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Abstract

This dissertation deals with the use of glass-coated amorphous ferromag-
netic wires in microwave engineering. To this end, analytical and equiv-
alent circuit models of the scattering of electromagnetic fields by a single
ferromagnetic wire are formulated. Those models are employed to study
the main phenomena related to the scattering by a ferromagnetic wire,
including the transition from surface to bulk effects, and the multiple pe-
culiarities of the absorption spectrum. Fundamental limits on the balance
of powers involved in the scattering problem, as well as their technolog-
ical implications, are also addressed. Moreover, structures composed of
several ferromagnetic wires are modeled as artificial electromagnetic ma-
terials (which are found to belong to the class of artificial dielectrics with
magnetically controlled permittivity) and artificial impedance surfaces.

Based on these fundamental studies, reconfigurable electromagnetic
absorbers and mechanical-stress contact-less sensors are identified as the
most promising applications. In this regard, proof-of-concept designs of a
wideband absorber with a reconfigurable non-absorbing notch, and a re-
configurable absorber with a narrow absorbing band are presented. These
absorbers could be employed in practice to track objects hidden to exter-
nal observers and to mitigate interferences in wireless communications.
As for contact-less sensing, a retrieval technique aimed to characterize
the wires under mechanical-stresses is introduced. The frequency posi-
tion of the natural ferromagnetic resonance of the studied wires is seen to
increase along with elongation, which suggests a potential use as contact-
less sensors for architectural and health monitoring.
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Resumen

En esta tesis se ha estudiado el uso de hilos ferromagnéticos recubiertos de
vidrio en ingenieŕıa de microondas. Para este fin, se han formulado mode-
los anaĺıticos y equivalentes circuitales de la interacción entre un hilo ferro-
magnético y campos electromagnéticos. Dichos modelos se han utilizado
para estudiar los fenómenos más relevantes relacionados con la interacción
entre un hilo ferromagnético y campos electromagnéticos, incluyendo la
transición de efectos superficiales a volumétricos, y las múltiples pecu-
liaridades del espectro de absorción. Además, se han investigado los
ĺımites fundamentales en el equilibrio de potencias presente en interac-
ciones de un hilo ferromagnético con campos electromagnéticos, aśı como
sus implicaciones tecnológicas. Estructuras consistentes en varios hilos
ferromagnéticos se han modelado como materiales electromagnéticos ar-
tificiales (los cuales pertenecen a la clase de materiales dieléctricos con
permitividad controlada por las propiedades magnéticas de los hilos) y
superficies artificiales.

Basado en estos estudios fundamentales, absorbentes electromagnéticos
reconfigurables y sensores de estrés mecánico basados en técnicas de radar
se han identificado como las aplicaciones más prometedoras. A este re-
specto, se han presentado diseños de prueba de concepto de un absorbente
de banda ancha con una banda estrecha de reflexión, y un absorbente de
banda estrecha. Dichos dispositivos podŕıan utilizarse en la práctica para
monitorizar objetos ocultos a observadores externos, y para mitigar inter-
ferencias en comunicaciones inalámbricas. En lo concerniente a sensores
de estrés mecánico basados en técnicas de radar, se ha presentado un pro-
cedimiento para caracterizar los hilos bajo estreses mecánicos. Utilizando
dicha técnica se han caracterizado hilos en los que la posición en frecuen-
cia de la resonancia ferromagnética natural aumenta en función del estrés
aplicado. Estos resultados sugieren el uso de hilos ferromagnéticos para
monitorizar estructuras arquitectónicas e implantes.
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Chapter 1

Introduction

This preliminary chapter explains the background, goal and motivation of
this work. For the sake of clarity, it starts introducing some basic concepts
concerning amorphous glass-coated ferromagnetic wires, their fabrication
and properties.

1.1 Amorphous Glass-Coated Ferromagnetic

Wires

Amorphous glass-coated ferromagnetic wires consist of a metallic amor-
phous wire, with a diameter typically in the order of microns, covered with
a Pyrex coating [1]. Fig. 1.1 represents a Scanning Electron Microscope
(SEM) image of one of these wires.

These wires are fabricated by means of a modified Taylor-Ulitovsky
method, described in Section 1.1.1, in which both coating and metallic

Figure 1.1 – SEM image of a glass-coated amorphous ferromagnetic wire. The
image was taken at the Foundation for the Research and Development of Nanotech-
nology in Navarra (Fidena) with the assistance of J. Bravo.
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2 1.1 Introduction to Ferromagnetic Wires

core are processed at the same time. On the one hand, Pyrex-type borosil-
icate compositions are usually employed for the wire coating. Note that
the coating is not selected due to its electromagnetic properties, but in
order to fulfill the technological demands of the fabrication process. On
the other hand, the metallic core is made of a complex alloy, e.g., (CoFeN-
iMn)(SiBCMo) [2], which is selected on the basis of its electrical and mag-
netic properties. In particular, (CoFeNiMn) are the main alloy elements
that determine the ferromagnetic properties of the wire, and (SiBCMo)
are added to enable the amorphicity of the alloy. Additional components
such as Cr can also be employed in order to enhance chemical properties
of the alloy, such as corrosion resistance.

Amorphous glass-coated ferromagnetic wires are known to feature
good mechanical, electric and, more importantly, magnetic properties,
such as Large Barkhausen jump (LBE) [3], Giant Magneto Impedance
(GMI) [4] and Natural Ferromagnetic Resonance (NFMR) [5]. Because
of that, amorphous glass-coated ferromagnetic wires have a wide range of
potential applications, and have been traditionally demanded in the sens-
ing field [6]. A survey of their more relevant properties has been included
in Section 1.1.2.

For the sake of brevity, amorphous glass-coated ferromagnetic wires
will be simply referred to as “ferromagnetic wires” along this disserta-
tion. Naturally, there are other structures that might be also labeled as
ferromagnetic wires. However, this abuse of language has been considered
necessary to simplify the reading of the dissertation and the illustration
of the results.

1.1.1 Fabrication Process

Amorphous glass-coated ferromagnetic wires are fabricated by rapid quench-
ing from the melt by using the modified Taylor-Ulitovsky method [7, 8],
also known as the glass-coated melt spinning method. All the wires mea-
sured in this dissertation have been fabricated through such technique in
collaboration with Prof. M. Vázquez at the Material Science Institute of
Madrid (ICMM), Group of Nanomagnetism and Magnetization Processes.

Fig. 1.2 represents a schematic drawing (extracted from [9]) of the
Taylor-Ulitovsky fabrication process, as well as a photograph taken during
the fabrication of the wires at the Material Science Institute of Madrid
(ICMM). The process can be summarized as follows: In the first place,
the metallic alloy that composes the core is put into a Pyrex-like glass
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Figure 1.2 – Schematic drawing (extracted from [9]) of the Taylor-Ulitovsky fab-
rication process, and photograph taken during the fabrication of the wires at the
Material Science Institute of Madrid (ICMM)

tube and placed within a coil, which acts as a heater. Then, the alloy is
melted by the field produced by the coil and the end of the glass tube is
softened, enveloping the metal. Hence, around the molten metal there is a
glass cover which allows the drawing of the capillarity. Along this process
the glass tube displaces down, and the as-formed wire is cooled by a water
jet. High cooling rates are needed to form a continuous wire, namely, to
achieve solidification before breaking into droplets. Finally, the wire is
collected by a spinning wheel as it falls down below the cooling system.
In this manner, the outcome is a wire forming a roll with lengths typically
on the order of hundreds of meters - kilometers [9]. Fig. 1.3 includes a
photograph of a single ferromagnetic wire forming a roll, which was taken
during the fabrication of the wires at the Material Science Institute of
Madrid (ICMM).

The geometrical parameters of the wire can be controlled during the
fabrication process. On the one hand, the radius of the metallic core can
be adjusted by varying the wires drawing speed, increasing when it de-
creases. On the other hand, the thickness of the glass cover is controlled
by the glass tubes displacement speed, increasing when it increases. Typ-
ical core radius ranges between 1µm and 50µm. The thickness of the
coating is in the range of 2µm to 15µm. However, recent advances in the
processing technique have produced metallic cores of submicron- (400 nm
radius [10]) and nano- (45 nm radius [11]) dimensions. These results
pave the way to an inexpensive and mass production of ferromagnetic
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Figure 1.3 – Photograph of a single ferromagnetic wire forming a roll. (The photo-
graph was taken during the fabrication of the wires at the Material Science Institute
of Madrid (ICMM))

nanowires.
While the composition of the metallic alloy is generally selected to

tailor the wire electromagnetic properties, the coating is selected for tech-
nological reasons associated to the fabrication process. In particular,
Pyrex-type borosilicate compositions are usually employed to fulfill the
fabrication requirements, which are given in terms of drawing tempera-
ture, thermal expansion coefficient, viscosity, and chemical activity with
the metallic core [12].

To sum up, some of the main advantages of this fabrication process
are [9]:

1. The wires are produced in a one-step process.

2. Repeatability of wire properties at mass production.

3. Wide range of variation in parameters (geometrical and physical).

4. Fabrication of continuous long pieces of wires up to 10.000m.

5. Control and adjustment of geometrical parameters.

Furthermore, the glass-coated wires can be further post-processed af-
ter the wire formation to improve their properties for particular applica-
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tions. In some cases, the glass-coating is removed by chemical dissolution,
which can be convenient, for example, to increase the sensibility of mag-
netic sensors [2]. In these cases, the glass is etched with a hydrofluoric
acid, whose solution must be controlled to avoid etching of the metal core.
Note that the glass removal affects the internal stresses of the wire, and
therefore the impact of the glass removal on the wire magnetic properties
must be taken into account.

The fabricated glass-coated wires can also be subjected to thermal
treatments in order to improve their magnetic properties [13]. These
annealing processes give rise to a variety of effects such as structural re-
laxation, growing of crystallites and appearance of new phases depending
on the annealing temperature and the wire composition, which leads to a
magnetic softening o hardening of the amorphous material [14].

1.1.2 Properties

This Section introduces a survey of the most relevant mechanical, chemi-
cal, electrical and magnetic properties of ferromagnetic wires.

Mechanical Properties

Due to their amorphous nature, ferromagnetic wires lack of long-range
chemical and topological order, performing superior mechanical properties
than crystalline composites. A review of the mechanical properties of
these wires can be found in [15].

In summary, amorphous glass-coated ferromagnetic wires bring to-
gether ductile behavior at bending, shearing and compression; as well as
high values of fracture strength. Moreover, the mechanical properties of
ferromagnetic wires depend very strongly on their dimensions, being the
glass cover thickness the most influential parameter. This fact is not only
due to the mechanical properties of the cover, but also to the stresses
induced in the metallic core. Consequently, the glass removal influences
the mechanical properties of the wires, increasing their elongation, but
reducing the fracture strength limit. Furthermore, annealing affects the
internal stresses of the wires, and therefore it also has an impact on their
mechanical properties, which vary as a function of the core composition.
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Chemical Properties

As other amorphous metals, ferromagnetic wires are characterized high
corrosion resistances, produced by their chemical and structural homo-
geneity. Moreover, the chemical resistance of these wires can be improved
by the addition of other materials to the alloy, such as Cr, leading to
corrosion resistances even higher than those of stainless steels. Further-
more, the glass coating can be selected to prevent corrosion at specific
environments [2].

Electrical Properties

Amorphous glass-coated ferromagnetic wires are electric conductors, though
their conductivities are typically 100 times smaller than their crystalline
counterparts. Therefore, their conductivity is mainly defined by the
structural disorder, while it is quite stable against temperature changes.
Typical values of electrical conductivity at room temperature are around
105 S/m for Fe-rich and Co-rich wires [2].

Magnetic Properties

Amorphous glass-coated ferromagnetic wires present outstanding mag-
netic properties, Large Barkhausen jump (LBE) [3], Giant Magneto Impedance
(GMI) [4] and Natural Ferromagnetic Resonance (NFMR) [5]. Therefore,
most of the research on these wires has been focused on the investigation
of their magnetic properties.

• Magnetic Properties as a Function of Composition and

Geometry

The magnetic properties of the wires are determined by the proper-
ties of the alloy forming the core, as well as the distribution of internal
stresses in the core. Thus, these properties can be tailored through the
composition and geometry of the wires.

In the first place, the metals which compound the alloy of the ferro-
magnetic core determine the sign and magnitude of the magnetostriction
constant. On the one hand, Fe-rich wires have a positive magnetostric-
tion constant, which leads to a square bistable hysteresis loop (see Fig.
1.4(c)); characterized by a large and unique Barkhausen jump, being the
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(a) (b) (c)

Figure 1.4 – Typical hysteresis loops corresponding to wires with different mag-
netostriction constant: (a) negative, (b) vanishing but negative, and (c) positive
(Figures extracted from [9].)

remanence magnetization almost equal to the magnetization at satura-
tion. On the contrary, Co-based wires have a negative magnetostriction
constant, exhibiting minimal hysteresis (see Fig. 1.4(a)). Interestingly,
Co-rich wires with a given proportion of Fe are characterized by a very
small and negative magnetostriction constant (see Fig. 1.4(b)), and the
magnetization process take place first by domain wall motion and then
by magnetization orientation.

Secondly, the geometrical dimensions of the wires have control over
the distribution of internal stresses produced during the fabrication, and
thus over the magnetic properties. These stresses are mainly due to the
solidification process, differences between the thermal coefficients of metal
and glass, and the mechanical drawing. Although there are models that
describe the internal distribution of stresses of the wires [2, 9], only the
relationship between the geometrical dimensions and the magnetic prop-
erties will be included here for the sake of brevity. In this context, it
has been has been shown that a reduction in the ratio between the inner
core diameter and the total wire diameter, ρ, leads to a reduction of the
remanence magnetization and an increase of the coercivity [3]. Moreover,
the magnetization at saturation is reduced when ρ is decreased [3].

Naturally, the use of post-processing techniques on the fabrication
of the wires, such as the coating removal and annealing processes, also
influences their magnetic properties. For example, the coating removal
modifies the internal stresses induced on the ferromagnetic core, thus
altering the magnetic properties of the wires. Specifically, the coating
removal diminish the axial stresses acting over the metallic core, which
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weakens the bistable hysteresis loop of wires with positive magntostriction
constant [2].

• Magnetoimpedance Effect

One of the most outstanding magnetic properties of ferromagnetic
wires is the Magneto Impedance (MI) effect. Along the dissertation, this
effect is defined as variations on the current flowing along a ferromagnetic
wire due to changes on its magnetic properties (e.g., those produced by an
external magnetic field). This general definition includes any alteration
of the magnetization, such as changes in the size and shape of the mag-
netization domains, as well as changes in the magnetization direction and
strength on a single domain. In view of the significant impedance changes
produced by weak magnetic fields in the MHz frequency range, the MI
effect is usually regarded as giant magneto-impedance (GMI) [4,6,16–19].

This property enables the use of ferromagnetic wires as sub nT mag-
netic field sensors. As a matter of fact, the sensitivity, defined as the
impedance change ratio per Oersted (Oe), runs into more than 100%/Oe
at MHz frequencies. A similar effect is present at GHz frequencies, al-
though the wires feature reduced sensitivities [20]. This is reflected in
Fig. 1.5, which represents a typical plot of impedance as a function of the
external axial magnetic field. Among ferromagnetic wires, those with van-
ishing but negative magnetostriction constant are usually preferred for MI
based applications, since they feature a larger sensitivity as a consequence
of their circumferential anisotropy.

• Ferromagnetic Resonance

At microwave frequencies, the magnetic behavior of the wires is dom-
inated by the Ferromagnetic Resonance (FMR) [1, 21]. This effect orig-
inates on the precessional motion of the magnetization of a ferromag-
netic material in response to an external magnetic field. Macroscopically,
it leads to a gyrotropic permeability tensor whose components follow a
Lorentzian frequency domain behavior [22,23]. The presence and charac-
teristics of the FMR in wires is typically investigated by inspecting the
absorption spectrum of the wires, which is measured in resonant cavi-
ties [24–26] microstrip lines [27] and/or coaxial lines [28–30].

The FMR in wires with positive and large magnetostriction constants
(e.g., Fe-rich wires) is of particular interest. The reason for this is that a



Chapter 1. Introduction 9

Figure 1.5 – High-frequency impedance plot as a function of a axial external mag-
netic field. (Extracted from [20]).

positive large magnetostriction constant reinforces the shape anisotropy
giving rise to a strong uniaxial anisotropy. This strong anisotropy results
in a Natural Ferromagnetic Resonance (NFMR), namely, FMR in the
absence of applied magnetic field. Examples of Fe-rich wires featuring
NFMR in the GHz frequency range can be found in [5,31]. In other words,
ferromangetic wires with positive and large magnetostriction constants
operate as permanent magnets in GHz frequency range. In this manner,
it is possible to avoid the use of bulky electromagnets to polarize the
wires.

1.2 State-of-the-Art: Ferromagnetic Wires

in Microwave

Engineering

Technological applications of ferromagnetic wires have been traditionally
related to the field of sensing devices in the low-frequency range (up to
MHz). For example, magnetoimpedance (MI) based sensors in which
the ferromagnetic wire is integrated in an electronic circuit have been
popular for applications not only including very sensitive magnetic field
sensors [6], but also mechanical stress, temperature, position, chemical
and multi-functional sensors [32]. Over the last few years, interesting
properties such as the MI and FMR effects have suggested the use of
ferromagnetic wires in microwave engineering [1].
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To begin with, since the MI effect is present at the GHz frequency
range, the scattering by a single ferromagnetic wire and/or the response
of a composite made of ferromagnetic wires can be tuned through the
action of the external magnetic fields. This effect has been theoretically
investigated in [33, 34], and it could be exploited in all sort of reconfig-
urable devices such as filters, transmission lines, circulators and anten-
nas. In general, state-of-the-art reconfigurable devices based on varactors,
PIN diodes and/or MEMS [35] require from the design of complex feed-
ing networks. This difficulty can be overcome with the use of ferromag-
netic wires, since the whole system can be tuned with the use of a single
coil/electromagnet. Moreover, it has been found that DC currents flowing
along the wires enable the tuning of the wire magnetic properties, as if
the wire were affected by an effective external DC magnetic field [36,37].
This effect paves the way for the development of reconfigurable devices
based on ferromagnetic wires with a simple, fully integrated mechanism.
In this regard, some experimental works have characterized the MI effect
at GHz frequencies [37–39], and variations in the reflection/transmission
from composites of ferromagnetic wires as a function of a DC magnetic
field have been reported in [40, 41]. However, no design for a particular
reconfigurable device has been presented yet.

