On a 'philosophical' question about Banach envelopes
Date
2021Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2016-76808 AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/
Impact
|
10.1007/s13163-020-00374-8
Abstract
We show how to construct non-locally convex quasi-Banach spaces X whose dual separates the points of a dense subspace of X but does not separate the points of X. Our examples connect with a question raised by Pietsch (Rev Mat Complut 22(1):209-226, 2009) and shed light into the unexplored class of quasi-Banach spaces with nontrivial dual which do not have sufficiently many functionals to separate ...
[++]
We show how to construct non-locally convex quasi-Banach spaces X whose dual separates the points of a dense subspace of X but does not separate the points of X. Our examples connect with a question raised by Pietsch (Rev Mat Complut 22(1):209-226, 2009) and shed light into the unexplored class of quasi-Banach spaces with nontrivial dual which do not have sufficiently many functionals to separate the points of the space. [--]
Subject
Quasi-Banach space,
Banach envelope,
Extension of operators,
Point separation property
Publisher
Springer
Published in
Revista Matematica Complutense (2021) 34:747–759
Departament
Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas /
Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute for Advanced Materials and Mathematics - INAMAT2
Publisher version
Sponsorship
Fernando Albiac acknowledges the support of the Spanish Ministry for Economy and Competitivity under Grant MTM2016-76808-P and the Spanish Ministry for Science and Innovation under Grant PID2019-107701GB-I00 for Operators, lattices, and structure of Banach spaces. Fernando Albiac and Jose L. Ansorena acknowledge the support of the Spanish Ministry for Science, Innovation, and Universities under Grant PGC2018-095366-B-I00 for Analisis Vectorial, Multilineal y Aproximacion. P. Wojtaszczyk was supported by National Science Centre, Poland Grant UMO-2016/21/B/ST1/00241.