TECHNICAL SPECIFICATIONS AND QUALITY CONTROL PROCEDURES FOR REDUCING THE UNCERTAINTY IN PV INSTALLATIONS: RESULTS OF THE FP7 PROJECT PVCROPS


POLITÉCNICA

Instituto de Energía Solar

F. Martínez-Moreno (francisco.martinez@ies-def.upm.es), E. Lorenzo (lorenzo@ies-def.upm.es)

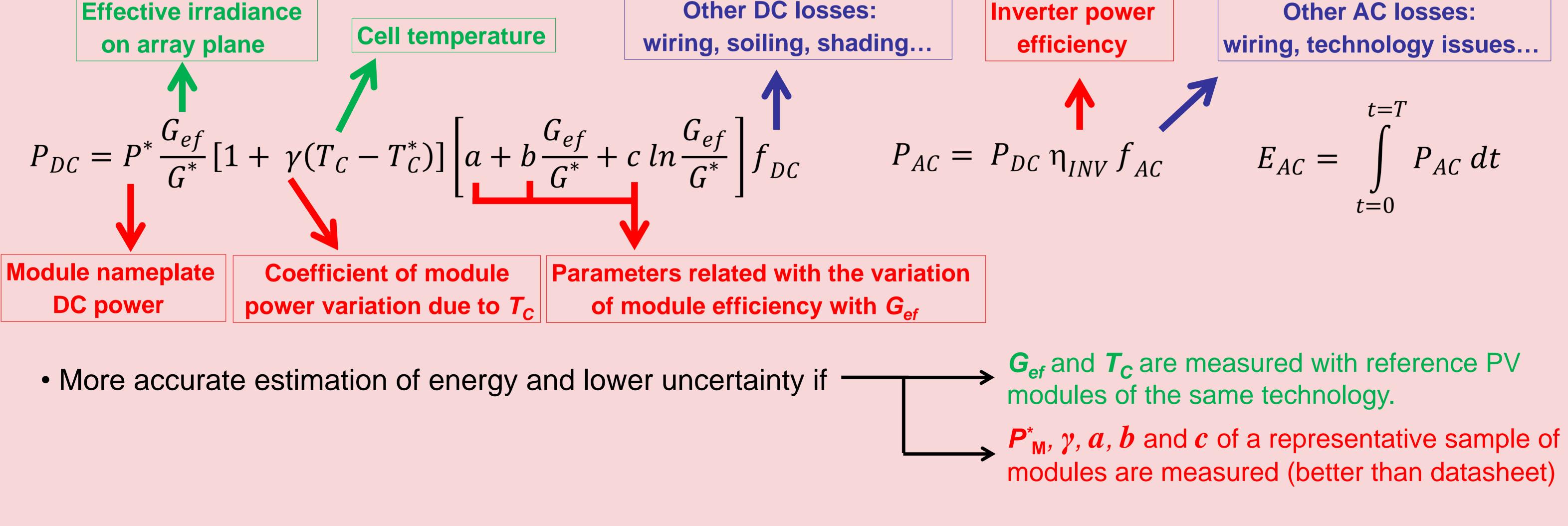
L. Narvarte (navarte@ies-def.upm.es), R Moretón (rodrigo.moreton@ies-def.upm.es)

N. Tyutyundzhiev (pv-jet@phys.bas.bg), I. De La Parra (inigo.delaparra@unavarra.es)

5BV.2.15

1. INTRODUCTION

• Large grid-connected PV plants have become an interesting financial product all around the world:


The annual energy production should be maximized

- The uncertainty of the investment and the risk of failures should be minimized
- The responsible for a possible under perfomance must be easily detected -
- Technical and financial issues should be linked
- PVCROPS project has developed:
 - A free sofware tool for the energy yield forecast (SISIFO)
 - A general proposal of technical specifications and the corresponding quality control procedures to check if they are fulfilled
 - Testing kits to perform the quality control procedures

2. ENERGY YIELD FORECAST

 SISIFO is a free software tool (<u>www.sisifo.info</u>) to simulate energy production that uses a model based on parameters guaranteed by the manufacturers, a baseline losses scenario and operating conditions.

→ Module manufacturer → Inverter manufacturer Designer Constructor Operation and maintenance staff

3. TECHNICAL SPECIFICATIONS AND QUALITY CONTROL PROCEDURES

- The technical specifications (TS) report about how the PV installation must be implemented
- The quality control procedures establish the tests that should be done to ensure the PV installation meets the TS
 - G_{ef} and T_C measured from reference PV modules (same angular, spectral, thermal, dirt response) \rightarrow Uncertainty reduced
 - PV modules not only characterized at STC (P_M^*), but also behaviour with T_c (γ) and with $G_{ef}(a, b)$ and c) T
 - Analysis of PR at Standard Test Conditions (PR_{STC}, not site-dependent nor time-dependent) -
 - Real behaviour of PV plant: DC power characterization, inverter efficiency, AC power response (actual losses scenario) —

We are looking you forward in the parallel event (Thursday 17th Sept 13:20–18:30):

"PVCROPS: Novel solutions for a high PV penetration in EU electrical networks with lower LCOE"

(At 17:00: Quality control procedures for the bankability of PV plants: Software and Hardware solutions)