Additionally, the magnetic properties of the wires, and thus the scat-
tering by a ferromagnetic wire, can also be a function of other external
magnitudes such as mechanical-stresses, temperature or chemical activ-
ity [2]. Since these variations can be retrieved through inverse scattering
techniques, ferromagnetic wires enable radar-based contact-less sens-

ing. Particular attention has been devoted to mechanical-stress contact-
less sensors, which could be applicable, for example, in architectural and
health monitoring [42]. Specifically, the characterization of the MI effect
at GHz frequencies under mechanical stresses has been carried out by inte-
grating the wires in transmission lines, such as microstrip lines [38,39,42],
coaxial cables [43,44] and waveguides [45]. However, it is very challenging
to apply mechanical stresses within experiments in which both wires ends
are connected to a transmission line. Moreover, additional post-processing
is required to recover the actual wire impedance from measurements of a
wire integrated within a transmission line, which is often neglected. Thus,
it can be concluded that a reliable technique to characterize the GHz MI
effect under mechanical stresses is yet lacking. Differently, free-space mea-
surements of the variations in the reflection/transmission properties of a
composite of wires under mechanical stresses has been reported in [46,47].
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While this experimental works can be considered the first in-situ experi-
ments for contact-less sensing, measurements of the wires operating in a
realistic, application-oriented, environment have not been presented yet.

Moreover, previous experiments on ferromagnetic wires for self-sensing
materials have been focused on Co-rich wires [38,39,42,45–47]. Most prob-
ably, this is due to the heritage of low-frequency MI sensors, in which the
largest impedance variations are achieved with negative but near-zero
magnetostriction constants. However, Fe-rich wires, which have not been
investigated yet in this context, could be advantageous in the design of
radar-based contact-less sensors. Note that Fe-rich wires feature positive
and large magnetostriction constants, which results in a dominant axial
magnetization and in the presence of the NFMR at GHz frequencies [3,5].
Therefore, Fe-rich wires are advantageous for high-frequency sensors, since
no biasing field is required to produce the FMR. Even in the presence of a
biasing field, Fe-rich wires provide a stronger and higher-frequency FMR
due to their higher magnetization at saturation, thus leading to higher
spatial resolutions and smaller antennas. Moreover, a high magnetostric-
tion constant ensures a strong response to external mechanical stresses.

Ferromagnetic wires are characterized by high magnetic losses at fre-
quencies close to the FMR, as well as high ohmic losses produced by
the reduction in conductivity due to its amorphous nature. Therefore,
ferromagnetic wires are good candidates for the development of electro-
magnetic absorbers, which are demanded by a wide range of applica-
tions including stealth, EMC, biomedical engineering and communication
systems. In view of the properties exposed in Section 1.1.2, radar ab-
sorbing materials (RAMs) [48] made of diluted ferromagnetic wires could
outperform conventional ferrite absorbers in terms of higher self-biasing
frequency, weight, profile and chemical resistance. The work of Bara-
nov [49] was probably the first in opening up the possibility of employing
ferromagnetic wires to the development of RAMs, which impulsed several
publications devoted to the characterization of the absorption properties
of these wires [24–30]. In particular, the absorption spectrum of ferromag-
netic wires has been investigated in resonant cavities [24–26], microstrip
lines [27] and/or coaxial lines [28–30].

Moreover, the absorption performance of composites with diluted short
ferromagnetic wires has been presented in [1, 49–51]. These experiments
are focused around 10GHz and demonstrate that composites of ferromag-
netic wires reduce the reflection from a ground plane to levels below -10 dB
over a few GHz bandwidth, centered at the FMR frequency. The pre-
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sented absorbers consist either of composites of wires backed by a ground
plane or of thin layers of wires placed at a given distance to the ground
plane. However, the former composites are thick enough to contain struc-
tural resonances, and the latter are typically placed at a λ/4 distance to
the ground plane. Moreover, the length of the wires is usually tailored to
excited axial (half-wavelength) resonances along the wires. Therefore, it
is still a matter of debate if the magnetic properties of the wires have been
exploited in this previous experimental studies. In addition, a fair com-
parison between ferromagnetic wire-based and state-of-the-art absorbers
has not been presented yet.

Wires featuring FMR effect have also triggered the research on the
design of metamaterials. Note that the permeability of the wires is
negative at frequencies above the FMR [22, 23]. In addition, a negative
effective permittivity is to be expected due to the plasma-like response of
wire media. Thus, ferromagnetic wires can be considered strong candi-
dates for the development of double-negative (DNG) media (in the sense
of an artificial electromagnetic material simultaneously featuring negative
permittivity and permeability). The advantages of using ferromagnetic
wires are twofold: the use of a single particle to design both permittivity
and permeability, and the aforementioned reconfigurable capabilities.

In this regard, previous experimental studies carried out in a joint ef-
fort between the Antenna Group and the Physics Department of the Pub-
lic University of Navarra [31] (and also at other institutions [36, 52, 53])
have reported transmission windows in arrays of ferromagnetic wires,
which, following a similar thought process than that of D.R. Smith’s sem-
inal paper [54], were identified as an evidence of double negative (DNG)
metamaterials. However, the conclusion extracted from the experimen-
tal data is controversial since the filling factor of the measured arrays
of wires is too small to have a significant effective permeability. For ex-
ample, theoretical studies considering DNG media based on other kinds
of ferromagnetic wires make use of non-conductive, significantly thicker
wires [55–57]. Therefore, there is a need of a theoretical basis to under-
stand the origin of the observed transmission windows, and, in general, to
analyze the potential of this class of ferromagnetic wires for metamaterial
design.
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1.3 Goal and Motivation of this Work

This dissertation deals with the use of amorphous glass-coated ferromag-
netic wires in microwave engineering. As it was anticipated, interesting
properties of the wires such as MI and FMR effects have triggered the
research on the use of these wires for diverse applications including re-
configurable devices, contact-less sensors, electromagnetic absorbers and
metamaterials. Although some efforts have already been made in this
direction, it has been also argued that most of these efforts have been ex-
perimentally driven, and that they are mostly focused on characterizing
the properties of single wires and/or the reflection/transmission properties
of composites of ferromagnetic wires. Therefore, it can be concluded that
there is a lack of the modeling tools required to confront the challenges
inherent to the design of ferromagnetic wire-based systems. Moreover,
it has also been commented that some of the conclusions extracted from
those experimental works have been controversial, e.g., those related to
electromagnetic absorbers and metamaterial design. Thus, there is also a
need of theoretical tools to shed more light into those experiments.

Therefore, the first and foremost objective of this work is to develop
modeling tools, e.g., equivalent and approximate circuit models, for the
design of microwave systems based on ferromagnetic wires. Furthermore,
those models are employed to investigate the main phenomena excited in
the scattering by ferromagnetic wires, for example, the transition from
surface to bulk effects, and the multiple peculiarities of their absorption
spectrum. Based on these fundamental studies, the models developed
along this dissertation will also serve to clarify some of the aforemen-
tioned controversies concerning electromagnetic absorbers and metama-
terials. Moreover, circuit models will prove advantageous to investigate
the main potentialities and limitations of ferromagnetic wires, to identify
the most promising applications, and to derive simple design rules.

To finalize, this dissertation also contributes to the experimental ef-
forts in the field. In particular, and responding to some of the aforemen-
tioned demands in the development of contact-less sensors, a technique
aimed to characterize the MI effect at GHz frequencies under mechanical
stresses is presented, and the magnetostrictive behavior of Fe-rich wires
at GHz frequencies is experimentally investigated for the first time.
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1.4 Structure of the document

The document is divided in the following sections:

Chapter 1

The present chapter explains the background, goal and motivation of this
work. Moreover, it also introduces basic concepts concerning amorphous
glass-coated ferromagnetic wires, their fabrication and properties.

Chapter 2

The second chapter gathers the analytical methods through which fer-
romagnetic wires are modeled along the dissertation. Approximate and
equivalent circuit models are formulated to enable an intuitive interpreta-
tion of the interaction between ferromagnetic wires and electromagnetic
fields. Furthermore, the experimental and numerical validation of the
models is also included.

Chapter 3

Based on the models developed in Chapter 2, this chapter introduces a
detailed analysis of the influence of the wire geometry in the scattering
by ferromagnetic wires. Particular attention is devoted to the transition
from surface to bulk effects. Moreover, a comprehensive analysis of the
absorption spectrum of long and short ferromagnetic wires is included.

Chapter 4

Some of the fundamental limits in the scattering by ferromagnetic wires
are elucidated in this chapter. In particular, the chapter deals with the
correlation of scattering and absorption processes, and how it leads to
upper bounds in the absorbed, extracted and scattered powers.

Chapter 5

Chapter 5 is focused on the modeling of ensembles of wires as artificial
electromagnetic materials. The homogenization approach is derived based
on previous works on wire media, and this formulation is employed to
shed some light into previous experiments focused on the development of
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metamaterials based on ferromagnetic wires. Finally, the validity of the
homogenization approach is numerically assessed.

Chapter 6

Artificial impedance surfaces and reconfigurable absorbers based on grids
of ferromagnetic wires are investigated in Chapter 6. A closed form ex-
pression for the load required to excite a resonance in a grid of wires
placed in the proximity of a ground plane is derived. Furthermore, a
feasibility study of the implementation of such a load with ferromagnetic
wires and other alternative implementations is presented. Moreover, the
chapter includes two proof-of-concept designs of reconfigurable absorbers
based on resistive sheets made of ferromagnetic wires.

Chapter 7

This chapter addresses the use of ferromagnetic wires in contact-less
sensing. To this end, a procedure to characterize the wire distributed
impedance under mechanical stresses is introduced, and the magnetostric-
tive effect of Fe-rich wires is evaluated by using such procedure. Moreover,
the performance of such wires as contact-less sensors based on single-wire
and material-oriented systems is estimated.

Chapter 8

This chapter offers a brief summary of the results presented in this dis-
sertation, together with some final conclusions and future work lines.
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Chapter 2

Analytical Modeling of the

Scattering by Ferromagnetic

Wires

2.1 Introduction

Analytical models are of the utmost importance in applied electromag-
netics and microwave engineering. Even though most systems are de-
scribed through well-established classical electrodynamics, the equations
governing them are so complex that in practice they are typically solved
numerically, and it is a cumbersome task to extract any physical insight.
Therefore, analytical models are essential to provide the physical under-
standing required to inspire new ideas and boost innovative engineering
concepts.

Following this philosophy, while the response of a ferromagnetic wire
to electromagnetic fields has been rigorously studied, most remarkably on
L. Kraus’s seminal paper [58], this chapter intends to formulate analytical
models that help understanding the interaction between electromagnetic
fields and ferromagnetic wires. Thus, this chapter gathers the methods
through which the ferromagnetic wires will be modeled along the dis-
sertation, including equivalent and approximate models, as well as the
experimental and numerical validation of such models.

17
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Figure 2.1 – Sketch of the first order excitations in a ferromagnetic wire: magne-
toimpedance effect and magnetic dipolar excitation.

2.2 Preliminary Description

Let us have an intuitive look at the properties of a ferromagnetic wire
prior to the formulation of any mathematical model. Geometrically, the
wires have cylindrical shapes with circular cross-sections of the order of
microns, and lengths as long as hundreds of meters (though the wires can
be cut to smaller, more practical, lengths). Since 1µm = 1/3 · 10−4λ at
10GHz, it can be fairly assumed that, within the GHz frequency range,
the wires are electrically thin structures.

Electromagnetically, the wires are relatively good conductors (σ ∼
105 S/m) and have one or several magnetization domains. Therefore,
whenever an electromagnetic field illuminates a ferromagnetic wire one
should expect the excitation of conduction currents and magnetic dipoles.
Furthermore, the current circulating parallel to the wire axis should be
dominant, due to the small cross-sections of the wires, and any current
perpendicular to the wire axis could in principle be neglected. Moreover,
the wire axis is the preferred direction for the magnetization, and thus
the magnetic dipolar excitation is mostly contained within the plane per-
pendicular to the wire axis. These two elementary effects are depicted
in Fig. 2.1. Therefore, it can be concluded that the ferromagnetic wire
mainly responds to electromagnetic fields with the electric field polarized
along the wire axis, and any other incident polarization can in principle
be neglected.

Interestingly, the electric current flowing along the wire is not uniquely
defined by the wire conductivity, but it is also a function of its magnetic
properties. This effect is usually labelled as the magnetoimpedance (MI)
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effect, and it enables to tune the electric response of the wire by modifying
its magnetic properties. Similarly, the excitation of magnetic dipoles is
affected by the wire conductivity. Unfortunately, this effect results into
the presence of eddy current losses, which weakens the magnetic dipolar
excitation. As a matter of fact, due to the small cross-sections of the wires
and eddy current losses, the excitation of magnetic dipoles is a secondary
effect in most conductive wires.

2.3 Scattering by Long Ferromagnetic

Wires

2.3.1 Mathematical Solution to the Scattering

Problem

2.3.1.1 General Solution

Fig. 2.2 depicts a sketch of a generic scattering problem. From a mathe-
matical standpoint, the electromagnetic fields can be written as the sum
of incident (i.e., the field produced by the sources illuminating the wire,
the field in the absence of the wire) and scattered (i.e., the field produced
by the wires in response to the incident electromagnetic field) fields, i.e.,

E = Ei + Es (2.1)

H = Hi +Hs (2.2)

Furthermore, the wire geometry (elongated shape and circular sec-
tion) suggests the description of the fields as a basis of cylindrical har-
monics [59]. In general, the cylindrical harmonic decomposition includes
variations of the field in the r, φ and z directions. However, theoretical
treatments of ferromagnetic wires usually assume invariance of the fields
along the wire axis (the z-axis) [17, 58], reducing the problem to a 2D
problem (see Fig. 2.2). By doing so, the incident and scattered electro-
magnetic fields outside the wire can be written as [59]

Ei =
∞∑

n=−∞

e−jnφ

[
ẑATM

n Jn (k0r)− ATE
n

(
φ̂J ′

n (k0r)− r̂jn
Jn (k0r)

k0r

)]
(2.3)

Hi = − j

η0

∞∑

n=−∞

e−jnφ

[
ẑATE

n Jn (k0r) + ATM
n

(
φ̂J ′

n (k0r)− r̂jn
Jn (k0r)

k0r

)]
(2.4)
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Es =

∞∑

n=−∞

e−jnφ

[
ẑBTM

n H(2)
n (k0r)− BTE

n

(
φ̂H(2)′

n (k0r)− r̂jn
H

(2)
n (k0r)

k0r

)]
(2.5)

Hs = − j

η0

∞∑

n=−∞

e−jnφ

[
ẑBTE

n H(2)
n (k0r) +BTM

n

(
φ̂H(2)′

n (k0r)− r̂jn
H

(2)
n (k0r)

k0r

)]
(2.6)

where Jn (−) stands for the Bessel function of the first kind and order n,

and H
(2)
n (−) for the Hankel function of the second kind and order n. In

addition, k0 = ω
√
µ0ε0 and η0 =

√
µ0/ε0 stand for the free-space prop-

agation constant and medium impedance, respectively. ATZ
n and BTZ

n ,
Z = E,M , are the incident and scattered field coefficients, respectively,
defined with electric field units. The ATZ

n coefficients are defined by the
properties of the sources of the incident field, and the BTZ

n coefficients are
a function of the geometrical and electromagnetic properties of the wire.
In general, the BTZ

n coefficients are found by solving the boundary value
problem on the surface of the wire.

Note that the fields within the wire cannot be written without specify-
ing the wire properties, and therefore they will only be written for partic-
ular examples. However, quantities of interest such as the absorbed and
scattered powers can be determined through the incident and scattered
fields, enabling the study of such magnitudes for a generic ferromagnetic
wire. To begin with, the absorbed power per unit length (recall that it is
a 2D problem), PL

abs, represents the power dissipated within the wire, and

S

( , )E H
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( , )E H
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s

X

Y
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Figure 2.2 – Sketch of the scattering problem: geometry and relevant fields.
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it is found as the power entering the scatterer, i.e., the surface integral of
the (inward) Poynting vector

PL
abs = −1

2

‹

S

Re [E× (H)∗] · n̂ dS (2.7)

Similarly, the scattered power (per unit length) represents the power car-
ried away from the scattering object by the scattered field, i.e., the surface
integral of the Poynting vector of the scattered field

PL
scat =

1

2

‹

S

Re [Es × (Hs)∗] · n̂ dS (2.8)

Due to the orthogonality of cylindrical harmonics [59]
ˆ 2π

0

e−j(n−m)φdφ = 2πδnm (2.9)

a total power quantity is equal to the sum of the same power quantity
associated with each mode. Moreover, making use of the Wronskian [59]

Jn (k0r)Y
′
n (k0r)− J ′

n (k0r) Y n (k0r) =
2

πk0r
(2.10)

the following properties of Bessel and Hankel functions can be derived

Re
[
−jH(2)

n (k0r)
(
H(2)′

n (k0r)
)∗]

=
2

πk0r
(2.11)

and

Re
[
C1Jn (k0r)

(
−jC2H

(2)′

n (k0r)
)∗

+C2H
(2)
n (k0r) (−jC1J

′
n (k0r))

∗
]
= −Re [C1 (C2)

∗]
2

πk0r

(2.12)

Making use of the orthogonality of cylindrical harmonics (2.9), and
the Bessel function properties (2.11)-(2.12), the quantities: PL

abs, PL
scat,

can be rewritten explicitly as the multipole sums:

PL
abs = − 2

η0k0

∞∑

n=−∞

∑

Z=E,M

Re
[(
ATZ

n

)∗
BTZ

n

]
+
∣∣BTZ

n

∣∣2 (2.13)

PL
scat =

2

η0k0

∞∑

n=−∞

∑

Z=E,M

∣∣BTZ
n

∣∣2 (2.14)
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2.3.1.2 Solution for Static and Uniform Axial Magnetizations

In the most general case, the ferromagnetic core of the wire is composed
by multiple magnetization domains whose magnetization tensor and ge-
ometry dynamically change in reaction to electromagnetic fields. Despite
such complexity, many technologically interesting cases can be modeled
by a simpler single and static axial magnetization domain. Specifically,
this model is potentially applicable in the GHz range to microwires satu-
rated by an external DC magnetic field, Fe-rich ferromagnetic microwires
featuring NFMR [3, 5], and ferromagnetic nanowires fabricated through
the Taylor-Ulitovski technique [10, 11]. Therefore, this particular case is
studied in detail.

