Diseño de herramientas didácticas para la docencia de robótica industrial colaborativa

Grado en Ingeniería en Diseño Mecánico

Trabajo Fin de Grado

Autor: Jonathan Hernández Montenegro
Director: Juan Ignacio Latorre Biel
Tudela, 27 junio de 2016
Resumen

En el presente proyecto se va a diseñar dos herramientas para un robot colaborativo, también llamados en robótica actuadores finales, con el fin de que en establecimientos de docencia de la robótica se pueda enseñar con más facilidad a los alumnos. El proyecto consiste en diseñar dos herramientas, una de ellas es un difusor de sellante o adhesivo, y esta realizara todas las funciones de una herramienta real. Además se diseñara una pistola de pintura pero en este caso la herramienta no realizara exactamente lo que haria una herramienta real sino que simularemos la pulverización de pintura con una luz, esto se hace con el fin de que en el centro de docencia no se estropee el brazo robótico con los gases emitido por la pintura y por otro lado por la seguridad de los alumnos. En ambos casos el objetivo es que sea un diseño modular con el fin de que las piezas se puedan intercambiar y reponer con facilidad eliminando la necesidad de utilizar herramientas para el mantenimiento de las válvulas.

Palabras clave

Herramienta, válvula, dosificación, robot colaborativo, fluido, pulverización.

Abstract

In this project it is to design two tools for collaborative robot, also called robotic end effectors, so that in establishments teaching of robotics can be taught more easily to students. The project is to design two tools, one of them is a diffuser adhesive or sealant, and that perform all the functions of a real tool. In addition a paint gun be designed but in this case the tool does not perform exactly what would make a real tool but will simulate spraying paint with a light, this is done so that in the center of teaching does not spoil the robotic arm with gas emitted by the paint and on the other hand for the safety of students. In both cases the objective is to make a modular design so that parts can be exchanged easily replenish and eliminating the need to use tools for valve maintenance.

Keywords

Tool, valve, dosage, collaborative robot, fluid, spray.
ÍNDICE

1. Introducción ... 1
 1.1 Justificación del TFG ... 1
 1.2 Objetivos del TGF y especificaciones .. 2
 1.2.1 Objetivos generales .. 2
 1.2.2 Objetivos de la herramienta dosificadora de fluido .. 2
 1.2.3 Objetivos de la herramienta pulverizadora de pintura .. 2
 1.3 Especificaciones ... 3
2. Contexto robótica ... 6
3. Diseño de un dosificador de adhesivo ... 8
 3.1 Evaluación del problema ... 8
 3.2 Especificaciones del diseño ... 9
 3.3 Generación de ideas .. 10
 3.3.1 Fase de investigación .. 10
 3.3.2 Lluvia de ideas e idea inicial ... 13
 3.4 Diseño conceptual .. 16
 3.5 Diseño detallado .. 17
 3.5.1 Mecanismo válvula de aguja ... 17
 3.5.2 Partes de la válvula ... 18
 3.5.2.1 Perilla de control ... 19
 3.5.2.2 Anillo graduado ... 19
 3.5.2.3 Vaso .. 19
 3.5.2.4 Enclave ... 19
 3.5.2.5 Cuerpo de la válvula .. 20
 3.5.2.6 Resorte 1 .. 20
 3.5.2.7 Pistón y aguja .. 20
 3.5.2.8 Cámara del fluido ... 21
 3.5.2.9 Empaques ... 22
 3.5.2.10 Resorte de compresión de empaques ... 22
 3.5.2.11 Adaptador de puntas ... 22
3.5.2.12 Cierre .. 23
3.5.2.13 Punta dosificadora desechable .. 23
3.5.2.14 Jeringa ... 23
3.5.2.15 Reten del pistón ... 24
3.5.2.16 Juntas toricas.. 24
3.5.2.17 Racor ... 24
3.5.2.18 Conector y tornillo .. 24
3.5.2.19 Pieza de ensamble con robot ... 25
3.5.2.20 Brida del robot ... 25
3.5.2.21 Piezas ensambladas .. 26
3.5.3 Materiales .. 27
 3.5.3.1 Acero inoxidable tipo 303 .. 27
 3.5.3.2 Aluminio anodizado endurecido .. 29
3.5.4 Conexión de tubería y cableado ... 30
 3.5.4.1 Puntos de control de la cantidad de fluido dosificado 34
3.6 Proceso de fabricación .. 34
 3.6.1 Operación de fresado ... 36
 3.6.2 Operación de torneado ... 36
 3.6.3 Operación de taladrado ... 37
3.7 Presupuesto ... 38
4 Diseño de un pulverizador de pintura ... 39
 4.1 Evaluación del problema ... 40
 4.2 Especificaciones del diseño .. 40
 4.3 Generación de ideas ... 40
 4.3.1 Fase de investigación ... 40
 4.3.2 Lluvia de ideas ... 42
 4.4 Diseño conceptual .. 43
 4.5 Diseño detallado .. 44
 4.5.1 Válvulas pulverizadoras .. 44
 4.5.2 Pulverizador electrostático asistido por aire .. 45
 4.5.3 Pulverizador electrostático con copa rotativa .. 46
4.5.4 Pulverizador electrostático de copa rotativa APX1 ... 47
 4.5.4.1 Partes del pulverizador .. 48
 4.5.4.1.1 Cuerpo ... 48
 4.5.4.1.2 Falda de aire ... 48
 4.5.4.1.3 Copa .. 49
 4.5.4.1.4 Diodo ... 49
 4.5.4.1.5 Brida del robot .. 49
 4.5.4.1.6 Herramienta ensamblada .. 50
 4.5.4.2 Materiales de construcción .. 50
 4.5.4.2.1 Polietileno de alta densidad ... 51
 4.5.4.2.2 Polipropileno ... 51
 4.5.4.3 El diodo LED ... 52
 4.5.4.3.1 Diodo de alta potencia ... 53
 4.6 Proceso de fabricación ... 55
 4.7 Presupuesto .. 56
5 Conclusiones ... 57
6 Bibliografía ... 59
7 Anexo ... 61
 7.1 Explosionados en 3D ... 61
 7.1.1 Explosionado de válvula dosificadora ... 61
 7.1.2 Explosionado pulverizador de pintura ... 62
 7.2 Planos de fabricación .. 63
1 Introducción

En este Trabajo de fin de grado se van a desarrollar dos herramientas o actuadores finales para el robot colaborativo UR5, un dosificador de pintura y un pulverizador de pintura que simule la pulverización de las partículas de pintura. Las herramientas son para un centro educativo de formación profesional, en concreto para el departamento de robótica industrial, por tanto son herramientas que se van a utilizar para la docencia de las distintas aplicaciones para las que se puede utilizar un robot colaborativo.

En los siguientes puntos se justifica la necesidad de desarrollar este proyecto y se plantean una serie de objetivos cualitativos y cuantitativos que deben cumplir las herramientas diseñadas.

1.1 Justificación del TFG

El motivo de este proyecto es la inexistencia de material didáctico para el aprendizaje de la robótica moderna. Las herramientas didácticas disponibles para el ámbito educativo suelen ser únicamente unas pinzas para paletizado de piezas, esta aplicación ocupa sólo un pequeño porcentaje en el espectro de aplicaciones en el mundo de la robótica industrial, sin embargo, en la industria real hay una infinidad de aplicaciones más que un robot puede desarrollar como por ejemplo la dosificación de algún tipo de fluido en superficies y la pulverización de pintura sobre piezas o superficies, soldadura, etc. Además con la robótica colaborativa aumenta más el número de aplicaciones que puede desarrollar un robot porque este puede trabajar con personas alrededor de su zona de trabajo. Por tanto uno de los motivos es para paliar el déficit en las herramientas de robot para la enseñanza en centros de formación profesional.

Otro motivo potencial para la realización de este proyecto se basa en lo económicamente inviable que resulta para un instituto o centro educativo la compra de herramientas reales para las distintas aplicaciones existentes y poder así ampliar el nivel de su calidad de enseñanza.

En concreto se hace el diseño de estas dos herramientas porque las aplicaciones de dosificación de fluidos y pulverización de pintura en las empresas son casi siempre realizadas con robots por la necesidad de conseguir tanto precisión en la fabricación como velocidad de producción para poder satisfacer la demanda.
1.2 Objetivos del TGF y especificaciones

1.2.1 Objetivos generales

Para el diseño de las dos herramientas se plantean los siguientes objetivos comunes:

Las herramientas tienen que ser ligeras, no superar los 4 kg de peso ya que es la carga máxima que puede soportar el robot. En realidad el robot podría soportar un peso de carga máximo de 5 kg pero dejamos un margen de 1 kg porque las herramientas también llevan su carga de fluido a dosificar en el caso de la primera herramienta.

Tiene que ser un diseño realista, con unas dimensiones y formas reales puesto que las herramientas van a ser utilizadas para la docencia y los alumnos tienen que apreciar con máxima fidelidad posible como trabajaría el robot en una empresa o fabrica.

Que sea un diseño que presente una facilidad de manejo por parte de los usuarios, esto implica una facilidad de montaje, que su acople a la muñeca del robot sea sencillo y que el mantenimiento de la herramienta sea cómodo y accesible.

Que las herramientas resulten una opción interesante para los centros educativos para ello las herramientas tienen que ser fáciles de construir y con un coste reducido.

Fácil visualización de la tarea desarrollada por la herramienta, esto quiere decir que se tiene que facilitar al usuario por medio de cualquier luz o señal el estado de la herramienta, si esta en modo on/off o si está en proceso.

1.2.2 Objetivos de la herramienta dosificadora de fluido

Esta herramienta hará una dosificación real de algún tipo de adhesivo o sellante, tiene que ser una manera sencilla de aplicar fluido en cualquier superficie. Se utilizaran materiales ligeros para no superar el máximo peso de carga del robot.

1.2.3 Objetivos de la herramienta pulverizadora de pintura

En este caso debido a lo complejo que resulta el proceso de pulverización de pintura, hay muchos componentes con alto coste se ha decidido solo diseñar la pistola pulverizadora y simular el proceso de pulverización de alguna manera. Será un diseño real de pistola con dimensiones reales y su forma real.
1.3 Especificaciones

Para realizar el diseño de las herramientas tenemos que tener en cuenta primero las especificaciones que tiene el robot UR5 ya que estas nos van a marcar la línea a seguir en el diseño de los componentes a instalar en las herramientas:

<table>
<thead>
<tr>
<th>Consumo máx (A)</th>
<th>Peso máx. (Kg)</th>
<th>Presión de trabajo máx (Bar)</th>
<th>Alcance de las herramientas (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>850</td>
</tr>
</tbody>
</table>

Tabla 1.3.2 Especificaciones del Robot UR5

El consumo máximo de las herramientas no debe ser superior a 1A, ya que es lo que puede suministrar la fuente de alimentación del robot, de no ser así, sería necesario la adquisición de otra fuente de alimentación externa.

El peso máximo de las herramientas no debe superar los 4kg de peso, ya que el robot sólo puede levantar 5 Kg y hay que dejar un margen de 1 Kg porque hay herramientas como el bastidor de ventosas que su función es el de levantar peso, por tanto la suma del peso más el de la herramienta no debe superar los 5kg.

La presión máxima que puede suministrar la instalación neumática del C.I.P ETI, cuando el compresor está cargado al máximo alcanza los 7 bares, es decir, el material neumático debe estar pensado para trabajar en estas condiciones.

Las dimensiones de las herramientas no deben de ser muy voluminosas para que el robot trabaje cómodamente dentro su radio de acción.
Especificaciones técnicas UR5

Brazo robótico de 6 ejes con un radio de funcionamiento de 850 mm

<table>
<thead>
<tr>
<th>Característica</th>
<th>Válida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso</td>
<td>10.4 kg</td>
</tr>
<tr>
<td>Carga</td>
<td>5 kg</td>
</tr>
<tr>
<td>Alcance</td>
<td>959 mm</td>
</tr>
<tr>
<td>Rango giro articulaciones</td>
<td>+/-350°</td>
</tr>
<tr>
<td>Velocidad</td>
<td>Articulación: Máx. 180°/s; Herramienta: Típico 1 m/s</td>
</tr>
<tr>
<td>Repetibilidad</td>
<td>+/-0.1 mm</td>
</tr>
<tr>
<td>Espacio necesario</td>
<td>9149 mm</td>
</tr>
<tr>
<td>Grados de libertad</td>
<td>5 articulaciones giratorias</td>
</tr>
<tr>
<td>Tamaño de la caja de control: (ancho x alto x largo)</td>
<td>475 mm x 422 mm x 286 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Puertos de E/S:</th>
<th>Caja de control</th>
<th>Conector herramienta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entradas digitales</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Salidas digitales</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Entradas analógicas</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Salidas analógicas</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente de alimentación de E/S:	24 V 2A en caja de control y 12 V/24 V 500mA en herramienta
Comunicación:	TCP/IP 100 Mbit; IEEE 802.3u; 100BASE-TX; Ethernet socket & Modbus TCP
Programación:	Interfaz gráfica de usuario PolyScope en pantalla táctil de 12" con soporte
Ruido:	Relativamente silencioso
Clasificación IP:	IP54
Consumo de energía:	Aprox. 200W utilizando un programa típico
Funcionamiento colaborativo:	15 Funciones de seguridad avanzadas; Operaciones colaborativas de acuerdo con: EN ISO 10218-1:2011; Cálculos 5.4.3

Materiales:	Aluminio, plástico PP
Temperatura:	El robot puede funcionar en un intervalo de temperaturas de 0-50°C
Fuente de alimentación:	100-240 VAC, 50-60 Hz
Cables:	Cable entre el robot y la caja de control (6 m)
	Cable entre la pantalla táctil y la caja de control (4,5 m)

Tabla 1.3.1 Especificaciones técnicas UR5 (1)
Para poder ensamblar las herramientas al robot se debe tener en cuenta las dimensiones de la brida del robot para poder diseñar en cada herramienta un soporte adecuado de unión.

