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Abstract—In this work we introduce the notion of pre- required only along the direction of the first quadrant dreajo
aggregation function. Such a function satisfies the same boundar This concept of weak monotonicity has been further extended
conditions as an aggregation function, but, instead of requiring by Bustince et al. [9] by introducing the notion of directibn

monotonicity, only monotonicity along some fixed direction (di- tonicit hich all tonicity al fixed
rectional monotonicity) is required. We present some examples Mmonotonicity, which allows monotonicity along (some) fixe

of such functions. We propose three different methods to build ray. In particular, directionally monotone functions emco
pre-aggregation functions. We experimentally show that in fuzzy pass weak monotone functions, as well as the mode and any
rule-based classification systems, when we use one of thesgggregation function.

methods, namely, the one based on the use of the Choquet "|n particular, in this paper we consider the following objec
integral replacing the product by other aggregation functions, tives:

if we consider the minimum or the Hamacher product t-norms ) ) . .
for such construction, we improve the results obtained when 1) To introduce the concept of pre-aggregation functions.
applying the fuzzy reasoning methods obtained using two classical 2) To study the first properties of these new functions.

averaging operators like the maximum and the Choquet integral. 3) To introduce three different methods for building pre-

Index Terms—Aggregation functions, directional monotonicity, aggregation functions.
fuzzy measures, Choquet integral, fuzzy rule-based classificatio ~ 4) To show an application where the introduction of the
systems, fuzzy reasoning method new concept of pre-aggregation function is justified.
To achieve these goals we use the notion of directional
. INTRODUCTION monotonicity. Moreover, for one of the construction method

that we propose, in the definition of the Choquet integral we
replace the product by the minimum or the Hamacher product
;t-norm, and, in this way, we obtain pre-aggregation funcdio
Hat are not aggregation functions. We show that using these
new functions in a Fuzzy Rule-based Classification System

. . : . FRBCS), and, in particular, in the Fuzzy Reasoning Method
the modg, are not 'PC'“ded in-this family, glthough they' al&RM) of FARC-HD [10], which is currently one of the most
useful, since, even if they are properly defined as function

R accurate FRBCSs, the obtained results are better than both
monotonicity is violated. applying the classical Choquet integral and the well-known
The problem of relaxing the definition of monotonicity ha PRying d 9

7 I Y NAFRM of the winning rule.
recently attracted a lot of interest. In [8], Wilkin and Bx{ov This paper is (?rganized as follows. In Section Il we
{Jhroposec: the n(t)t|0.n .Sf . rtnorottcr)]mmty in order tto ?X{er]cgresent some related preliminary concepts that are negdssa
€ usual monotonicity property. In this case, monotowist yerstand the paper. In Section Ill we introduce the natfon
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conditions, is monotonicity and, more specifically, momao
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TABLE I: T-norms used in this paper Dirac’s measure For a previously fixed € N,

Name Definition . 1 ifieA
iy (4) —{ o 7
Minimum Ty (z,y) = min{z, y} 0 fhigd
Algebraic Product Tp(z,y) = zy Additive measure (Wmean) Take W =
n
tukasiewicz Ty (z,y) = max{0,z +y — 1} (wla T wn) € [07 1]n such thatZizl w; = 1.
_ Consider
z fy=1 AN
Drastic Product Tpp(z,y) = y faz=1 my ({i}) = w;

0 otherwise

min{z,y} fax+y>1
0 otherwise

0 if &=y =0 my (A) =) w;. ®3)
otherwise 1€EA

Symmetric measure (OWA) Take W =
(wi,...,w,) € [0,1]" such that} "  w, = 1.
Then, for any non-empty subsdt define:

Then, for|A| > 1, define:
Nilpotent Minimum Ty (z,y) = {

Hamacher Product Tgp(z,y) = { zy
T+Y—TY

(A1) A is increasing in each argument: for each ¢

. ||
{1,...,n}, If z; < y, then A(zy,...,2,) < _ .
A($17"'7$i—17y7x1+1a"'ax7b); mSW(A) _;wl. (4)
(A2) A satisfies the boundary condition4(0,...,0) =0 . .
andA(1,...,1) = 1. Note that this expression is different from Eq. (3)

since in this case only the cardinal of each subtet
is taken into account.
Power measure

Definition 2.2: A bivariate aggregation functioril’
[0,1]% — [0,1] is a t-norm if, for allz, y, 2 € [0, 1], it satisfies
the following properties:

q
(T1) Commutativity:T(z,y) = T(y, z); mpar(A) = <|A|) withg>0. (5
(T2) Associativity:T'(z, T (y, 2)) = T(T(z,y), 2); n
(T3) Boundary conditionT’(z,1) = x. Observe also that from the considered fuzzy measures,
If T satisfies (T3) (and alsb(1,x) = x) only, then itis called m;;, m%, andmy, are additive andny, mey andmp,, are
a semi-copula. symmetric, that is, the measure of any sub4ainly depends

Since t-norms are associative, it is possible to extend easf the cardinality ofA.

t-normT'in & unique way to am-ary operation in the usual The Choquet integral generalizes the Lebesgue integral,
way by induction [12]. The bivariate t-norms that are useghich is defined with respect to additive measures. However,
in this paper are presented in Table |. Observe that a CON¥RX choquet integral is defined with respect to fuzzy measure
combination of t-norms is a (commutative) semicopula, by this paper, we consider only the discrete Choquet integra
not a t-norm, in general, since associativity may be vidatere|ated to fuzzy measures, which are defined on finite spaces:

Definition 2.4: [1, Definition 1.74] Letm : 2V — [0,1]
B. Fuzzy measures be a fuzzy measure. The discrete Choquet integrak of
In this subsection, we recall the notion of fuzzy measurey,,... z,) € [0,1]" with respect tom is defined as a
which is going to be a key tool for constructing some of oufnction C,, : [0,1]™ — [0,1], given by
examples of pre-aggregation functions. n
In the following, consider the seV = {1,...,n} for an _ e . )
arbitrary positive integer. ! } Cnl) =D (w1 = #an) - m (Ao ©)
Definition 2.3: A function m : 2V — [0,1] is a fuzzy
measure if, for allX,Y C N, it satisfies the following
properties:

i=1

where (z(1,...,2(,) is an increasing permutation on the

input x, that is,0 < z;) < ... < x(,), with the convention

(m1) Increasingness: ik C Y, thenm(X) < m(Y); that o) = 0, and A = {(),..., (n)} is the subset of
indices ofn — i + 1 largest components of.

(m2) Boundary conditionsm(f) = 0 andm(N) = 1. i . ] .
eThe Chogquet integral combines the inputs in such a way that

In the context of aggregation functions, fuzzy measures a%] . . f the diff i £ inout i
used for evaluating the relationship among the elementgto € Importance ot the diierent groups ot Inputs _(coa ipn
ay be taken into account. Allowing to assign importance

aggregated, which represents the importance of a coalitioW

The fuzzy measures considered in this paper, definedi far to all possible groups of criteria, the Choquet integrabuf
N, are the following: ’ — greater flexibility in the aggregation modelling. Since the

Uniform measure weighted arithmetic mean and OWA operators are 'special
cases of the Choquet integral, with respect to additive and

my(A) = @ 1) symmetric fuzzy measures, respectively, Choquet integral

n based aggregation functions represent a larger class oé-agg

1in this paper, an increasing (decreasing) function doesneetl to be gation functions [1], [13], [14] ) )
strictly increasing (decreasing). Note that the Choquet integral with respectitgy is a



weighted arithmetic mean, and with respeciitgy is an OWA
operatof. These facts explain the acronyms we have chosen
in the present work for these measures.

one. Then, the mode id, ..., 1)-increasing, and it is a
particular case of pre-aggregation function which is not
an aggregation function.
F(z,y) = 2 — (max{0,z — y})? is, for instance(0, 1)-
increasing, and it is an example of a pre-aggregation
function which is not an aggregation function.
Weakly increasing functions satisfying the boundaon-
ditions (PA2) are also pre-aggregation functions which
need not be aggregation functions.
(iv) Take A €]0,1[. The weighted Lehmer meard.
[0,1]% — [0,1], given by

Az? 4+ (1 — \)y?
Li(z,y) = Mt (1-Ny
(with convention0/0 = 0) is (1 — A, A)-increasing, so it
is a pre-aggregation function.
Define A, B : [0,1]> — [0, 1] by

(ii)
C. Directional monotonicity

This subsection is devoted to recalling the basic concept Eﬂi)
our definition of pre-aggregation function, that of direcial
monotonicity [9].

Definition 2.5: Let 7 (r1,...,7,) be a real n-
dimensional vectorf # 0. A function F : [0,1]" — [0,1]
is 7-increasing if for all pointgz1,...,z,) € [0,1]" and for
all ¢ > 0 such that(zy +cry, ..., 2z, +cry) € [0,1]™ it holds

F(zi+cery,...,xnt+cory) > F(xy, ..., 2p) .

That is, an7-increasing function is a function which is
increasing along the ray (direction) determined by the arect V)
7. For this reason, we say th#t is directionally monotone,

or, more specifically, directionally increasing. Note tesery Al y) = {x(l —z) ify<3/4,

increasing function (in the usual sense) is, in particufar, Y 1 otherwise,

increasing, for every non-negative real vectorHowever,

the class of directionally increasing functions is much evid and .

than that of aggregation functions. For instance: Bla,y) = {y(l —y) o< ?’/4 ’
o Fuzzy implication functions (see [21]) aré-1,1)- 1 otherwise.

increasing functions. This implies that many other func-
tions, which are widely used in applications and which
can be obtained from implication functions, are also

Then bothA and B are pre-aggregation functions which
are not aggregation functions. In facl is (0,a)-
increasing for anya > 0 but for no other direction

directionally increasing. This is the case, for instance,
of some subsethood measures (see [22]);

o Many functions used for comparison of data are also
directionally increasing. In particular, this is the cade o
those based on component-wise comparison by means of
the Euclidean distancp: — y|, as for restricted equiva-
lence functions [23];

o Weakly increasing functions ([8]) are a particular case It F s a pre—aggr.egation function Wit.h respeqt to & vector
of directionally increasing functions, witfi= (1,...,1). ' W€ just say that”is anr-pre-aggregation function.

