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1. Introduction

Computer vision systems are made up of several stages
in which they try to extract the information of the image.
The stages and the purpose of its algorithms, depends on
the application of the artificial vision system. Usually the
systems are split in three main stages. The first stage is
devoted to noise filtering, smoothing or contrast enhan-
cement (it’s also known as preprocessing or low level vi-
sion), the second stage is devoted to image segmentation,
to split objects or regions according to their characteri-
stics (intermediate level vision). Third stage involves the
understanding of the scene (high level vision).

Uncertainty is present in every process of computer
vision, therefore fuzzy techniques have been widely use
in almost any of the processes. Extensions of fuzzy se-
ts are not as specific as their counter-parts of fuzzy se-
ts, but this lack of specificity makes them more realistic
for some applications. Their advantage is that they allow
us to express our uncertainty in identifying a particular
membership function. This uncertainty is involved when
extensions of fuzzy sets are processed, making results of
the processing less specific but more reliable. Many au-
thors based on this advantage proposed different image
processing algorithms using extensions of fuzzy sets. This
work presents a valuable review for the interested reader
of the recent works using extensions of fuzzy sets in image
processing. The chapter is divided as follows: first we re-
call the basics of the extensions of fuzzy sets, i.e. Type-2
fuzzy sets, Interval-valued fuzzy sets and Atanassov’s In-
tuitionistic fuzzy sets. In sequent sections we review the
methods proposed for noise removal (section 3), image en-
hancement (section 4), edge detection (section 5) and seg-
mentation (section 6). There exist other image segmenta-
tion tasks such as video de-interlacing, stereo matching or
object representation that are not described in this work.

2. Extensions of fuzzy sets

From the beginning it was clear that fuzzy set theo-
ry [48] was an extraordinary tool for representing hu-
man knowledge. Nevertheless, Zadeh himself established
(see [49]) that sometimes, in decision-making processes,
knowledge is better represented by means of some ge-
neralizations of fuzzy sets. A key problem of represen-
ting the knowledge by means of Fuzzy sets is to choo-
se the membership function which best represents such
knowledge.

Sometimes, it is appropriate to represent the member-
ship degree of each element to the fuzzy set by means of an
interval. From these considerations arises the extension of
fuzzy sets called theory of interval-valued fuzzy sets, that
is, fuzzy sets such that the membership degree of each

element of the fuzzy set is given by a closed subinterval
of the interval [0,1]. Hence, not only vagueness (lack of
sharp class boundaries), but also a feature of uncertainty
(lack of information) can be addressed intuitively.

These sets were first introduced in the 1970s. In May
1975 Sambuc (see [37]) presented in his doctoral thesis the
concept of an interval-valued fuzzy set named a @-fuzzy
set. That same year, Zadeh [49] discussed the representa-
tion of type 2 fuzzy sets and its potential in approximate
reasoning.

The concept of a type 2 fuzzy set was introduced by Za-
deh [49] as a generalization of an ordinary fuzzy set. Type
2 fuzzy sets are characterized by a fuzzy membership func-
tion, that is, the membership value for each element of the
set is itself a fuzzy set in [0, 1].

Formally, given the referential set U, a type 2 fuzzy set

is defined as an object A which has the following form:
A= {(w,2 pu(@))u € U,z € 0,1},

where x € [0,1] is the primary membership degree of u
and p, () is the secondary membership level, specific to
a given pair (u, ).

One year later, Grattan-Guinness [27] established a de-
finition of an interval-valued membership function. In that
decade interval-valued fuzzy sets appeared in the literatu-
re in various guises and it was not until the 1980s, that
the importance of these sets, as well as their name, was
definitely established.
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A particular case of a type 2 fuzzy set is an interval
type 2 fuzzy set (see [31]-[32]). An interval type 2 fuzzy

set A in U is defined by

A ={(u, A(u), pu(@))|u € U, A(u) € L([0,1])},

where A(u) is a closed subinterval of [0, 1], and the func-
tion g, (x) represents the fuzzy set associated with the
element u € U obtained when = covers the interval [0, 1];
1y () is given in the following way:

fu () = {

where 0 < ¢ < 1. It turns out that an interval type 2
fuzzy set is the same as an IVFS if we take a = 1.

Another important extension of fuzzy set theory is the
theory of Atanassov’s intuitionistic fuzzy sets ([1], [2])-
Atanassov’s intuitionistic fuzzy sets assign to each element
of the universe not only a membership degree, but also a
nonmembership degree, which is less than or equal to 1
minus the membership degree.

An Atanassov’s intuitionistic fuzzy set (A-IFS) on U
is a set

aif A(u) <z < A(u)

0 otherwise ’

A= {(u, NA(U)7VA(U))|H € U}v

where 11 4(u) € [0, 1] denotes the membership degree and
v4(u) € [0,1] the nonmembership degree of u in A and
where, for all u € U, pu;(u) +v4(u) < 1.

In [I] Atanassov established that every Atanassov in-
tuitionistic fuzzy set A on U can be represented by an
interval-valued fuzzy set A given by

A: U— L([0,1)
u— [pi(u), 1 —v;i(u), for all u € U.