Fig. 1.3.1 Plano de la muñeca del Robot UR5 (2)
2 Contexto robótica

En la actualidad los robots se usan de manera extensa en la industria, siendo un elemento indispensable en una gran parte de los procesos de manufactura. Impulsados principalmente por el sector del automóvil, los robots han dejado de ser máquinas misteriosas propias de la ciencia-ficción para ser un elemento más de muchos de los talleres y líneas de producción.

Por su propia definición el robot industrial es multifuncional, esto es, puede ser aplicado a un número, en principio ilimitado, de funciones. No obstante, la práctica ha demostrado que su adaptación es óptima en determinados procesos (soldadura, paletización, etc.) en los que hoy día el robot es sin duda alguna, la solución más rentable. (3)

Este proyecto se centra en las aplicaciones de dosificación de fluidos como por ejemplo adhesivos y en la aplicación de pintura ya que son dos de las tareas que se desarrollan mucho con robots puesto que se necesita precisión, calidad y como se ha dicho antes es más rentable que lo haga un robot. Además con la robótica colaborativa incrementa aún más la utilización de robots para desempeñar estas actividades.

Las herramientas que se van diseñar son para el robot colaborativo UR5 que se encuentra en el centro CIP ETI Tudela, se trata de un robot diseñado por la empresa danesa Universal Robots.

La robótica colaborativa es una nueva definición de la robótica que se centra en el uso de robots industriales capaces de trabajar de forma segura compartiendo el espacio de trabajo con más personas algo que hasta hace pocos años resultaba imposible con los robots industriales convencionales. Con ellos se puede llevar a cabo un trabajo colaborativo y seguro ya que puede remplazar a personas humanas en trabajos que sean peligrosos o que sean repetitivos y aburridos reduciendo así las lesiones o accidentes.
El UR5 incorpora en su estructura sensores capaces de interrumpir o ralentizar sus movimientos antes la proximidad o el contacto con una persona, se trata de un patentado sistema de control de fuerza. Además el UR5 se puede programar para funcionar a velocidades más lentas cuando una persona entra en su área de trabajo, recuperando su velocidad normal cuando la persona sale su zona de trabajo.

Fig. 2.2 Sensores en UR5 (4)

El robot UR5 es simple ya que es fácil de instalar y fácil de programar debido a que tiene una interfaz muy intuitiva donde se puede visualizar el robot en 3D y solamente moviendo las flechas de la pantalla táctil podemos mover el robot. Además es flexible ya que es muy ligero, ahorra espacio y se le pueden asignar muchas aplicaciones y por último es asequible para pequeñas y medianas empresas. Tiene un sistema de seguridad aprobado y certificado por TUV (Asociación Alemana de Inspección Técnica). (4)

La robótica colaborativa está teniendo una gran proyección y su mercado está creciendo rápidamente ya que ayuda a un abaratamiento de los costes de producción, aumento de la productividad y a desarrollar aplicaciones fuera del ámbito de la industria. Es por esto que en los centros docentes se debe facilitar a los alumnos el aprendizaje sobre esta nueva forma de hacer la robótica y por ello me he plantado diseñar la herramienta de difusor de adhesivo o cualquier tipo de fluido y la herramienta de pintura. No es lo mismo ver las aplicaciones de este robot en videos e imágenes que poderlo ver en primera persona mientras el robot trabaja.
3 Diseño de un dosificador de adhesivo

En la industria de la robótica hay multitud de aplicaciones que los robots pueden realizar desde soldar, paletizar, mover objetos de un sitio a otro, desbastado de objetos, etc. todo depende de la herramienta o actuador final que se les conecte y programe. Además con los robots colaborativos se pueden desarrollar aún más funciones ya que pueden trabajar incluso con personas alrededor de su espacio de trabajo.

Se ha decidido hacer en concreto el diseño de una herramienta dosificadora de fluidos porque es una tarea que se realiza mucho en la industria y sería bueno que los alumnos de robótica vean en primera persona como trabaja un robot dosificando cualquier tipo de fluidos dependiendo de lo que se quiera conseguir pueden ser selladores, lubricantes, tintas, cordones de adhesivos, etc.

Principalmente llama la atención su utilización de la industria del automóvil puesto que hay infinidad de trabajos de aplicación de fluidos que estos realizan, por ejemplo aplicación de cordones de sellantes o adhesivos en ventanas o parabrisas, material anti corrosión en los bajos del coche, aplicación de sellantes en las juntas que van colocadas en varios sitios del coche, lubricantes en el Carter, ya que este debe colocarse de forma muy precisa etc.

En estos procesos el material a aplicar se encuentra en un tanque y es bombeado hasta la válvula de aplicación que porta el robot, que regula el caudal de material que se desea aplicar. El robot sigue una trayectoria que ha sido previamente programada con exactitud y va aplicando el fluido. En este proceso, tan importante como el control preciso de la trayectoria del robot es el control sincronizado de su velocidad y del caudal de material suministrado por la válvula, puesto que la cantidad de material dosificado en un punto de la pieza depende de estos dos factores.

Es habitual una disposición del robot suspendido sobre la pieza, siendo necesario, por los motivos antes expuestos, que el robot tenga capacidad de control de trayectoria continua (posición y velocidad reguladas con precisión), así como capacidad de integrar en su propia unidad de control la regulación del caudal de material aportado en concordancia con la velocidad del movimiento. Más adelante veremos que el flujo de caudal también se puede controlar desde la propia válvula.

3.1 Evaluación del problema

El primer paso para comenzar el diseño de un nuevo producto es evaluar el problema. ¿Cuál es el problema? En este caso es la necesidad de diseñar una herramienta de dosificación de fluidos ya sea algún tipo de adhesivo o sellante para un robot colaborativo, que sea apta para la enseñanza y que les sirva a los alumnos para comprender mejor las innumerables aplicaciones para las que puede ser utilizado el robot UR5.
3.2 Especificaciones del diseño

El siguiente paso es empezar a buscar una solución al problema que se nos plantea y establecer una serie de requisitos para crear el producto. Primero de todo hay que tener en cuenta que las especificaciones técnicas de nuestro diseño vienen predeterminadas en parte también por las especificaciones del robot UR5 ya que este por ejemplo no podrá exceder un límite de peso de carga de 5 kg, por tanto nuestro dosificador no podrá exceder este peso. El dosificador de adhesivo es una válvula difusora y en cuanto a su tamaño, en comparación con otras válvulas que hay en el mercado, estará alrededor de 140 mm x 30 mm aunque conforme vaya avanzando en el diseño concretare mejor las medidas pero no superara las dimensiones antes mencionadas.

Hay muchos tipos de válvulas que se usa en la industria, más adelante se explicara la diferencia entre cada tipo, se ha optado por utilizar una válvula de aguja ya que permite aplicar cantidades de fluido dosificado muy precisas con fluidos de distinta viscosidad y dosificar de manera repetitiva sin variar la precisión del tamaño de depósito. Además puesto que el cierre de la válvula ocurre en la base del adaptador de la punta, no queda nada de fluido atrapado en la válvula.

El diseño será modular ya que el objetivo es que todas las piezas se puedan desensamblar fácilmente sin necesidad de utilizar herramientas para el mantenimiento de la válvula, otra de los motivos es para que se puedan remplazar fácilmente piezas humedecidas del cuerpo hidráulico haciendo así más rápida la producción y eliminando tiempos muertos. Además un diseño modular hace que sea más apta para la docencia ya que facilita el comprender su funcionamiento, el ver cómo interactúan todas las piezas del mecanismo. Las partes más importantes de la válvula serán el cuerpo de la válvula de aguja, la cámara de fluido, recipiente del fluido (jeringa 33cc) y la punta dosificadora. Y luego ya están por otro lado los conectores hidráulicos y neumáticos y los tubos para la circulación del fluido y el aire presurizado.

En cuanto a los materiales que utilizare para fabricar este dispositivo, se utilizara algún tipo de acero inoxidable, aluminio anodizado ya que los materiales tienen que ser resistentes a ataque químicos como la corrosión y las partes que van a estar en contacto con el fluido tienen que ser resistente a los ataque químicos de estos. Y para las puntas de dosificación utilize algún polímero como el teflón u otro.

Por ultimo otro de los requisitos que se debe cumplir es que la válvula sea capaz de trabajar con fluidos de diferentes grados de viscosidad así la hacemos funcional para distintos tipos de aplicaciones.
3.3 Generación de ideas
Una vez definido el problema y establecido unos requisitos iniciales de diseño es hora de esbozar una serie de ideas, hacer sesiones de lluvias de ideas para ir poco a poco cercando el camino que nos llevara al diseño óptimo que solucionara nuestro problema para eso antes se realiza una fase de investigación para obtener la información necesaria para iniciar este proyecto.

3.3.1 Fase de investigación
Para tener un poco de inspiración lo primero es hacer un estudio del tipo de válvulas que ya se encuentran en el mercado y su funcionamiento y para tener una visión global se ha realizado un panel de imágenes con ayuda del programa Adobe Illustrator CS4.

Fig. 3.3.1.1 Panel válvulas

Con este pequeño estudio se ve que en el mercado hay muchos tipos de válvulas de todos los tamaños, distintas formas, cada una con distintos sistemas de funcionamiento pero ha ayudado a concretar cómo será el diseño de la herramienta dosificadora y cómo será su funcionamiento, adecuando a que esta va a ser utilizada para la docencia. Esta fase también ha sido útil para saber todos los equipos que son necesario para la correcta dosificación de un fluido y con algunos manuales de estas la presión que es necesaria transmitir y los distintos materiales más comunes con los que están fabricadas.
Además con este estudio se ve cuáles son los principales fabricantes de este tipo de válvulas y algunos de ellos no solamente fabrican válvulas si no que desarrollan sistemas automatizados para la dosificación de fluidos. Por ejemplo la empresa Loctite tiene una de sus fábricas aquí en España concretamente en Barcelona.

Fig. 3.3.1.2 Principales fabricantes

Yo el autor de este proyecto pude ver directamente una de estas válvulas en funcionamiento ya que en la empresa en la que realicé las prácticas de Ingeniería Tristone Flowtech, que se dedica a la fabricación de tubos de caucho y de plástico para la circulación de aire y de refrigerante, hay una maquina exclusiva para la dosificación de adhesivo entre una referencia de tubo de caucho y su respectivo collier o abrazadera. En concreto el tipo de válvula que se utilizaba era una válvula Loctite 98009.

Fig. 3.3.1.3 Válvula de diafragma

La válvula dosificadora de curado a la luz / cianoacrilado de Loctite es una válvula de diafragma, normalmente en posición de cerrada, que permite un ajuste de la carrera de alta resolución, lo que se traduce en un control de flujo consistente y una aplicación sin burbujas, ni goteo. Es
La válvula de diafragma es adecuada para todos los adhesivos de baja a media viscosidad. Esta válvula está diseñada para aplicaciones con presión temporizada y debe usarse junto a una consola de control y un depósito de producto. (5)

En la empresa me facilitaron el manual de la válvula y comprendí mejor su funcionamiento así como las partes de las que está compuesta.

Fig. 3.3.1.4 Válvula de diafragma, despiece y funcionamiento.

Como se puede apreciar en la imagen anterior las cuatro partes principales de la válvula son el cuerpo de la válvula, la cabeza de la válvula por donde entra el fluido, el diafragma que se encuentra en medio de las dos partes que he mencionado antes y por último la punta dosificadora. Y ya en el interior se encuentran una serie de mecanismos como son el resorte, el pistón y la aguja que hacen que el sistema se abra permitiendo el flujo de adhesivo ya que la válvula gracias al muelle se encuentra normalmente cerrada.

El funcionamiento es muy sencillo, por el cuerpo entra aire a presión provocando el movimiento del pisto al contraerse el muelle, al moverse el pistón también lo hace la aguja y el diafragma que están unidos abriéndose así la válvula. En la cabeza, que es la amara del fluido, este se abre paso hasta la punta dosificadora. En el momento en el que se deja de aplicar aire a presión al pisto, este vuelve a su posición original normalmente cerrado por la fuerza ejercida por el muelle.
3.3.1 Conexión del sistema

En la imagen se puede observar cómo es la conexión del sistema en este tipo de válvulas. Lo primero es tener una fuente de aire presurizado que por un lado va a un controlador o una válvula con solenoide que nos de presión por impulsos para actuar sobre el pistón y abrir la válvula cuando se requiera y por otro lado el aire a presión va al recipiente del fluido que nos da una presión de fluido constante en la cabeza de la válvula.