Electric and Magnetic Properties

Under the assumption of a single static magnetization domain along the
wire axis, the wire ferromagnetic core can be treated as a linear homo-
geneous material. On the one hand, the electrical response is dominated
by its electrical conductivity that, for the purposes of determining the
(E,H) electromagnetic fields, is equivalent to a wire permittivity [22]:

εw = ε0 − j
σ

ω
(2.15)

On the other hand, the magnetic response can be modeled as a gy-
rotropic permeability tensor. In particular, the permeability tensor for a
magnetization domain oriented along the wire axis (Z-axis) is given by [22]

¯̄µ =




µ jµt 0
−jµt µ 0
0 0 µ0


 (2.16)

where

µ = µ0

ωC

H

(
ωC

H + ωM

)
− ω2

(
ωC

H

)2 − ω2
(2.17)

µt = µ0
ωMω

(
ωC

H

)2 − ω2
(2.18)

where ωM = µ0γMs is the resonance frequency at the saturation limit,
with γ being the gyromagnetic ratio, Ms the saturation magnetization.
ωC
H = ωH + jαω is the complex Larmor resonance frequency, with ωH =
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µ0γHeff and α being the dimensionless Gilbert damping constant that
takes into account magnetic losses. Heff is an effective magnetic field that
gathers any external DC magnetic field, magnetic fields produced by DC
currents flowing along the wire and the anisotropy field.

When electromagnetic fields propagate in such media there are two
different responses depending on the wave polarization. Firstly, if the
magnetic field is polarized parallel to the wire magnetization (i.e. Z-
axis), the field is unaffected by the magnetization of the medium, as it
can be inferred from (2.16). Secondly, if the magnetic field is transverse
to such axis, it is affected by the magnetization leading to the so-called
extraordinary waves [22], characterized by a component of the magnetic
field in the direction of propagation. In such a case, the propagation
within the wire is governed by propagation constant, kw, and medium
impedance ηw, given by [22]

k2w = ω2εwµw (2.19)

η2w =
µw

εw
(2.20)

where µw is the wire effective scalar permeability for the purposes of
propagation, given by

µw =
µ2 − µ2

t

µ
= µ0

(
ωC

H + ωM

)2 − ω2

ωC

H

(
ωC

H + ωM

)
− ω2

(2.21)

It is apparent from (2.21) that for small damping µw presents a pole
and a zero approximately at the resonant and antiresonant frequencies

ωres ≃
√
ωH (ωH + ωM) (2.22)

ωares ≃ ωH + ωM (2.23)

This resonant behaviour is evidenced in Fig. 2.3, which depicts the ef-
fective scalar permeability, propagation constant and medium impedance
within a ferromagnetic wire with typical values [24, 52, 53] σ = 1.5 ·
105 S/m, µ0Ms = 0.55T, α = 0.02, γ = 2 · 1011T−1s−1 and Heff =
123 kA/m. For such material parameters, resonance and antiresonance
appear approximately at 10.5GHz and 22.5GHz, respectively. It can be
concluded that magnetic losses are maximized at the resonance, and that
the real part of the effective permeability is negative between resonant and
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Figure 2.3 – (a) Effective scalar permeability (b) propagation constant and (c)
medium impedance within a ferromagnetic wire characterized by typical Co-rich
values

antiresonant frequencies. Despite the fact that the real part of the per-
mittivity has been neglected due to the dominant role of the conductivity,
the sign of the propagation constant between resonance and antiresonance
frequencies is negative, since the condition [60] µ′

wε
′′
w + µ′′

wε
′
w < 0 holds

due to the large electric losses produced by conductivity.

Scattering by Ferromagnetic Wires with Static and Uniform

Magnetization

Consider the case when a plane wave propagating along the X-axis and
with the electric field polarized along the Z-axis impinges on a ferro-
magnetic wire with its axis oriented along the Z-axis. Mathematically
speaking, the analytical solution to the scattering of a plane-wave by a
ferromagnetic wire with uniform and static magnetization resembles the
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scattering by a very thin ferrite post, studied in [61]. Following Sec-
tion 2.3.1, all the fields involved in the scattering problem can be written
in terms of cylindrical harmonics. To begin with, the components of the
incident plane-wave propagating along the X-axis are written in terms of
cylindrical harmonics as [62]

Ei
z(r, φ) = E0

∞∑

n=−∞
jnJn(k0r)e

−jnφ (2.24)

H i
r(r, φ) =

E0

η0

∞∑

n=−∞
njn

Jn(k0r)

k0r
e−jnφ (2.25)

H i
φ(r, φ) = −j

E0

η0

∞∑

n=−∞
jnJ ′

n(k0r)e
−jnφ (2.26)

In other words, the incident field coefficients are given by ATM
n = jnE0

and ATE
n = 0. Similarly, the components of the scattered field are chosen

to represent outgoing waves. In addition, due to the cylindrical symmetry
of the wire each mode interacts independently, so that the scattered field
coefficients are proportional to the source coefficients BTM

n = bTMn ATM
n ,

and the scattered field is written as

Es
z(r, φ) = E0

∞∑

n=−∞
jnbTMn H(2)

n (k0r)e
−jnφ (2.27)

Hs
r (r, φ) =

E0

η0

∞∑

n=−∞
njnbTMn

H
(2)
n (k0r)

k0r
e−jnφ (2.28)

Hs
φ(r, φ) = −j

E0

η0

∞∑

n=−∞
jnbTMn H(2)′

n (k0r)e
−jnφ (2.29)

Finally, the internal field within the wire is represented by Bessel func-
tions of the first kind

Eint
z (r, φ) = E0

∞∑

n=−∞
jncTMn Jn(kwr)e

−jnφ (2.30)

H int
r (r, φ) =

E0

ηw

∞∑

n=−∞
jncTMn

[
n
Jn(kwr)

kwr
− µt

µ
J ′
n(kwr)

]
e−jnφ (2.31)
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H int
φ (r, φ) = −j

E0

ηw

∞∑

n=−∞
jncTMn

[
J ′
n(kwr)− n

µt

µ

Jn(kwr)

kwr

]
e−jnφ (2.32)

The unknowns of the problem are the coefficients of the scattered
and within the wire fields, which can be found by solving the boundary
conditions, i.e. the continuity of the tangential electric and magnetic fields
at the surface of the wire, leading to [61]

bTMn =
J ′
n(k0a)Jn(kwa)−DnJn(k0a)

DnH
(2)
n (k0a)−H

(2)′
n (k0a)Jn(kwa)

(2.33)

cTMn =
2j

πk0a

1

DnH
(2)
n (k0a)−H

(2)′
n (k0a)Jn(kwa)

(2.34)

where a is the wire radius and Dn is defined as

Dn =
η0
ηw

[
J ′
n(kwa)− n

µt

µkwa
Jn(kwa)

]
(2.35)

2.3.2 Equivalent Circuit Model

Equations (2.3)-(2.6) represent a general solution to the scattering prob-
lem, provided that it has been reduced to a 2D problem. However, such
solution can be excessively complex in many practical cases. Let us as-
sume that the ferromagnetic wire is illuminated by an electromagnetic
field that has a non-negligible polarization component along the wire axis.
Since the wire is electrically thin (diameters of 10−4λ ∼ 10−5λ at GHz
frequencies), the main response of the wire is polarized along the wire
axis, and the cross-polarization components can be neglected. This sim-
ple fact allows us to omit all TE modes. What is more, even within the
TM modes, only the first terms of the series are needed to construct an
accurate solution. Typically, the n = 0,±1 terms are kept for electrically
thin wires [58]. However, due to the relatively good conductivity and
the extremely thin radius of the wires the bold approximation of keeping
only the n = 0 term will be adopted. The validity of such approximation
will be tested against experiments and full-wave numerical simulations
along the dissertation. Therefore, the electric field scattered by a conduc-
tive ferromagnetic wire under the thin wire approximation can be simply
written as

Es|n=0 = ẑBTM
0 H

(2)
0 (k0r) (2.36)
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Additional insight can be obtained by examining equivalent sources.
In particular, the electric field of (2.36) is equivalent to the electric field
produced by an electric line source ẑIeq, given by [62]

Eline = −ẑ
η0k0
4

IeqH
(2)
0 (k0r) (2.37)

The magnitude and phase of the equivalent current are a function of
both the electric and magnetic properties of the wire, which can be under-
stood again as the magnetoimpedance (MI) effect. However, it is worth
remarking that the equivalent current does not necessarily correspond to
the physical conduction currents flowing in the wire. In any event, the
ferromagnetic wire can therefore be modeled as any structure supporting
the same current distribution. For example, the electric field produced
by an impedance-loaded perfect electric conductor (PEC) wire is given
by [63]

Elw = −ẑ
η0k0
4

Eloc

α−1
0 + Zw

H
(2)
0 (k0r) (2.38)

where

α−1
0 =

η0k0
4

{
1 + j

2

π

[
ln

(
2

k0a

)
− γ

]}
(2.39)

is the susceptibility of a PEC wire, Eloc is the local field acting on the wire,
Zw is the distributed impedance, and γ ≃ 0.5772 is the Euler constant. It
is apparent from (2.36) and (2.38) that fields produced by a ferromagnetic
wire are equivalent to those of a PEC wire with an equivalent distributed
impedance given by

Zw = −η0k0
4

Eloc

BTM
0

− α−1
0 (2.40)

In this manner, the analogy with a line source current allow us to
describe the scattering problem as the excitation of a line source current,
whose magnitude and phase can be found as the equivalent circuit repre-
sented on Fig. 2.4. The equivalent circuit corresponds to a voltage source
connected to a load. The voltage source describes the incident electric
field. The load is composed by the series connection of a generic wire
distributed impedance, Zw, describing the physical phenomena taking
place within the wire, connected in series to a resistance and inductance,
Rscat + jωL = α−1

0 , describing the radiation and stored magnetic energy
produced by a electric line source, i.e., the dominant physical phenomena
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Figure 2.4 – Equivalent circuit model of the scattering by a ferromagnetic wire.

outside the wire. Note that this equivalent circuit model is not an approx-
imation, but an exact way to rewrite (2.36) that also helps to elucidate
the peculiarities of the scattering by a ferromagnetic wire. As a matter of
fact, since the equivalent model constructs the same fields outside the wire
than the ferromagnetic wire, any magnitude associated with such exter-
nal fields can be also determined through the circuit model. For example,
(2.7)-(2.8) reveal that absorbed and scattered powers can be computed
through the incident and scattered fields. Therefore, it can be readily
shown that the absorbed and scattered powers can also be computed in
terms of the equivalent circuit model as follows

PL
abs =

1

2
Re [Zw] |Ieq|2 (2.41)

PL
scat =

1

2
Rscat |Ieq|2 (2.42)

This equivalent circuit model will prove to be a great tool to model
ferromagnetic wires. The advantages of the model are twofold: Firstly,
it provides an intuitive vision on the way in which the scattering pro-
cess is modulated by the magnetic properties of the wire. Secondly, all
the complexity of the wire magnetization is compiled into the distributed
impedance, Zw. This macroscopic parameter can be embedded in the
design of systems based on ferromagnetic wires. By doing so, numeri-
cal simulations of system composed by wires extending through several
wavelengths do not need to resolve details of the order of 10−4λ ∼ 10−5λ.
Furthermore, if Zw can be experimentally retrieved, as it is made in Chap-
ter 7, there is no need for a detailed description of the micro and nano
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details of the internal magnetization domains to predict the response of
the wire to external electromagnetic fields.

2.3.3 Experimental Validation of the Model

Even if the models have been derived based on a solid theoretical back-
ground and well-funded approximations, it is always convenient to test
them against measurements. The experimental data should ratify the
validity of both the thin wire and uniform and static magnetization ap-
proximations, as well as the overall correctness of the analytical solution.

Unfortunately, measuring the scattering from a micron-sized object
in an anechoic chamber in the GHz frequency range is a cumbersome
task. However, such difficulty can be overcome by performing the exper-
iment within a closed environment, for example, a metallic rectangular
waveguide. This Section introduces the theory behind the scattering by a
ferromagnetic wire within a rectangular waveguide, as well as the exper-
imental verification of the theoretical models through such experiment.
Later on, the same experiment will be employed to study the absorption
spectrum of ferromagnetic wires in Chapter 3, and to characterize the
wires in view of their use as contact-less sensors in Chapter 7.

2.3.3.1 Theoretical Analysis of the Experimental Setup

As it happened in Section 2.3.1.2 with free-space scattering, the mathe-
matical solution to the scattering by a ferromagnetic wire within a rect-
angular waveguide is very similar to that of a ferrite cylinder within the
same waveguide. The latter has been thoroughly studied due to its mul-
tiple applications in microwave components such as polarizers and circu-
lators [64–66]. In fact, a rigurous solution to this problem was introduced
in [66]. Although corrected [67] and commented [68], the approach intro-
duced there is a correct and general solution to the problem. However,
such solution is tedious and complex so a different approach will be fol-
lowed here leading to much simpler, but restricted, solution. Specifically,
the solution is restricted to thin wires located in the middle of the waveg-
uide.

Fig. 2.5 depicts the geometry of the problem. The excitation consists
of a TE10 mode propagating along a metallic rectangular waveguide of
height h and width d. A ferromagnetic wire is placed in the middle of it
with the conductive core connected to the waveguide walls. Since there
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Figure 2.5 – (a) 3D Sketch and (b) horizontal cut (xy-plane) of the experimental
setup: ferromagnetic wire in the middle of a rectangular waveguide.

is no variation of the fields along the Z-axis the problem is reduced to a
2D problem in the XY plane. Therefore, the incident field can be written
as [22]

Ei (x, y) = ẑE0cos
(πy
d

)
e−jk

(1)
wg,xx (2.43)

where k
(m)
wg,x =

√
k20 −

(
mπ
d

)2
stands for the propagation constant of the

TEm0 mode. Note that a thin wire located at the origin of coordinates is
subjected to uniform illumination, i.e., Ei (x, y)

∣∣
(x,y)→0

= ẑE0. Therefore,

the field scattered by the wire within a waveguide is equal to plane-wave
scattering plus the addition of the infinite set of alternatively positive and
negative images created by the walls of the waveguide (see Fig. 2.5(b)).
Thus, the scattered field can be written as

Es (x, y) = ẑbTM0 Eloc

∞∑

n=−∞
(−1)nH

(2)
0

(
k0
√

x2 − (y − nd)2
)

(2.44)

As demonstrated in AppendixA, SectionA.2.3, the scattered field can
be expressed in terms of the waveguide modes by transforming the series
of Hankel functions in (2.44) by means of the Poisson summation formula

Es (x, y) = ẑbTM0 Eloc
4

d

∑

m=1,3...

cos
(mπ

d
y
) e−jk

(m)
wg,x|x|

k
(m)
wg,x

(2.45)

It can be concluded that when the wire is positioned at the center of
the waveguide only the TEm0 modes with m being an odd number are
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excited. Eloc stands for the local field in the surface of the wire, given by
the addition of the incident field and the field generated by the images

Eloc =
E0

1− bTM0 Gwg
int

(2.46)

where the waveguide interaction parameter Gwg has been defined as

Gwg
int =

∑

n 6=0

(−1)nH
(2)
0 (k0 |nd|) (2.47)

Following AppendixA, SectionA.2.4, Gwg
int can be alternatively written

as

Gwg
int = −1 + j

2

π

[
ln

(
k0d

π

)
+ γ

]
+ j

4

d

∑

m=1,3...

(
1

jk
(m)
wg,x

− 1
πm
d

)
(2.48)

While (2.47) describes the waveguide-wire interaction as the effect
produced by the images of the wire in the lateral metallic planes, (2.48)
describes the waveguide-wire interaction in structural terms. For exam-
ple, Re [Gwg

int] = −1 when there are no modes propagating in the waveguide

(k0d < π, k
(m)
wg,xǫI∀m). This fact illustrates how the waveguide-wire inter-

action cancels out the propagating fields produced by the wire, so that

the resultant fields are purely reactive. By contrast, some k
(m)
wg,x become

real for larger k0d. In such a case, the real part of the interaction constant
increases, representing fields propagating away from the wire in the form
of waveguide modes.

Once the scattered field is known, it is possible to compute measur-
able quantities. For example, let us assume that the experimental setup
corresponds to the one depicted in Fig. 2.5. Under monomode operation,
the measured scattering parameters are given by

S11 =
Es

z

Ei
z

∣∣∣∣
x=−l

=
4

k
(1)
wg,xd

1
(
bTM0

)−1 −Gwg
int

e−j2k
(1)
wg,xl (2.49)

S21 =
Es

z + Ei
z

Ei
z

∣∣∣∣
x=l

=

(
1 +

4

k
(1)
wg,xd

1
(
bTM0

)−1 −Gwg
int

)
e−j2k

(1)
wg,xl (2.50)

In addition, the reflection, transmission and absorption power co-
efficients can be directly computed from the scattering parameters as
R = |S11|2, T = |S21|2 and A = 1− |S11|2 − |S21|2.
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Figure 2.6 – Sketch and photograph of the experimental setup. The wire is placed
in between two WR-90 waveguides with its ends short-circuited to the metallic walls.
An electromagnet has been positioned in such way that a DCmagnetic field is applied
parallel to the wire axis.

2.3.3.2 Experimental Verification of the Analytical Solution

A Co-rich (Co0.94Fe0.06)75Si12.5B12.5 ferromagnetic wire with metallic ra-
dius of 22.5µm and mean total diameter (including the Pyrex coating)
of 65µm has been employed to experimentally validate the theoretical
analysis. The wire was fabricated by means of the Taylor-Ulitovsky tech-
nique [7,8] in collaboration with Prof. M. Vázquez at the Material Science
Institute of Madrid (ICMM). The purpose of the experiment is twofold: to
check the correctness of the analytical solution, and to assess the validity
of the thin wire and uniform and static magnetization approximations.

A sketch and photograph of the experimental setup are presented in
Fig. 2.6. The wire is placed between two rectangular metallic WR-90
waveguides, so that when they are connected the wire is short-circuited
and behaves as the theoretically studied infinitely long wire. The setup is
calibrated at the waveguide ends. Moreover, an electromagnet is employed
to apply a DC magnetic field along the wire axis. The frequency range is
selected so that monomode operation is ensured, with the TE10 waveguide
mode as incident high-frequency field. The reflection R, transmission T
and absorption A power coefficients can be directly obtained from the
measurement of the S-parameters: R = |S11|2, T = |S21|2 and A = 1 −
|S11|2 − |S21|2.