Remark 3.1:Note that if A : [0,1]™ — [0, 1] is an aggre-
. PRE-AGGREGATION FUNCTIONS gation function, the™ is alsoqa pre-aggregation function. In
) i ) . _fact, if, for a non-zero vector € [0,1)" we denote byP A
In this section we introduce the notion of pre-aggregatiqe class of all-increasing pre-aggregation functions, then
function and discuss some properties and construction-meffe class of all pre-aggregation functiod®A is the union
ods. _ o of all these classe® Ay, while the class of all aggregation
Definition 3.1: A function I : [0,1]" — [0, 1] is said to be ¢nctions is the intersection of all the classed . The latter
ann-ary pre-aggregation function if the following conditionsiersection is the same as the intersection Vel , where
hold: . € = (0,..1,..0), i € {1,...,n}, is the vector having 1 asth
(PA1) There exists a real vectere [0,1]" (7" # 0) such value, and all other coordinates are equal to zero.
that I is 7-increasing. - Note that the reverse of the first claim of Remark 3.1 does
(PA2) F satisfies the boundary conditionS(0,...,0) =0 not hold, as the cases considered in Example 3.1 (i) and (ii)
andF(1,...,1) =1. show. Pre-aggregation functions which are not aggregation
Example 3.1:Some examples of pre-aggregation functionginctions will be called proper pre-aggregation functions
are the following. However, we can use aggregation functions to obtain direc-
(i) Consider the modeMod(z1,...,z,), defined as the tionally increasing functions as follows.
function that gives back the value which appears mostThe next results were proved for directionally monotone
times in the considered-tuple, or the smallest of the functions in our recent paper [9].
values that appears most times, in case there is more thaproposition 3.1: Let A : [0,1]™ — [0, 1] be an aggregation
function. Let F; : [0,1]" — [0,1] (@ € {1,...,m}) be a
family of m r-pre-aggregation functions for the same vector
7 € [0,1]™. Then, the functionA(Fy,...,Fy,) : [0,1]" —

7 = (a,b), b > 0, while B is (b,0)-increasing for any
b > 0 but for no other direction” = (a,b), a > 0.
However, C = (A + B)/2 is not a pre-aggregation
function, just illustrating the fact that the class of alepr
aggregation functions with a fixed dimensianis not a
convex class.

2The OWA operators were first introduced by Yager [15], andszforms
and usage of OWA operators have been discussed in theuiterg1 6], [17],
[18], [19], [20].



[0, 1], defined as
A(Fy,...
A(Fl(xl, ..

axn))

JER) (21,0 2y)
)y Fn(T, ..

is also anr-pre-aggregation function.
Proof:

G
Due to ([9], Proposition 3), only the boundary conditions fo . (

the functions(F, ...
their validity is obvious.
[ |
The following corollary is straightforward.
Corollary 3.1: Let Fy, Fy : [0,1]™ — [0,1] be two 7-pre-
aggregation functions for the same vecioe [0, 1]. Then:

(i) 42 is also ani-pre-aggregation function.

(i) FyF» is also ani-pre-aggregation function.
Regarding duality, we can state the following.
Proposition 3.2:Let F' : [0,1]" — [0,1] be an-pre-

aggregation function fof" € [0,1]™. Then, the function

Flay,.. ,xp)=1-F1—xz,...,1—1,)

is also anr-pre-aggregation function.
Proof:
Obviously, F4(0,...,0) = 0 and F4(1,...,1) = 1. Now,
the result follows from ([9], Proposition 3). [ ]
The following corollary is now straight.

Corollary 3.2: Let F be anr- pre-aggregation function.

Then, the functionFJfTFd is a self-dual 7-pre-aggregation
function.

IV. THREE METHODS OF CONSTRUCTING
PREAGGREGATION FUNCTIONS

is 7-increasing for any vectof € [0,1]" such thati;, <
D'(F}), j=1,...,k, and H(1) = 1. Moreover, if there is a
jo € {1,...,k} such thatF;, is a pre-aggregation function,
and 0 is an annihilator ofG, then the functionH is a pre-
aggregation function.

Proof. Clearly, H(1) = G(F1(11),...,Fr(11,)) =
1,...,1) = 1. Moreover, if F;,(0,...,0) = 0 for some
jo € {1,...,k} and0 is an annihilator ofG, then

, F,,) should be guaranteed. However,

H0) = G(Fi(01,),...,F;, (0r,),-.-,F.(05,))

= G(F1(0y),...,0,...,F,(0r,)) =0.

Next, consider a vectof € [0, 1] such that?;, € DT(F})
for eachj = 1,...,k. Then, for anyc > 0 andx € [0,1]"
such that alsax + ¢ € [0, 1]™, it holds that

H(x+cr) = G(F(xr, +crn),. .., Fr (x5, +¢1,))

Y

G(Fl (Xll)a"'ka‘(XIk)):H(X)v

where the inequality follows from the increasing mono-
tonicity of the aggregation functioz, and the fact that
Fj (XIJ- —|—C77]j) Z Fj (X]j), ] = 1,.. .,k}.

Now, suppose thatF;, is a pre-aggregation function,
i.e., F;(0,...,0) 0 and Fj, is v-increasing for some
non-zero vectory € [0,1]™0. Due to the above men-
tioned facts, H satisfies the boundary conditions and is
directionally increasing in the direction of a non-zero vec
tor ¥ € [0,1]™ such that r,, = v and TN\I,
(0,...,0), which proves thaf{ is a pre-aggregation function.

|

Example 4.1: Let n = 2 and ¢ (v1,v2) €]0,1]2.
For obtaining a proper pre-aggregation function whichis
increasing, it is enough to consider the weighted Lehmemnmea
Ly:[0,1]2 — [0,1] with A\ = —%2— see Example 3.1(iv),

vi1tva’

In this section we introduce and illustrate three methodiven by

of constructing pre-aggregation functions. The first mdtto

based on the composition of appropriate functions, therskco

v2x2 + vlyQ

L = .
)\(9573/) ’U2I+’U1y

one is inspired by the construction of the discrete Choqu€his fact and Proposition 4.1 allow us to construct a pre-
integral, and the third of the proposed methods is inspised hggregation functiond which is directionally increasing in

the construction of the discrete Sugeno integral.