Using this representation, Atanassov proposed in 1983
that Atanassov’s intuitionistic fuzzy set theory was equi-
valent to the theory of interval-valued fuzzy sets. This
equivalence was proven in 2003 by Deschrijver and Kerre
[20]. Therefore, from a mathematical point of view, the
results that we obtain for IVFSs are easily adaptable to
A-TFSs and vice versa. Nevertheless, we need to point out
that, conceptually, the two types of sets are totally diffe-
rent. This is made clear when applications of these sets
are constructed (see [43]).

In 1993, Gau and Buehrer introduced the concept of
vague sets [26]. Later, in 1996, it was proven that vague
sets are in fact A-IFSs [6].

A compilation of the sets that are equivalent (from a
mathematical point of view) to interval-valued fuzzy sets
can be found in [21]. Two conclusions are drawn from this
study:

1.- Interval-valued fuzzy sets are equivalent to A-IFSs (and
therefore vague sets), to grey sets (see [19]) and to L-
fuzzy set in Goguen’s sense with respect to a special lattice
L([0,1)).

2.- IVFSs are a particular case of probabilistic sets (see
[23]), of soft sets (see [3]), of Atanassov’s interval-valued
intuitionistic fuzzy sets and evidently of Type 2 fuzzy sets.

3. Noise Reduction

In this section we focus on gray scale images and the
use of fuzzy logic theory extensions for noise removal.

Many applications of image processing perform ima-
ge noise removal before any further processing such as
segmentation, enhancement, edge detection or compres-
sion. Noise removal is a crucial task for most applications
mainly for two reasons:

e Digital images are often corrupted by impulse noi-
se during image acquisition, image transmission and
image processing due to a number of imperfections
present in these tasks environments.

e The noise can critically affect any image post-
processing decisively compromising their performan-
ce.

For these reasons, noise removal is one of the most
important steps for most image processing applications,
regarding the overall performance of the applications and,
is still a challenging problem in image processing.

When using fuzzy sets for noise removal, since their
memberships are crisp values, it is not possible to know
which one is the best membership function and, different
membership functions will lead to different processing re-
sults. On the other hand, when using type-2 fuzzy sets,
since their membership functions are also fuzzy, provides
us with a more efficient way of dealing with uncertainty
and, consequently, a more robust way of determining the
membership functions.

In their work, Sun and Meng [39], make the assumption
that, since impulse corruption is usually large compared
with the strength of the signal, then the noise corrupted
pixels have intensity values that are near the saturated val-
ues (lower and upper limits of the gray scale used). Based
on this assumption, a inverted ladder membership func-
tion is used as initial membership function from which the
type-2 fuzzy set is constructed (Fig. 3).
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Fig3. Type-2 Fuzzy Set constructed from the initial
ladder membership function

After defining the inverted ladder membership func-
tion based on parameters a, a; and as, the lower and up-
per limits of the type-2 fuzzy set are obtained using the
following equations:
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where a € (1,2].

After the construction of the type-2 fuzzy set, the pro-
bability of a pixel been corrupted by impulse noise (PPC)
is represented by the centroid-type-reduction [46] of the
set. This way, the larger PPC means the bigger probabi-
lity of the pixel been corrupted and, the less PPC means
the less probability. Finally, a threshold of corruption is
established in such way that if the pixel’s PPC is bigger
than the threshold its restored value is the mean of the
pixels intensities in the subimage (n x n filtering window
centered at the pixel) and, if the pixel’s PPC is less than
the threshold it maintains its intensity.

Tulin, Basturk and Yuksel [42] proposed a type-2 fuzzy
operator for detail preserving restoration of impulse noise
corrupted images, that processes the pixels contained in a
3 x 3 filtering window and outputs the restored value of the
window center pixel. The proposed operator is structure
that combines four type-2 neuro-fuzzy filters, four defu-
zzifiers and a postprocessor. Each one of the type-2 NF
filters are identical and accept the center pixel and two
of its neighborhoods (processing the horizontal, vertical,
diagonal and reverse diagonal pixel neighborhoods of the
filtering window) and produces an output that represen-
ts the uncertainty interval (i.e., lower and upper bounds)
for the center pixel restored value in the form of a type-
1 interval. Each combination of the inputs of the filter
and their associated type-2 interval Gaussian membership
functions is represented by a rule in the form:

Zf(Xl S Mil)and(Xg S Mig)and(Xg S Mig),then
Ri = kin X1 + kio Xo + kis X3 + kig

There are N fuzzy rules in the rulebase where, R; de-
notes the output of the ith rule (IV rules, : = 1,2,--- N)
and M;; denotes the ith Gaussian membership function
of the jth input (3 inputs, j = 1,2,3) and is defined as
follows:

1 u—my;
Mij(u) = exp {_2(%' = )}

where m;; and o;; are the mean and the standard
deviation of the membership function, respectively.

Note that the membership functions M;; (Fig. 4)
are interval membership functions with their boundaries
characterized by upper and lower Gaussian membership
functions (see [42]).