3.3.2 Lluvia de ideas e idea inicial

Ya terminada la fase de investigación se puede utilizar toda la información obtenida para aplicarla al diseño. Se han realizado varios bocetos a mano alzada pero el que más convenció y es la propuesto que se va a desarrollar es la que se muestra a continuación, hay que tener en cuenta que es solamente un boceto inicial con las principales partes que tendrá diseño.

Fig. 3.3.1.5 Conexión del sistema

Fig. 3.3.1.1 Boceto diseño válvula
En este boceto se ve que lo que se conseguir es un diseño modular fácil de desmontar y cambiar piezas dañadas, sin la necesidad de utilizar herramientas. La válvula está formada por el cuerpo y la cámara de fluido las cuales se pueden desensamblar fácilmente quitando el cierre que posee un tornillo con fileteado en su cabeza para que pueda ser fácilmente desajustado con la mano del operador. Y también tenemos la jeringa de 30 cc que contendrá el fluido a presión constante que se monta en la válvula a través de un conector hidráulico.

Se parece mucho al resto de válvulas que ya están fabricadas ya que todas son muy similares, después de la investigación de todas las válvulas que están en el mercado nos hemos quedado con lo mejor de cada una de ellas y se aplicó en una sola válvula, se han elegido las mejores características de las otras válvulas pero siempre ciñéndonos a las especificaciones/requisitos que se plantearon al principio y además siempre pensando en que va a ser una herramienta didáctica con la que van a aprender más alumnos.

En cuanto a sus mecanismos interiores será una válvula de aguja ya que este tipo de válvulas tiene mucha precisión a la hora de dosificar fluidos de varios tipos de viscosidad, ese era otro de los requisitos que se perseguía, que la válvula sea funcional con varios tipos de viscosidad de fluido.

Vamos a ver algún otro tipo de mecanismo de apertura y cierre de válvula:

Fig. 3.3.2.2 Válvula de diafragma (6)

Fig. 3.3.2.3 Válvula de pistón (7)
Universidad Pública de Navarra

Estos dos son ejemplos de los más utilizados pero hay muchos más. La válvula de diafragma funciona muy bien con fluidos de baja y media viscosidad por el contrario la válvula de pistón solo trabaja con fluidos de alta viscosidad.

Y aquí tenemos la válvula de aguja con la que se va a trabajar puesto que se puede trabajar con un rango de fluidos con viscosidades bajas medias y altas.

![Fig. 3.3.2.4 Válvula de aguja. 1. Aguja 2. Base 3. Adaptador de puntas (8)](image)

Como se puede apreciar en la imagen se llama válvula de aguja porque la pieza que controla la apertura y el cierre de esta es una pieza con forma de aguja. Esta aguja está unida en la parte de arriba a un pistón y mediante impulsos de aire a presión que golpean contra este se controla el paso del fluido. Es un tipo de cierre muy preciso y además puesto que el cierre de la válvula ocurre en la base del adaptador de la punta, no queda fluido atrapado en la válvula y como he mencionado antes este cierre muy preciso hace que se pueda trabajar con fluidos de diferentes viscosidades.

En cuanto a las letras que aparecen en el cuerpo del boceto de la válvula se trata del nombre comercial del diseño DVX1 que significa dispensing valve que en español quiere decir válvula dosificadora y X1 es por ser el primer diseño.

Bueno y hasta aquí llega esta etapa de generación de ideas, la primera fase de investigación es primordial, es una etapa del diseño que nos ayuda a generar ideas para solucionar el problema que se nos plantea, ya que al principio cuesta que surjan soluciones. A partir del estudio de investigación las ideas comienzan a salir solas aunque muchas de ellas irán a parar a la papelear siempre hay una que de entre todas destaca y parece que es viable seguir con ella. Es muy importante adquirir la máxima información posible acerca del problema que vas a solucionar ya que todas esa información servirá conforme vayamos avanzando en el proyecto y nos vayan surgiendo problemas.
3.4 Diseño conceptual

Una vez tenemos un esbozo de una buena idea con la que iniciar lo siguiente es realizar un diseño más elaborado con un poco más de detalle. Un render que nos ayude a visualizar más detalles del producto y verificar si nuestra idea es realmente viable o por el contrario nos toca volver atrás y pensar otra solución.

Fig. 3.4.1 Render Válvula dosificadora DVX1.

Este es el diseño de la válvula que se va a construir para dosificar adhesivo o cualquier tipo de fluido para el robot colaborativo URS. Como se podemos ver tenemos en la parte superior el cuerpo de la válvula, parte pintada de negro, y en la parte inferior la cámara de fluido, parte gris. Estas dos piezas están unidas por el conector que se ajusta al cuerpo de la válvula por medio de un tornillo. Es un diseño modular que no necesita de herramientas para desmontarla y recambiar las piezas que se necesite. Es fácil y muy sencilla de utilizar por lo que es una herramienta ideal para la enseñanza de la función de dosificación de fluido que puede desarrollar un robot colaborativo.

Este diseño está basado en distintas válvulas que ya están en el mercado, se han elegido las mejores características de cada válvula y nos hemos quedado con las mejores características de cada una y las que más se adecúan con la idea de diseño inicial y los objetivos planteados.

Hay partes que están normalizadas y se compraran directamente a algún fabricante como son los racores de conexión neumáticos e hidráulicos, la jeringa en la que estará el fluido a
dosificar y las puntas de dosificación. La empresa que he pensado para que sea proveedor de estos elementos es la empresa Nordson Corporation que se encuentra en valencia.

Nordson Corporation ofrece productos de precisión para la dosificación de adhesivos, revestimientos, selladores, biomateriales, polímeros, plásticos y otros materiales; para la gestión de fluidos; para pruebas e inspecciones, y para el curado UV y el tratamiento de superficie por plasma.

3.5 Diseño detallado
Una vez se tiene un diseño conceptual claro de la idea que se va a desarrollar es hora de pasar a definir los detalles. Primeramente se explicara las partes de las que consta la herramienta y como es su funcionamiento, el material del que está construida cada parte y por qué se utiliza este material. Iré explicando también el equipo necesario para el funcionamiento de la válvula como por ejemplo tomas de aire a presión, válvulas con solenoide para darnos un flujo de aire a pulsos, etc. Además se crearan detalles completos en 3D de cada parte, se irán resolviendo los problemas que vayan apareciendo por el camino y se construirán los planos de montaje.

3.5.1 Mecanismo válvula de aguja
Primeramente definamos que es una válvula, según la Real Academia es *Una mecanismo que regula el flujo de comunicación entre dos partes de una maquina o sistema* (9) sin embargo esta otra definición es más clara y se adecúa mucho a nuestro diseño, una válvula es dispositivo mecánico con el cual se puede iniciar, detener o regular la circulación de fluidos mediante una pieza movible que abre, cierra u obstruye en forma parcial uno o más orificios o conductos. La válvula es uno de los instrumentos de control más esenciales en la industria. Debido a su diseño y materiales, las válvulas pueden abrir y cerrar, conectar y desconectar, regular, modular o aislar una enorme serie de líquidos y gases, desde los más simples hasta los más corrosivos o tóxicos. (10)

Hay distintos tipos de válvulas, cada una de ellas se diferencian por el tipo de mecanismo que utilizan para dar paso o no al fluido por ejemplo están las válvulas de pistón, de diafragma, de aguja y cada una de ellas tiene unas características determinadas que las hacen ideales para un tipo de condiciones de funcionamientos u otros por ejemplo dependiendo de la viscosidad del fluido unas serán más aptas que otras. Es por eso que En este caso se ha optado por elegir una válvula de aguja ya que con estas se puede controlar mejor el flujo de salida, es más preciso, no se producen goteos y se pueden utilizar con ella desde fluidos con baja viscosidad hasta fluidos muy viscosos.
En la imagen se ve el esquema de este tipo de válvula, en él se puede apreciar claramente como es su funcionamiento. Tenemos la aguja unida a un pistón que se encuentra en contacto con un muelle el cual hace que la aguja se encuentre presionada contra la base del adaptador de puntas, es decir la válvula está en posición normalmente cerrada. En la cámara del pistón se encuentra una toma para un conector neumático, por aquí entre el aire a presión que empujara al pistón provocando que la aguja suba y por tanto se abrirá la válvula dejando paso al adhesivo que se encuentra a un presión constante y entra por la cámara de fluido, cuando el aire deje de actuar sobre el pistón, este regresara a su posición inicial por la fuerza del muelle y se cerrara la válvula.

El flujo de aire comprimido que entra en la cámara del pistón son impulsos de aire controlado que actúan sobre este, estos impulsos son controlados a su vez por una válvula con solenoide la cual deja pasar o no flujo de aire dependiendo de si recibe señal eléctrica del robot o no.

Este es el mecanismo interno con el que funciona la válvula, los planos se adjuntan al final del trabajo.

3.5.2 Partes de la válvula
Una vez descrito el mecanismo de funcionamiento de la válvula pasamos describir cada una de sus partes. Se tratará todas las partes de las que se compone desde las normalizadas que ya vienen diseñadas de fábrica hasta las partes externas que son las que he diseñado yo.
3.5.2.1 **Perilla de control**
La perilla de control es la ruleta que se encuentra en el extremo superior de la válvula con la cual podemos regular la carrera del pistón y la aguja, es decir, con ella podemos controlar la distancia de apertura de la válvula y por tanto el flujo de fluido que queremos obtener.

![Fig. 3.5.2.1 Perilla de control](image)

3.5.2.2 **Anillo graduado**
Es un anillo que se encuentra justo debajo de la perilla de control, esta graduado para facilitar la referencia de ajuste de la carrera del pistón.

![Fig. 3.5.2.12 Anillo graduado](image)

3.5.2.3 **Vaso**
Es la pieza que se encuentra en la parte superior interna de la válvula en contacto con la perilla roscada y el enclave y mediante transmisión de movimiento por roscado se puede regular las dimensiones de la cámara del pistón para poder regular las dimensiones de apertura de la válvula.

![Fig. 3.5.2.3 Vaso](image)

3.5.2.4 **Enclave**
También está en la parte superior interna de la válvula en contacto directo con el vaso, cada uno de ellos tiene una parte roscada para que se les pueda transmitir movimiento por medio de giros de la perilla de control.
3.5.2.5 Cuerpo de la válvula
Es la parte superior de la válvula donde se encuentran todas las partes anteriormente mencionadas. Aquí también está la cámara del pistón donde este puede recorrer una cierta distancia llamada carrera para poder abrir y cerrar la válvula.

Tiene un agujero roscado a uno de sus extremos laterales con una rosca 10-32 UNF para la conexión de un racor neumático y poder conectar la entrada de aire a presión que chocara contra el pistón provocando la apertura. Este aire a presión es un flujo a pulsos y es regulado mediante una válvula con solenoide que deja pasar o no aire según si el robot envía una señal eléctrica.

Tiene otro taladro roscado en otro de sus extremos laterales con una rosca 1/4-28 UNF para colocar la pieza de montaje para que pueda ser montado en el brazo del robot.

3.5.2.6 Resorte 1
Se encuentra dentro del vaso y en contacto con el pistón. Este es el que ejerce fuerza sobre el pistón para que la aguja este en contacto con la base del adaptador de puntas y por tanto la válvula este normalmente cerrada.
3.5.2.7 Pistón y aguja
Estas dos piezas están unidas y no se pueden desensamblar, es la pieza de cierre se podría decir, la parte principal de la válvula. Mediante su movimiento abre o cierra la válvula. En la parte de abajo del pistón es donde el aire a presión choca para abrir la válvula y en la parte superficie de arriba es donde el muelle ejerce su fuerza para cerrar la válvula.

3.5.2.8 Cámara del fluido
Es la otra mitad de la válvula y como su propio nombre lo dice es por donde va a circular el fluido. Esta parte está aislada del cuerpo por lo ninguna parte del cuerpo de la válvula tendrá contacto con el fluido. Esta cámara tiene en su extremo lateral un taladro roscado con rosca 1/8 NPT para la conexión de un racor que nos permitirá ensamblar la jeringa que contendrá el fluido.
3.5.2.9 Empaques
Son pequeñas piezas de caucho con forma cónica que encajan perfectamente entre la aguja y un compartimento de la cámara de fluido, sirven para que la aguja, al ser tan larga, no se mueva en exceso hacia los lados, es decir, que no pandee y además también ayudan a dar estanqueidad y que no se produzca alguna fuga de fluido a otras partes internas de la válvula.

Fig. 3.5.2.9 Empaques

3.5.2.10 Resorte de compresión de empaques
Es un resorte más pequeño que el anterior y se encuentra los empaques, la aguja, la cámara de fluido y el cuerpo de la válvula, es decir, en el centro. Su función es como su nombre lo indica para que los empaques se encuentren perfectamente unidos.

Fig. 3.5.2.10 Resorte

3.5.2.11 Adaptador de puntas
Se encuentra en la parte inferior de la válvula y es donde se asienta la aguja para hacer el cierre. Además está directamente en contacto con la punta de dosificación.

Fig. 3.5.2.11 Adaptador de puntas
3.5.2.12 **Cierre**
Pequeña pieza roscada que mantiene unida la punta de dosificación desechable y el adaptador de puntas.