A. Construction of pre-aggregation functions by compositi

Fix n € N. Let I be a proper subset ¢f = {1,...,n} and
consider thatl = {i1,...,4x} with iy < ... < ig. For ann-
tuplex = (z1,...,2,) € [0,1]", its I-projection is ak-tuple
xr = (24, .., %, ), Wherek is the cardinality of7. We will
use I-projectionsx; of pointsx € [0,1]" and I-projections
77 of (geometrical) vectors” € [0,1]™ as well. Finally, for
a function F': [0,1]" — [0,1], let DT(F) = {7 € [0,1]" |

the direction of any a-priori given vectér# 7 € [0,1]".

Consider, for exampler = 4 and7 = (0.5,0.4,0.3,0.7).
Let G = T, It = {1,3}, I = {2,4}, F1 = Lgss, F» =
Lz/11. ThenH: [0,1]* — [0, 1] given by
323 + bxd Tas + 43
3x1 + 5:63’ Txo + 41y

H(JJ1,$2,JZ3,JE4) = min{

is an7-increasing proper pre-aggregation function.

F is 7 - increasing. Note that the zero vector is not excludedd. Choquet-like construction method of pre-aggregatiarciu

now.
Proposition 4.1:Let {I,...,I;} be a partition ofN, k >

1. Forj € {1,...,k}, let n; = |I;| and consider functions

F;:[0,1]™ — [0,1] such thatF;(1,...,1) = 1. Then, for
any aggregation functiod:: [0,1]* — [0, 1], the composite
function H: [0,1]™ — [0, 1] defined by

H(x)=G(Fy(x1,) ..., Fr (x1,))

tions

This method is inspired in the way the Choquet integral is
built, replacing the product operation in Equation (6) blgest
aggregation functions.

Letm: 2N — [0,1] be a fuzzy measure andl : [0, 1] —

[0,1] be a function such tha/ (0, z) = 0 for everyz € [0, 1].
Taking as basis the Choquet integral, we define the function



CM . 10,1]™ — [0,n] by y — 1}. Again, for N = {1,2,3,4} and the uniform
measuran = my we have that

C]VI M i—1) A,L 5 7 T)
Z (#0) = 21, m (Aw)) ™ Ok (0.05,0.1,0.7,0.9) = 0.15, whereas
. . . T)
where N = {1,...,n}, (z@u),...,%@) IS an increasing CrE (0.05,0.2,0.7,0.9) = 0.05
permutation on the inpuk, that is,0 < z(;) < ... < (), T
with the convention that gy = 0, and A(;) = {(¢),...,(n)} soCyt is not an increasing function and hence it is not an
is the subset of indices of —i + 1 largest components of. aggregation function. Analogous counterexamples can be
Note thatC is well defined by (7) even if the permutation found for the cases of the drastic product, the Hamacher
is not unique. product or the nilpotent minimum t-norms.
Now we have the following result. ConsiderN = {1,...,n} and a fuzzy measure : 2V —

Theorem 4.1:Let M : [0,1]* — [0,1] be a function such [o, 1). In Table II, we present the value 6fZ, which are pre-
that for allz,y € [0,1] it satisfiesM (z,y) < x, M(x,1) = aggregation functions but not aggregation functions, f t
z, M(0,y) = 0 and M is (1,0)-increasing. Then, for anygifferent t-norms given in Table I.
fuzzy measuren, C is a pre-aggregation function which is
idempotent and averaging, i.e.,

C. Sugeno-like construction method of pre-aggregatiort-fun
min(zy,...,2,) < CM(zy,. .. x,) <max(zy,...,T,). tions
Proof: Note that In this subsection we follow the notation of Definition 2.4.

Recall that the formula for the discrete Sugeno integral

Co (21, 70) = ZM () — 2@-1),m (Ag)) Sm: [0,1]™ — [0,1] can be written as
Y Sm(x) = \/ min{zy,m (A |-
< Z(l’(z‘) —Z(i-1)) (x) L:\/1 {z@)m(Aw)}
=1
=2y = max(21,...,Tn) . Inspired by this formula, for any functioi : [0,1]% — [0, 1],

' S ~ we define the functiors/ : [0,1]™ — [0, 1] by the formula
From these two inequalities, idempotency follows. Besides

min(xl,...,xn) =Z(1) :M(I(l) 717(0),111(14(1))) \/M A( ))) (8)
< OM(zy,... . . , ,
S O (@1, ) We prove a sufficient condition fak/ ensuring thats/ is a
Finally, take7 = 1 = (1,...,1). Note that in Equation (7), pre-aggregation function for any fuzzy measure
for ¢ > 2, it follows that, for anyc > 0 Proposition 4.2:Let M: [0,1]> — [0,1] be a function
increasing in the first variable and let for eaghe [0, 1],
M () + e = (-1 + ), m (4p)) M(0,y) = 0 and M(1,1) — 1. Then S defined in (8) is a
=M (z@) — zi-1),m (Aw)) pre-aggregation function for any fuzzy measure

Proof. It is easy to check that, for any,
whereas, for = 1 y nyl

M (2 + ¢ = z@),m (An))) = M (zq) +e;m (Aq))) Sa (0 \/M (0,m (Au)) =0
=1
2 M (za),m (Am)) and
so CM is I-increasing. n
m SY) =\ M(1m(Ay)) =M1, m(Aqy)) =M(1,1) =1
Remark 4.1:Under the constraints of Theorem 4.1, we i=1

cannot ensure the monotonicity 6f/, i.e.,C is, in general, \oreover, for vectord —
a proper pre-aggregation function. To see it, observe the
following:
(i) Take M(z,y) = Ta(x,y). ConsiderN = {1,2,3,4}

and the uniform measure = my given in Equation (1).