Fig4. Type-2 interval Gaussian membership function

The optimal values for the parameters of each one of
the type-2 interval Gaussian membership functions are ob-
tained by training using the least squares optimization
algorithm. Finally, the output of each NF filter is the
weighted average of the individual rules outputs.

The defuzzifier blocks convert the input fuzzy sets co-
ming from the corresponding type-2 NF filters into a scalar
value by performing centroid defuzzification (the centroid
is the center of the type-1 interval fuzzy set).

The output of the defuzzifier blocks are four scalar val-
ues that are to be the candidates for the filtering window
center pixel restored value. The postprocessor converts
the four candidates into a single output value by discar-
ding the lowest and the highest values and averaging the
remaining two values.

In [42] Tulin, Basturk and Yuksel proposed an exten-
sion of this operator where the the original neighborhood
topologies (horizontal, vertical, diagonal and reverse dia-
gonal pixel neighborhoods) are extended to 28 possible
neighborhood topologies corresponding to a filtering ope-
rator with 28 NF filters, 28 defuzzifiers and a postpro-
cessor. However, authors emphasized that, for most fil-
tering applications, one does not have to use all of these
neighborhood topologies.

In this new operator, the NF filters and the defuzzifiers
work in the same way as in the original operator. The way
the new postprocessor produces the output value from the
scalar values obtained at the outputs of the defuzzifiers is
different from the original one. The postprocessor calcu-
lates the average of its inputs and truncates it to a 8-bit
integer number, which is the output of the operator.

Wang, Chung, Hu and Wu [45] proposed a interval
type-2 fuzzy filter for Gaussian noise suppression while
maintaining the original structure of the image. Based
on interval type-2 fuzzy sets is constructed a selective fee-
dback fuzzy neural network (SFNN) suitable for image
representation. In reality, this SFNN is a universal appro-
ximator that works as a filter for Gaussian noise suppres-
sion that preserves the fine structure of the image from
the theoretical viewpoint.

First, the image is fuzzified in using linguistic concepts
in such way that the gray scale interval is equally divided
in Ky partitions. Each one of these partitions is descri-
bed with a Gaussian shape and its membership function
obtained by drawing all the Gaussians having mean and
standard deviation.

The proposed SFNN has five components: two neu-
rons in the input layer (since, the input is a 2-D digital
image), three hidden layers and the output layer. Since,
a digital image can be viewed as a continuous 2-D func-
tion and, according to the structure of the SENN (see [45])
it can be used to approximate a continuous function, the
SENN is used to express a digital image and, a Gaussian
noise filter is designed based on it. For each one of the
K partitions a optimal gray level is computed in a small
operating window (mean of the pixels in the window) and,
the window gray level which is nearest to the optimal gray
level is selected as the optimal gray level in the operating
window.

After the operating window slides over the whole ima-
ge, the mean absolute error of the input image and the
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output image (filtered image) are calculated and if the
difference between these two values is less than a small
positive number the process stops; otherwise the gray le-
vels of the input image are replaced by the gray levels of
the output image and the process is restarted.

In [4], Bigand and Colot, use IVFS entropy to take
into account the uncertainty present in the image noise
removal process. Their motivation is to assess, and ulti-
mately remove, the uncertainty of the membership values
using the length of the interval in an IVFSs (the longer
the interval, the more uncertainty).

For each pixel, the uncertainty of a precise FS is
modeled by the closed intervals delimited by the upper
(nu(2)) and lower (pr(z)) membership functions defined
as follows:

pu (x) = [u(z; g, 0))%
pr(z) = [z g,0))?

where u(x; g,0) is a Gaussian fuzzy number defined as:

(x5 9,0) = exp [—;(x 9)2]
o
Then, in order to be used as a criterion to automatical-
ly find fuzzy region width and thresholds for segmentation
of noisy images, the entropy (which they wrongly called in-
dex of ultrafuzziness) of each one of the constructed IVFSs
is calculated as follows:

Q

1

T@ = 37w

[h(@)-(nu (2) = pr(@))]

I
=)

where G is the number of gray levels of a M x N image.

This entropy is used to obtain a image homogram (in
the same way as proposed by Cheng [18] using FSs) since,
according to the authors, I' represents the homogeneity di-
stribution across intensities of the considered image. This
homogram is used to find all major homogeneous regions
while filtering noise in such way that, if a pixel belongs to
one of these regions then the pixel is noise-free else pixel
is noisy.

Finally, using a 3 x 3 filtering window, the median filter
is applied to all the pixels identified as noisy pixels.

Discussion Efficient noise removal in corrupted images
is still a challenging problem in image processing most-
ly due to the imperfection/uncertainty inevitably present
in noisy environments. The main idea of these works is
to take into account the total amount of the impreci-
sion/uncertainty present in the process of image noise fil-
tering by means of the use of fuzzy sets extensions namely,
interval-valued fuzzy sets and type-2 fuzzy sets.

All the presented filters inherit the advantages of fuzzy
sets extensions theory, where an extra degree of fuzziness
provides a more efficient way of dealing with uncertainty
than with ordinary fuzzy sets.