![Fig. 3.5.2.12 Cierre](image)

3.5.2.13 **Punta dosificadora desechable**
Por último está la punta dosificadora que es por donde sale el fluido hacia la superficie que queramos aplicar el adhesivo, sellante, lubricante, etc. Hay puntas de muchos tipos dependiendo de la viscosidad del lubricante y estas son desechables. Para fluidos muy viscosos se suelen utilizar puntas cónicas de plástico sin embargo para fluidos poco viscoso se utiliza puntas de plástico también pero el extremo es una aguja de acero inoxidable.

![Fig. 3.5.2.13 Punta dosificadora](image)

3.5.2.14 **Jeringa**
Es el depósito donde ira el fluido, su volumen es de 30 CC. He optado por utilizar jeringas y no depósitos grandes por más comodidad. Además como la herramienta no va a tener un uso industrial sino solamente docente no creí necesario utilizar depósitos grandes, de este modo se elimina la necesidad de tener que lidiar con fugas, variaciones de presión o contaminaciones.

![Fig. 3.5.2.14 Jeringa](image)
3.5.2.15 Retén del pistón
Es un retén interno que se encuentra en el cuerpo de la válvula limitando la cámara del pistón.

3.5.2.16 Juntas toricas
Hay un total de 5 juntas toricas repartidas a lo largo de toda la válvula, son de caucho. Se utilizan siempre entre superficies que se encuentran muy juntas para bloquear cualquier fuga de fluidos entre ambas superficies tanto de afuera hacia dentro y viceversa.

3.5.2.17 Racor
Por último están los racores tanto neumático como hidráulico que se utilizan para conectar a la válvula tanto aire a presión como el fluido que vamos a dosificar. El conector neumático tiene que tener en un extremo una rosca de 10-32 UNF y el otro extremo tiene que ser una hembra para ajustar una manguera de ¼ de pulgada. En un racor en forma de codo.

El racor hidráulico también tiene forma de codo y unos de sus extremos tiene una rosca 1/8 NPT para conectar a la válvula y el otro extremo rosca para conectar la jeringa con el fluido.

3.5.2.18 Conector y tornillo
Es la pieza que mantiene unidos el cuerpo de la válvula y la cámara de fluido. Este conector se ajusta y desajusta mediante un tornillo que lo une al cuerpo de la válvula. He decidido utilizar
este sistema de unión para que sea muy fácil desmontar la válvula para su mantenimiento sin la necesidad de utilizar herramientas. Como he dicho antes lo que busco es un diseño modular, fácil y intuitivo.

Estos son todos los componentes de la válvula DVX1 algunos de ellos están normalizados por lo que serán suministrados por fabricante. Y otros como por ejemplo el cuerpo de la válvula y la cámara del fluido los he diseñado yo por lo que tendrá que ser mecanizado con medidas de los planos adjuntos en los anexos.

Fig. 3.5.2.18 Conector y tornillo

3.5.2.19 Pieza de ensamble con robot
Esta es la pieza de ensamble con la que unirá la herramienta al robot como se ve se trata de un eje donde roscado al final donde se unirá la válvula y la pieza con la brida del robot atornillada con 4 tornillos de M6

Fig. 3.5.2.19 Pieza de ensamble

3.5.2.20 Brida del robot
Esta es la Brida del robot Colaborativo UR5 donde se puede ensamblar cualquier herramienta.

Fig. 3.5.2.20 Brida del Robot UR5
Finalmente el ensamble de todas las piezas nos da como resultado la válvula dosificadora de fluidos DVX1. Los planos de cada pieza y del ensamblaje completo se adjuntan al final de la memoria.

Fig. 3.5.2.21 Válvula dosificadora de fluido DVX1
3.5.3 Materiales

Pasamos a una parte muy importante que es los materiales con los que vamos a construir cada pieza.

Esta parte es vital ya que no podemos construir la válvula con cualquier material al azar puesto que cada tipo de material tiene unas ciertas características, propiedades, rugosidad etc. que hacen que sean adecuados para unos determinados usos.

Tenemos varios factores a tener en cuenta a la hora de elegir el material con el que queremos trabajar por ejemplo el peso. El máximo peso de carga del robot UR5 es de 5kg por tanto debemos utilizar materiales ligeros. Además algunas piezas van a estar en contacto con fluidos, que pueden resultar corrosivos para las piezas x tanto debemos utilizar materiales que resistan la corrosión. También necesitamos que sean de fácil mecanizabilidad para que su construcción no sea muy laboriosa. Estos son solo algunos de los puntos que tenemos que tener en cuenta a la hora de elegir los materiales.

Del estudio que se realizó de los distintos tipos de válvulas que hay en el mercado se determinó que los dos mejores materiales para la fabricación de este tipo de válvulas es el acero inoxidable tipo 303 que es un acero austenítico y el aluminio anodizado endurecido. A continuación la descripción de cada uno de ellos.

3.5.3.1 Acero inoxidable tipo 303

Como sabemos la principal razón de la existencia de los aceros inoxidables es por su resistencia a la corrosión y el principal aleante para que este adquiera esas propiedades inoxidables es el cromo (Cr), debe tener como mínimo un 11% de este elemento, el cromo posee gran afinidad por el oxígeno y reacciona con él, formando una película de óxido de cromo que impide que el oxígeno continúe penetrando en el material y evitando la corrosión y oxidación del hierro, en nuestro caso del acero. También tienen Ni en distintas composiciones dependiendo las propiedades que se quieran obtener. Dentro del grupo de los aceros inoxidables están los aceros ferríticos, austeníticos, martensíticos y dúplex, estos son los grupos más importantes sin embargo hay muchos más, todos estos grupos se diferencian en su composición química que a su vez determinan las características micro estructurales que les darán una propiedades determinadas.

El acero inoxidable tipo 303 es un tipo de acero austenítico, es una de las aleaciones más utilizadas en la industria, forman el grupo principal de los aceros inoxidables. Su microestructura está constituida estas constituida fundamentalmente por granos de austenita.

La austenita es el constituyente más denso de los aceros y está formado por una solución sólida por inserción de carbono en hierro gamma. La cantidad de carbono disuelto, varía de 0.8 al 2 % C que es la máxima solubilidad a la temperatura de 1130 °C. No es estable a la temperatura ambiente pero existen algunos aceros al cromo-níquel denominados austeníticos cuya estructura es austenita a temperatura ambiente, níquel alrededor del 8%, este tiene el
efecto de agrandar la región austenítica en el diagrama de fase de hierro al carbono, lo que la hace estable a temperatura ambiente. (11)

Los aceros inoxidables austeníticos tienes unas excelentes propiedades que describimos a continuación:

- Excelente resistencia a la corrosión.
- Muy buena maquinabilidad.
- Fácilmente soldabilidad.
- Excelente factor de limpieza.
- Son no magnéticos.

<table>
<thead>
<tr>
<th>PROPIEDADES GENERALES DE LOS ACEROS INOXIDABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Martensíticos</td>
</tr>
<tr>
<td>Ferríticos</td>
</tr>
<tr>
<td>Austeníticos</td>
</tr>
</tbody>
</table>

Tabla 3.5.3.1.1 Propiedades generales de los aceros. (12)

Como podemos ver en la tabla en comparación con otros tipos de aceros inoxidables los austeníticos reúnen las características que necesito para un material con el que construir una válvula que va a estar en contacto con fluidos que pueden ser corrosivos.

Este tipo de acero se utiliza mucho en la industria química para fabricar objetos que van a estar en constante contacto con sustancias corrosivas por ejemplo válvulas que van a regular el flujo de distintos tipos de fluidos. Además como vimos antes en sus propiedades tiene una buena maquinabilidad por lo que nos facilita su construcción a la hora de mecanizar la pieza.

Cabe decir que además este tipo de acero también esta pasivado para mejorar aún más su resistencia química. La pasivacion es crear artificialmente una película relativamente inerte sobre la superficie del metal que lo enmascara para protegerlo de los agentes externos. Se trata de un tratamiento químico en el que el metal es introducido en un baño de ácido nítrico o cítrico donde por reacción química se forma la capa protectora, esta capa externa está formada por una asociación del metal mismo (u otro metal agregado a la aleación para tal fin, como el cromo) con oxígeno, formando una cadena M-O-M y esta es la película que aísla el metal del exterior para protegerlo contra agentes externos.
3.5.3.2 Aluminio anodizado endurecido

El aluminio, para protegerse de la acción de agentes atmosféricos, se recubre de forma natural de una delgada película de óxido llamada alúmina Al₂O₃ que tiene un espesor más o menos regular del orden de 0.01 micras y puede llegar a 0.2 o 0.4 micras.

Se pueden obtener películas de óxido artificialmente mucho más gruesas y de características distintas a las de la capa natural, más protectoras, por procedimientos químicos y electrolíticos. El proceso de anodizado permite formar capas en las que el espesor puede, a voluntad, ser de algunas micras a 25/30 micras en los tratamientos de protección o decoración, llegando a las 100 micras y más por procesos de endurecimiento superficial, esto es el anodizado duro. (13)

El proceso de electrolisis comienza introduciendo la pieza de aluminio, que funciona de ánodo, en un medio electrolítico, que suele ser sulfúrico. Al hacer pasar la corriente eléctrica entre los polos se libera el oxígeno presente en el medio que se dirigirá al ánodo, que al reaccionar con el aluminio, generará la capa de óxido, la alúmina, cubriendo el ánodo, y cuyo espesor será función del tiempo de paso de la corriente. (14)

Con este proceso se consigue que la pieza de aluminio se cubra de una capa de óxido de gran dureza, muy estable y resistente a los agentes corrosivos ambientales. La capa generada por medio del proceso electroquímico se integra en el propio metal, por lo que no puede ser desbastada fácilmente. La capa de óxido natural del aluminio posee un espesor cercano a los 0,02 μm. Mediante el anodizado, el espesor de la capa de óxido puede aumentarse a 25 μm. La dureza de la capa anódica es mayor que la del acero, el níquel y el cromo, y es la misma que el corindón (óxido de aluminio).

Ventajas del aluminio anodizado:

- No necesita mantenimiento.
- El anodizado no se afecta por la luz solar y por tanto no se deteriora.
- Aumenta la dureza superficial, siendo resistente a la abrasión y al desgaste.
- Excelente resistencia a la corrosión.
- Resistencia química.
- Aumenta el punto de fusión de la superficie a 2000 centígrados.

Como podemos ver el aluminio anodizado también tiene las propiedades que nos interesan para nuestro diseño.

Estos son los dos principales materiales de los que va a estar construida la válvula:

- Cuerpo de la válvula: aluminio anodizado endurecido
- Cámara del fluido: aluminio anodizado endurecido
- Adaptador de puntas: aluminio anodizado endurecido
- Conector: acero inoxidable tipo 303
Unidad Pública de Navarra

- Anillo graduado: acero inoxidable tipo 303
- Perilla de control: acero inoxidable tipo 303
- Vaso y enclave: acero inoxidable tipo 303
- Pistón y aguja; acero inoxidable tipo 303
- Cierre acero inoxidable tipo 303
- Punta dosificadora: polipropileno
- Jeringa: polipropileno

3.5.4 Conexión de tubería y cableado.
La válvula no trabaja sola sino que está conectada a un sistema que controle su apertura y cierre. A continuación se describen todos los equipos necesarios para el funcionamiento de la válvula y el cableado que se tiene que hacer.

El esquema anterior que voy a utilizar es de la válvula de aguja MicroDot (Para MicroDepósitos) xQR41 de la empresa Nordson. Es el mismo sistema de control que quiero que tenga la válvula VDX1, a continuación paso a describir los componentes y su funcionamiento.
Lo primero es disponer de una instalación que nos suministre aire a presión. Seguidamente a la línea de aire a presión instalaremos un filtro regulador de presión ya que la presión de aire de actuación requerida por la válvula es de 4,8 a 6,2 bar.

Fig. 3.5.4.2 Filtro regulador de presión.

A partir de aquí el sistema se divide en dos líneas de distribución:

En la primera línea que va a ir a la cámara de fluido se necesita un flujo de aire a presión constante ya que este flujo llegara al embolo de la jeringa que contiene el fluido y este siempre tienes que estar a presión constante. En esta línea de presión constante también tenemos que instalar un regulador de presión de fluido porque la cantidad de fluido dosificado por la válvula también depende de la presión que llegue al embolo de la jeringa y tenemos que poder controlar la cantidad de fluido dosificado. Seguidamente a la jeringa contenedora del fluido tenemos el racor para la conexión la cámara de fluido de la válvula. Además hay una presión máxima de fluido de 20.7 bares que no podemos superar.

La segunda línea de aire a presión tiene que llegar hasta la cámara del pistón de la válvula sin embargo en esta línea necesitamos presión de aire a pulsos, esto quiere decir que la línea nos suministre aire comprimido solo cuando le demos una señal. Para solucionar esto se instala en la línea antes de llegar a la cámara del pistón una electroválvula.

Una electroválvula es una válvula electromecánica, diseñada para controlar el paso de un fluido por un conducto o tubería. La válvula se mueve mediante una bobina solenoide. Generalmente no tiene más que dos posiciones: abierto y cerrado, o todo y nada. Las electroválvulas se usan en multitud de aplicaciones para controlar el flujo de todo tipo de fluidos.