Then, we have that > \/ M (x(i),m (Au))) = SM(x),
C1%(0.05,0.1,0.7,0.9) = 0.8, whereas =1
O (0.05,0.1,0.8,0.9) = 0.7, ie., SM s T—incrgasing, which completes the proof theed!
is a pre-aggregation function.
so C'I» is not an increasing function and hence it is not |
an aggregation function. Note that any functionM satisfying the constraints of

(i) Consider the Lukasiewicz t-norffy (z,y) = max{0,z+ Proposition 4.2 is, in fact, a binaryl,0)-increasing pre-



TABLE II: Some pre-aggregation functions obtained using timorms

T-Norm Resulting pre-aggregation function
Minimum C‘Z:M (X) = Z?:l min {x(l) —T(j—1), M (A(z))}
tukasiewicz C'::L (x) =37, max {0, T() —T(i—1) +m (A(,L-)) -1}

z(1) fi=1
Drastic Product CRP(x)=2114 m(Ay) fzy —zu_y=1
0

otherwise
, N min {z ;) = 2(-1),m (A@) }
Nilpotent Minimum  CVM(x) = 3", if ) —z_1) +m(Ag) >
0 otherwise
0 if T(i) = T(i—1) andm (A(z)) =0
Hamacher Product CHP(x) =31, (w(y—z(i—1y) m(Agy)
””('i)*Z(ifl)*m(A(i))*(I(i)*I(i—n)'"‘(A(i)) )
otherwise

aggregation function which satisfie® (0,y) = 0 for each (i)  The Fuzzy Reasoning Mechanism, which is used to

y €10, 1]. classify examples using the information available in
Example 4.2:(i) Let M: [0,1]? — [0,1] be any aggrega- the Knowledge Base.

tion function. Thens/ : [0, 1]™ — [0, 1] is also an aggregation

function, mdependently offr. The choice of the aggregation function plays a crucial role

(i) Consider the function’, F(z,y) = z|2y — 1|. Note that N FRBCSs [26], [27], since it determines the behaviour ef th

F is a proper pre-aggregation function which satisfies tHgizzy Reasoning Method (FRM) [28]. This is due to the fact

constraints of Proposition 4.2, and thus, for anythe function that in the FRM the local information given by each fuzzy
rule is aggregated to provide global information, which is

F . P -
S [0,2]" = [0,1], S (%) = \/1F(x( m (4)) is a pre associated with each class of the problem [28], [27], [29],
aggregation function (even an aggregation function thodgh [30], [31]. Finally, the example is assigned to the classigv
is not). the maximumglobal information.

For example, fom = 2, m({1}) = 1/3, m({2}) = 3/4, we

get The usage of thenaximumas the aggregation function in

the FRM to obtain the global information is very common

in the literature, which is known as the FRM of the winning

rule [28], [27], [32], [33]. However, whenever one consgler

for each class, just the information given by a single fuzzy

rule having the highest compatibility with the example, the

available information provided by the remaining fuzzy mile
the system is ignored.

F _Javi ifz<y,
S (@ )_{y\/g if ©>y.

V. THE Fuzzy REASONINGMETHOD USING
PRE-AGGREGATIONFUNCTIONS

In this section, we present a generalization of the FR
proposed by Barrenechea et al. [24], using the proposed
pre-aggregation functions, which are the result of conmigini  Denote byz, = (zp1, ..., 2pn), the n-dimensional vector
different t-norms and fuzzy measures. To do so, we fir8f attribute values correspondmg to an example The fuzzy
explain the components of standard FRBCSs and then, fdes that are used in this work are of the following form:

new FRM is introduced. Rule R,

A classification probler_n consists of training examples If 2,1 is Aj1 and ... andz,, is A;, thenz, in CJ’?’ with RW;;,
Xp = (Zp1, ..., Tpn,Yp), With p = 1,...,m, wherex,,;, with ' 9)
i = 1,...,n, is the value of theith attribute variable and

where R; is the label of thejth rule, A;; is an antecedent
yp € C = {C1,Cy,...,Cur} is the label of the class of thef,,,y set modelling a linguistic ternG¥ is the label of the

pth training example consequent fuzzy sét* modelling the class associated to the
Among all the techniques used to face classification proR”e R;, with k € {1,..., M}, and RW; € [0,1] is the rule
lems, one of the most used are the Fuzzy Rule-based CIaSWéght [34]. ool ’

cation Systems (FRBCSs) [25], since they allow the inclusio N
of all the available information in the system modellingnge L€t p = (@p1, ..., zpn) De @ new example to be classified,
erating an interpretable model and providing accuratelteesul the number of rules in the rule base ahtthe number of
The two main components of FRBCSs are: classes of the problem. The new FRM using pre-aggregation
® The Knowledge Base containing the Rule Base aH‘anUons presents the following steps:
the Data Base, where the fuzzy inference rules andMatching degreeit is the strength of the activation of the
the membership functions are stored, respectively.if-part of the rules for the example,, which is computed



using a t-normz” : [0, 1]™ — [0, 1]: results of the classical Choquet integral (product t-noten)
be enhanced. To do so, we test the performance of the FRM
using 30 different pre-aggregation functions, which are al
the possible combinations among the six t-norms shown in
. . . _Table | and the five fuzzy measures (see Section Il) consid-
ex?dmple;z:p with the class of each rule in the rule base, 9IVeRiad in this paper. Finally, as it was done in [24], we also
by: analyse if the best FRM (the best pre-aggregation) is able to
b?(xp) = (xp)-RWf, with &k = Class(R;),j=1,...,L. enhance the results of the well-known FRM of the Winning
(11) Rule (WR), that is, the usage of the maximum to aggregate
Example classification soundness degree for all clasises:the information in the third step of the FRM described in
this step, we apply pre-aggregation functions (Equation (7Section V. Consequently, we want to show that the usage of
to combine the association degrees calculated in the previ®re-aggregation functions allows the results obtaineti wb
step, obtaining the classification soundness degrees,edefilassical averaging operators to be enhanced.
by: In the remainder of this section, we first explain the
Tk k ) adopted experimental framework (Section VI-A) and then we
Yi(rp) = Cq (01(xp), -, bp () , With k=1, M, present the results as well as their corresponding analysis