The measurements were carried out at the measurement laboratory
of the Antenna Group, Public University of Navarra, by A. Labrador
(Physics Department, Public University of Navarra), who provided the
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Figure 2.7 – Comparison between theoretical and measured reflection, transmission
and absorption power coefficients of a Co-rich ferromagnetic wire within a WR-90
rectangular waveguide.

measured S-parameters. Such measurements were processed to test the
analytical model. Specifically, Fig. 2.7 depicts the comparison between
theoretical and measured reflection, transmission and absorption power
coefficients. It can be concluded that there is an excellent agreement
between the theoretical and experimental coefficients. Note that the wire
properties were set as σ = 1.5 · 105 S/m, µ0Ms = 0.55T, α = 0.02,
γ = 2·1011T−1s−1 and Heff = 123 kA/m to fit the theoretical model to the
experimental data, and the adopted values are consistent with empirical
values reported in the literature for Co-rich wires [24, 52, 53]. Therefore,
this experiments demonstrates that the analytical solution to the problem
is correct, and that the thin wire and uniform static approximations are
accurate enough to model the scattering by these ferromagnetic wires.

2.4 Scattering by Short Ferromagnetic

Wires

Due to the large lengths produced at fabrication, the response of ferromag-
netic wires is usually modeled as that of infinitely-long wires. However,
size and mechanical constraints impose the use of significantly shorter
lengths for many practical applications. In such cases, axial resonances
and non-uniform current distributions appear when the wire length is not
much larger than the wavelength of operation, adding extra complexity
to the scattering problem. This Section formulates integro-differential
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equations and approximate circuit models to deal with the scattering by
a short ferromagnetic wire.

2.4.1 Mathematical Solution to the Scattering

Problem

Consider then a ferromagnetic wire of length 2L and radius a, as depicted
in Fig. 2.8. As usual, the solution to the scattering problem is found by
enforcing the boundary conditions on the surface of the wire. In virtue
of the Huygens Principle and equivalence theorem [62, 69], the original
problem can be transformed to an equivalent one by including electric
and magnetic currents on the surface of the wire. In this manner, the
total electric field E(r) = Ei(r) + Es(r) can be written as

E (r) = Ei (r)− j

ωε0

[
k20 +∇∇·

]¨

S

JS (r
′)
e−jk0R

4πR
dS

−∇×
¨

S

MS (r
′)
e−jk0R

4πR
dS

(2.51)

where R = |r− r′|, while JS and MS are the equivalent electric and
magnetic currents, respectively, which are given by

JS = n̂×H (2.52)

MS = −n̂× E (2.53)
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Figure 2.8 – Geometry of the original and equivalent problems of the scattering by
a short ferromagnetic wire.
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The values of the equivalent surface currents are to be found solving this
integro-differential equation on the wire surface. Under the thin wire
(a ≪ λ) and high aspect ratio (a ≪ L) approximations, the contri-
bution coming from the surface magnetic current can be neglected and
the surface electric current collapses to an azimuthally uniform current
JS(r

′) = ẑI(z′)/ (2πa) δ (r′ − a). In addition, the tangential incident field
on the wire surface can be considered a constant, ẑ ·Ei(r′) = E0, whereas
the tangential total electric field on the wire surface can be written as
the product of the wire surface electric current and the wire distributed
impedance ẑ · E(r′) = ZwI (z

′). In this manner, (2.51) on the surface of
the wire is reduced to a generalized Pocklington equation

jη0
2πk0

[
k20 + ∂2

z

] ˆ L

−L

I (z′)G (R) dz′ + ZwI (z) = E0 (2.54)

where G (R) is the exact thin wire kernel equal to

G (R) =

ˆ 2π

0

e−jk0R

4πR
dφ′ (2.55)

The solution to the integro-differential equation (2.54) provides the sur-
face current, I (z) as a function of the excitation E0. Analytical solutions
to this equation have been introduced in [69–71]. However, the equa-
tion has several solutions and an iterative process is in general needed to
achieve the correct value. Despite this, it has been proven that simple nu-
merical methods can be adopted leading to accurate solutions [72]. In this
dissertation, (2.54) is solved by using the method of moments following a
point matching scheme with a triangular basis functions [73].

Once the surface current I(z) is known, the electric and magnetic
fields on the surface of the wires can be easily retrieved. Consequently,
the absorbed and scattered powers can also be numerically computed as
surface integrals, as in (2.7) and (2.8). However, it is probably simpler
and more elegant to invoke again the equivalence principle to compute
the absorbed power through the equivalent current distribution

Pabs =
1

2
Rw

ˆ L

−L

|I(z)|2 dz (2.56)

and to find the scattered power as the power radiated by a linear distri-
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bution of current [74]

Pscat =
η0k

2
0

(4π)2

ˆ 2π

0

ˆ π

0

∣∣∣∣
ˆ L

−L

I (z′) ejk0cosθz
′

dz′
∣∣∣∣
2

sin3θdS (2.57)

2.4.2 Approximate Circuit Model

While the previous section analysis represents an accurate solution to
the scattering problem, it must be solved numerically and can hardly
provide much physical insight into the scattering by a short ferromagnetic
wire. This section introduces a simple circuit model that, despite being
an approximation of the scattering solution, is reasonably accurate, and
simple enough to provide physical insight into the interaction of short
ferromagnetic wires with electromagnetic waves.

To begin with, the solution to the scattering problem becomes easier if
the current distribution on the wire is known. To this end, it can hypothe-
sized that, as with PEC dipole antennas, the current can be approximated
by sinusoidal distributions [73]. In particular, the current distribution of
a short-circuited receiving PEC dipole antenna is approximately given by

I (z) = IR (0) fR (z) (2.58)

with

fR (z) =
cos (k0z)− cos (k0L)

1− cos (k0L)
(2.59)

Since the current distribution is supposed to be known, the problem is
reduced to finding the magnitude of the current, IR (0). Fortunately,
IR (0) can be easily determined by means of the reciprocity theorem as
follows [75]

IR (0) =
V

Zin + Zmod
w

(2.60)

where V stands for the electromotive force induced by the incident field,
given by

V = E0

ˆ L

−L

fT (z) dz (2.61)

with fT (z) being the current distribution function of the reciprocal PEC
dipole antenna in the transmitting mode

fT (z) =
sin (k0L− k0 |z|)

sin (k0L)
(2.62)
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In addition, Zin is the self-impedance of the reciprocal transmitting PEC
dipole antenna, and Zmod

w is an impedance term which takes into account
the wire surface impedance, Zw. In particular, the finite conductivity and
magnetic response of the wire produce a voltage drop ZwfT (z) at each dz
point of the wire, leading to

Zmod
w = Zw

ˆ L

−L

f 2
T (z) dz (2.63)

Once the current on the wire has been determined through the circuit
model, the absorbed and scattered powers can again be computed through
(2.56) and (2.57), respectively.

It is apparent from (2.60) that the magnitude of the current distri-
bution excited in a short ferromagnetic wire can be analyzed through a
similar circuit model than the one developed for a long ferromagnetic wire
(see Fig 2.4). To this end, the voltage source must be defined by the elec-
tromotive force produced by the incident field (2.61), the wire impedance
is given by (2.63), accounting by the distributed effect on the wire surface,
and the Rscat+jωL load must be substituted by the self-impedance of the
reciprocal transmitting antenna Zin, which is mostly capacitive for short
wires.

2.4.3 Numerical Validation of the Model

The accuracy of this circuit model relies on the validity of the current
distribution. Since the assumed current distributions were those of PEC
dipole antennas [73], the circuit model is the more accurate the closer the
wires behave as good conductors (i.e. the thicker the wires are). This is
emphasized in Fig. 2.9, which depicts the absorbed power predicted by the
method of moments and the circuit model for Co-rich wires with 22.5µm,
5µm and 2µm radius and 2L = 9.8mm length. While there is almost a
perfect match between both models for the thickest wire, the accuracy of
the circuit model degrades as the wire radius decreases. Nevertheless, the
circuit model provides a qualitative estimation of the absorption spectrum
for all considered radii.
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Figure 2.9 – Comparison of the absorption spectrum predicted by the method of
moments and circuit model for Co-rich wires with 22.5µm, 5µm and 2µm radius
and 2L = 9.8mm length.
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2.5 Conclusions

The mathematical methods through which ferromagnetic wires are mod-
eled along the dissertation have been introduced in this chapter. Follow-
ing previous works, the response of infinitely-long wires has been mod-
eled by means of a decomposition in cylindrical harmonics [17, 58, 61],
and the scattering by finite-length wires has been addressed through a
generalized Pocklington equation [69–71]. Moreover, equivalent and ap-
proximate circuit models have also been formulated. Specifically, it has
been found that, within the thin wire approximation, the scattering by an
infinitely-long ferromagnetic wire is equivalent to that of an impedance
loaded wire, and the scattering by a finite size wire can be approximated
by that of a PEC dipole antenna with sinusoidal current distribution,
also loaded with a certain distributed impedance. Moreover, such circuit
models have been validated experimentally (for infinite-long wires) and
numerically (for finite-size wires).
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Chapter 3

Surface and Bulk Effects in

the Scattering by

Ferromagnetic Wires

3.1 Introduction

It has been argued in Chapter 2 that, in the GHz frequency range, fer-
romagnetic wires are electrically thin structures. Under this perspective,
one might conclude that the radius of the wires shall not have a great
impact on the response of the wires to electromagnetic fields. In other
words, it could be expected that changing the wire radius from 10−4λ
to 10−5λ should not dramatically affect the scattering by a ferromag-
netic wire. It turns out to be just the opposite. As a matter of fact,
it has been experimentally found that variations of the wire radius on
the order of microns produce dramatic changes on the scattering and ab-
sorption by a ferromagnetic wire. For example, Fig 3.1(a) represents the
measured absorption power coefficient1 of three different Co-rich wires of
a = 22.5µm, a = 5µm and a = 2µm radius, corresponding to electric
sizes of a/λ = 7.5 · 10−4, a/λ = 1.67 · 10−4 and a/λ = 6.67 · 10−5 at
10GHz. Despite the fact that the wires have the same composition and
were biased with the same electromagnet, there are significant differences
in the absorption spectra.

The reason behind this apparently anomalous behavior is the strong
mismatch between the free-space wavelength and the wavelength within

1The details of the experiment and the interpretation of the absorption spectra are reported later
on in the chapter.

41
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Figure 3.1 – (a) Measured absorption power coefficient for Co-rich ferromagnetic
wires with a = 22.5µm, a = 5µm and a = 2µm radius. (b) Skin-depth as a function
of frequency for typical Co-rich ferromagnetic wire parameters.

the wire. As a matter of fact, it can be concluded from Fig. 3.1(b) that
the penetration depth (δ = 1/k′′w) is of the order of microns around the
resonance, so that the wire radii can be larger than, comparable to, or
smaller than the penetration depth. Thus, radius changes of the order of
microns produce a transition from surface to bulk effects.

Due to the crucial role of these effects in the scattering by ferromag-
netic wires, this chapter will be fully devoted to the study of such ef-
fects. Specifically, the equivalent circuit model derived in Section 2.3.2 is
employed in Section 3.2 to shed more light into the matter. Moreover,
Fig. 3.1(a) exemplifies how the transition from surface to bulk effects hin-
ders the interpretation of the absorption spectrum of ferromagnetic wires.
This is highly inconvenient, since an accurate knowledge of the absorp-
tion spectrum is required from both technological (e.g., the design of
electromagnetic absorbers) and material science (e.g., the determination
of the magnetic properties through the frequency position of the FMR)
points of view. Therefore, Section 3.3 introduces a detailed analysis of the
absorption spectrum of ferromagnetic wires. Since axial resonances and
non-uniform current distributions add extra complexity to the absorp-
tion spectrum of short wires, both long and short ferromagnetic wires are
carefully addressed.
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3.2 Analysis of Surface and Bulk Effects

by means of Equivalent Circuit Models

Let us use the equivalent circuit model developed in Section 2.3.2 to gain
more insight into the surface and bulk effects in the scattering by ferro-
magnetic wires. To this end, recall that, under the thin wire approxi-
mation (k0a ≪ 1), the fields scattered by a ferromagnetic wire are equal
to those scattered by an impedance-loaded PEC wire, with equivalent
distributed impedance Zw = Rw + jXw given by

Zw = −η0k0
4

(
bTM0

)−1 − α−1
0 (3.1)

Assuming a single static axial magnetization domain, a closed-form
for the distributed impedance can be found by substituting the values of
bTM0 given by (2.33) into (3.1). By doing so, Zw can be written as

Zw = j
ηw
2πa

J0 (kwa)

J ′
0 (kwa)

(3.2)

Intuitively, it can be readily checked that the equivalent impedance
is equal to the wire surface impedance divided by the perimeter: Zw =
Ez (r = a) / [2πaHφ (r = a)]. Furthermore, since Zw is a function of ηw
and kw it is clear that the wire impedance is not only defined by the
electric conductivity, but it is also greatly affected by the wire magnetic
properties. In this manner, the magnetoimpadance effect (MI) is also
described by the equivalent circuit model.

Due to the great mismatch between free-space and the wavelengths
within the wire, it is found that, contrary to k0a, which always remains
small, kwa ≪ 1, kwa ≃ 1 and kwa ≫ 1 are perfectly possible depending
on the ratio between the wire radius and skin depth (δ = 1/k′′w). Since
conductive wires are inherently lossy, the field is constrained to the wire
surface for kwa ≫ 1. Thus, such a case will be referred to as the skin-
effect (SE) limit. By contrast, the fields are uniform within the wire for
kwa ≪ 1, and therefore such scenario will be referred to as the quasi-static
(QS) limit.

Let us start with the QS limit. Taking small-argument approximations
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J0 (kwa) ≃ 1 and J ′
0 (kwa) ≃ −kwa

2 , Zw can be approximately written as

ZQS
w ≃ 1

πa2σ
(3.3)

which is equal to the inverse of the wire cross-section area times conduc-
tivity, corresponding to the electrical resistance of the wire. Therefore, in
the QS limit Zw becomes independent of the wire magnetic properties. In
such scenario, the electric field inside the wire is uniform and the electric
and magnetic responses decouple. This phenomenon is consistent with
the fact that the electric field tends to be described by Poisson’s equation
as the electrostatic limit is approached.

As for the SE effect limit, taking the large (and complex) argument
approximation J0 (x) ≃ −jJ ′

0 (x), Zw can be approximately written as

ZSE
w ≃ ηw

2πa
(3.4)

It is apparent from (3.4) that Zw becomes directly proportional to the
medium impedance and inversely proportional to the wire perimeter.
Since the current is concentrated in a smaller area, Zw increases as the
wire radius decreases. An additional physical interpretation of this fact
is as follows: since the electromagnetic fields become more strongly con-
strained to the wire surface as the radius increases, in the very SE limit
there is almost no field inside the wires, and the influence of the wire
constitutive parameters tend to vanish, getting closer and closer to the
behavior of a PEC wire, i.e., the distributed impedance tends to zero.

Summarizing, in both QS and SE limits the influence of the wire
permeability on the zero-order response tends to vanish, and thus the
intermediate cases will be the most interesting ones to tailor the response
of the wire through its magnetic properties. Therefore, it is apparent that
those radii in the transition from surface to bulk effects provide the larger
correlation between the electric and magnetic responses of the wire. The
regions of validity for the QS and SE limits depend on the geometrical
and electromagnetic parameters of the wire, as well as on the frequency
of operation.

To further clarify these phenomena, Fig. 3.2 represents the frequency
behavior of the wire distributed impedance for wires of 50µm, 10µm,
1µm and 100 nm. The wires have been modeled with typical Co-rich
values [53]: conductivity σ = 5 · 105 S/m, gyromagnetic ratio γ = 2 ·
1011T−1s−1, saturation magnetization µ0Ms = 0.55T, and magnetic loss
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Figure 3.2 – Wire distributed impedance for Co-rich ferromagnetic wires of (a)
50µm, (b) 10µm, (c) 1µm and (d) 100 nm radius.

factor α = 0.02. An effective DC magnetic field Heff = 113.45 kA/m
is assumed, so that the FMR frequency is at 10 GHz and the AFMR
frequency is located at approximately 22 GHz.

As it was anticipated, Zw is low and resembles ηw in the strong SE limit
(see Fig. 3.2(a), a = 50µm), exhibiting a maximum of resistance at the
FMR frequency and a minimum at the AFMR frequency. Moreover, the
equivalent inductance crosses zero at the FMR and AFMR frequencies,
being capacitive between the FMR frequency and the AFMR frequency
(corresponding to Re[µw] < 0), and being inductive below the FMR fre-
quency and above the AFMR frequency (corresponding to Re[µw] > 0).

By contrast, the resistance becomes much larger than the reactance
as the wire radius gets smaller, so that the similarity of Zw with ηw disap-
pears. For example, the impact of the AFMR in the resistance cannot be
appreciated for a wire of 10µm radius (see Fig. 3.2(b)), and the resistance
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is almost constant except for a peak at the FMR frequency for a radius of
1µm (see Fig. 3.2(c)). Note that the penetration depth is minimized at
the FMR frequency, and therefore that is the last frequency to converge
to the QS regime. Finally, all frequencies converge to the QS limit for
the wire of a = 100 nm (see Fig. 3.2(d)). In such a case, the equivalent
impedance is real and frequency independent, which confirms that it is
also independent on the magnetic properties of the wire.

This simple study allows us to identify some of the main potentialities
and limitations of ferromagnetic wires. On the bright side, ferromagnetic
wires can play the role of impedance loaded wires in a large number of
devices. In fact, Fig. 3.2 demonstrates that they have the potential to
provide resistive, inductive and capacitive loading. What is more, all of
the aforementioned loads can be tuned by means of external DC magnetic
fields, DC currents or mechanical stresses. Thus, no complex feeding
networks are required in reconfigurable devices based on ferromagnetic
wires. On the downside, ferromagnetic wires are very lossy. In fact, it
can be concluded from Fig. 3.2 that the resistance is always superior to the
reactance, and this effect is the more dramatic the smaller the wire radius.
In other words, the larger the reactive loading obtained from the wires,
the larger the resistance to reactance ratio. This simple fact limits the
scope of ferromagnetic wires in a number of reconfigurable devices where
efficiency is critical. Therefore, the following chapters of the dissertation
will emphasize the design of absorbers and sensors, where, in principle,
losses are not a drawback. The physical principle behind this limitation
is that, as the reactive loading is produced by magnetic domains within
a conductive core, any reactive loading is accompanied by large ohmic
losses. Therefore, the limitations imposed by losses could be overcome by
heterogeneous structures with separated non-magnetic conductive regions
and non-conductive magnetic regions. Unfortunately, the latter have not
been fabricated by means of the Taylor-Ulitovsky technique yet.
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3.3 On the Absorption Spectrum of

Ferromagnetic Wires

3.3.1 Absorption Spectrum of Long Wires

3.3.1.1 Theoretical Analysis

The equivalent circuit model will also provide us with an intuitive expla-
nation for the absorption spectra depicted in Fig. 3.1(a). To begin with,
recall that the absorbed power can be written in circuital terms as (see
equation (2.41))

PL
abs =

1

2
Re [Zw] |Ieq|2 =

1

2
Re [Zw]

|E0|2

|Rscat + jωL + Zw|2
(3.5)

It has been shown in the previous section how Zw decreases as the
wire radius increases. Moreover, it can be inferred from (2.39) that L
dominates over Rscat for electrically thin wires (k0a ≪ 1) (i.e., thin wires
are inefficient scatterers). Therefore, it can be concluded that L defines
the current flowing along wires much thicker than the penetration depth,
i.e., in the SE limit, so that the absorbed power can be approximately
written as

PL
abs ≃

1

2
Rw

|E0|2

(ωL)2
(3.6)

Therefore, the absorption spectra of wires in which surfaces effects are
dominant are expected to show a maximum of absorption at the FMR,
corresponding to the maximum of the wire resistance, Rw. In other words,
if the inductance produced by the equivalent current, L, is dominant, the
wire distributed impedance, Zw, has a negligible impact on the equivalent
current, Ieq, and the absorption is maximized at the maximum of losses.

