Analytical modeling of high-frequency winding loss in round-wire toroidal inductors
Date
2020Author
Version
Acceso abierto / Sarbide irekia
Type
Contribución a congreso / Biltzarrerako ekarpena
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
Impact
|
10.1109/COMPEL49091.2020.9265782
Abstract
Toroidal inductors are present in many different industrial applications, thus, still receive researchers' attention. AC winding loss in these inductors have become a major issue in the design process, since switching frequency is being continuously increased in power electronic converters. Finite element analysis software or analytical models such as Dowell's are the main existing alternatives f ...
[++]
Toroidal inductors are present in many different industrial applications, thus, still receive researchers' attention. AC winding loss in these inductors have become a major issue in the design process, since switching frequency is being continuously increased in power electronic converters. Finite element analysis software or analytical models such as Dowell's are the main existing alternatives for their calculation. However, the first one employs too much time if different designs are to be evaluated and the second one lacks accuracy when applied to toroidal inductor windings. Looking for an alternative that overcomes these drawbacks, this paper proposes an accurate, easy-to-use analytical model, specifically formulated for calculating high-frequency winding loss in round-wire toroidal inductors. [--]
Subject
Toroidal inductor,
Resistance factor,
Winding loss,
Powder core,
Inductor power losses,
Analytical model
Publisher
IEEE
Published in
2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (Compel), 1229-1234
Departament
Universidad Pública de Navarra. Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza Saila
Publisher version
Sponsorship
This work was supported by the Spanish State Research Agency (AEI) under grants PID2019-110956RB-I00/AEI/10.13039 and DPI-2016-80641-R.