. . _ 12 (Section VI-B).
whereC] is the obtained pre-aggregation, which is the result

of combining a bivariate t-norn?” : [0,1]2 — [0,1] and a
fuzzy measuren : 2 — [0, 1].

pa, (@p) = T (piay, (1), - foay, (2pn)), With j =1, L.
(10)
Association degreeit is the association degree of th

A. Experimental framework

Since, wheneveb!(z,) = 0, it holds that: We use 27 real world data-sets selected from the KEEL
L dataset repository [36]. Table IIl summarizes the propertf
Con (V5 (), ..., b () these datasets, showing, for each dataset, the identifi¢rag
; ; Il as the name (Dataset), the number of instari¢e&nst)
= CL(bh(xy), ... bk bk b e : ’ !
w1 @p)s s bia (@), U (), b (7)), the number of attribute$# Att) and the number of classes
then, for practical reasons, onbf > 0 are considered in (#Class). Themagic page-blockspenbasedring, satimage
Equation (12). and twonormdatasets have been stratified sampled at 10% in
Classification: A decision function F : [0,1] — order to reduce their size for training. Examples with nmigsi
{1,..., M} defined over the example classification soundnegslues have been removed, e.g., in Wisconsindataset.
degrees of all classes and determining the class corresgpnd o
to the maximum soundness degree is given by: TABLE III: Datasets used in this study
F(Yh,...,Yy)= min k suchthat, = max (Y,). d__ Dataset st AUt  #Class
k=1..M w=1,...,M App  Appendiciticis 106 7 2
(13) Bal  Balance 625 4 3
i inati it i i i i Ban Banana 5300 2 2
In practical applications, it is sufficient to consider Bnd  Bands 365 1 5
_ Bup  Bupa 345 6 2
F(Yl’ N YM) - gfgl maj\)/lc(Yk). (14) Cle Cleveland 297 13 5
o Eco  Ecoli 336 7 8
Barrenechea et al. proposed to use the classical Choquet (HBIEL ﬁlabss 231042 % 62
H H H H al aperman
mtegral (product t-norm) |r_1$tead of pre-aggregation ing&q Hay Hayes-Roth 160 M 3
tion (12). They also considered tuning the exponent of the Iri Iris 150 4 3
power measure using an evolutionary algorithm [24]. Specifi kﬂed :\-/Ied?digit . ggg 12 1(2)
. . ag agic ,
cally they u_sed the CHC e\_/olutlonary model [35], which was New  Newthyroid 215 5 3
used to define the most suitable exponent to be used for each Pag  Pageblocks 5,472 10 5
class® We denote this proposal as power measure genetically E_ho E_honeme 57,224 85 22
H m ima
adjusted (PowelGA). Rin  Ring 740 20 5
Sah Saheart 462 9 2
Sat Satimage 6,435 36 7
VI. ANALYSIS OF THE APPLICATION OF Seg  Segment 2310 1o Z
PRE-AGGREGATION FUNCTIONS IN CLASSIFICATION Tit Titanic 2.201 3 5
PROBLEMS Two  Twonorm 740 20 2
. . . . - L Veh Vehicle 846 18 4
This section is aimed at providing an application of pre- Win  Wine 178 13 3
aggregation functions in real-world problems. Specificak Wis  Wisconsin 683 11 2
introduced in Section V, we consider to introduce this new Yea Yeast 1484 8 10
theory to extend the FRM proposed by Barrenechea et al. [24], ) _
which was applied to tackle classification problems. We adopt the model proposed in [24], [37], [38], that is, a

The aim of the experimental study is to see whether tfsfold cross-validation model, where a dataset is splitve fi

usage of pre-aggregation functions in this FRM allows tHRartitions randomly, each partition with Z0of the examples,
and a combination of four of them is then used for training

3See [24] for a detailed explanation of the evolutionary &thm. and the other is used for testing. This process is repeated fiv



times by using a different partition to test the system eamwh.t number of datasets in which each t-norm has obtained the best
For each partition the output is computed as the mean of therformance for each fuzzy measure (ties are excluded). The
numbers of correctly classified examples divided by thel totdetailed results obtained in each dataset are available in A
number of examples for each partition, that is, the accura_?y ] )
rate. Then, we consider the average result of the five marsiti TABLE IV: Averaged results obtained by the different pre-
as the final classification rate of the algorithm. This prared @ggregation functions considered in the study.
|[Zoa]1 standard for testing the performance of classifiers, [39} Oniform Dirac Wmean WA —yy

) L. . Product 78.68 (7) 78.01 (3) 78.12(4)  77.33 (4) 78.55 (5)

We use FARC-HD [10], which is short for Fuzzy AsSSoCi- Minimum  78.85(7) 77.81(0) 78.75(7) 7833 (10)  79.00 (7)