By contrast, Zw becomes comparable to L as the radius decreases.
This fact shifts the absorption maximum towards higher frequencies, since
the capacitive contribution of Xw above the resonance compensates L, re-
sulting in an increase of the equivalent current Ieq. Similarly, the inductive
contribution of Xw below the resonance produces a decrease of Ieq, and
thus a minimum of absorption. As a result, the absorption spectra of wires
with intermediate radii are characterized by the sequence of a minimum
and a maximum.
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Subsequently, the wire resistance Rw becomes the dominant term for
even thinner wires, so that the absorbed power simplifies to

PL
abs ≃

1

2
Rw

|E0|2
R2

w

=
1

2

|E0|2
Rw

(3.7)

Counterintuitively, (3.7) reveals that the absorbed power is inversely
proportional to losses for wires with radius smaller than the penetration
depth. Therefore, such wires present a minima of absorption at the FMR
resonance. In circuital terms, the excess of losses at the FMR produces
a reduction of the excited current, which leads to a minimum of absorp-
tion. Note that these anomalous minima on the absorption spectrum
have been erroneously interpreted by other authors as evidence of anti-
ferromagnetic resonances [24], or even as an experimental proof of double
negative metamaterials based on ferromagnetic wires [31, 36, 52].

Finally, the QS limit is reached as the wire radius becomes much
smaller than the penetration depth, and the fields fully penetrate into the
wire. In such a case, the electric and magnetic responses decouple, and a

flat absorption spectra is to be expected. Specifically, Zw ≃
(
πa2σ

)−1
is

dominant over the other terms, so that the absorbed power can be written
as

PL
abs ≃

1

2
πa2σ |E0|2 (3.8)

which is indeed a frequency independent absorption spectrum, corre-
sponding to the volume integration of a uniform electric field over the
electric losses (conductivity) of the wire. In passing, note that second
order effects, which are usually hidden behind the dominant FMR res-
onance, could be more easily observed as small alterations of such flat
spectra.

Although this equivalent circuit model clarifies the absorption spec-
trum, it is still not possible to identify the exact position of the resonance
through a simple inspection. This can be solved by noting that the scat-
tered power, PL

scat, is also proportional to the square of Ieq, as shown in
equation (2.42). Thus, the absorbed to scattered power ratio defined here
as

Pabs

Pscat
=

Rw

Rscat
(3.9)

is independent of the current excited in the wire, and features a maximum
at the resonance independently on the wire geometry. Therefore, such
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ratio can be adopted as a size-independent indicator of the FMR resonance
frequency position.

3.3.1.2 Experimental Verification

Three different Co-rich (Co0.94Fe0.06)75Si12.5B12.5 ferromagnetic wires with
22.5µm, 5µm and 2µm metallic radius and mean total diameter (includ-
ing the Pyrex coating) of 65µm, 33µm and 14µm, respectively, have been
employed to experimentally validate the theoretical analysis. The samples
have been fabricated by means of the Taylor-Ulitovsky technique [7,8] in
collaboration with Prof. M. Vázquez at the Material Science Institute of
Madrid (ICMM). The experiment consisted of the waveguide experimen-
tal setup described in Section 2.3.3, and the measurements were carried
out at the measurement laboratory of the Antenna Group, Public Univer-
sity of Navarra, by A. Labrador (Physics Department, Public University
of Navarra), who provided the measured S-parameters.

As theoretically developed in Section 2.3.3, the incident electromag-
netic field impinges on the ferromagnetic wire, which scatters some elec-
tromagnetic power in the form of cylindrical waves that, due to the influ-
ence of the metallic walls, is reflected back and transmitted forward as the
TE10 waveguide mode. Therefore, the scattered power is proportional to
twice the measured reflection power coefficient, Pscat ∝ 2R = 2|S11|2, and
the absorbed power is proportional to the absorption power coefficient,
Pabs ∝ A = 1 − |S11|2 − |S21|2. Consequently, the absorbed to scattered
power ratio can be estimated as Pabs/Pscat ≃ A/2R.

The experimental data corresponding to the absorption power coeffi-
cient and absorbed to scattered power ratio for the three different wires
are gathered in Fig. 3.3. To begin with, Fig. 3.3(a) represents the ab-
sorbed to scattered power ratio for the wire with 22.5 µm radius. Each
line corresponds to a different biasing DC magnetic field as indicated in
Table 3.1. While the response is flat for a null biasing (H1 = 0 kA/m),
the absorbed to scattered power ratio of biased wires is characterized by a
peak that increases its frequency position along with HDC . According to
our model, this peak corresponds to the resonance and has been marked
with a vertical line to compare it with the absorption spectrum, which
is represented in Fig. 3.3(d). The absorption spectrum is also character-
ized by a peak that increases its frequency position along with HDC . In
agreement with the theoretical model, the absorption maxima are shifted
towards higher frequencies with respect to the resonance, i.e., the peak of
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H1 0.0 kA/m

H2 89.4 kA/m

H3 117.7 kA/m

H4 146.0 kA/m

Table 3.1 – HDC biasing magnetic field

Pabs/Pscat ratio.

The measurements corresponding to the wire of 5 µm radius are de-
picted in Figs. 3.3(b) and (e). Again, the absorbed to scattered power
ratio is characterized by a maximum peak, and the measured values are
larger than those obtained for the wire of 22.5 µm radius. Despite using
the same bias field and wire composition, the FMR frequencies do not
coincide with those of the 22.5 µm radius wire. Note that this is a typical
effect in glass-coated amorphous wires [3], produced by changes on the
anisotropy field of the wires due to the mechanical stresses produced dur-
ing the fabrication processes, which are a function of the wire geometry
(metallic and total radius). As for the absorption spectrum, it describes
the minimum-maximum sequence predicted by the theoretical model.

Finally, the absorbed to scattered power ratio and absorption spectra
of the wire with 2 µm radius are depicted in Figs. 3.3(c) and 3.3(f), re-
spectively. As with the other wires, the absorbed to scattered power ratio
spectrum is characterized by a maximum, which confirms the indepen-
dency of this figure with respect to the geometry, and thus the possibility
to unequivocally identify the FMR frequency. Furthermore, it can be
concluded that the measured values of absorbed to scattered power ra-
tio increase along with the wire radius. This behavior is consistent with
the fact that Rw increases along with the wire radius (see Fig. 3.2), while
Rrad = η0k0/4 is independent on the wire geometry. Moreover, the ab-
sorption minima of the wire of 2 µm are precisely centered at the FMR
frequency. In accordance to the theoretical model, the excess of losses
present at the resonance results in a dip on the absorption spectra, for
wires smaller than the penetration depth.
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Figure 3.3 – Measured (a)-(c) absorbed to scattered power ratio and (d)-(f) absorption power coefficient for a Co-rich
ferromagnetic wires of (a),(d) a = 22.5µm (b),(e) a = 5µm and (c),(f) a = 2µm radius, as a function of the applied DC
magnetic field.
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3.3.2 Absorption Spectrum of Short Wires

3.3.2.1 Theoretical Analysis

Axial resonances and non-uniform current distributions appear as the
length of the wire decreases, which adds extra complexity to the absorp-
tion spectrum. For example, let us revisit Fig. 2.9, which depicted a com-
parison of the absorption spectrum predicted by the method of moments
and circuit model for Co-rich wires with 22.5µm, 5µm and 2µm radius
and 2L = 9.8mm length. It is evident that the figure was already pointing
out the strong correlation between the wire geometry and the absorption
spectrum. However, the peculiarities of this set of absorption spectra can
be clarified by means of the circuit model introduced in Section 2.4.2.

To this end, Fig. 3.4 represents the corresponding modified wire dis-
tributed impedance Zmod

w = Rmod
w + jXmod

w of a wire with 2L = 9.8mm
length and (a) a = 22.5 µm, (b) a = 5 µm, and (c) a = 2 µm radius,
as well as the input impedance of the reciprocal transmitting PEC dipole
antennas, Zin = Rin + jXin. Zmod

w has been evaluated through (2.63),
and Zin has been calculated as in basic antenna textbooks (see e.g. [73],
p. 918). The figure illustrates how Zmod

w is a scaled version of Zw (see
Fig. 3.2), as it could be inferred from its very definition, i.e., (2.63). By
contrast, Zin follows it the typical input impedance of a dipole antenna,
i.e., the input impedance is dominated by a negative reactance at low
frequencies, but the reactance grows along with frequency until it crosses
zero at approximately 14.9 GHz (L ≃ 0.485λ). Similarly, the input resis-
tance increases along with frequency, with a value of approximately 75 Ω
at 15.3 GHz (L ≃ 0.5λ). In addition, the relative importance of Zmod

w

with respect to Zin increases as the wire radius decreases. In this manner,
the capacitive impedance term Xin is the dominant term for the wire of
a = 22.5µm radius, whereas the resistive Rmod

w term is dominant for the
wire of a = 2µm radius.

In view of the balance between the impedance terms, the two absorp-
tion peaks observed for the wire of 22.5µm radius (see Fig. 2.9) can be
explained as follows: the first peak is centered close to 9 GHz, where
Xin dominates over the other impedance terms, and therefore the absorp-
tion is maximized due to an increase of losses at the FMR. This peak is
slightly shifted below 9 GHz, due to the compensation of the capacitive
Xin and inductive Xmod

w impedance terms. On the contrary, the second
peak is placed close to an axial resonance, i.e., the maximum is mostly
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Figure 3.4 – Modified wire surface impedance Zmod
w = Rmod

w + jXmod
w of a wire with

2L = 9.8mm length and (a) a = 22.5 µm, (b) a = 5 µm, and (c) a = 2 µm radius, as
well as the input impedance of the reciprocal transmitting antennas, Zin = Rin+jXin.
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produced by an enhancement of the current excited in wire when the
overall impedance is minimized. In this manner, although Xin ∼ 0 at
approximately 14.9 GHz, the balance between Xin, X

mod
w , Rin and Rmod

w

results in a maximum of absorption at 14.5 GHz.
Similarly, the absorption spectrum for the wire of a = 5 µm radius

is also characterized by two peaks corresponding to material and axial
resonances (see Fig. 2.9). The differences with respect to the absorption
spectrum of the wire of a = 22.5µm radius are a larger damping and
broadening of the axial resonance, as well as a larger frequency shift in
both, the material and the axial absorption peaks. Both differences cor-
respond to an increased valued of Zmod

w as compared to Xin.
As for the wire of 2µm radius, it is clear from Fig. 3.4 that the wire

resistance Rmod
w is dominant over the other impedance terms. In this

manner, a minimum of absorption is centered at the FMR, and the axial
resonance has been completely damped.

3.3.2.2 Experimental Verification

The experimental verification of the absorption spectrum of short ferro-
magnetic wires has been carried out with same Co-rich wires employed for
the validation of the long wires spectrum. In fact, the experimental setup
is also the same, with the only difference that rather than connecting the
wires to the waveguide walls, they have been cut to a length of 9.8 mm,
and are suspended within the waveguide on a Rohacell foam (ǫr ≃ 1.003),
with no contact with the metallic walls. Again, the measurements were
carried out by A. Labrador.

Fig. 3.5 gathers all the experimental data, i.e., the measured absorbed
to scattered power ratio and absorption power coefficient for the different
wires as a function of the DC magnetic field. To begin with, Figs. 3.5(a)
and (b) depict the spectra of absorbed to scattered power ratio and ab-
sorption, respectively, for the wire of 22.5µm. As it is shown, the un-
biased wire (H1 = 0) presents a flat spectrum of absorbed to scattered
power ratio while its absorption spectrum is characterized by a maxima,
not present in the infinitely-long wire (see Fig. 3.3(d)). Therefore, this
maximum is ascribed to an axial resonance in the wire. Note that this
resonance appears significantly shifted from the half-wavelength point due
to both, the impact of the Pyrex coating (described in AppendixB), and
the loading of the waveguide.

When the wires are biased (HDC 6= 0), a peak of absorbed to scattered
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power ratio can be observed in Fig. 3.5(a), which again allow us to identify
the FMR frequency position. Moreover, an additional maximum appears
on the absorption spectrum. As predicted by the theory, this maximum
is produced by an increase of Rmod

w at the FMR. However, it is located at
frequencies below the resonance due to the compensation of the capacitive
input impedance (Xin < 0), with the inductive Xmod

w > 0 below the
resonance. It is also observed that this frequency shift between the first
absorption maxima and the FMR frequency increases along with the bias
field. The reason is that as the FMR frequency approaches the half-
wavelength resonance, the smaller Xin is in the vicinity of the resonance.
Thus, the compensation of Xin with Xmod

w gets stronger, and the shift of
the absorption peak relative to the FMR increases along with the biasing
field. Note also that changing the biasing shifts towards higher frequencies
the peak produced by the axial resonance. This is is produced by the
capacitive wire impedance (Xmod

w < 0) above the resonance.
The measurements corresponding to the wire of 5µm radius are de-

picted in Figs. 3.5(b) and (e). Since electromagnetic fields penetrate more
inside this wire, the strength of both absorption peaks, the one produced
by the half-wavelength resonance and the one produced by the FMR res-
onance, become comparable. For the same reason, the shifts produced by
the changes in the biasing fields are more pronounced.

By contrast, the wire of 2µm radius features a completely different be-
havior. In correspondence with the theoretical model, Fig. 3.5(f) demon-
strates that the axial resonance vanishes for very thin wires. In addition,
the obserbed absorption spectra are characterized by a minimum. Unfor-
tunately, the measurements of absorption to scattered power ratio were
too noisy and cannot be interpreted (see Fig. 3.5(c)). The reason is the
small reflection produced by a short wire of 2µm radius (6.67 · 10−5λ at
10 GHz).

3.4 Conclusions

A detailed analysis of the transition from surface to bulk phenomena in
the scattering by ferromagnetic wires has been presented in this chapter.
This effect (or collection of effects) takes place in GHz frequency range for
conductive ferromagnetic wires with radius on the orders of microns, and
has far-reaching implications in the scattering by ferromagnetic wires.

To begin with, it has been shown how the MI effect tends to disappear
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Figure 3.5 – Measured (a) absorbed to scattered power ratio and (b) absorption power coefficient, for a Co-rich ferromagnetic
wire of a = 22.5µm radius and 2L = 9.8mm length, as a function of the applied DC magnetic field.
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in the SE and QS limits. Therefore, those wires with radii in the transition
from surface to bulk effects result in the strongest FMR-based MI effect.
Furthermore, it has been demonstrated that such wires can provide re-
configurable, resistive, inductive and capacitive loading. However, it has
been also found that the wire distributed resistance is always larger than
the wire distributed reactance, which limits the scope of ferromagnetic
wires for applications where efficiency is critical.

Finally, it has been illustrated how this collection of effects leads to a
complex size-dependent absorption spectrum. However, the peculiarities
of the absorption spectrum can be clarified by means of the circuit models
formulated in Chapter 2. Moreover, it has been found that the absorbed
to scattered power ratio is a size-independent indicator that enables the
identification of the FMR frequency.
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Chapter 4

Fundamental Limits in the

Scattering by Ferromagnetic

Wires

4.1 Introduction

Controlling the balance between the extracted, absorbed, scattered and
reactive powers excited in a scattering process is of natural interest for
a wide range of applications. To mention some of them, maximizing
the absorbed power is the design goal for communications links, power
harvesting devices and sensors. For the specific case of low-observability
sensors, the typical demand is to produce a high absorbed-to-scattered
power ratio, though the absorbed power level must be kept over a certain
sensitivity threshold. Furthermore, while anti-radar/cloaking systems are
essentially focused on the minimization of the scattered power, resonant
scatterers are also of interest, e.g., in the design of passive RFID tags
and, in general, to enhance any kind of electromagnetic wave- (e.g., light-
) matter interaction effects. For most of these applications, the optimal
design usually involves a desire to eliminate the reactive power. On the
other hand, the amount of reactive power could be employed to tailor
the phase-shift (and therefore time delay) between the excitation and the
response of the scatterer.

The balance of powers is restricted naturally by fundamental principles
such as energy conservation and causality. For example, whenever a sensor
captures power from an electromagnetic field, it also produces a distur-
bance in the field which is detectable by an external observer. Although

59
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this disturbance can be minimized (for example, by using cloaked [76]
and forward-scattering [77] sensors), a residual amount of scattered field
is produced even with the most careful design. The reason for this is that
the power carried by the external field must be reduced by the amount of
absorbed power. Therefore, the absorption and scattering processes are
intimately correlated, which restricts the power captured by a sensor as
a function of the disturbance created in the external field in association
with the fields induced within the sensor.

Constrained to far-field (FF) interactions, the correlation between the
absorption and scattering processes has been studied by means of the op-
tical theorem [77], multipolar decomposition [78,79] and equivalent circuit
model approaches [79]. All these studies agree that while the ratio of the
absorbed to scattered power can be made as large as desired, it comes at
the expense of losing absorbed power. In particular, maximization of the
absorbed power imposes a constraint, i.e., the equality of the absorbed
and scattered powers [78,79]. In antenna terminology, as the re-radiation
from a receiving antenna is diminished, its gain decreases with respect to
the maximal antenna gain [59,80]. This maximum point has been shown
to occur when the absorbed and scattered powers are equal [79]. In other
words, there is a tradeoff between the visibility and effective area of a
receiving antenna.