Hence, using fuzzy sets extensions in noise filtering see-
ms to bee a very promising idea that can lead to the design
of efficient filtering operators.

4. Enhancement

In image enhancement, the main goal is to produce
a new image that endows more accurate information for
analysis than the original one. In this context, fuzzy logic
extensions are used to represent and manipulate the uncer-
tainty involved in the image enhancement process. Both
type-2 fuzzy sets and A-IFSs approaches presented in this
section, are able to model and minimize the effect that the
uncertainty has in the image enhancement problem.

Image Enhancement using Type-2 Fuzzy Sets
In [22], Ensafi and Tizhoosh proposed a type-2 fuzzy ima-
ge enhancement method based on extension of the local-
ly adaptive fuzzy histogram hyperbolization method [41],
improving its performance by extending it from a type-1
to a type-2 method where the additional third dimension
of the type-2 sets gives more degrees of freedom for bet-
ter representation of the uncertainties associated with the
image.

First, based on the value of homogeneity promo, the
image is divided into several sub-images.

2
9maxLocal — YminLocal )

HHomo = (1 -
9ImazGlobal — YminGlobal

Setting the minimum and maximum local window sizes
to 10 and 20 respectively and, using a fuzzy if-then-else
rule, the local window size surrounding each supporting
point is calculated.

The type-2 fuzzy set is obtained by blurring the type-1
fuzzy set defined by the membership function p(gm,,) of
each gray level.

Imn — min

Imazx — Imin
Where g,,,, represents the pixel gray level and, g, and
Jmaa represent the image minimum and maximum gray
levels respectively.
The type-2 fuzzy set is constructed defining the upper
and lower membership values using interval-valued fuzzy
sets in the following way:

popper(@) = (u(@)*°  prowsr(r) = (u(z))?

And, the proposed type-2 membership function is defined
by:

pr2(gmn) = (BLowrr X @) + (puppeR X (1 — @)

with a = 9izan

where, L is the number of gray levels and gpjeqn the
mean gray value of each sub-image.

Finally, using the ppo values, the new gray levels of
the enhanced image are calculated using the following
expression with g = 1.1:

Lx1 s
/ u(gmn
rmn (6/1 X 1) % |:el(g : 1
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Image Enhancement using A-IFSs Entropy In [44],
Vlachos and Sergiadis studied the role of entropy in A-IFSs
for contrast enhancement. Different concepts of entropy
on A-TFss and their behavior are analyzed in the context
of image enhancement.

In this work, image enhancement is regarded as a en-
tropy optimization problem within an A-IFS image pro-
cessing framework where, in the first stage the image is
transferred into the fuzzy domain and sequentially into
the A-TFS domain, where the proposed processing is per-
formed. Finally, the inverse process is carried out in order
to obtain the processed image in the gray-level domain.

Therefore, an intuitionistic fuzzification scheme for
constructing an A-IFS for representing the image, based
on entropy optimization, was proposed. First, the image
(N x M pixels having L gray-levels) is represented in the
fuzzy domain by A.

A = {(gij, 1a(gi;))|gi; € 0, x, L — 1}

with, i € {1, x, M} and j € {1, x, N}.

A optimal derivation of a combination of membership
and non-membership functions that model the image gray-
levels is achieved by maximizing the intuitionistic fuzzy
entropy of the image (i.e., maximum intuitionistic fuzzy
entropy principle).

First, the membership function p(g) of the fuzzified
image is calculated.

g — Imin
9Imaxz — Imin

palg) =

The A-TIFS for representing the image,

A={{g,14(g;:N),vi(g:M)|g €0,%x,L—1}

is then constructed, by means of p4(g), using the
following expressions:

14(9, ) =1—(1— pa(g)*
and

va(g, ) = (1= pa(g) O+

where A is obtained using an optimization criterion
that is formulated as follows:

A=arg max {E(A;\)}
A>1

Where FE is an entropy measure. Entropies pro-
posed by Burillo and Bustince [5] and by Szmidt and
Kacprzyk [38] where used.

The defuzzification is made using the maximum index
of fuzziness intuitionistic defuzzification [43] by selecting
a parameter « in the following way:

0, ifa/ <0
a=<da, ifo<a <1
1, ifa/ >1

where

o Xm0 hal@)malg V(A — 241495 0)
23020 halg)m?(g; )

with h4 being the histogram of the fuzzified image A.

Finally, the new intensity gray levels ¢’ are obtained
through the expression:

g =(L- 1>/~LDQ(A)(9)

where

tip,i)(9) =a+ (1 —a)ui(g ) —avi(g;A)

Discussion In their work, Ensafi and Tizhoosh [22] de-
monstrated that using type-2 fuzzy logic a better ima-
ge contrast enhancement is achieved than with its type-1
counterpart.

In Vlachos and Sergiadis approach [44], A-IFSs are
used as a mathematical framework to deal with the va-
gueness present in a digital image by means of the A-IFS
extra degree of freedom that allows a flexible modeling of
imprecise and /or imperfect information present in images,
better than classical fuzzy sets. They concluded that the
different notions of intuitionistic fuzzy entropy used [3] [38]
treat images in different ways, making the selection of the
appropriate entropy measure to be application-dependent.