Por tanto solo llegara aire a presión a la cámara del pistón cuando el robot envié una señal eléctrica a la bobina o solenoide de la electroválvula. Así tenemos un flujo de aire pausado que nos abrirá la válvula DVX1 cuando sea requerido.
El cable del solenoide irá conectado en el cuadro de mando del robot para programar los tiempos de envío de señal de apertura de la electroválvula.

Fig. 3.5.4.3 Electrovalvula 3/2

Y finalmente la válvula iría conectada al robot que mediante su programación dosificaría fluido de forma automatizada en cualquier superficie. Un ejemplo de una herramienta conectada al brazo del robot UR5 lo vemos a continuación.

Fig. 3.5.4.4 Robot UR5 con herramienta.

Para hacer toda la conexión utilizaremos tubo flexible de poliuretano de color azul de 6 mm de diámetro que suministra la empresa Festo.

<table>
<thead>
<tr>
<th>Tubos flexibles con calibración exterior</th>
<th>Aplicaciones</th>
<th>Diámetro ext. [mm]</th>
<th>Racor recomendado</th>
<th>Fluido</th>
<th>Presión de funcionamiento [bar]</th>
<th>T [°C]</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubo flexible de material plástico PUN</td>
<td>Muy variadas 3 ... 16</td>
<td>QS</td>
<td>Aire comprimido Vacio</td>
<td>-0,95 ... +10</td>
<td>-36 ... +80</td>
<td>Tubo flexible de material plástico de alta flexibilidad. Poliuretano. Tubo flexible de material plástico PUN en el catálogo</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3.5.4.1 Características de tubo de poliuretano. (16)

Cabe mencionar también los componentes de la válvula que compraremos a proveedor como son la jeringa donde estará el fluido y la punta de dosificación.
La jeringa que se utilizara como contenedor de fluido es de 30 CC. S opta por la utilización de este tipo de contenedor de fluidos y no tanques grandes primeramente por que el uso de la herramienta no va a ser un uso industrial sino un uso docente así que no será necesario la utilización de grandes cantidades de fluido, además con las jeringas se elimina la necesidad de tener que lidiar con fugas, variaciones de presión o contaminaciones. Están hechas de polipropileno que garantiza una muy buena compatibilidad química con la mayoría de fluidos. La utilizaremos de algún color opaco ya que estas bloquean los rayos UV que podrían dañar el fluido contenido.

La jeringa lleva incluido con ella el adaptador para conectar el tubo por el que llegara el aire presurizado y el pistón Optimum se acoplan perfectamente a las jeringas, proporcionando depósitos de fluido exacto y consistente, así como un desplazamiento suave y sin obstrucciones.

Y por último tenemos que tener en cuenta las puntas dosificadoras que pueden ser de varios tipos. Estas puntas son desechables y se pueden cambiar con facilidad cuando se requiera.

Están las puntas cónicas que facilitan el flujo de todo tipo de fluidos y son fabricadas de polietileno. Luego están las puntas de acero inoxidable que se utilizan para fluidos poco...
viscosos y la parte de plástico está hecha de polipropileno. También tenemos las puntas de
teflón que se utilizan para la aplicación de adhesivos cianocrilatos. Las puntas boquillas
plásticas de polipropileno pueden ser cortadas para obtener el diámetro que mejor se ajuste a
nuestras necesidades.

Estas son las puntas dosificadoras más utilizadas sin embargo hay muchas más que podemos
utilizar con nuestra válvula, dependiendo de las condiciones de dosificación utilizaremos una u
otra.

3.5.4.1 Puntos de control de la cantidad de fluido dosificado
Obviamente cuando dosificamos un fluido en alguna superficie lo que queremos es que la
cantidad de adhesivo o sellante que estamos dosificando sea la óptima para tipo de aplicación,
sin pasarnos ni tampoco poner muy poca cantidad.

De eso trata este apartado de cómo podemos conseguir dosificar la cantidad exacta de fluido
con precisión. Hay varios sitios desde donde podemos regular esto y tenemos que tenerlos
muy presentes.

La primera forma es regulando la presión de aire que llega a la jeringa, pero esto también está
directamente relacionado con la viscosidad del fluido ya que para altas viscosidades
necesitamos altas presiones y para bajas viscosidades se necesita bajas presiones,

Del tamaño de la punta dosificadora también depende la cantidad de fluido dosificado así pues
para fluidos con alta viscosidad necesito puntas de diámetros mayores y para fluidos con bajas
viscosidades lo ideal son puntas con diámetro pequeños.

Otro de los puntos muy importantes desde donde se puede controlar la cantidad de fluido
dosificado es la carrera del pisto y por tanto la carrera de la aguja. A mayor carrera del pisto
mayor cantidad de fluido dosificado y viceversa.

El último de los puntos de control y el más importante de todos es el tiempo de apertura de la
válvula y este parámetro lo controlamos desde el programa del robot. Así que dependiendo de
lo que nosotros le programemos al robot la válvula aplicara más o menos adhesivo por
ejemplo.

3.6 Proceso de fabricación
Los componentes de la válvula que hay que fabricar son: 1.perilla de control, 2.el anillo
graduado, 3.el vaso, 4.el enclave, 5.la aguja y el pistón, 6. El cuerpo de la válvula, 7.la cámara
ella un plano con todas las medidas necesarias para su construcción.

Todos estas piezas son de metal, o bien de acero inoxidable o bien de aluminio anodizado.
Para la fabricación de las piezas se comprará a un fabricante barras cilíndricas de acero
inoxidable y de aluminio.
El proceso de fabricación que se va a utilizar para construir las piezas es el Mecanizado. Este es un proceso industrial que consiste en un conjunto de operaciones mediante los cuales se eliminan el material sobrante de un trozo inicial de material y así se va consiguiendo la pieza con la forma deseada.

Las dos formas más comunes de eliminación de material son el arranque de viruta y la abrasión. En este caso el proceso de fabricación se hará mediante arranque de viruta porque es el método más rápido y eficiente. En el arranque de viruta una herramienta con una o varias cuchillas controlada por una máquina herramienta es la que va eliminando el material sobrante.

La elección de la herramienta de corte es lo más importante ya que esta debe ser de un material de altas prestaciones para ofrecernos unas piezas finales de calidad. Lo que se busca es un equilibrio entre dureza y tenacidad, de manera que una herramienta no sea tan dura que se fracture pero que sea lo suficientemente tenaz para resistir a la deformación. De igual manera, es preferible una geometría de filo de arista viva, aunque no es tan fuerte como un filo redondeado. El objetivo es tener una herramienta con un equilibrio entre la arista viva y la máxima robustez posible. Los materiales que se utilizan para estas cuchillas son los aceros rápidos, la principal propiedad de estos aceros es la de mantener la dureza y por lo tanto su capacidad de corte a altas temperaturas. También se utilizan herramientas de carburos sinterizados o también llamado metal duro, son compuestos de carburos de W, o de Tantalio (Ta) y W, e incluso de carburos de Ti y Nb (niobio), aglomerados comúnmente con Co. Los
carburos aportan la dureza necesaria mientras que el Co cumple la función de aglutinante. Las herramientas con este material pueden operar a velocidades de corte muy superiores a los aceros rápidos.

Para la fabricación de las piezas de aluminio y acero inoxidable del proyecto utilizaremos cuchillas de acero rápido, esta nos ofrece las prestaciones más que suficiente para realizar un buen mecanizado.

Dentro del proceso de arranque de viruta hay varias operaciones que se pueden hacer y nosotros las vamos a llevar a cabo para la fabricación de las piezas estas operaciones son el fresado, el torneado y e taladrado.

3.6.1 Operación de fresado
En el fresado se produce el movimiento rotativo de la herramienta de corte para ir arrancando la viruta. Existen distintos tipos de fresado: Fresado de cavidades, torno-fresado, fresado de roscas, frontal, de engranajes, en rampa. Se utiliza para conseguir piezas con superficies planas.

Fig. 3.6.1.1 Fresado

3.6.2 Operación de torneado
En este caso la pieza es la que rota en un eje fijo mientras la cuchilla se mueve contra la pieza y se produce el arranque de viruta. Después del proceso no es necesario aplicar un tratamiento posterior para mejorar las propiedades si así se desea. Las operaciones que se realizan durante el proceso pueden ser: torneado, refrentado, ranurado, corte, separación, roscado, taladrado, mandrinado, escariado y roscado.

Las ventajas del torneado son: Buen acabado superficial, se requiere menos energía y fuerza que en otros procesos, mayor duración de la vida útil de la herramienta y mayor facilidad para la recopilación de virutas. (17)
3.6.3 Operación de taladrado
Consiste en hacer un corte en el material haciendo girar una broca. La broca arranca virutas del material y realiza un orificio. Dicho orificio tendrá las características que deseemos: forma, diámetro, etc. La broca es otro elemento clave en el taladrado, presionando la misma sobre la superficie de la pieza se consigue el taladrado.

Estas son las principales operaciones que realizaremos para la fabricación de las piezas del diseño. La operación que más se llevara a cabo es la de tuneado puesto que la geometría de nuestra válvula es cilíndrica y la operación de torneado es ideal para conseguir formas cilíndricas lo vemos en las formas de a continuación:
3.7 Presupuesto

A continuación se da un presupuesto de lo que costaría los materiales para construir la válvula que son las barra de acero y aluminio pero también se refleja el coste del resto de componentes necesarios para que la válvula funcione correctamente.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Referencia</th>
<th>Descripción</th>
<th>Precio Unit. (€)</th>
<th>Cantidad</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>barra acero inox. 303</td>
<td>acero inoxidable tipo 303 (500mm)</td>
<td>46,490</td>
<td>1</td>
<td>46,490</td>
</tr>
<tr>
<td>2</td>
<td>barra aluminio HE30TF</td>
<td>aluminio anodizado (600mm)</td>
<td>27,990</td>
<td>1</td>
<td>27,990</td>
</tr>
<tr>
<td>3</td>
<td>aguja dosificadora de adhesivo</td>
<td>punta dosificadora</td>
<td>22,920</td>
<td>1</td>
<td>22,920</td>
</tr>
<tr>
<td>4</td>
<td>depósito fluido 30 CC</td>
<td>jeringa de 30 CC</td>
<td>27,500</td>
<td>1</td>
<td>27,500</td>
</tr>
<tr>
<td>5</td>
<td>junta torica</td>
<td>junta torica</td>
<td>1,400</td>
<td>5</td>
<td>7,000</td>
</tr>
<tr>
<td>6</td>
<td>grupilla interna</td>
<td>grupilla interna</td>
<td>1,500</td>
<td>1</td>
<td>1,500</td>
</tr>
<tr>
<td>7</td>
<td>muelle de compresión</td>
<td>muelle de compresión</td>
<td>2,950</td>
<td>2</td>
<td>5,900</td>
</tr>
<tr>
<td>8</td>
<td>empaque de caucho</td>
<td>empaques de caucho</td>
<td>2,200</td>
<td>4</td>
<td>8,800</td>
</tr>
<tr>
<td>9</td>
<td>racor codo 10-32 UNF</td>
<td>racor neumático codo</td>
<td>2,538</td>
<td>1</td>
<td>2,538</td>
</tr>
<tr>
<td>10</td>
<td>racor 1/8 NPT</td>
<td>racor hidráulico codo</td>
<td>3,450</td>
<td>1</td>
<td>3,450</td>
</tr>
<tr>
<td>11</td>
<td>tubo flexible 6mm</td>
<td>tubo de 6 mm (20m)</td>
<td>0,520</td>
<td>20</td>
<td>10,400</td>
</tr>
<tr>
<td>12</td>
<td>electrovalvula 3/2</td>
<td>electrovalvula 3/2</td>
<td>38,900</td>
<td>1</td>
<td>38,900</td>
</tr>
</tbody>
</table>

Tabla 3.6.1 Presupuesto de la válvula dosificadora

Todos los precios son actuales obtenidos de la empresa distribuidora de componente neumáticos Schmalz y de la página web de venta de todo tipo de componentes RS Components

El presupuesto parece ser demasiado elevado sin embargo es una aproximación solamente puesto que hay algún elemento que el propio centro educativo nos lo podría facilitar como por ejemplo el tubo flexible neumático, los racores de conexión, la electroválvula etc.
4 Diseño de un pulverizador de pintura

La siguiente herramienta ha diseñar es un pulverizador de pintura o también llamado atomizador de pintura, a lo largo de este proyecto se utilizará el término pulverizador. El motivo del diseño de esta herramienta es porque las tareas de pintura están muy difundidas en la industria y además últimamente se han automatizado mucho.

En el mundo tan competitivo en el que vivimos las empresas tienen que innovar constantemente para destacar de entre todas las demás empresas y seguir creciendo, además están sometidas a una fuerte demanda ya que vivimos en la sociedad del consumo, para cumplir estas expectativas las empresas necesitan automatizarse y mejorar la producción en los sistemas manuales y para ello es necesario disponer de elementos de alta precisión y velocidad que aumenten el ritmo de producción pero sin disminuir la calidad del producto. Aquí entran en juego los robots que son capaces de mantener un ritmo de producción alto con una calidad de producto muy elevada también.