Similar restrictions are bound to appear in ferromagnetic wires based
systems. Therefore, this chapter is focused on deriving the limits of ab-
sorbed, scattered and extracted powers that arise from the correlation
between absorption and scattering processes in the scattering by ferro-
magnetic wires. To this end, the problem is addressed from circuit model
(Section 4.2) and multipolar (Section 4.3) approaches. The extrapolation
of the presented results to arbitrary scatterers is also discussed. Finally,
the technological implications of the derived limits are analyzed in Sec-
tion 4.4.

4.2 Circuit Model Approach

Chapter 2 demonstrates that the scattering by a thin ferromagnetic wire
is equivalent to that of an impedance loaded wire. In fact, if the load
of the latter is set according to (2.40), both structures produce the same
scattered fields, and an external observer will not find any difference.
In addition, it was shown that the equivalent current can be computed
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following the circuit model depicted in Fig.4.1. Let us make use of such
circuit model to analyze some fundamental limits in the scattering by
ferromagnetic wires. To this end, note that, as it was shown in Chapter 2,
(2.41)-(2.42), the absorbed and scattered powers per unit length can be
written in circuital terms as follows

PL
abs =

1

2
Rw |Ieq|2 =

1

2
Rw

|E0|2

|Rscat + Rw + j (ωL +Xw)|2
(4.1)

PL
scat =

1

2
Rscat |Ieq|2 =

1

2
Rscat

|E0|2

|Rscat + Rw + j (ωL+Xw)|2
(4.2)

According to the optical theorem [81, 82], as the scatterer interacts
with the incident field, it extracts a certain amount of power from it. In
this manner, the extracted power is defined as the power depleted from
the incident field, which then constitutes the addition of absorbed and
scattered powers, i.e., Pext = Pscat + Pabs. Aside from adding absorbed
and scattered powers, the extracted power can be computed in virtue
of Pointing’s theorem as the surface integration of the cross-products of
incident and scattered fields [82,83]. Furthermore, Pext is also determined
in virtue of the optical theorem as a function of the forward scattering
amplitude [81]. In our case, the equivalent circuit model suggests that
the extracted power per unit length PL

ext can be written in circuital terms
as follows

PL
ext =

1

2
(Rscat +Rw) |Ieq|2

=
1

2
(Rscat + Rw)

|E0|2

|Rscat + Rw + j (ωL+Xw)|2
(4.3)

Formulating power quantities in circuital terms as in (4.1)-(4.3) not
only provides a straightforward way to compute the absorbed, scattered
and extracted powers involved in the scattering by a ferromagnetic wire,
but also reveals the intrinsic limits in the balance of powers. A key aspect
is that the scattering resistance, Rscat = η0k0/4, is real, positive and non-
vanishing. More strikingly, it is independent of the wire and incident
field properties. Therefore, it can be concluded that there is an inherent
radiative component associated with the equivalent current distribution
that forms the scattered field. Thus, when a given current is excited to
create either absorption or reactive energy, a certain amount of power
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Zw

Rscat

j L

E0

ω

Figure 4.1 – Equivalent circuit model of the scattering by a ferromagnetic wire.

also must be scattered. Consistently, there cannot be absorption without
scattering.

In circuital terms, if there is a certain amount of current Ieq flowing

on the circuit, then there is also scattered power: 1
2 Rscat |Ieq|2. Since

Rscat cannot be controlled either by the wire geometry or its electromag-
netic properties, the amount of scattered power can only be manipulated
through the amount of current, which imposes some limitations on the
reactive and absorbed powers. Therefore, this aspect of the circuit model
also has implications in elucidating the maximal extracted power and its
contributions from the scattered and absorbed powers.

For example, it is clear from (4.3) that the extracted power is max-
imized when Xw + ωL = 0, and when the total resistance Rscat + Rw is
made as low as possible. Furthermore, since Rscat is a fixed quantity, the
extracted power is maximized for Rw = 0, which only occurs for the loss-
less, zero absorption case. This maximum value is expressed in terms of
the field quantities as:

PL,MAX
ext =

1

2

|E0|2
Rscat

=
2 |E0|2
η0k0

(4.4)

For this case, PL
ext = PL

scat. This means (4.4) also corresponds to the

maximal scattered power per unit length, i.e., PL,MAX
ext = PL,MAX

scat .
Consequently, the maximal extracted and scattered powers, given by

(4.4), represent the maximal value that could ever be achieved by any
wire placed in the presence of the same incident field. Therefore, since
the maximal extracted power is obtained for the lossless case, it can be
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concluded, counter-intuitively, that the presence of absorption limits the
ability of the wire to extract power from the incident field. Fundamentally,
the wire, even though it is lossy, cannot absorb all the power which could
be extracted from the incident field, i.e., the lossless case value PL,MAX

ext . In
particular, looking at (4.1) and recalling that Rscat = 0 must be discarded,
it is clear that the absorbed power is maximized when Xw + ωL = 0 and
Rscat = Rabs. This leads to the maximum absorbed power per unit length
expression:

PL,MAX
abs =

1

2

|E0|2
4Rscat

=
|E0|2
2η0k0

(4.5)

Moreover, with Rscat = Rabs, it then directly follows that Pscat = Pabs for
PL,MAX
abs .
In addition, a simple comparison between (4.4) and (4.5) reveals that

the maximal absorbed power is a quarter of the maximal extracted power,
i.e., the wire cannot absorb more than 25% of the power that could ever be
extracted from the incident field, the latter being defined by the lossless
limit, PL,MAX

ext . More specifically, the absorbed and scattered powers are
equal only at the point of maximal absorption. Therefore, only 50% of
the available power in this case can be extracted as the absorbed power.
However, only 50% of PL,MAX

ext is available for this maximal absorption
case.

On the other hand, this fact should not lead one to the wrong conclu-
sion that the absorbed power can never exceed 50% of the power extracted
from the incident field. As pointed out here, if one is willing to sacrifice
the amount of power absorbed from the incident field, one can make the
ratio of PL

abs to PL
scat as large as one wants. In terms of the circuit model,

the absorbed to scattered power ratio is simply proportional to Rw/Rscat,
and it can be forced as large as desired, at the cost of reducing PL

abs .
Finally, note that one must be very careful when relating these limits

of the extracted, scattered and absorbed powers with the power supplied
by the sources of the incident field. The latter is defined simply as [62]

Psup = −1

2

˚

Vi

Re
[(
Ei + Es

)
· (Ji)

∗ +
(
Hi +Hs

)
· (Mi)

∗] dV (4.6)

where Vi is the volume contained in the surface Si surrounding the free
sources . From (4.6) it is concluded that, in general, the power supplied by
the sources is not uniquely defined by the incident field, but also depends
on the scattered field. Therefore, if the wire is close enough to significantly
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alter the supplied power, the aforementioned percentage limits cannot be
directly related to it. On the contrary, the power supplied by sources in
their far fields, which are of great interest in a wide range of technological
applications, is independent of the scattered field and all the information
about the power available for the wire is contained in the incident field.
Therefore, for the far-field case treated here, in which the source and the
scattered field currents are essentially decoupled, the maximal extracted
power, PL,MAX

ext , is a true estimation of the maximum power available for
the scattering and absorption processes.

Consequently, the limits considered here, which are based strictly on
the power that can be extracted from a given incident field, are only
meaningful for the intended far-field interactions. In near-field scenarios,
efficiencies defined in terms of power ratios to the supplies power PL

abs/P
L
sup

and PL
scat/P

L
sup play a major role. Although near-field effects are outside

the scope of this dissertation, it is worth noting that they have been
addressed by the author of this dissertation and coworkers in [84].

4.3 Multipolar Approach

On might wonder up to which point the conclusions extracted in the
previous section can be extrapolated to other structures. Admittedly, the
equivalent circuit model has been derived for 2D thin wire structures.
However, the limits seem so natural when a circuit model representation
is considered, that it appears that similar conclusions could be drawn for
the scattering by a large number of, if not all, objects.

However, one must be careful when dealing with circuit models. In
fact, circuit models are formulated for many different purposes, and,
therefore, the information provided by these models in terms of absorbed
and scattered powers can be, in many cases, very limited. For example,
popular Norton and Thevenin circuit models are useful to describe the
voltage and current excited at an antenna port. However, such mod-
els only retrieve the scattered power produced by the re-radiation from
the load; and thus they do not provide the complete picture as far as
the scattered power is concerned (see, e.g., [85–88] and the references
therein). As another example, the circuit model proposed by Engheta
et al. for nanospheres [89] is useful to design complex optical and IR
circuits. However, such a circuit is based on the QS approximation and
disregards scattering losses. By contrast, circuit models can be explic-
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itly formulated to determine the absorbed and scattered powers involved
in a scattering problem. For example, the author of this dissertation and
coworkers have derived circuit models for the scattering problem of spher-
ical objects of arbitrary size [79]. The conclusions drawn in such study
are fully consistent with those develop in the previous section.

A more generic, albeit more mathematical, derivation of the previously
introduced limits can be done by following a purely multipolar approach.
Let us consider first an arbitrary 2D problem. As demonstrated in Chap-
ter 2, equations (2.13)-(2.14), the quantities: PL

abs, P
L
scat, can be written

explicitly as the multipole sums:

PL
abs = − 2

η0k0

∞∑

n=−∞

∑

Z=E,M

Re
[(
ATZ

n

)∗
BTZ

n

]
+
∣∣BTZ

n

∣∣2 (4.7)

PL
scat =

2

η0k0

∞∑

n=−∞

∑

Z=E,M

∣∣BTZ
n

∣∣2 (4.8)

Similarly, adding (4.7) and (4.8) it is found that the extracted power
per unit length, PL

ext = PL
abs + PL

scat, can be alternatively written as the
multipolar sum

PL
ext = − 2

η0k0

∞∑

n=−∞

∑

Z=E,M

Re
[(
ATZ

n

)∗
BTZ

n

]
(4.9)

Let us address the limits of the absorbed, scattered and extracted
power on the basis of these multipolar sums. To begin with, inspecting
(4.7) it is clear that PL

abs depends on the scattering coefficients, BTZ
n , as

well as the source coefficients in the source region, i.e., ATZ
n . To maximize

the absorbed power for a given source, let us first separate the term inside
the brackets into real and imaginary parts, and then take the derivatives
with respect to Re

[
BTZ

n

]
and Im

[
BTZ

n

]
. One finally finds that PL

abs is
maximized for the following condition between the source and scattering
coefficients:

BTZ
n = − 1

2
ATZ

n (4.10)

Substituting (4.10) into (4.7), one finds that the maximum absorbed
power is given by

PL,MAX
abs =

1

2η0k0

∞∑

n=−∞

∑

Z=E,M

∣∣ATZ
n

∣∣2 (4.11)
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It is worth remarking that (4.11) is valid for 2D scatterers of arbi-
trary size, shape and constitutive parameters (e.g., non-reciprocal de-
vices). Furthermore, introducing (4.10) into (4.8), one recovers the known
result [77–79] that for maximal absorption to occur, the absorbed and
scattered powers must be equal, i.e.,

PL,MAX
abs = PL

scat

∣∣
max{PL

abs} (4.12)

Note that PL
scat

∣∣
max{PL

abs} stands for the scattered power when the absorbed

power is maximized. However, this does not correspond to the maximum
scattered power.

Furthermore, as can be inferred from (4.8), minimizing the scattered
power simply corresponds to minimizing the scattered field coefficients,
BTZ

n → 0. Unfortunately, as it is also apparent from (4.7), the limit
BTZ

n → 0 also implies zero absorption. Consequently, there can be no
absorption without scattering. On the other hand, it also can be seen by
inspecting (4.8) and (4.7) that PL

scat decreases faster than PL
abs as B

TZ
n → 0.

Therefore, the multipolar approach also ratifies that large absorbed to
scattered power ratios are possible at the cost of losing absorbed power.

This analysis is valid for arbitrary incident fields, described by the
coefficients ATZ

n . Note that PL,MAX
abs , as given by (4.11), is proportional to

the magnitude squared of the source coefficients:
∣∣ATZ

n

∣∣2. Since (4.10) is
defined in terms of them, this also means the maximum absorbed power
intuitively grows as the source projects a larger field intensity onto the
scatterer. As a particular example, let us take the coefficients of a plane
wave with an electric field of magnitude E0, polarized along the wire axis
(z-axis), and propagating along the x-axis, i.e., ATM

n = jnE0 and ATE
n =

0 [62]. In such a case, the limit of absorbed power for this particular
excitation is given by

PL,MAX
abs

∣∣∣
pw

=
1

2η0k0

∞∑

n=−∞
|E0|2 (4.13)

It can be readily checked that, under the thin wire approximation, i.e.,
considering the n = 0 mode only, (4.13) reduces to (4.5). In other words,
the limit derived based on the multipolar approach is fully consistent with
limit derived on basis of the equivalent circuit model.

Consider also a finite size scatterer able to efficiently couple with a
number of multipoles up to n = N , the limit of absorbed power is given
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by PL,MAX
abs

∣∣∣
pw

= |E0|2
2η0k0

(2N + 1). For electrically large scatterers, a rule of

thumb employed for the truncation of this series is N = k0a [59]. This

rule leads to PL,MAX
abs

∣∣∣
pw

= |E0|2
2η0

2a, which corresponds to the integration

of the density of incident power over the diameter of the circumference
circumscribing the scatterer. In other words, the derived limit consistently
recovers geometrical optics for large structures.

Note that this limit diverges as N → ∞, which is a consequence of the
infinity energy artificially carried by the plane-wave. In practice, as the
effective area of the scatterer grows, the assumption of uniform illumina-
tion over the scatterer effective area no longer holds; and the plane-wave
model cannot be employed. As a matter of fact, within the range of appli-
cability of the plane-wave excitation, the scatterer is typically extracting
only a small fraction of the power produced by the sources.

Let us now focus on the limits of scattered and extracted powers. In-
specting (4.8) reveals that PL

scat grows along with BTZ
n , and thus it cannot

be maximized through the same derivation approach that was used for
PL
abs. In fact, the generality of the scatterer will be restricted in our analy-

sis from now on to enable the derivation of the limits for the scattered and
extracted powers. Specifically, let us assume that the scatterer is passive,
linear, and that their surfaces are such that the cylindrical harmonics in-
teract independently. In such a case, the scattered field coefficients are
proportional to the incident field coefficients in the region of the scatterer,
i.e.,

BTZ
n = bTZn ATZ

n (4.14)

and passivity holds independently for each multipole, i.e.

P TZ
abs,n = −

∣∣ATZ
n

∣∣2
{
Re
[
bTZn
]
+
∣∣bTZn

∣∣2
}
> 0 (4.15)

Thus, P TZ
abs,n > 0 imposes the conditions: Re

[
bTZn
]
< 0 and

∣∣Re
[
bTZn
]∣∣ ≥∣∣bTZn

∣∣2 . Furthermore, since
∣∣Re

[
bTZn
]∣∣ ≤

∣∣bTZn
∣∣ , P TZ

abs,n > 0 also requires∣∣bTZn
∣∣ ≤ 1. Therefore, the condition on the bTZn coefficients to get maximal

scattered power can be written as
∣∣bTZn

∣∣2 = 1 −→ bTZn = −1 (4.16)

Therefore, the maximal scattered power per unit length is given by

PL,MAX
scat =

2

η0k0

∞∑

n=−∞

∑

Z=E,M

∣∣ATZ
n

∣∣2 (4.17)
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Again, the maximum scattered power is found four times larger than the
maximum absorbed power, i.e.

PL,MAX
scat = 4PL,MAX

abs (4.18)

Moreover, the assumption BTZ
n = bTZn ATZ

n also allows us to write the
extracted power as

P TZ
ext,n = − 2

η0k0

∞∑

n=−∞

∑

Z=E,M

∣∣ATZ
n

∣∣2Re
[
bTZn
]

(4.19)

Equation (4.19) reveals that P TZ
ext,n increases along with Re

[
bTZn
]
. There-

fore, their upper limit is reached when bTZn = −1 and, in this manner, the
multipolar approach generalizes the result that extracted and scattered
powers share the same upper bound. Thus, it can be concluded that the
extracted power per unit length is maximized for the ideal lossless case
and, therefore, the presence of losses limits the amount of power that can
be extracted from the incident field.

Throughout the multipolar discussion of the scattered and extracted
powers, the balance of powers for each multipole has been considered
independently, assuming BTZ

n = bTZn ATZ
n . Such condition is rigorously

satisfied for cylindrical objects, and it is approximately satisfied by ob-
jects with soft surfaces. However, the limit of absorbed power (4.11) has
been derived for completely arbitrary scatterers and it was found that, ac-
cording to (4.10), such power is maximized under a condition in which the
balance of powers for each multipole is considered independently. This
result encourages to believe that the results in terms of scattered and
extracted powers can indeed be generalized to arbitrary scatterers.

Finally, it is worth noting that for an arbitrary 3D object, e.g., a
finite length ferromagnetic wires, the fields can be decomposed as a basis
of spherical, instead of cylindrical, harmonics [59]. In such a case, the
total power quantities can be associated to the sum of the same power
quantity associated with each mode [84]:

Pabs = −
∞∑

n=1

n∑

m=0

∑

l=e,o

∑

Z=E,M

{
Re
[(
AlTZ<

nm

)∗
BlTZ

nm

]
+
∣∣BlTZ

nm

∣∣2
}

(4.20)

Pscat =

∞∑

n=1

n∑

m=0

∑

l=e,o

∑

Z=E,M

∣∣BlTZ
nm

∣∣2 (4.21)
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Pext = −
∞∑

n=1

n∑

m=0

∑

l=e,o

∑

Z=E,M

Re
[(
AlTZ<

nm

)∗
BlTZ

nm

]
(4.22)

Due to the symmetry between the sums of cylindrical (4.7)-(4.9) and
spherical (4.20)-(4.22) multipoles, it is clear that the conclusions drawn
in this Section can be extrapolated to 3D objects. As a matter of fact,
a parallel demonstration by using spherical multipoles has been included
by the author of the thesis an coworkers in [84].

4.4 Technological Implications

Aside from being a matter of interest in the fundamentals of applied
electromagnetics, the previously derived limits have direct implications
on some of the most promising microwave applications of ferromagnetic
wires. Following the conclusions drawn in Chapter 2, the attention is fo-
cused on the design of contact-less sensors and electromagnetic absorbers.

To begin with, it has been found that the upper bound of scattered
power can only be achieved with ideal lossless scatterers. Since ferro-
magnetic wires are quite lossy, it must be concluded that they cannot
approach such limit. This is a drawback for the design of contact-less
sensors, where the magnitude of interest is tracked through variations of
the scattered field, and therefore a large scattered power is convenient to
increase the dynamic range of the sensing system.