5. Edge Detection

In the ideal case, the result of applying an edge de-
tector to an image may lead to a set of connected cur-
ves that indicate the boundaries of objects, the bounda-
ries of surface markings as well curves that correspond to
discontinuities in surface orientation. Thus, applying an
edge detector to an image may significantly reduce the
amount of data to be processed and may therefore filter
out information that may be regarded as less relevant,
while preserving the important structural properties of an
image.

Fig 6. Example image
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Fig7. Example of edge detection

One of the seminal works of edge detection was Can-
ny’s [15]. Its aim was to discover the optimal edge detec-
tion algorithm. In this situation, an optimal edge detector
means:

e Good detection - the algorithm should mark as many
real edges in the image as possible.

e Good localization - edges marked should be as close
as possible to the edge in the real image.

e Minimal response - a given edge in the image should
only be marked once, and where possible, image
noise should not create false edges.

Some fuzzy approaches to edge detection already exist
and perform quite well (see [28]). Why then work with an
extension of fuzzy sets? A classical definition of what an
edge within an image should be is: a significantly change
in the intensity of adjacent neighboring pizels. To state
a specific threshold on how large the intensity change be-
tween two neighboring pixels must be, is not a simple task
and obviously depends on the scene, illumination etc. So
it’s clear that extensions of fuzzy sets can be used to deal
with this uncertain concept.

In the literature of extensions of fuzzy sets applied to
edge detection there exist three different approaches. In
the first one the main idea is to assign each pixel of the
image with an interval, and then measuring its entropy de-
cide if it’s edge or not. In the second approach a interval
type fuzzy system is used to classify pixels and, in the third
approach AIFSs are used to deal with the uncertainty of
edge pattern matching.

First approach [12]: Consider the fact that edge de-
tection techniques attempt to find pixels whose intensity
(gray level) is very different from those of its neighbors.
An element of f (image) belongs to an edge if there is a big
enough difference between its intensity and its neighbors*
intensities. (Notice that this definition is intentionally fuz-
zy in its own right). The method begins assigning an IVFS
to each matrix f and therefore each element has associated
an interval as membership degree. The lower and upper
bounds of this interval are determined by the concepts of
tn-processing and sn-processing

Definition 1 ([10]) Consider a matriz f € M, any two t-
norms T1 and Ty in [0, 1], and a positive integer n less than

or equal to % and % We define the tn-processing of
f as follows:

91, 1, + M — M, given by
9t (f2,y) = T1 (Ta(f(z—diy—j), f(z,9))

j=—n

withn<z<N-(n+1)n<y<M-(n+1)

In this case it is said that we use a submatrix of order
(2n+1)x (2n+1).

Definition 2 ([I0}]) Let n be an integer number grea-
ter than zero. We define the IVn matriz associated with
f € M as the interval-valued fuzzy set G™ given by

G" = {((z,9), G"(x,y) = [97, 1, (f(z,9)), 9%, s,(f(z,9))]
€ L([0,1]))|zr € X,y €Y}

being gy, 1, and gg g, the tn-processing and the
sn-processing given by Definition[1]

Obviously, we can also associate with each matrix f the
following interval-valued fuzzy set f: f = {((z,y), f(z,y) =

[f(z,y), f(z,y)] € L([0,1])) |z € X,y € Y}

The following definition associates with the IVFS G a
fuzzy set whose membership function is the length of the
intervals in G™.

Definition 3 ([10]) Given a matriz f € M and its corre-
sponding G™. We call W-matriz of f, a new matriz obtai-
ned by assigning to each of its elements the corresponding
interval length of G™. It is denoted as W(G™). Therefore
WG = {((z.y),W(G")(x,y) = g8 s (f(x,y) -
91,1, (f(z,9)(z,y) € X x Y}e FSs(X xY).

Every matrix f is thus associated with an interval-valued
fuzzy set G™ and a fuzzy set W (G™).

The normalized entropy of G™ is given by the following
expression:

n<z<N-—(n+1)
n<y<M—(n+1)

(N=2-n)x (M—-2-n)

95, .5, (f(x,9)) — g1, 1,(f(z,9))

En(G™) =

(2)
It is logical to relate those elements of G whose member-
ship degree intervals are large to the location of the edge.
This fact leads us to establish the following;:

The normalized entropy of G™ establishes the avera-
ge length of the intervals that represent the membership
function of the elements. A large entropy implies that the
intervals are large, meaning that the difference between
g1, 1, and g3 o, tends to be large for each element. In
such a matrix there are many changes in intensity, and
a higher proportion of elements belong to an edge. Con-
versely, a small entropy implies that few elements of the
matrix belong to an edge. The normalized entropy of G
therefore indicates the proportion of elements that are part
of an edge.

Definition 4 We say that an element (x,y) belongs to the
bright zome edge if it satisfies the following two items:
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. Vv (f(@9)+9x A b n
(2) f(x,y) > gu.v (f( y))2g, (f(z,y)) — KO‘S(G (CE,y)),

and

(i) its interval has sufficient length.