; _ ificati i i i ukasiewicz  76.61 (1) 77.81 (1)  76.92 (0) 76.44 (1) 78.14 (0)
ation Rule-based Cla§S|f|cat|0n model for ngh Dimensional- A 1666 1718L{  1666()  1666(D 76066 (1
problems, to accomplish the fuzzy rule learning process. Wenilpotent ~ 76.88 (1) 77.81(0) 76.76 (3)  76.60 (1)  78.78 (5)
have considered the following configuration: the product t- Hamacher 79.16 (8) 77.81 (1) 79.19(10) 7861(7)  79.42 (7)
norm as the conjunction operatd’, the Certainty Factor

as the rule weightRWW;, 5 linguistic labels per variable, From these results we can observe two situations:

0.05 for the minimum support, 0.8 as the threshold for the | The performance of the product, minimum and Hamacher
confidence, the depth of the search trees is limited to 3 and is in general clearly better than that of tukasiewicz

the parameter determining the number of fuzzy rules thatcov 5 - ic product and Nilpotent minimum

each examplg%:t, Is set to 2. For the_ ggngtic process, we have o The performance of all the t-norms using the Dirac’s
used populations composed of 50 individuals, 30 bits per gen measure is almost the same

for th ificati for i [ 2
or the Gray codification (for incest prevention) and 20,000 The reason implying the low performance of tukasiewicz,

as the maximum number of iterations. Finally, for the DiraB ; ; . )
fuzzy measure, the value of the variableised to decide if rastic product and Nllpot_ent produpt 'S that after agghega_
ie A for AC N ={0,...,n}, we adopt the median value,? set of values, the obtamed one is _S|m|lar to that obtained
given by, - if we aggregated them using the minimum function (not the
' ‘ ntl  if 4 is odd pre-aggregation associated with the minimum), which wgual
1= { 22+ 1 if n is even obtains poor results. The explanation is as follows:etnd
2 y be the result of the fuzzy measure and the subtraction of

In order to give statistical support to the analysis of th@e elements to be aggregated using the Choquet integral,
results we consider the usage of hypothesis validation- te‘?@spectively.

niques [41], [42]. Specifically, we use non-parametric gest
since the initial conditions that guarantee the reliapitif the
parametric tests cannot be performed [43].

In fact, we use the aligned Friedman test [44] to detect
statistical differences among a group of results and to show
how good a method is with respect to the others. In this®

method, the algorithm achieving the lowest average ranking difficult to have a difference between two values to be

is the best one. Furthermore, we apply the post-hoc Holm’s .
test [45] to study whether the best method rejects the eguali :ggroegated equal to 1. Therefore, most of the time we

hypothesis with respect to its partners. The post-hoc piuree
allows us to know whether a hypothesis of comparison could®
be rejected at a specified level of significanceSpecifically,
we compute the adjustgavalue (APV) to take into account
that multiple tests are conducted. As a result, we can dijrec
compare the APV with the level of significaneeso as to be

« tukasiewicz:xz + y — 1 is lower than0 on half of its
domain. Therefore, most of the time we do not add
anything, which implies obtaining the minimum or a
value close to it.

Drastic product: the value of the fuzzy measure is never
1 (except when we have all the elements) and it is very

Nilpotent minimum: in the same way than tukasiewicz,
on half of the domaimx + y is greater thanl. Conse-
quently, we also ad@ most of the times.

t Regarding the behaviour of the Dirac’s measure, the similar
behaviour among all the t-norms is due to the fact that this
able to reject the null hypothesis. measure returns always either 1 or 0. Furthermore, it is know
Finally, we also consider the usage of the Wilcoxon test 4812t T(2(:) = 2(-1),0) = 0 andT'(z() — (1), 1) = 2¢) —
in order to perform pair-wise comparisons. Z(j—1), for any t-normT. C_onsequently, the selected t-norm
T does not have a great influence on the results of the pre-

] aggregation functions.

B. Experimental Results Due to the aforementioned poor results obtained when
The summary of the results provided by all the differerdapplying tukasiewicz, Drastic product and Nilpotent mini-
configurations of the FRM, i.e. all the pre-aggregation funenum, we focus the remainder of the analysis on the product,

tions, are introduced in Table IV. Each column of this tablminimum and Hamacher t-norms.

shows the results obtained using the fuzzy measure reporteéfrom the results on Table IV, we can observe that, with
in its top cell using the six t-norms, which are shown byhe exception of the Dirac’s fuzzy measure, the results ef th
rows. The number in each cell is the average of the accurddgmacher t-norm are better than those of the minimum t-norm,
rate obtained in the 27 datasets by the corresponding pwéiich in turn are better than the ones of the product. Thiltre
aggregation function. The best result for each fuzzy measus also present, in general, on the number of datasets irhwhic
is highlighted inbold-face The number in brackets is theeach of these t-norms obtain the best result.



In order to support the previous findings, we carry out the best average result. The results provided by this pre-
statistical test to compare, for each fuzzy measure, thdustp aggregation function as well as those obtained with the WR are
minimum and Hamacher t-norms. To do so, we have used tleported in Table VII, where the best result for each datisset
Aligned Friedman test as well as the Holm’s post-hoc tesé Thighlighted inbold-face From these results, it can be observed
results of these statistical techniques are reported iteTdp that the global behaviour of Pow&A+Ham is better than
where in each column we find the different fuzzy measuréisat of the WR. This is due to the fact that Pow@A+Ham
whereas the three t-norms are shown in rows. The numlpgovides the best result in 17 out of the 27 datasets coresider
in each cell is the average rank computed with the alignéd the study. We also apply the Wilcoxon’s test to support
Friedman test and the number in brackets is the APV computibese findings, whose obtained results are shown in Table VII
with the Holm'’s test. The best t-norm for each fuzzy measufecording to the statistical results, we can confirm with ghhi
is the one with the less rank, which stressedbwoid-face level of confidence that the usage of Pow@A+Ham is better
whereas the APV is underlinéd case of statistical differencesthan that of the WR.

in favour to the best t-norm. . ) )
TABLE VII: Results in testing provided by Car@A+Ham

TABLE V: Aligned Friedman and Holm tests to compare thand WR.
different pre-aggregation functions.