Moreover, note that the sensing mechanism ultimately relies on changes
of the magnetic properties of the wires. As studied in Chapter 2, the
influence of the magnetic properties of the wire on the scattered field is
maximized for wire radii in the transition from surface to bulk effects, i.e.,
for very lossy wires. Therefore, the design of contact-less sensors based on
ferromagnetic wires involves solving a compromise between how sensitive
the wires are with respect to variations of the magnitude of interest (e.g.,
mechanical stresses), and how much power do the wires re-radiate to the
receiver that records such variations. The design of contact-less sensors
based on ferromagnetic wires is resumed in Chapter 7.

Let us now revisit the upper bound of the absorbed power. As derived
in Section 4.2, the properties that a ferromagnetic wire must met to reach
the limit of maximal absorption can be written in terms of its distributed
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resistance and reactance as follows

Rw = Rscat =
η0k0
4

(4.23)

Xw = −ωL = −η0k0
4

2

π

[
ln

(
2

k0a

)
− γ

]
(4.24)

Therefore, it can be concluded that for k0a ≪ 1 (condition implicit in
the thin wire approximation), the absolute value of the wire distributed
reactance must be much higher than the wire resistance, |Xw| ≫ Rw. As
argued in Section 3.2, this is not possible with ferromagnetic wires with
conductive cores and, counter-intuitively, it is found that ferromagnetic
wires are too lossy to reach the limit of maximal absorption. This results
limits the scope of very diluted mixtures of wires (in the sense of wires
separated by distances comparable/larger to the wavelength of operation)
as electromagnetic absorbers. Despite this limitation, reasonable diluted
mixtures of wires (in the sense of interwire separations smaller than the
wavelength of operation, but still leading to small filling factors) can be
potentially adopted in the design of electromagnetic absorbers designed
to hide large objects. This aspect is emphasized in Chapters 5 and 6.

4.5 Conclusions

This chapter has dealt with the limits in the balance of powers involved in
the scattering by ferromagnetic wires (and many other objects). Specif-
ically, the study confirms (by using circuital and multipolar approaches)
the known result that absorbed and scattered powers must be equal for
maximal absorption. Furthermore, it has been shown how extracted and
absorbed powers share the same upper bound, which is four times larger
than that of the absorbed power. It is then found that the maximal ex-
tracted power can only be achieved by an ideal lossless scatterer, and
therefore the presence of losses limits the amount of power that can be
extracted from the incident field. This principle is bound to impose diffi-
culties in the design of a wide range of systems. For example, the design
of contact-less sensors based on ferromagnetic wires present a compromise
between how sensitive the wires are with respect to variations of the mag-
nitude of interest (e.g., mechanical stresses), and how much power do the
wires re-radiate to the receiver that records such variations. It has also
been argued how ferromagnetic are too lossy to reach the upper bound of
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absorbed power, which limits the scope of very diluted mixtures of wires
as electromagnetic absorbers.
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Chapter 5

Artificial Electromagnetic

Materials based on

Ferromagnetic Wires

5.1 Introduction

One of the major challenges in the design of ferromagnetic wire-based de-
vices is the analysis and modeling of structures composed of large assem-
blies of wires. Such structures have an overall size of several wavelengths,
while having fine details of the order of the wire radius, several orders of
magnitude smaller than the wavelength of operation. Furthermore, the
interior of the wires must be accurately meshed, since, as it was pointed
out in Chapter 3, small changes in the wire radii lead to dramatic changes
in the response of ferromagnetic wires. This fact imposes a prohibitively
dense mesh for structures of several wavelengths size, which hinders the
evaluation of ferromagnetic wire-based systems through commercial soft-
ware tools.

A useful tool to reduce the complexity of the design of such systems
is the homogenization approach, namely, substituting a complex group of
inclusions by a simple, effectively homogeneous material. In this regard,
the effective permittivity of composites made of ferromagnetic microwires
exhibiting GMI [34, 90], and the effective permeability of dense arrays
of ferromagnetic wires exhibiting FMR [91, 92], have been theoretically
addressed. This chapter attempts to complete these previous works by
studying the effective permittivity of arrays of ferromagnetic nanowires
exhibiting FMR, including both ferromagnetic micro and nanowires, and

73
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dense and sparse arrays of wires.

Aside from being a tool to simplify the analysis of complex systems,
the development of artificial materials with engineered constitutive pa-
rameters has also become a matter of interest by itself. The topic has
bloomed during the last decade, and it is usually addressed to as the
metamaterial paradigm [93, 94]. In this regard, artificial electromagnetic
materials based on ferromagnetic wires have been experimentally investi-
gated in a joint effort between the Physics and Electrical and Electronic
Engineering Departments of the Public University of Navarra.

In principle, the electric and magnetic properties of the wires would
allow tailoring the composite permittivity and permeability with a sin-
gle inclusion, while offering several tuning mechanisms that have already
been discussed along the dissertation. Several experimental studies car-
ried out at the Public University of Navarra [31] (and also at other in-
stitutions [36, 52, 53]) have reported transmission windows in arrays of
ferromagnetic wires, which, following a similar thought process than that
of D.R. Smith’s seminal paper [54], were identified as an evidence of dou-
ble negative (DNG) metamaterials (in the sense of an artificial electro-
magnetic material simultaneously having negative permittivity and per-
meability). However, as discussed in Chapter 1, the conclusion extracted
from the experimental data is controversial since the filling factor of the
measured arrays of wires is too small to have a significant effective perme-
ability. Moreover, there are multiple explanations for the appearance of a
transmission window without recurring to the concept of DNG metamate-
rials. Therefore, the homogenization approach developed in this Chapter
also aims to shed more light into those experiments.

5.2 From Cylindrical Harmonics to

Effective Parameters

Expanding the scattered field over a basis of cylindrical harmonics (see
Section 2.3.1) can also be exploited to estimate the constitutive parame-
ters of a composite of ferromagnetic wires, provided that the contribution
of each mode to the material parameters can be identified. This can be
done in virtue of the equivalence theorem [62]. In essence, the wire can
be replaced by surface electric and magnetic currents [62], which for the
dominant polarization with the electric field directed along the wire axis
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can be written as
Js = n̂×Hint = H int

φ ẑ (5.1)

Ms = −n̂× Eint = Eint
z φ̂ (5.2)

where H int
φ and Eint

z are the tangential components of the fields on the
surface of the wire, r = a, which for a wire of uniform and static magne-
tization can be written as (see Section 2.3.1.2)

Eint
z (a, φ) = E0

∞∑

n=−∞
jncTMn Jn(kwa)e

−jnφ (5.3)

H int
φ (a, φ) = −jE0

ηw

∞∑

n=−∞
jncTMn

[
J ′
n(kwa)− n

µt

µ

Jn(kwa)

kwa

]
e−jnφ (5.4)

with

cTMn =
2j

πk0a

1

DnH
(2)
n (k0a)−H

(2)′
n (k0a)Jn(kwa)

(5.5)

where Dn is defined as

Dn =
η0
ηw

[
J ′
n(kwa)− n

µt

µkwa
Jn(kwa)

]
(5.6)

Once the electric and magnetic currents are known, the electric and mag-
netic polarization densities of a composite made of ferromagnetic wires
can be found by integration [95]

P =
1

jωV

ˆ

V ′

(
Js − jω

ε0
2
(r′ ×Ms)

)
dV ′ (5.7)

M =
1

jωV

ˆ

V ′

(
Ms + jω

µ0

2
(r′ × Js)

)
dV ′ (5.8)

For the particular currents of (5.1) and (5.2), the electric and magnetic
polarizations densities reduce to

P =
1

jωV

ˆ

V ′

(
H int

φ − jω
ε0
2
aEint

z

)
ẑdV ′ (5.9)

M =
1

jωV

ˆ

V ′

(
Eint

z − jω
µ0

2
aH int

φ

)
φ̂dV ′ (5.10)
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It is worth noting that the terms inside the integrals of (5.9) and (5.10)
are series of ejnφ azimuthal harmonics, and that the volume integral is
reduced to the wire surface integral, so that the electric and magnetic
polarization densities can be rewritten as

P =
1

jωV

∞∑

n=−∞
Pn

ˆ 2π

0

e−jnφẑadφ (5.11)

M =
1

jωV

∞∑

n=−∞
Mn

ˆ 2π

0

e−jnφ (− sinφx̂+ cosφŷ) adφ (5.12)

where

Pn = −jn+1E0c
TM
n

[
Dn

ηw
+ ωa

ε0
2
Jn (kwa)

]
(5.13)

Mn = jnE0c
TM
n

[
Jn (kwa)− ωa

µ0

2

Dn

ηw

]
(5.14)

Note however that
ˆ 2π

0

e−jnφẑdφ = 2πδ0nẑ (5.15)

ˆ 2π

0

e−jnφ (− sinφx̂+ cosφŷ) dφ = −j (δ1n − δ−1n)πx̂ + (δ1n + δ−1n)πŷ

(5.16)
where δmn stands for the Kronecker delta. Thus, electric and magnetic
polarization densities simplify to

P =
2πa

jωV
P0ẑ (5.17)

M =
πa

jωV
[−j (M1 −M−1) x̂+ (M1 +M−1) ŷ] (5.18)

Therefore, the n = 0 mode determines the material permittivity, while
the n = ±1 modes determine the material permeability. Note that higher
order modes do not contribute to the electric and magnetic polarization
densities, so more complex material parameters would be needed to in-
clude their contributions. Moreover, Eqs. (5.17) and (5.18) suggest that
the electric polarization density is directed along the ẑ axis, while the
direction of the magnetic polarization density is enclosed within the XY-
plane. Therefore, neglecting the cross-polar components of the scattered
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field produced by a thin wire results in negligible polarization densities
oriented along the directions of such cross-polar components. In this
manner, the analysis based on cylindrical harmonics predicts a uniaxial
permittivity tensor

εeff = ε0It + εeff ẑ (5.19)

with
It = x̂x̂+ ŷŷ (5.20)

as well as a gyrotropic permeability tensor

µeff =




µeff jµeff ,t 0
−jµeff,t µeff 0

0 0 µ0


 (5.21)

However, for µt = 0 it can be found that M1 = M−1 recovering a
uniaxial permeability tensor.

It was demonstrated in Chapter 2 that the n = 0 mode is sufficient to
accurately describe the response of the ferromagnetic wires. Strikingly,
such result leads to the conclusion that the permeability of composites of
ferromagnetic wires is negligible. Therefore, composites of ferromagnetic
wires belong to the class of artificial dielectrics. Note that this conclusion
does not mean that the magnetic properties of the wires have no impact
on the constitutive parameters of the artificial electromagnetic material.
Conversely, the magnetic properties of the wires determine the frequency
dispersion of the effective permittivity of the artificial electromagnetic
material. That is to say, composites of ferromagnetic wires are artificial
dielectrics with magnetically controlled permittivity.

5.3 Effective Permittivity of Arrays of

Ferromagnetic Wires

It was shown in Chapter 2 that a ferromagnetic wire can be modeled
as an impedance loaded wire, whose load is determined by the electric
and magnetic properties of the ferromagnetic core. Such model has been
so far exploited to help understanding the nuances of surface and bulk
effects in the scattering by ferromagnetic wires, as well as to explore their
fundamental limits. Since artificial electromagnetic materials made of
impedance loaded wires have been intensively studied [63, 96–101], the
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Figure 5.1 – Geometry of the wire array and equivalent material slab.

same model can be adopted to facilitate the homogenization of arrays of
ferromagnetic wires. Previous works on the homogenization of arrays of
impedance loaded wires concluded that such structures can be modeled
with an uniaxial permittivity tensor (which is consistent with the analysis
carried out in Section 5.2) and emphasize their spatially dispersive nature.
To reduce complexity and to emphasize the role of the effects excited
within the wires our analysis is restricted to normal incidence over the
dominant polarization, so that spatial dispersion effects can be neglected.
Therefore, a square array of parallel wires with interwire spacing d (see
Fig. 5.1), is described by a scalar relative permittivity equal to [97]

εeff (ω) = 1− 1

ωε0d2
1

ωL− jZw

= 1− 1

ωε0d2
ωL+Xw + jRw

(ωL +Xw)
2 +R2

w

(5.22)

where

Larray =
µ0

2π
ln

{
d2

4a (d− a)

}
(5.23)

stands for the quasistatic inductance of one wire per unit length, including
the coupling with the other wires of the array [97].

This circuit formulation for the effective permittivity of the ferromag-
netic wire is convenient for an intuitive description of the main electro-
magnetic phenomena. For example, since the wire radius plays a crucial
role in the scattering by a single ferromagnetic wire (see Chapter 3), it



Chapter 5. Artificial Electromagnetic Materials 79

is expected that it also greatly affects the constitutive parameters of a
composite of ferromagnetic wires. Let us examine this fact analyzing the
most relevant cases. To begin with, it was found in Chapter 3 that the
wire inductance dominates over the other impedance terms for wires with
radius much larger than the penetration depth. Similarly, the inductance
of the wire within the array Larray is the dominant impedance term in
(5.22) for such wires, ωLarray ≫ Rw, |Xw|. Therefore, the relative effective
permittivity in the SE limit asymptotically approaches to

εeff (ω) ≃ 1− 1

ε0d2
1

ω2Larray
(5.24)

which corresponds to the real and negative permittivity of an array of
PEC wires. In other words, there is a negligible penetration of the elec-
tromagnetic fields inside thick wires, and the composite approximately
behaves as a conventional unloaded wire media. By contrast, the fields
are able to penetrate inside the wire as the radius gets smaller, and thus
the wire distributed impedance becomes significant, though still smaller
than Larray. In such a case, and approximating (ωLarray +Xw)

2 ≫ R2
w,

the relative effective permittivity reduces to

εeff (ω) ≃ 1− 1

ωε0d2

(
1

ωLarray +Xw
+ j

Rw

(ωLarray +Xw)
2

)
(5.25)

Therefore, the magnetic properties of the wire influence the composite
permittivity. Specifically, the wire distributed resistance increases the
losses of the material, while the wire distributed reactance modulates the
real part of the permittivity. In particular, a positive (negative) wire
reactance decreases (increases) the negative value of the real part of the
permittivity.

For even smaller radii, the wire resistance becomes dominant over
the reactive impedance terms, Rw ≫ ωLarray, |Xw|, so that the relative
effective permittivity is approximately given by

εeff (ω) ≃ 1− 1

ωε0d2

(
ωLarray +Xw

R2
w

+ j
1

Rw

)
(5.26)

In this case, although the magnetic properties of the wire also influence the
composite permittivity, their impact on its dispersion profile is essentially
different. Contrary to (5.25), (5.26) reveals that the medium losses are
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reduced as the wire resistance increases. Moreover, in this case a positive
(negative) wire reactance increases (decreases) the negative value of the
real part of the permittivity.

Finally, as the wire radii is reduced further and the QS limit is ap-
proached, all impedance terms become negligible as compared to the wire
distributed resistance, and therefore the effective permittivity simplifies
to

εeff (ω) ≃ 1− j
1

ωε0d2
1

Rw
≃ 1− j

πa2

d2
σ

ωε0
(5.27)

Eq. (5.27) illustrates how in the QS limit the effective permittivity be-
comes independent of the magnetic properties of the wire, and it cor-
responds to the permittivity of a conductor with effective conductivity
σeff = σ πa2

d2
, corresponding the average of the wire conductivity.

In summary, the effective permittivity of an array of ferromagnetic
wires exhibits a complex frequency dispersive behavior, which is deter-
mined by both the electromagnetic properties of the wires and the ge-
ometry of the array. As it happened with the scattering by a single
ferromagnetic wire in Section 3.2, the correlation of the composite per-
mittivity with the wire magnetic properties tend to vanish for SE and QS
limits, i.e., the correlation is maximized at the radii corresponding to the
transition from surface to bulk effects.

To illustrate this conclusion further, Fig. 5.2 represents the frequency
domain behavior of the effective permittivity for square arrays of fer-
romagnetic wires of 50µm, 10µm, 1µm and 100 nm radius. The wires
have been modeled with typical Co-rich values [53]: conductivity σ =
5 · 105 S/m, gyromagnetic ratio γ = 2 · 1011T−1s−1, saturation magneti-
zation µ0Ms = 0.55T, and magnetic loss factor α = 0.02. An effective
DC magnetic field Heff = 113.45 kA/m is assumed, so that the FMR fre-
quency is at 10 GHz and the AFMR frequency is located at approximately
22 GHz. Moreover, the lattice period is set to d = 2 mm. Since different
radii are studied with the same lattice constant, the density of wires (i.e.,
number of wires per unit volume) is kept constant, but the filling factor
(i.e., percentage of volume occupied by the wires) decrease along with the
wire radius. From the standpoint of the effective permittivity, considering
smaller lattice periods would only lead to smaller Larray values.

For the largest wire radius (a = 50µm, Fig. 5.2(a)) the effective per-
mittivity is dominated by its negative real part, which is the typical re-
sponse of conductive wire media, and only a small perturbation is ob-
served close to the FMR frequency, i.e., at the frequency where the wire
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Figure 5.2 – Frequency behavior of the effective permittivity of an square array of
ferromagnetic wires with lattice constant d = 2 mm and radius of (a) 50µm, (b)
10µm, (c) 1µm and (d) 100 nm.
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impedance is the largest. As the wire radius decreases, the influence of
the magnetic parameters on the effective permittivity increases, and a res-
onance is clearly observed for the wire of 10µm radius close to the FMR
frequency (i.e., at 10GHz). As it was anticipated by (5.25), the mate-
rial losses increase close to the FMR frequency, and the real part of the
effective permittivity oscillates around this point, following a maximum-
minimum sequence.

If the radius is further reduced (a = 1µm, Fig. 5.2c), the wire resis-
tance dominates over the array and wire inductances, and the influence of
the wire magnetic properties on the frequency dispersion of the effective
permittivity is significantly different. Ratifying (5.26), the material losses
are minimized at the FMR frequency, and the real part of the permittiv-
ity follows a minimum-maximum sequence around this point. Although,
the antiresonant behaviour of the real part of the effective permittivity
might seem unphysical, recall that the presence of high losses enables this
apparently anomalous frequency dispersive behavior.

Finally, the wires operate in the QS limit for radius as small as 100 nm
(see Fig. 5.2d), and the composite behaves as an ordinary lossy dielectric,
without additional dispersion properties. Due to the small filling fac-
tor, the effective permittivity approaches that of vacuum. Therefore, the
characteristics of this artificial materials can be better appreciated on the
inset of Fig. 5.2d, which represents the effective susceptibility of the ar-
ray χeff = ǫeff − 1. It can be concluded that the effect of the wires in
the composite material is dominated by the losses, with the smooth 1/ω
frequency dependence of conductive bodies.