En concreto el campo industrial que nos interesa es la pintura de productos de manera automatizada, utilizando robots y más concretamente utilizando robots colaborativos que nos permiten trabajar con personas a su alrededor con total seguridad.

La industria de la pintura está en constante desarrollo como veremos más adelante existen varias maneras de conseguir pintar una superficie y hay nuevo inventos que mejoran la calidad del pintado y ahorran gran cantidad de pintura, por ejemplo asciendo alusión a estas últimas ventajas está el pulverizador electrostático de copa giratoria que utiliza la interacción de campos electrostáticos para la pulverización de la pintura y que esta se adhiera mejor a la superficie, más adelante hablaremos de él con más detalle.

El pintado de sólidos lo podemos ver en muchos sectores de la industria, se pueden pintar diversos materiales como madera, plástico, metal etc. pero en el sector que más importancia tiene es el del automóvil ya que hay mucho volumen de piezas a pintar por tanto se necesita mucha pintura y cuanta menos se desperdicie muchísimo mejor es por esto que en este sector se utilizan un tipo de pulverizadores distintos que nos ofrecen una calidad excelente y un ahorro pintura de hasta el 50%. Por el contrario en otros sectores en los que solo se pintan piezas pequeñas se utilizan otro tipo de pistolas pulverizadoras.

Como vemos el proceso de pintar se ve en muchas empresas y es bueno que los alumnos puedan ver como se trabaja en las empresas ya que se aprende mucho mejor viendo directamente como se está desarrollando la actividad. Es por esto que he decidido diseñar la herramienta de pulverización de pintura para el robot colaborativo UR5, es una herramienta muy utilizada en la industria. He de decir también que en el caso de esta herramienta esta no pulverizara una pintura real sino que utilizare un diodo led en la punta del pulverizador que simule el proceso de pintado de una superficie. Esto es con el fin de una mayor seguridad para los alumnos y para protección de los equipos ya que la pintura real puede resultar toxica y corrosiva.
4.1 Evaluación del problema
El problema que se nos plantea ahora es el desarrollo de una herramienta didáctica para el robot colaborativo UR5 de un centro docente. La herramienta es un pulverizador de pintura que simule de alguna manera el proceso de pintado de una superficie o pieza, es decir, no es necesario que aplique pintura de verdad. Hay que pensar un modo de simulación de la niebla que forma la pintura en el momento de su pulverización.

4.2 Especificaciones del diseño
Antes de comenzar a pensar ideas hay que establecer una serie de requisitos que tiene que cumplir la herramienta y el tipo de restricciones que puede tener.

En primer lugar la herramienta no puede superar el peso de carga del robot UR5 en el que va a ir colocado, entonces peso máximo de la herramienta es de 5 kg.

El material de construcción de la herramienta será un tipo de plástico como puede ser polipropileno o polietileno de alta densidad.

La herramienta no pulverizará pintura real sino que simulará mediante algún sistema la niebla que forma la pintura en el momento de su pulverización.

4.3 Generación de ideas
Es hora de ponerse a pensar y que surjan las ideas pero como siempre para tener mejores ideas es imprescindible hacer antes una fase de investigación y ver lo que ya está fabricado, de esta manera podremos ver las mejores características que hay de cada pulverizador y si nos interesa añadirlas a nuestro diseño de esta manera construiremos un mejor diseño verdaderamente eficaz que si satisfaga a nuestras necesidades.

4.3.1 Fase de investigación
Se ha buscado distintos tipos de pulverizadoras de pintura en la web y en catálogos y hay varios tipos, con diferentes formas, distinto principio de funcionamiento, tamaños, preciosa, etc.

Nos hemos centrado sobre todo en pulverizadoras que son automatizadas y utilizadas por robots, no se ha tenido en cuenta las pistolas de pulverización manual que también hay muchísimo tipos y de cada cual tiene su forma de funcionamiento.

Esta etapa es muy importante ya que a partir de aquí fluyen todas las ideas, es como la cerilla que prende la llama, y si queremos hacer un diseño verdaderamente eficaz tenemos que basarnos en lo que ya está fabricado y “copiarlo” y si cabe mejorarlo. Copiarlo no quiere decir coger el diseño que ya está fabricado y tal cual construirllo nosotros nuevamente si no hacer un estudio de lo que ya está en el mercado e irnos quedando con las mejores características de cada producto y a partir de aquí estas nos sirvan para crear nuestro propio diseño personalizado.
No tenemos que olvidar tener en cuenta también los requisitos de diseño que establecimos en la fase de especificaciones de diseño.

A continuación se expone un panel realizado con ayuda del programa Adobe Illustrator CS4 con algunos de los pulverizadores que se encuentran en el mercado.

![Panel tipos de pulverizadores](image)

Fig. 4.3.1.1 Panel tipos de pulverizadores.

Estos son los tipos de pulverizadores que están en el mercado la mayoría de ellos son pulverizadores utilizados con robots aunque también se ha puesto uno o dos manuales que también pueden venir bien para coger alguna idea para el diseño. Como podemos ver hay de muchos tipos, hay en forma de pistola, también hay algunos que son tipo válvula y la tercera variante son los que tienen forma de copa que son lo más utilizados en automoción.

Los principales fabricantes de este tipo de herramientas son:

![Fabricantes de pulverizadores](image)

Fig. 4.3.1.2 Principales fabricantes pulverizador
4.3.2 Lluvia de ideas

Para el diseño de la herramienta de pulverización se va a tomar como base un pulverizado de copa, podría hacerse uno diseño de pulverizador de válvula pero el diseño sería muy parecido al de la válvula dosificadora ya que la mayoría de las válvulas se parecen mucho. Por este motivo es mejor encaminar más el diseño a otro tipo de herramienta, además en el sector del automóvil solo se utilizan los pulverizadores de copa ya que gracias a su sistema de funcionamiento ahorran mucha pintura.

La forma de los pulverizadores electrostáticos de copa es muy básica por eso todos se parecen mucho. Es por eso que en este caso el diseño de esta herramienta es muy básica.

Aquí tenemos un boceto de la idea a desarrollar como se puede ver no es un diseño muy complicado pero como se ha dicho antes este tipo de pulverizadores tienen una forma muy básica. En el boceto podemos ver las principales partes de las que se compone este tipo de pulverizador. La copa es por donde salen las partículas de pintura y donde se cargan eléctricamente, más adelante explicare el motivo, después tenemos la falda de aire por donde sale el aire que direcciona a las partículas hacia donde tienen que ir, también tenemos la zona de la turbina que hace girar la copa a muchas revoluciones, esto es lo que provoca la pulverización de la pintura, después esta la zona donde se encuentra la unidad de alta tensión y le sigue la salida de las tuberías que van hacia los depósitos de pintura finalmente está el soporte para unir la herramienta al robot.

Esta pistola pulverización no va a aplicar pintura real sino que va a simularlo. El modo que en que se simulara la niebla que se genera cuando se produce la pulverización es introduciendo justo en la copa del pulverizador un diodo led emita una luz cuando el robot colaborativo UR5 le envié una señal eléctrica, así esta luz se encenderá en los instantes que se le programe al robot, simulando pulverizar pintura en una superficie o en un objeto.
4.4 Diseño conceptual

Una vez tenemos el boceto de la idea a desarrollar lo siguiente es coger esa idea y realizar algún modelo tridimensional con el que se pueda apreciar con más facilidad algunas de las características del diseño como por ejemplo tamaño que va a tener aproximadamente, la forma, partes del diseño, etc.

A continuación vemos un modelo tridimensional del pulverizador estático de copa rotativa:

![Fig. 4.4.1 Modelo tridimensional](image)

En la imagen podemos observar claramente la idea de pulverizador que se quiere conseguir, las partes de las que consta son el cuerpo del pulverizador por donde llega el cableado eléctrico y las tuberías de la pintura y el aire. Dispone también de una extensión para poder ensamblarlo al robot UR5. La falda de aire tiene unos pequeños orificios por donde sale el aire que da dirección a las partículas de pintura pulverizadas. La copa es la que gira a muchas revoluciones y pulveriza la pintura, además la copa es la que actúa también como electrodo cargando negativamente a las partículas que pasan por su extremo. Justo en el interior de la falda de aire se encuentra la turbina que hace girar la copa. Y también podemos ver el diodo led que simula la niebla que forma la pintura cuando es pulverizada mediante una luz. Lo que aún hay que definir es que tipo de diodo se va a utilizar ya que es necesario los rayos de luz sean suficiente mente potentes

Además a esta herramienta también se le ha grabado un nombre comercial la A de atomizador y la P de pintura y X1 puesto que es la primera herramienta de pulverización que diseño.
Es un diseño sencillo en este caso ya que solo se trata de una herramienta de simulación y no va a pulverizar pintura de verdad sino ya tendríamos que incidir en el diseño de todos los mecanismos interiores como la turbina, tuberías etc.

4.5 Diseño detallado
La herramienta que se va a desarrollar solo va a simular el funcionamiento de una pistola de pulverización real mediante una luz led que al encenderse simulara la nube que se forma en el momento de pulverización. Sin embargo aunque la pistola solo sea una simulación se va describir el funcionamiento real que tendría esta pistola y además se va a comparar con los otros dos tipos de pulverizadoras que hay para los robots.

4.5.1 Válvulas pulverizadoras
Este tipo de pulverizadoras se utiliza para aplicar recubrimientos en pequeñas cantidades de forma muy precisa. Puesto que solo se utiliza para aplicar recubrimiento en pequeñas cantidades no se suele utilizar mucho para pintar grandes piezas. Los fluidos con los que se suele trabajar con esta válvula son recubrimientos, grasas, fundentes líquidos, siliconas, solventes, tintas, aceites y pinturas.

El mecanismo de funcionamiento de todos estos tipos de válvulas son similares coinciden en que todas utilizan como método de pulverización el aire a presión, es decir, es el aire comprimido el que hace que las partículas de recubrimiento vayan hacia el objeto y se adhieran a él. A continuación podemos ver algunas válvulas trabajando:

![Válvulas pulverizadoras](image)

Fig. 4.5.1.1 Válvulas de pulverización

![Esquema de funcionamiento](image)

Fig. 4.5.1.2 Esquema de funcionamiento
Como podemos ver en la imagen este tipo de válvulas se parecen mucho a las válvulas de dosificación de fluidos solo que en este caso disponemos de una boquilla y no de una aguja para ayudar a la pulverización del fluido. En la cámara del fluido hay dos entradas, una por donde entra el fluido a pulverizar y la otra entrada es por donde accede el aire a presión que va hacia la boquilla. En la punta de la boquilla coinciden tanto el fluido como el aire a presión y es gracias a este aire que se consigue la pulverización del fluido. La cobertura del fluido pulverizado depende del diámetro de la boquilla.

4.5.2 Pulverizador electrostático asistido por aire

La pulverización electrostática es un método basado en el principio de que los objetos cargados negativamente son atraídos hacia los objetos cargados positivamente.

En la punta del pulverizador hay un pequeño electrodo en el cual se genera una diferencia de potencial muy alto quedando cargado este negativamente. Las partículas de pintura pasan a través de esta corona de electricidad y se quedan cargadas negativamente.

La superficie o la pieza que queremos pintar está conectada a tierra y está cargada positivamente por tanto tiene una atracción magnética hacia la pintura cargada negativamente. Cuando se pulveriza la pintura, la pintura sobrante podría inicialmente viajar en direcciones diferentes sin embargo esta volverá a los objetos cargados positivamente y se pegará. La pintura se pegará en cualquier superficie que sea conductiva, el metal. La madera contiene agua, y mientras más húmeda es la madera, mejor es la carga positiva. Las superficies que tienen plástico o madera que están viejas y muy secas necesitaran una fina capa de un adhesivo conductor antes de proceder a su pintado. A continuación un esquema.

![Fig. 4.5.2.1 Pulverización electrostática](image)

En la imagen podemos ver que las partículas de pintura al pasar por los alrededores del electrodo quedan cargadas negativamente y son atraídas hacia la pieza a pintar que está conectada a tierra y por tanto con carga positiva.
Los beneficios de usar pulverizadores de pintura electrostáticos están en el ahorro de la pintura. Nos podemos ahorrar alrededor de un 25 a 50 por ciento menos de pintura. En trabajos grandes, es una gran cantidad de pintura y dinero ahorrado. Por esta razón en la industria del automóvil, que se pintan grandes volúmenes de piezas solo se utiliza este tipo de pulverizadores. Hay menos desperdicios, lo cual es bueno para el medio ambiente. Hay muy poco exceso de sobre pulverización para limpiar, y además la superficie. Los pulverizadores de pintura electrostáticos son la mejor manera de ahorrar pintura, dinero y ayudar al medio ambiente.

Decimos que es asistida por aire porque el encargado de pulverizar el fluido es el aire a presión, ya más adelante veremos que existe otro método de pulverizar las partículas de pintura sobre la pieza.

Los pulverizadores electrostáticos funcionan bien con pinturas al agua o al aceite.