To identify elements of G™ with a long enough interval
to belong to an edge, we start by considering two intensity
values p and ¢ whose values are yet to be determined. For
the moment, we simply require p < ¢ and p,q € [0, 1] (in
a binary image, we would have p = 0 and ¢ = 1). From
these two values we base on the following rule to obtain
the edges:

(a) If W(G™(x,y)) > g, then the element belongs to an
edge.

(b) If p < W(G™(z,y)) < q, then we need a way of
distinguishing elements that belong to the edge from those
that do not belong.

(c) If W(G™(x,y)) < p, then the element (z,y) ge-
nerally does mnot belong to the edge. Such elements
can be considered, however, if very few elements satisfy
conditions (a) and (b).

From previous rule is proposed the following algorithm,
in which relevant pixels are added to the edge by means
of different actions (please see [12]).

(BZ1) Calculate the IVn matriz G™ and its as-
sociated W-matriz (by means of gy, and

g@,v)-

(BZ2) Calculate p and q, then construct the sets G},
Gy, and Gy.

(BZ3) Calculate the entropies Ex(Gp), En(Gy,)
and Ex (GY).

(BZ4) Calculate Tx A(f,G™).

(BZ5) Calculate En(TAnEG)R),
EN(Ton(E.GM),) and Ex(Ton(£.G7)7).

(BZ6) Execute (Actionl), (Action2) or (Ac-

tion3).
(BZ7) Sum the binary images obtained in (BZ6).
(BZ8) Clean and thin the lines.

Fig 8. Example image

Fig 9. Edge image after Action 1

Fig 10. Edge image after Action 2

Fig 12. Edge image after BZ8

Second approach [33], [34]: the goal is to design a
system which makes it easier to include edges in low con-
trast regions, but which does not favor false edges by effect
of noise. Because of this specifications the authors design
an Interval type 2 fuzzy system.

The system has 4 inputs and one output that is the
degree of edginess of each pixel.

The input variables are the gradients with respect to
x-axis and y-axis, to which they call DH and DV respec-
tively. The other two inputs are the pixels filtered when
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convolute two masks to the original image. One is a high-
pass filter and the other a low-pass filter. The high-pass
filter HP detects the contrast of the image to guarantee
the border detection in relative low contrast regions. The
low-pass filter M allow to detect image pixels belonging
to regions of the input were the mean gray level is lower.
These regions are proportionally more affected by noise,
supposed uniformly distributed over the whole image.

Seven interval valued fuzzy rules allow to evaluate the
input variables, so that the obtained image displays the ed-
ges of the image in color near white (HIGH tone), whereas
the background was in tones near black (tone LOW).
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Fig 13. Interval valued membership functions
designed for the input variables and the output
variable: Degree of “edginess”.

1. If (DH is LOW) and (DV is LOW) then (EDGES is
LOW)

2. If (DH is MEDIUM) and (DV is MEDIUM) then
(EDGES is HIGH)

3. If (DH is HIGH) and (DV is HIGH) then (EDGES
is HIGH)

4. If (DH is MEDIUM) and (HP is LOW) then
(EDGES is HIGH)

5. If (DV is MEDIUM) and (HP is LOW) then
(EDGES is HIGH)

6. If (M is LOW) and (DV is MEDIUM) then (EDGES
is LOW)

7. If (M is LOW) and (DH is MEDIUM) then (EDGES
is LOW)

Third Approach [16]:the authors propose an intui-
tionistic fuzzy divergence to deal with the uncertainty in

an edge pattern matching scheme. The intuitionistic fuz-
zy set takes into account the uncertainty in assignment of
membership degree known as hesitation degree.

The main idea behind template edge matching is to
detect tipical intensity distributions that are usually in
edges. The authors propose the following algorithm to
deal with uncertainty present in the matching process by
means of an intuitionistic divergence.

e Step 1. Form 16 edge-detected templates.

e Step 2. Apply the edge templates over the image
by placing the center of each template at each point
(i,j) over the normalized image.

e Step 3. Calculate the intuitionistic fuzzy divergen-
ce (IFD) between each elements of each template
and the image window and choose the minimum IFD
value.

e Step 4. Choose the maximum of all the 16 minimum
intuitionistic fuzzy divergence values.

e Step 5. Position the maximum value at the point
where the template was centered over the image.

e Step 6. For all the pixel positions, the max-min value
has been selected and positioned.

e Step 7. A new intuitionistic divergence matrix has
been formed.

e Step 8  Threshold the intuitionistic divergence
matrix and thin.

e Step 9. An edge-detected image is obtained.

Experimental studies reveal that, for edge detection
the result is completely dependent on the selection of he-
sitation constant and thereby by the hesitation degree
(also called the intuitionistic fuzzy index). The intuitio-
nistic method detects the dominant edges clearly, while
removing the unwanted edges.

6. Segmentation

Image segmentation is a critical and essential compo-
nent of image analysis and/or pattern recognition system
and is one of the most difficult tasks in image processing,
that can determine the quality of the final result of the
system.

The goal of image segmentation is the partition of an
image in different areas or regions.