Dataset WR PoweGA+Ham

Uniform Dirac WMean OWA PoweIGA App 84.89 82.99

gk gz | Spom oo senom Bal 8208 8272
Hamacher 50.22 41.18 (0.771) 29.78 33.85 31.02 Ban 84.30 85.96

Bnd  68.56 72.13

_ Bup  61.16 65.80

From the results in Table V, we can observe that the usage Cle  55.23 55.58
of the Hamacher t-norm provides the best behaviour for all (ES(;? gglell gg-%
the fuzzy measures, with the exception of the one defined Hab  71.22 7201
by Dirac due to the previous mentioned behaviour. In fact, Hay  79.46 79.49
we find statistical differences with respect to the product i~ 9467 93.33
; o X Led  69.80 68.60

when using the additive (WMean), symmetric (OWA) and Mag  79.60 79.76
Power GA fuzzy measures and a low APV when using the New  94.42 95.35
uniform measure. Therefore, we can conclude that the usage Eﬁg 9842-%21 gg-g‘g‘
of the Hamacher t-norm allows us to enhance the results of Pim  75.38 73.44
the product. Rin 90.00 88.79
Furthermore, we also want to analyse if the minimum is also Sah  67.31 70.77

. : Sat  80.40 80.40
appropriate when compared with the usage of the product. Seg  92.99 93.33
To do so, we compare, for each fuzzy measure, the results Tit 78.87 78.87
provided by the product versus the ones of the minimum. To D’evﬁ 2‘;-?6’3 22-%
perform these comparisons, we have applied the Wilcoxon’s Win  94.36 96.63
test to conduct such pair-wise comparisons. The obtained Wis  96.49 96.78
results are introduced in Table VI, where we can observe Yea  56.54 56.53
that when using the additive (WMean), symmetric (OWA) and Mean  78.70 79.42

Power GA fuzzy measures there is a trend in favour to the

minimum whereas in the two remainder fuzzy measures the

behaviour of these two t-norms is similar. TABLE VIII: Wilcoxon Test to compare the power measure
genetically adjusted method with the Hamacher t-nofrir)

TABLE VI: Wilcoxon Test to compare the productRt) versus the classical FRM of the Winning RulB).

versus the minimum#g ™).

- Comparison Rt R~ p-value

Comparison Rt R~ p-value

- - - Power GA+Ham vs. WR  267.5 1105 0.06
Uniform+Prod vs. Uniform+Min 1955 1825 0.925
Dirac+Prod vs. Dirac+Min 214 164 0.625
WMean+Prod vs. WMean+Min 1355 2425 0.200
OWA+Prod vs. OWA+Min 107.5 270.5 0.004
Power GA+Prod vs. PoweiGA+Min 132 249  0.148 VIl. CONCLUSION

In this paper, based on the notion of an aggregation func-
Finally, we want to study whether the results obtained ljon, we have introduced the concept of a pre-aggregation
the best pre-aggregation function are able to improve thdsmction. We have described three construction methods for
provided by the well-known FRM of the WR, that is, the usagsuch functions. In particular, one of them derives from the
of the maximum to aggregate the information. According t6€hoquet integral by using other t-norms in the place of the
Table 1V, we select the pre-aggregation function resultsig product t-norm considered in the standard definition of the
the combination among the Pow&A fuzzy measure and Choquet integral. Furthermore, we have proposed to apy th
the Hamacher t-norm (Powe&BA+Ham), since it provides specific instance of pre-aggregation in the FRM of FRBCSs



to aggregate the local information given by each fuzzy rile JABLE IX:
the system.

In the experimental study we have shown that the usage
of the Hamacher or even the minimum t-norms allows one
to improve the results obtained when applying the classical
Choquet integral, that is, when using the product t-norm.

Moreover, we have checked that the pre-aggregation prayidi

the best results, which is obtained combining the Hamacher

t-norm and the power measure genetically learnt, enhahees t
results achieved by the well-known FRM of the winning rule,

that is, applying the maximum as the aggregation function.

Therefore, the pre-aggregation functions introduced is th
paper can offer greater flexibility for FRBCSs, enlarging

the scope of the application of the approach proposed by

Barrenechea et al. [24].

Future work is concerned with the study of the properties
satisfied by the pre-aggregation functions, and the usage of

overlap functions [6], [7], [47], [48], [49] for the general

ization of the Choquet integral, also using a fuzzy interval
approach [50], [51], [52], [53], [54], as, e.g., in [55], B3 TABLE X
[31].

The tables in this Appendix present the obtained results
in each dataset considering the different t-norms, for each
fuzzy measure. Each table contains the results obtaindd wit

APPENDIX

a different fuzzy measure:

The structure of these 5 tables is as follows: in each row we
find a dataset and in each column we introduce a different t-

Table IX: results of the uniform measure for the six t-
norms.

Table X: results of the Dirac’s fuzzy measure for the six
t-norms.

Table XI: results of an additive fuzzy measure for the six
t-norms.

Table XII: results of the ordered weighted averaging
fuzzy measure for the six t-norms.

Table XIll: results of the genetic uniform fuzzy measure
for the six t-norms.

norm. The best result for each dataset is stressédluface

(1]
(2]
(3]

(4]

(5]
(6]

(7]
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