]
We analyze the concept of a fuzzy preference on a set of alternatives, and how it can be decomposed in a triplet of new fuzzy binary relations that represent strict preference, weak preference and indifference. In this setting, we analyze the problem of aggregation of individual fuzzy preferences in a society into a global one that represents the whole society and accomplishes a shortlist of common-sense properties in the spirit of the Arrovian model for crisp preferences. We introduce a new technique that allows us to control a fuzzy preference by means of five crisp binary relations. This leads to an Arrovian impossibility theorem in this particular fuzzy setting. [--]
Subject
Publisher
MDPI
Published in
Mathematics, 2020, 8(3), 436
Departament
Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas /
Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematikak Saila /
Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. Inarbe - Institute for Advanced Research in Business and Economics /
Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa. InaMat - Institute for Advanced Materials
Publisher version
Sponsorship
This work is partially supported by the research projects MTM2015-63608-P and TIN2016-77356-P (MINECO/ AEI-FEDER, UE).