Definition 5 Segmentation is grouping pizels into re-
gions such that

1. UF_ | P; = Entire image ({P;} is an evhaustive
partitioning).

2. PNP; =0,i# j ({P;} is an exclusive partitioning).

3. Each region P; satisfies a predicate; that is, all points
of the partition have some common property.

4. Pizels belonging to adjacent regions, when taken
jointly, do not satisfy the predicate.

There exist three different approaches using fuzzy
methods:



Mathware & Soft Computing Magazine. Vol. 18 n. 1

40 /[71]

e Histogram thresholding.
e Feature space clustering.

e Rule based systems.

There exist different works that use extensions of fuz-
zy sets within the three approaches. The most commonly
studied method is thresholding with extensions of fuzzy
sets. The first work on this topic was made by Tizhoosh
[40].

One of the earlier papers of fuzzy thresholding is [30]
in 1983. The idea behind the fuzzy thresholding is to first
transfer the selected image feature into a fuzzy subset by
means of a proper membership function and then select
and optimize a global or local fuzzy measure to attain the
goal of image segmentation.

In [36] the authors used the S-function to fuzzify the
image. They minimize the entropy in such a way that the
final segmented image is the one which has less doubtful
pixels.

Said membership functions represent the brightness set
within the image. The basic idea of using this member-
ship function is that, if we take the value of a parameter
as the threshold value, the dark pixels should have low
membership degrees, and on the contrary, brighter pixels
should have high membership degrees. The pixels with
membership function near 0.5 should be the ones that are
not clearly classified. Therefore the set with less entro-
py is the set with less amount of pixels with uncertain
membership (around 0.5).

In 2005 Tizhoosh [40] presented a paper that uses In-
terval type 2 fuzzy sets in image thresholding (we must
point out that he tries to use type 2 fuzzy sets, however
in the paper he only uses Interval Type 2 fuzzy sets). His
study is based on the modification of the classical fuzzy
algorithm of Huang and Wang [29], so that he applies an
« factor as interval generator to the membership function.
Starting from a membership function, Tizhoosh obtains
an interval valued fuzzy set that “contains” different mem-
bership functions and is useful for finding the threshold of
an image.

1 1

09 09
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Fig.14 Threshold as a fuzzy number used by
Tizhoosh. Transformation of a FS into a IVFS.

He assigns each intensity with the following interval
of membership, puy and gy being the upper and lower
membership degrees:

nr(g) = p(g)” (3)

1w (g) = p(g)*

With a € (1,00), and therefore 0 < ur(q) < py(g) < 1.
Sometimes parameter « can be interpreted as linguistic
edges.

Tizhoosh’s idea for proposing his algorithm is to “re-
move the uncertainty of membership values by using type
11 fuzzy sets”.

Vlachos and Sergiaidis [43] also propose a modification
of Tizhoosh’s algorithm, using Atanassov’s intuitionistic
fuzzy sets (see [I]). Their basis are membership functions
similar to Huang’s but, instead of minimizing the entro-
py, the algorithm minimizes the divergence with set 1 (see
[I7]). The structure of the intuitionistic algorithm is the
same as Tizhoosh’s. The construction of the intuitionistic
fuzzy sets is done in the following way:

(4)

14lg:t) = Apa(g,t)
VA(g,t) = (i - AMA(gvt)))\

With A € [0,1], being A an intuitionistic fuzzy set, and
the divergence:

24 4(g,t)
1+ ps(g.t)

L-1
DIFS(A7 17 t) :Zh’A(g) <#A(g,t)ln
9=0 (5)

2
+v;(g,t ln2+ln)
alg 1) 1+ ps(g.t)

Tizhooh’s algorithm is applied directly to color seg-
mentation using RGB in [35]. Moreover in [47] it’s used
to segment color image skin lesions.

But there exist an improvement of Tizhoosh algorithm,
that arises from the selection of the membership functions.
It was proved, that the membership functions that best
represent the image are the ones used in [25, 29)], that re-
present how similar the intensity of each pixel is to the
mean of the intensities of the object or to the mean of the
intensities of the background. By defining the functions
in this way, the set with lowest entropy is the set that
contains the greatest number of pixels around the mean
of the intensities of the background and the mean of the
intensities of the object.

Starting form the idea of obtaining the uncertainty
from the information given by the user, we have propo-
sed several approximations using A-IFS [8, [0] (where the
key point is to calculate the intuitionistic index) and also
using interval valued fuzzy sets [7] (where the key point
is to calculate the lengths of the intervals). These works
lead us to introduce the concept of an ignorance function
to try to model the lack of knowledge from which experts
may suffer when determining the membership degrees of
some pixels of an image Q to the fuzzy set representing
the background of the image, @p, and to the fuzzy set
representing the object in the image, Qo.

