Lipschitz algebras and Lipschitz-Free spaces over unbounded metric spaces
Date
2021Version
Acceso abierto / Sarbide irekia
Type
Artículo / Artikulua
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
Impact
|
10.1093/imrn/rnab193
Abstract
We investigate a way to turn an arbitrary (usually, unbounded) metric space M into a bounded metric space B in such a way that the corresponding Lipschitz-free spaces F(M) and F(B) are isomorphic. The construction we provide is functorial in a weak sense and has the advantage of being explicit. Apart from its intrinsic theoretical interest, it has many applications in that it allows to transfer m ...
[++]
We investigate a way to turn an arbitrary (usually, unbounded) metric space M into a bounded metric space B in such a way that the corresponding Lipschitz-free spaces F(M) and F(B) are isomorphic. The construction we provide is functorial in a weak sense and has the advantage of being explicit. Apart from its intrinsic theoretical interest, it has many applications in that it allows to transfer many arguments valid for Lipschitz-free spaces over bounded spaces to Lipschitz-free spaces over unbounded spaces. Furthermore, we show that with a slightly modified pointwise multiplication, the space Lip(0)(M) of scalar-valued Lipschitz functions vanishing at zero over any (unbounded) pointed metric space is a Banach algebra with its canonical Lipschitz norm. [--]
Subject
Lipschitz-free spaces,
Lipschitz algebras,
Unbounded spaces
Publisher
Oxford University Press
Published in
International Mathematics Research Notices, 2021; rnab193
Departament
Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas /
Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila /
Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa. Institute for Advanced Materials and Mathematics - INAMAT2
Publisher version
Sponsorship
This work was supported by the Spanish Ministry for Science and Innovation [PID2019-107701GBI00 for Operators, lattices, and structure of Banach spaces to F.A.]; the Spanish Ministry for Science, Innovation, and Universities [PGC2018-095366-B-I00 for Analisis Vectorial, Multilineal, y Aproximacion to F.A. and J.L.A.]; the Charles University Research program [UNCE/SCI/023 to M.C.]; and the GAC. R project [EXPRO 20-31529X and RVO: 67985840 to M.D.].