4.5.3 Pulverizador electrostático con copa rotativa

En la pulverización con copa giratoria la pintura es enviada al centro de la copa, que gira a altas velocidades (de 45000 a 60000 rpm). La pintura es atomizada por la fuerza de rotación de la copa y no mediante aire. Estos hacen que la pintura sea pulverizada en partículas extremadamente pequeñas, lo que proporciona una muy alta calidad de acabado superficial. (18)

Las gotas de pintura se cargan electrostáticamente por contacto con el borde de la copa y son atraídas por la pieza a pintar. Un aporte adicional de aire aplicado por la falda de aire del pulverizador ayuda a dirigir las partículas de pintura hacia la pieza a pintar, la combinación de todas estas tecnologías dan como resultado una alta tasa de transferencia de pintura y un acabado perfecto. (18)

Fig. 4.5.3.1 Pulverizador electrostático de copa giratoria para robot. (19)
En la imagen vemos las principales partes de as que se compone un pulverizador electrostático giratorio en el numero dos podemos ver la turbina que es la que gira la copa para pulverizar la pintura.

En comparación con las pulverizadoras asistidas por aire, el exceso de aire de la pistola reduce el rendimiento, en el caso del pulverizador giratorio el aire no se emplea para pulverizar la pintura, sino para la rotación de la copa y para dirigir las gotas de pintura hacia la pieza.

Este tipo de pulverizadores son los que utilizan la mayoría de robots de la industria que pintan grandes volúmenes de piezas.

Aquí vemos al pulverizador trabajando.

El diseño de la herramienta a diseñar está basado en un pulverizado electrostático giratorio. Se toma este pulverizador como base puesto que es uno de los más utilizados en la industria y aplicarlo a la robótica colaborativa para la docencia es muy interesante, de esta manera los alumnos podrán ver una simulación de cómo sería el pintado de piezas de automóviles en la verdadera industria, aunque a una escala menor claro esta ya que los robots de las fabricas son brazos robóticos muy grandes que no se comparan al robot colaborativo UR5.

4.5.4 Pulverizador electrostático de copa rotativa APX1

En este caso la herramienta consta de muy pocas piezas ya que no es necesario el diseño de todos los mecanismos internos de la pistola de pulverización porque no se va a pulverizar pintura real.

Por eso solamente se ha diseñado las piezas que son más importantes, el cuerpo del pulverizador, la falda de aire, la copa y el diodo. A continuación vemos las piezas en 3D:
4.5.4.1 Partes del pulverizador

4.5.4.1.1 Cuerpo
En el cuerpo del pulverizador se encuentran todos los mecanismos para que este funcione correctamente, aquí se encuentran las micro válvulas de control, una unidad de alta tensión para generar la diferencia de potencial en la copa, además de todo el cableado y salida de la tubería. También se ramifica del cuerpo de la válvula un soporte para que se pueda ensamblar con el brazo robótico que lo va a controlar.

Fig. 4.5.4.1.2 Cuerpo pulverizador

4.5.4.1.2 Falda de aire
Dentro de la falda de aire se encuentra la turbina que es activada por un flujo de aire a alta presión. La falda de aire tiene unos orificios por donde sale el aire que dirige a las partículas de pintura hacia la superficie que se quiere pintar, el aire solo se utiliza para direccionar las partículas no para pulverizar.

Fig. 4.5.4.1.2 Falda de aire
4.5.4.1.3 Copa
La copa está ensamblada a la turbina y es la que gira a aproximadamente 45000 rpm. El giro de la copa es lo que provoca la pulverización de las partículas. Además la copa es la que actúa como electrodo cargando negativamente a las gotas de pintura.

![Fig. 4.5.4.1.3 Copa](Image)

4.5.4.1.4 Diodo
El diodo es el que simula la nube que genera la pintura en el momento de su pulverización.

![Fig. 4.5.4.1.4 Diodo](Image)

4.5.4.1.5 Brida del robot
Mediante esta pieza se ensamblara la herramienta al robot. La unión se realizara mediante 4 tornillos de cabeza Allen.

![Fig. 4.5.4.1.5 Brida del robot](Image)
4.5.4.1.6 Herramienta ensamblada

Fig. 4.5.4.1.5 Pulverizador electrostático

4.5.4.2 Materiales de construcción

Para la fabricación de esta herramienta se van a utilizar dos materiales con muy buenas propiedades mecánicas y que no resulta demasiado caro conseguirlos. Se trata de dos de los termoplásticos más utilizados en la industria, el polietileno de alta densidad y el polipropileno. La herramienta va a tener que soportar grandes esfuerzos ni ataques químicos así que no es necesario la utilización de materiales excesivamente caros. Las características que se han tenido en cuenta a la hora de elegir estos materiales es en que sea fácil trabajar con ellos y en
que no sean demasiado caros. Estos termoplásticos tienen muy buenas propiedades en general, por algo son los más usados a la hora de fabricar toda clase de utensilios y productos.

4.5.4.2.1 Polietileno de alta densidad
Este plástico es posiblemente el más popular del mundo debido a sus muy buenas propiedades.

Se trata de un polímero lineal no ramificado por lo cual su densidad es alta y sus fuerzas intermoleculares también lo son. Es un material termoplástico parcialmente amorfo y parcialmente cristalino. Presenta muy buenas propiedades mecánicas (rigidez, dureza y resistencia a la tensión) y mejor resistencia térmica y química que el polietileno de baja densidad además es resistente a las bajas temperaturas, impermeable, inerte y es no tóxico.

Presenta fácil procesamiento y buena resistencia al impacto y a la abrasión.

Fig. 4.5.4.2.1 Objetos de HDPE

4.5.4.2.2 Polipropileno
La propiedad más característica del polipropileno es que puede doblarse muchas veces sin que se rompa y, además, se pega muy bien con varios adhesivos.

Es más resistente que el polietileno, tanto ante esfuerzos mecánicos, como ante la temperatura (aguanta hasta los 150°C), pero es más ligero (tiene una densidad de 0,90 g/cm³).

Por todas sus propiedades, junto con el polietileno, el polipropileno es uno de los plásticos que más se utilizan, y se puede encontrar en objetos que deban aguantar mucha deformación o golpes sin romperse, como en recipientes alimenticios, juguetes infantiles, cascos protectores, sillas y mesas de exterior.

El HDPE puede soportar temperaturas de hasta 120 grados Celsius. Es transparente, rígido y resistente a muchos productos químicos diferentes.
Estos son los dos materiales que se van a utilizar para la fabricación de la herramienta principalmente porque ambos pueden ser transformados con facilidad, son materiales rígidos y muy resistentes a los golpes. A pesar de que la herramienta no va a estar sometida a grandes tensiones ni deformaciones, si queremos que esta dure lo máximo tiempo posible es mejor que sea de un material que resista algunos golpes accidentales que reciben los objetos día a día y que mejor materiales que los plásticos que más se utilizan para fabricar infinidad clases de productos.

Cuerpo del pulverizador: polipropileno PP
Falda de aire: polipropileno PP
Copa: polietileno de alta densidad HDPE

4.5.4.3 El diodo LED

Mediante la utilización de un diodo led se simulara el pulverizado de pintura, la luz que emite el diodo simula la niebla que generan las partículas de pintura cuando estas están siendo pulverizadas ya sea por aire a presión o por copa giratoria.

Los diodos son componentes electrónicos que permiten el paso de la corriente en un solo sentido, en sentido contrario no deja pasar la corriente (como si fuera un interruptor abierto). Un diodo Led es un diodo que además de permitir el paso de la corriente solo un sentido, en el sentido en el que la corriente pasa por el diodo, este emite luz. Cuando se conecta un diodo en el sentido que permite el paso de la corriente se dice que está polarizado directamente.

La palabra LED viene del inglés Light Emitting Diode que traducido al español es Diodo Emisor de Luz.

Los Leds tienen dos patillas de conexión una larga y otra corta. Para que pase la corriente y emita luz se debe conectar la patilla larga al polo positivo y la corta al negativo. En caso contrario la corriente no pasará y no emitirá luz. En la imagen siguiente vemos un diodo led por dentro. (21)
4.5.4.3.1 Diodo de alta potencia
Para este diseño se va a utilizar un diodo de alta potencia ya que es necesario una intensidad de luz más potente.

Los LEDs de alta potencia más utilizados son los de potencias de 1W, aunque actualmente existen avanzados diseños en potencias de 3, 5, 10, 20 y 30 W.

Los LEDs de baja potencia son diseños sencillos, que no incluyen ningún tipo de óptica de control del flujo luminoso y son de potencias de hasta 0.12 W; este tipo de LEDs se utilizan principalmente para aplicaciones de señalización o indicación.

Los LEDs de alta potencia son diseños más completos que incluyen diversas alternativas de ópticas de control del flujo luminoso y son de potencias de 1 W; este tipo de LEDs se utilizan principalmente para iluminación concentrada en aplicaciones exteriores arquitectónicas, permitiendo generar amplias posibilidades creativas de diseño y efectos de color. (22)

Los diodos emisores de luz (leds) de alta potencia de 1W tienen las siguientes características:

- Vida promedio de 50,000 horas.
- Flujo luminoso de 55 lúmenes.
- Eficacia de 55 lm/W.
- Mantenimiento del flujo luminoso de 75%.
- Voltaje de operación de 3-4 Volts de corriente directa.
- Corriente de operación de 350 mA.
- Ángulo de apertura del haz luminoso de 120° sin óptica secundaria
- Ángulos de apertura del haz luminoso de 5-15 ° (cerrados), 20-40° (medios) y de 40-60° (abiertos) con ópticas secundarias.
- Control preciso y direccional del flujo luminoso emitido.
- Bajas pérdidas por disipación de calor.
- Mínima emisión de radiaciones infrarrojas y ultravioletas.
Se puede regular el ángulo de apertura del haz luminoso mediante ópticas de control de flujo luminoso o también llamadas ópticas secundaria. La principal función de la óptica secundaria de una lámpara LED es dar forma al haz de luz que emite. De esta forma se adecúa la iluminación en función de la estancia y del efecto que se quiera conseguir. Para ello existen diferentes tipos de lentes, que distribuyen la radiación lumínica de un modo u otro.

Tipos de lentes

Las lentes utilizadas en la óptica secundaria pueden dividirse fundamentalmente en dos clases:

Lentes divergentes: amplían el haz luminoso, expandiéndolo en un área determinada.

Lentes convergentes (o colimadoras): concentran el haz luminoso, enfocándolo en un punto concreto.

En muchas linternas LED se instalan ambos tipos de lentes, con la posibilidad de cambiar entre una y otra, para concentrar o ampliar el haz de luz.

Algunas lentes o más bien la combinación de varias lentes forman diagramas de irradiación que mezclan puntos en donde el haz de luz se concentra y zonas donde se amplía. Es lo que se llama diagrama elíptico. (23)

En la siguiente ilustración se puede observar, de forma esquemática, una lámpara halógena (1), cuyo haz de luz se difunde, prácticamente, de forma omnidireccional cubriendo,
aproximadamente, un ángulo de unos 360º de circunferencia. En (2) se representa un diodo LED común que emite el haz de luz de forma unidireccional o lineal a partir de la superficie plana de su chip. El diodo (3) corresponde, por su parte, a la emisión de una lámpara LED de alta potencia luminosa. El componente óptico que posee, óptica secundaria, proporciona que el haz de luz que normalmente emite el chip de forma unidireccional se expanda y pueda difundirla en un ángulo de entre 90º y 140º. (24)

4.6 Proceso de fabricación
Se trata de un diseño con pocas piezas: el cuerpo del pulverizador, la falda de aire y la copa. Son cuerpos con formas cilíndricas y con curvas. Los materiales de los que están hechos, polietileno de alta densidad o bien polipropileno son fáciles de darles forma. Podemos utilizar varios procesos de fabricación para estos tipos de materiales. El primero es mediante inyección de plástico, sin embargo, es un proceso costoso y nuestro proyecto no es algo que se vaya a producir en serie así que no sale rentable. El segundo mediante mecanizado CNC pero en el diseño hay formas un poco complicadas para conseguirlas mediante este método.

La técnica más adecuada sería el utilizar la técnica de prototipado en 3D que hay en la universidad mediante la cual una impresora en 3d, a partir de un diseño tridimensional insertado en su baso de datos, va creando una pieza tridimensional. El proceso consiste en ir añadiendo capas de material de espesores menores de 1mm y capa a capa se va creando el relieve y la pieza adquiere su forma, este proceso es ideal para conseguir formas los más complicadas posibles.
4.7 Presupuesto

Es necesario hacer un cálculo aunque sea aproximado de cuando nos va a costar realizar esta herramienta para ello he averiguado el precio de las materias primas que son el polietileno y el polipropileno y también el precio del diodo led y aunque todavía no se sabe si la lente convergente será necesaria o no contamos con su precio en el presupuesto ya que es una aproximación y es mejor tener en cuenta todos los posibles gastos.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Referencia</th>
<th>Descripción</th>
<th>Precio Unit. (€)</th>
<th>Cantidad</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HDPE</td>
<td>polipropileno (kg)</td>
<td>0,820</td>
<td>10</td>
<td>8,200</td>
</tr>
<tr>
<td>2</td>
<td>PP</td>
<td>polietileno de alta densidad (kg)</td>
<td>0,740</td>
<td>10</td>
<td>7,400</td>
</tr>
<tr>
<td>3</td>
<td>led alta potencia 3W rojo</td>
<td>diodo de alta potencia</td>
<td>13,850</td>
<td>1</td>
<td>13,850</td>
</tr>
<tr>
<td>4</td>
<td>lente convergente</td>
<td>lente secundaria</td>
<td>11,480</td>
<td>1</td>
<td>11,480</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Tabla 4.7.1 Presupuesto herramienta pulverizadora.
Conclusiones

El diseño de las herramientas para el robot colaborativo UR5 del centro docente ETI Tudela ha requerido seguir una serie de etapas para ir comprobando la viabilidad del proyecto. En cada una de estas etapas siempre se ha tenido en cuenta los objetivos planteados al principio de la memoria y siempre se ha intentado cumplir con ellos. A continuación se mencionan los objetivos que se han cumplido y los que no en el diseño de las herramientas.