The classical fuzzy thresholding algorithm is modified
due to the user should pick two functions, one to represent
the background and another one to represent the object.
We have chosen this representation since, in this way, the
expert is able to get a better representation of the pixels
for which he is not sure of their membership to the object
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or the background. In Fig. 15 we show two membership
functions, one to represent the background and the other
to represent the object.
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Fig 15. Two different membership functions to
represent the background and the object with t=150

As we have already said in the previous paragraph, we
are going to represent the images by means of two diffe-
rent fuzzy sets. For this reason, in our proposed algorithm
we introduce the concept of ignorance function G,. Such
functions are a way to represent the user’s ignorance for
choosing the two membership functions used to represent
the image (object and background). Therefore, in our al-
gorithm we will associate to each pixel three numerical
values:

e A value for representing its membership to the ba-
ckground, which we will interpret as the expert’s
knowledge of the membership of the pixel to the
background.

e A value for representing its belongingness to the
object, which we will interpret as the expert’s
knowledge of the membership of the pixel to the
object.

e A value for representing the expert’s ignorance of
the membership of the pixels to the background or
to the object. This ignorance hinders the expert
from making an exact construction of the member-
ship functions described in the first two items and
therefore it also hinders the proper construction of
step (a) of the fuzzy algorithm. The lower the value
of ignorance is, the better the membership function
chosen to represent the membership of that pixel to
the background and the one chosen to represent the
membership to the object will be. Evidently, there
will be pixels of the image for which the expert will
know exactly their membership to the background
or to the object but there will also be pixels for whi-
ch the expert is not able to determine if they belong
to the background or to the object.

Under these conditions, if the value of the function of
ignorance (G,,) for a certain pixel is zero, it means that
the expert is positively sure about the belongingness of
the pixel to the background or to the object. However, if
the expert does not know at all whether the pixel belongs
to the background or to the object he must represent its

membership to both with the value 0.5, and under these
conditions we can say that the expert has total ignorance
regarding the membership of the pixel to the background
and the membership of the same pixel to the object.

In [I3] a methodology is proposed to construct
Ignorance functions.

Ignorance functions can be constructed from t-norms
as the miimum or te product or other functions like the
geometric mean that are not t-norms. We have proposed
several ways to construct IVFSs from a fuzzy membership
function and an ignorance function.

In [13] it’s proved that solution provided by the IVFS
algorithm is better than the solution provided by the fuzzy
algorithm when wrong membership functions are chosen
and for special type of images (ultrasound images) the
ignorance functions are useful for fast segmentation.

Clustering: A very common method for segmenting
images is clustering. The most studied algorithm for this
purpose is the Fuzzy Cluster Means (FCM), which aims
to find the most characteristic point of each cluster, con-
sidered its centroid, and the membership degree of every
object to each cluster. Some authors have adapted this
algorithm to type-2 fuzzy sets. In [30] Hwang et al. try to
define and manage the uncertainty of fuzzifier m in FCM.
They define the lower and upper interval memberships
using two different values of m. To manage appropria-
tely the uncertainty defined in an interval type-2 fuzzy set
through all steps of FCM, they update cluster centers em-
ploying type reduction and defuzzification methods using
type-2 fuzzy operations.

In [24] Jurio et al. transform the original image into
an interval valued fuzzy set and adapt the FCM to it. In
order to do that, we calculate the distance between each
pattern and each cluster by the interval-valued restricted
equivalence function.

Fuzzy rule based systems:

Data driven methods have also used in image segmen-
tation. Starting from man made segmentations as ground
truth data, machine learning algorithms have been used
to create intellingent systems devoted to segment similar
images as the trainig ones. Neural networks are the most
common, and also fuzzy rule based systems have provided
good results.

In [14] we introduce an application of interval-valued
systems to the segmentation of prostate ultrasound ima-
ges. The system classifies each pixel as prostate or back-
ground. The input variables are the values of each pixel
in different processed images as proximity, edginess and
enhanced image. The system has 20 rules and is trained
with ideal images segmented by an expert.

7. Final remarks and future trends

As a brief resume of the conclusions of all the works re-
viewed using extensions of fuzzy sets in image processing,
authors claim that the motivation of using extensions is
their capability to deal with uncertainty present in all ima-
ge processing steps. Looking to the results presented we
can say that this research line is really promising. However
we have found two points that we must notice:

1. All works that have been revised use interval type
2 fuzzy sets, although in the title are presented as
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type-2 fuzzy sets. This occurs maybe due to the
complexity of dealing with real type-2 fuzzy sets or
due to the fact that it’s really difficult to define a
type-2 fuzzy set.

2. Works dealing with intuitionistic fuzzy sets, do not
use the complete information given by the intui-
tionistic fuzzy sets. The non-membership does not
represent anything. Authors use the hesitation in-
dex 7 but as we have seen in the introduction it is
equivalent to the length of an interval in IVFS. A
really important conclusion is that all works can be
done using Interval valued fuzzy sets. Therefore a
problem of notation and work visibility is derived.

Hence future research, form the extensions point of
view, must focus on problems that definition and com-
putation of general type 2 fuzzy sets are tractable. Al-
so0, finding applications or image representations in which
membership and non-membership can be generated inde-
pendently in order to use all of the power of A-IFSs, should
be researched.

From the point of view of image processing algorithms
point of view, extensions of fuzzy sets can also be used in
video summarization or content image retrieval.
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