En cuanto a la ligereza de las herramientas que buscábamos sí que se ha conseguido ya que se han utilizado materiales de poco peso, en el caso del dosificador de fluido para sus partes más grandes se ha utilizado aluminio que es un material poco denso y en el caso del pulverizador de pintura sus materiales de fabricación son plásticos como el polipropileno y el polietileno de alta densidad que son más ligeros aún.

Sí que se ha conseguido un diseño muy realista en los dos casos ya que se ha tomado como base de ideas herramientas reales con las que se trabaja en la industria al día de hoy. No se ha intentado hacer diseños futuristas ni de ciencia ficción.

La facilidad de manejo y de mantenimiento está presente en las dos herramientas en los dos se ha hecho diseños modulares que hagan la tarea de desensamblar la herramienta para cambiar alguna pieza sea muy sencillo, las dos herramientas se pueden desarmar sin la necesidad de utilizar herramientas.

La facilidad de montaje se ha conseguido en las dos herramientas ya que para montarlo a la brida del robot las dos herramientas tienen un soporte que se ajusta a esta solamente con 4 tornillos de cabeza Allen que están en un fácil posicionamiento para que el usuario no tenga problema de ajustarlos.

El objetivo en cuanto a despertar el interés de los centro educativos por su sencillez y por ser barato el pulverizador de pintura sí que lo cumple sin embargo el dosificador de fluidos se vio que el presupuesto salía un poco elevado pero como ya he dicho solo es un presupuesto aproximado ya que el propio centro educativo nos puede facilitar algunas de las piezas necesarias sin ningún coste.

En cuanto a que estas herramientas tengan incorporado algún sistema que haga fácil al usuario ver cuando la herramienta está en funcionamiento y cuando no se ha cumplido en la segunda herramienta ya que el propio led para simular el momento de pulverización actúa como señalizador de si la herramienta está activada o no. En el caso de la válvula no se ha creído necesario ya que se ve claramente cuando sale el fluido o no.

Como se puede ver se ha cumplido la mayoría de los objetivos planteados al principio esto quiere decir que el proyecto ha ido por un buen camino y se han sabido solucionar los problemas que han surgido a lo largo del proyecto.
Hay que tener en cuenta solo se ha abordado una parte del diseño, en este proyecto hemos llegado solo hasta la parte de diseño detallado sin embargo en líneas futuras si se quiere seguir avanzando con el proyecto se tendría que continuar con la realización de prototipos en alguna impresoras de materiales en 3D para ver la herramienta ya físicamente construida y después ponerse con la construcción real de las herramientas. Este proyecto solo abarca la parte teórica de lo que es desarrollar una idea desde cero, a partir de aquí lo que sigue es la construcción física de las piezas.
6 Bibliografía

Universidad Pública de Navarra

7 Anexo

7.1 Explosionados en 3D

7.1.1 Explosionado de válvula dosificadora

Fig. 7.1.1 Explosionado válvula dosificadora
7.1.2 Explosionado pulverizador de pintura

Fig. 7.1.2 Explosionado pulverizador de pintura
7.2 Planos de fabricación
<table>
<thead>
<tr>
<th>Nº</th>
<th>PIEZA</th>
<th>DESCRIPCIÓN</th>
<th>MATERIALES</th>
<th>CANT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cuerpo</td>
<td>APX1</td>
<td>polipropileno</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>falda de aire</td>
<td>dirección flujo partículas</td>
<td>polipropileno</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>copa</td>
<td>rotativa</td>
<td>HDPE</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>diodo rojo</td>
<td>alta potencia 1W</td>
<td>GAS</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Brita robot UR5</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>tornillos allen</td>
<td>ISO 4762 M6 x 12 --- 12N</td>
<td>acero inox.</td>
<td>4</td>
</tr>
</tbody>
</table>

E.T.S.I.I.T.
DEPARTAMENTO: Departamento de Ing. Mecánica, Energetica y de Materiales
PROYECTO: HERRAMIENNT PULVERIZADOR DE PINTURA
REALIZADO: J. Hernández Montenegro
FIRMA:

SOLIDWORKS Student Edition.
Solo para uso académico.
SECCIÓN A-A

FALDA DE AIRE

DETALLE B

ESCALA 10:1

Universidad Pública de Navarra
Nafarroako Unibertsitate Publikoa

E.T.S.I.I.T.
Ing. en Diseño Mecánico

DEPARTAMENTO:
Departamento de Ing. Mecánica, Energética y de Materiales

REALIZADO:
J. Hernández Montenegro

FIRMA:

SOLIDWORKS Student Edition.
Solo para uso académico.
PROYECTO:

HERRAMIENTA PULEVERIZADOR DE PINTURA

DEPARTAMENTO:

Departamento de Ing. Mecánica, Energetica y de Materiales

REALIZADO:

J. Hernández Montenegro

FIRMA:

PLANO:

COPA

FECHA: 10/06/2016

ESCALA: 2:1

Nº PLANO: 3
SECCIÓN C-C

E.T.S.I.I.T.
Unidad Pública de Navarra
Universidad Pública de Navarra
Nafarroako Unibertsitate Publikoa

DEPARTAMENTO:
Departamento de Ing. Mecánica, Energetica y de Materiales

PROYECTO:
HERRAMIENTA PULVERIDADOR DE PINTURA

FIRMA:
J. Hernández Montenegro

FECHA: 10/06/2016
ESCALA: 1:2
Nº PLANO: 1

CUERPO

HERRAMIENTA VALVULA DE DOSIFICACION

PERILLA DE CONTROL

Universidad Pública de Navarra
Nafarroako Unibertsitate Publikoa

E.T.S.I.I.T.
Departamento de Ing. Mecánica, Energetica y de Materiales
Ing. en Diseño Mecánico

REALIZADO:
J. Hernández Montenegro

FIRMA:

PLANO:
PERILLA DE CONTROL

UNIVERSIDAD DE NAVARRA
DEPARTAMENTO DE INGENIERÍA MECÁNICA, ENERGÉTICA Y MATERIALES

Nº PLANO: 1
FECHA: 10/06/2016
ESCALA: 2:1

HERRAMIENTA VALVULA DE DOSIFICACIÓN

ANILLO GRADUADO

PROYECTO:

REALIZADO:

FIRMA:

PLANO:

Universidad Pública de Navarra
Nafarroako Unibertsitate Publikoa

E.T.S.I.I.T.
Ing. en Diseño Mecánico

DEPARTAMENTO:
Departamento de Ing. Mecánica, Energetica y de Materiales

10/06/2016
2:1
2

HERRAMIENTA VALVULA DE DOSIFICACIÓN

CUERPO DE LA VALVULA
Universidad Pública de Navarra
Nafarroako
Unibertsitate Publikoa

E.T.S.I.I.T.
Ing. en Diseño Mecánico

DEPARTAMENTO:
Departamento de Ing. Mecánica, Energética y de Materiales

REALIZADO:
J. Hernández Montenegro

FIRMA:

PROYECTO:
HERRAMIENTA VALVULA DE DOSIFICACIÓN

CAMARA DE FLUIDO

SECCIÓN A-A

DETALLE B

SECCIÓN A-A

HERRAMIENTA VALVULA DE DOSIFICACIÓN

ADAPTADOR DE PUNTAS

SECCIÓN A-A

HERRAMIENTA VALVULA DE DOSIFICACIÓN

Universidad Pública de Navarra
Nafarroako Unibertsitate Publikoa

E.T.S.I.I.T.
Ing. en Diseño Mecánico

DEPARTAMENTO:
Departamento de Ing. Mecánica, Energetica y de Materiales

PROYECTO:

REALIZADO:
J. Hernández Montenegro

FIRMA:

PLANO:

CIERRE

FECHA: 10/06/2016
ESCALA: 5:1
Nº PLANO: 8

SOLIDWORKS Student Edition.
Solo para uso académico.
HERRAMIENTA VALVULA DE DOSIFICACIÓN

PISTÓN Y AGUJA

Universidad Pública de Navarra
Nafarroako Unibertsitate Publikoa

E.T.S.I.I.T.
Departamento de Ing. Mecánica, Energetica y de Materiales
Ing. en Diseño Mecánico

PROYECTO:
HERRAMIENTA VALVULA DE DOSIFICACIÓN

REALIZADO:
J. Hernández Montenegro

FIRMA:

PLANO:
PISTÓN Y AGUJA

SOLIDWORKS Student Edition.
Solo para uso académico.
CONECTOR Y TORNILLO
Universidad Pública de Navarra
Nafarroako Unibertsitate Publikoa

E.T.S.I.I.T.
Departamento de Ing. Mecánica, Energetica y de Materiales

Ing. en Diseño Mecánico

J. Hernández Montenegro

CONECTOR Y TORNILLO

HERRAMIENTA VALVULA DE DOSIFICACIÓN

HERRAMIENTA VALVULA DE DOSIFICACION

SOLIDWORKS Student Edition.
Solo para uso académico.

EXPLOSIONADO VALVULA DOSIFICADORA

Universidad Pública de Navarra
Nafarroako Unibertsitate Publikoa

E.T.S.I.I.T.
Ing. en Diseño Mecánico

DEPARTAMENTO:
Departamento de Ing. Mecánica, Energetica y de Materiales

REALIZADO:
J. Hernández Montenegro

FECHA: 10/06/2016
ESCALA: 1:2
Nº PLANO: 12
<table>
<thead>
<tr>
<th>Nº</th>
<th>NOMBRE PIEZA</th>
<th>DESCRIPCIÓN</th>
<th>MATERIAL</th>
<th>CANT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cuerpo valvula</td>
<td>66x27mm</td>
<td>aluminio anodizado</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>grupilla de interiori</td>
<td>B27.7M - 3BM1-22</td>
<td>acero inoxidable</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>enclave</td>
<td></td>
<td>acero inox. 303</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>junta torica</td>
<td>J515220x0173H</td>
<td>caucho</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>vaso</td>
<td></td>
<td>acero inox.303</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>junta torica</td>
<td>J515220x0093H</td>
<td>caucho</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>anillo graduado</td>
<td>referencia de regulacion</td>
<td>acero inox. 303</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>perilla de control</td>
<td>regulador de apertura</td>
<td>acero inox. 303</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>muelle1</td>
<td>muelle de compresion</td>
<td>aero inox.</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>aguja pistón</td>
<td>mecanismo apertura</td>
<td>acero inox. 303</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>arandela</td>
<td>Ø ext 9mm</td>
<td>acero inox.</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>junta torica</td>
<td>O-ring 18x1.8-A-ISO 3601-1</td>
<td>caucho</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>camara del fluido</td>
<td></td>
<td>aluminio anodizado</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>junta torica</td>
<td>O-ring 10x1.8-A-ISO 3601-1</td>
<td>caucho</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>junta torica</td>
<td>O-ring 10x1.8-A-ISO 3601-1</td>
<td>caucho</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>arandela2</td>
<td>Ø ext 7.5 Ø int 3.5</td>
<td>acero inox.</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>empaque3</td>
<td>Ø ext 9mm Ø int 3.5mm</td>
<td>caucho</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>empaque2</td>
<td>Ø ext 9mm Ø int 3.5mm</td>
<td>caucho</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>empaque1</td>
<td>Ø ext 9mm Ø int 3.5mm</td>
<td>caucho</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>resorte2</td>
<td>muelle de compresion</td>
<td>acero inox.</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>adaptador de puntas</td>
<td></td>
<td>aluminio anodizado</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>aguja dosificadora</td>
<td>NORDSONEFD-7018390 TIP 25GA TT 010 RD</td>
<td>polipropileno</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>cierre aguja</td>
<td></td>
<td>acero inox.</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>union</td>
<td>union cuerpo y camara fluido</td>
<td>acero inox.</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>tornillo pulgar</td>
<td></td>
<td>acero inox.</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>racor neumático</td>
<td>10-32 UNF</td>
<td>pvc y laton</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>24834</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>racor entrada fluido</td>
<td>1/8 NPT</td>
<td>acero</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>jeringa para fluido</td>
<td>NORDSONEFD-7012006 BARREL O 30CC BK</td>
<td>polipropileno</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>soporte</td>
<td>ensamble al robot</td>
<td>laton y HDPE</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Brida robot UR5</td>
<td>brid de ensamble UR5</td>
<td>polipropileno y HDPE</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>tornillo allen</td>
<td>ISO 4762 M6 x 10 --- 10N</td>
<td>acero inox.</td>
<td>4</td>
</tr>
</tbody>
</table>