5.4 Numerical Validation

While the homogenization approach by itself serves to describe the polar-
ization processes excited within a composite material, it is often expected
that it also serves to predict measurable quantities. This section makes
use of numerical simulations to validate the homogenization approach
as a simplified tool to predict the reflection, transmission and absorption
power coefficients that would be measured when an array of ferromagnetic
wires is illuminated by a plane wave. In this manner, if the numerical and
homogenization approaches converge to the same results, the latter can
be adopted to simplify the design of wire-based systems, for example,
electromagnetic absorbers based on arrays of ferromagnetic wires.
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To this end, the results retrieved by the homogenization approach for
a slab of 8 parallel grids of ferromagnetic wires, represented in Fig. 5.1,
have been tested against those of a full-wave simulation. As it has been
discussed, the simulation of arrays of ferromagnetic wires with commercial
softwares is a cumbersome task, due to the complex meshes produced by
the extreme geometry of the wires. Therefore, the full-wave simulation has
been carried out with a home-made code based on the local field method,
following [63, 96]. In essence, the local field in the wires is equal to the
addition of the incident field and the interaction field with the other wires
of the array, namely, the coupling inside the grid and the coupling with
the other grids. The array interactions have been computed by using
a Floquet-mode decomposition, taking into account a large number of
non-propagating modes (N = 200). Once the fields exciting the wires
are known, the field in the far zone is a plane wave which can be readily
computed as the sum of the plane waves produced by each grid. By
doing so, the transmission and reflection power parameters are given by
the power carried out by the propagating plane wave in the forward and
backward directions, respectively. As for the homogenization approach,
once the effective permittivity has been computed as in Section 5.3, the
reflection and transmission power parameters for a homogeneous slab can
be written in closed form as follows [102]

Thom =

∣∣∣∣
2ηeffη0

j (η2eff + η20) sin (kefft) + 2ηeffη0 cos (kefft)

∣∣∣∣
2

(5.28)

Rhom =

∣∣∣∣
η2eff − η20

η2eff + η20 − 2jηeffη0cot (kefft)

∣∣∣∣
2

(5.29)

where t is the slab thickness, and ηeff =
√

µ0/εeff, keff = ω
√
µ0εeff are the

medium impedance and propagation constant inside the material slab,
respectively. For both, numerical and homogenization approaches, the
absorption power coefficient is computed by enforcing energy conservation

A = 1− T −R (5.30)

Fig. 5.3 shows the comparison of the transmission, reflection and ab-
sorption power coefficients calculated with the full-wave method and those
obtained for a homogeneous material slab with dielectric constant εeff and
thickness t = 8d. Following the previous examples, the lattice constant
equals 2 mm, and wire radii of 50µm, 10µm, 1µm and 100 nm have been
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considered. It can be concluded that there is a good agreement between
the results obtained with both methods for all the considered radii, vali-
dating the homogenization approach.

Let us also use this simulation to examine how the wire radius af-
fects the transmission, reflection and absorption power parameters of the
slab. For example, for slabs with composed of relatively thick wires (i.e.,
a = 50µm and a = 10µm, corresponding to Figs. 5.3(a) and 5.3(b), re-
spectively) the absorption coefficient is characterized by a peak close to
the FMR frequency and a minimum at the AFMR frequency, which corre-
sponds with a minimum and a maximum of reflection, respectively. Con-
versely, the transmission coefficient is close to zero in the whole frequency
range. In addition, the smaller the radius the higher the absorption peak.
It is worth mentioning that this absorption peak can be activated, de-
activated and shifted in frequency by applying a DC magnetic field, DC
currents or mechanical stresses, and thus a potential application of these
artificial materials is in the design of reconfigurable electromagnetic ab-
sorbers.

Below the SE limit, the power coefficients are characterized by broad-
band absorption coefficients, where the main contribution comes from the
finite conductivity of the wires, and a pronounced transmission, due to
smaller filling factor than with previous wires. Moreover, the slab with
wires of 1µm radius exhibits a minimal of absorption and reflection at
the FMR frequency, corresponding with a maximum of transmission. In-
terestingly, the experiments reporting transmission windows in arrays of
ferromagnetic wires [31, 36, 52, 53] make use of wires with radii ranging
from 1.5µm to 3.5µm. Thus, our analysis suggests that those experimen-
tal data can be understood as the result of the frequency dispersion of the
effective permittivity produced by the FMR excited in the wires, rather
than a DNG metamaterial behavior.

Finally, the transmission, reflection and absorption power coefficients
present a flat spectra for the slab of wires with 100 nm radius. Again, the
magnetic properties of the wire do not affect the results in the QS limit.
This case corresponds to the propagation through a very diluted, almost
matched (εeff ≃ ε0 − jδε with small δε) lossy medium, and therefore it is
characterized by high transmission, weak absorption and almost negligi-
ble reflection. Note that the absorption power coefficient would increase
monotonically along with the length of the slab, which suggests that com-
posites made of diluted mixtures of metallic pieces with dimensions much
smaller than the penetration depth can be engineered to create wideband
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Figure 5.3 – Comparison of the transmission, absorption and reflection power co-
efficients obtained for the equivalent material slab and the numerical simulation of
the array of wires, for wire radius of (a) 50µm, (b) 10µm, (c) 1µm and (d) 100 nm.

absorbers. However, they would require a electrically large thickness to
extinguish the incoming wave, and no benefit would be extracted from
the magnetic properties of the wires.

5.5 Conclusions

Artificial electromagnetic materials based on composite of ferromagnetic
wires have been investigated in this chapter. In particular, wire media
composed of ferromagnetic wires. First of all, the decomposition based
on cylindrical harmonics has been employed to analyze the polarization
densities excited within a composite of ferromagnetic wires. It has been
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concluded that such composites are characterized by an uniaxial permit-
tivity tensor and a gyrotropic permeability tensor. However, it has also
been found that the thin wire approximation, i.e., taking only the n = 0
cylindrical harmonic, is equivalent to neglecting the material permeability.
Despite this fact, the magnetic properties of the wires are play a major
role, since they influence the effective permittivity of these composites.
Thus, composites of ferromagnetic wires belong to the class of artificial
dielectric materials with magnetically controlled permittivity.

Moreover, the circuit model introduced in Chapter 2 has been used
to link the studied composites to previous studies on wire media based
on impedance loaded wires [63, 96–101]. It is then illustrated how the
occurrence of the FMR adds extra complexity to the frequency dispersive
behavior of wire media, and how different phenomena arise as a function
of the relative values of the wire radius compared to the skin depth.

Finally, the homogenization procedure has been validated via numer-
ical simulations, and good agreement is found between the results of nu-
merical and homogenization approaches. This fact demonstrates the use-
fulness of the homogenization procedure for the design of ferromagnetic
wires based systems. For example, the numerical results suggest the use of
slabs of ferromagnetic wires as narrowband reconfigurable absorbers (ex-
ploiting FMR resonance effect) and/or wideband absorbers (exploiting
the reduced conductivity of amorphous wires).



Chapter 6

Artificial Impedance Surfaces

based on Ferromagnetic Wires

6.1 Introduction

As schematically depicted in Fig 6.1, the presence of a ferromagnetic wire
alters the reflection from a ground plane when it is illuminated by a plane-
wave. On the one hand, a single ferromagnetic wire disperses the incident
plane-wave due to scattering and absorption processes. On the other
hand, the response is bound to be an plane-wave for a sufficiently dense
ensemble of wires. In such a case, the presence of ferromagnetic wires is
transferred to changes on the magnitude and phase of the reflected wave,
which can be regarded as an alteration of the boundary conditions on the
ground plane surface.

Artificial impedance surfaces [103,104], i.e., artificial surfaces with en-
gineered surface impedance, are of great practical interest, as they offer
a lot of design freedom in antenna and other microwave applications. Al-
though metallic structures are very convenient from a structural, mechani-
cal and/or shielding point of view, the perfect electric boundary conditions
are often a problem for the antenna engineer. The obvious reasons are that
metallic surfaces reflect all incident electromagnetic power, thus, exhibit
large radar cross sections (RCS), and that electric radiating sources close
to the surface are cancelled out. Therefore, artificial surfaces are employed
to produce more suitable boundary conditions. Applications of artificial
impedance surfaces include low-profile antennas based on high-impedance

87
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Figure 6.1 – Ferromagnetic wires in the proximity of the ground plane and equiv-
alent plane with modified surface impedance.

surfaces [103,105,106] (HISs), electromagnetic absorbers [107,108], reflec-
tarrays [109,110], frequency selective surfaces [111] and complex antiradar
systems [112].

Most state-of-the-art artificial impedance surfaces are designed based
on grids of conductive elements resonating in the proximity of a ground
plane. Typically, a transmission line approach [104, 113] is employed to
design arrays of conductive patches [107], dipoles [114] or more complex
shapes in which a strong electric current is excited. This chapter inves-
tigates the development of artificial impedance surfaces based on ferro-
magnetic wires. Due to the losses inherent to ferromagnetic wires, the de-
velopment of absorbers will be emphasized. In addition, it will be shown
how the wire ferromagnetic properties and the strong reactive fields due
to interactions of wires with the ground plane can be tuned to provide
the necessary resonance to excite a strong current in the wires, even in
the proximity of the ground plane.

Moreover, artificial impedance surfaces present stringent bandwidth-
profile limits [115] due to their resonant nature. To overcome these limits,
the designs usually include circuitry (e.g. varactor diodes) to produce re-
configurable bandwidths [116]. In addition, circuital elements are also
employed for beam-steering reflectarrays [109, 110]. In this regard, the
proposed ferromagnetic wire-based surfaces can be reconfigured through
DC magnetic fields [34], DC electric currents [36] and/or mechanical
stresses [40], thus avoiding the complexity of integrating circuital elements
and their correspondent feeding networks.
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6.2 Analytical Solution

The geometry of the problem is schematically depicted in Fig. 6.2: a grid
of parallel wires of radius a, with constant separation between the wires
d, is placed at a distance h from a metallic ground plane. Under the
thin-wire approximation, the electric field produced by each wire when
illuminated by a plane wave with the wave vector k = kxx̂ + kyŷ + kzẑ
only has a z component equal to [63]

Ew
z =

−η0k
2
r

4k0

E loc
z

α−1
H

(2)
0 (krr) e

−jkzz (6.1)

where k20 = k2x+ k2y+ k2z = k2r + k2z , E
loc
z stands for the z component of the

local electric field on the wire surface, and α−1 for the wire polarizability
given by [63]

α−1 =
k2r
k20

Zw +
η0k

2
r

4k0
H

(2)
0 (kra) (6.2)

Here Zw is the wire distributed impedance and a is the wire radius. Thus,
the field produced by the grid is found by adding the fields produced by

Z

Y X

h

d

2a

E

H

k E

H

k

d

Y

X

h h

2a

Figure 6.2 – Geometry of the problem: a grid of parallel wires of radius a, with
constant separation between the wires d, is placed at a distance h from a metallic
ground plane.
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all the wires:

Egrid
z =

−η0k
2
r

4k0

E loc
z

α−1

∞∑

s=−∞
H

(2)
0 (krRs) e

−jkysde−jkzz (6.3)

where R2
s = x2 + (y − sd)2. The Hankel summation can be simplified by

using the Floquet mode representation [117]:

∞∑

s=−∞
H

(2)
0 (krRs) e

−jkysde−jkzz =
2

d

∞∑

m=−∞

e−j(km|x|+(ky+ 2πm
d )y+kzz)

km
(6.4)

where k2m = k2r −
(
ky +

2πm
d

)2
stands for the propagation constant of the

m-th Floquet mode.
The fields produced by the grid depend on the local field on the surface

of the wires. By definition, the local field is equal to the addition of
the incident field, the grid auto-interaction and the interaction with the
ground plane:

E loc
z = E inc

z

(
1− e−jkx2h

)
− η0k

2
r

4k0

E loc
z

α−1
(Ggrid +Gimag) (6.5)

and thus

E loc
z =

E inc
z

(
1− e−jkx2h

)

1 + η0k2r
4k0

1
α−1 (Ggrid +Gimag)

(6.6)

where Ggrid and Gimag stand for the grid auto-interaction constant and the
interaction constant with the ground plane, respectively. The grid auto-
interaction constant defines the influence of the rest of the grid wires:

Ggrid =
∑

s 6=0

H
(2)
0 (kr |sd|) (6.7)

On the other hand, the interaction constant with the ground plane is
given by the fields produced by the image of the grid in the ground plane:

Gimag = −
∞∑

s=−∞
H

(2)
0

(
kr

√
(2h)2 + (sd)2

)
(6.8)

Due to the presence of the ground plane, all electromagnetic field is either
absorbed or reflected. Furthermore, the reflected field is found as the
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addition of the reflection of the incident wave in the metallic plane, the
field produced by the grid and the field produced by the image of the grid
in the ground plane:

ER
z = −E inc

z ejkrre−jkx2h − η0k
2
r

2k0d

E loc
z

α−1
×

∞∑

m=−∞

ej(kmx+(ky+ 2πm
d )y)

km

(
1− e−jkm2h

) (6.9)

where krr = kxx + kyy. Note that a factor exp (−jkzz) will be omitted
hereafter. If the separation between the wires is much smaller than the
wavelength (d ≪ λ), only the n = 0 mode propagates, and the reflected
field in the far zone simplifies to a plane wave. Thus, the reflection coef-
ficient can be readily found to be equal to

R = ejkx2h
ER

z

E inc
z

= −1 +
2η0k

2
r

k0kxd
· sin2 (kxh)

α−1 + η0k2r
4k0

(Ggrid +Gimag)
(6.10)

Consistently, R is equal to −1 when no field is produced by the grid.
Moreover, the wave produced by the grid tends to vanish with a sin2 (−)
trend as the separation between the grid and the ground plane decreases.

6.3 Resonant Absorbers

Although (6.10) illustrates how the field produced by the wires is cancelled
out as the grid becomes closer to the ground plane, under certain resonant
conditions strong currents can be excited in the wires even for small h. In
such a cases, ferromagnetic wires could be employed to design low-profile
absorbers.

6.3.1 Resonant Condition

Let us first derive the conditions needed to create the resonance. For
the sake of simplicity, consider the reflection coefficient under normal
incidence (k = k0x̂)

R = −1 +
2η0
d

sin2 (k0h)

α−1 + η0k0
4 (Ggrid +Gimag)

(6.11)
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Apparently, the resonant condition is met when the denominator ap-
proaches zero

α−1 +
η0k0
4

(Ggrid +Gimag) → 0 (6.12)

Let us analyze (6.12) term by term. To begin with, under the thin-wire
approximation (k0a ≪ 1) the wire susceptibility (6.2) simplifies to

α−1 ≃ Zw +
η0k0
4

{
1 + j

2

π

[
log

(
2

k0a

)
− γ

]}
(6.13)

where γ = 0.5772. The real part of the second term accounts for the
scattering resistance, and the imaginary part is an inductive term that
increases logarithmically as the wire radius, a, decreases. Secondly, the
grid auto-interaction, η0k0/4 · Ggrid, was introduced in eq. (6.7). It can
be rewritten by means of the Poisson rule with singularity cancellation
as [96]

η0k0
4

Ggrid =
η0k0
4

{
2

k0d
− 1 + j

2

π

[
log

(
k0d

4π

)
+ γ

+
π

d

∑

m 6=0

(
1

qm
− d

2π |m|

)





(6.14)

with q2m = (2πm/d)2−k20, qmǫR+. The real part of the above expression is
exact, being composed by a 1/k0d term which represents the plane-wave
created by the grid, and a negative term that compensates the radiation
resistance of a single wire. The imaginary part is negative. Physically, it
is due to the mutual inductance with the other wires, which decreases the
total inductance.

Finally, the wire-ground plane interaction is given by the field created
by the images of the grid in the ground plane, as in eq. (6.8). Again, the
Hankel series simplifies to a Floquet-mode representation

η0k0
4

Gimag = −η0k0
2

∞∑

m=−∞

e−j2kmh

kmd
(6.15)

Although this formulation might not seem convenient due to the large
number of evanescent modes to be taken into account for a small h, it
nevertheless gives a good insight to the contributions to the real and
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imaginary parts. In particular, for k0d ≪ 1 only the m = 0 mode is
propagating and the factor reduces to

η0k0
4

Gimag =
η0k0
2

[
− cos (2k0h)

k0d
+ j

(
sin (2k0h)

k0d
− 2

∞∑

m=1

e−2qmh

qmd

)]

(6.16)
On the one hand, the real part is a plane wave component that tends to
cancel the wave produced by the grid as h decreases. On the other hand,
the imaginary part has a positive contribution from a plane wave factor
and a negative factor originated by the coupling with evanescent Floquet
modes. The former vanishes as the grid becomes closer to the ground
plane, while the latter is augmented along with the separation between
wires and increases as the grid becomes closer to the ground plane.

Inserting (6.13), (6.14) and (6.16), into (6.12), and taking the real
part, the real part of the resonant condition takes form

Re

[
α−1 +

η0k0
4

(Ggrid +Gimag)

]
= Rw +

η0
d
sin2 (k0h) (6.17)

Thus, even in the lossless case the real part of the denominator of eq. (6.11)
is only zero at the points where the numerator also vanishes, which ensures
|R| = 1 for the lossless case.

6.3.2 Reflection Coefficient at the Resonance

Let us assume that the wires are loaded with a reactance per unit length,
Xw, that cancels out the imaginary part of the denominator of (6.11).
Then, the reflection coefficient equals to

R = −1 +
2sin2 (k0h)

d
η0
Rw + sin2 (k0h)

(6.18)

This shows that the magnitude and phase of the reflection coefficient
can be controlled by changing the wire resistance per unit length. For
example, a high-impedance boundary (R = 1) is obtained with Rw =
0, while a perfect absorber boundary (R = 0) is obtained with Rw =
η0/d · sin2 (k0h), and the trivial case of a PEC boundary (R = −1) with
Rw → ∞.
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6.3.3 Reactance for the Resonant Condition

The wire reactance per unit length needed to satisfy the resonant con-
dition is found by gathering the imaginary terms of (6.13), (6.14) and
(6.16):

Xw =
−ωµ0

2


1
π
log

(
d

2πa

)
+
∑

m 6=0

(
1

qmd
− 1

2π |m|

)

+
sin (2k0h)

k0d
− 2

∞∑

m=1

e−2qmh

qmd

] (6.19)

Xw is a complex function of the wire and grid geometry. In essence, the
wire distributed reactance must compensate the grid inductance (plus its
higher order interacting terms), as well as the inductance produced by
ground plane (plus higher order terms coming from evanescent, reactive
coupling). Therefore, it is negative (capacitive) and its magnitude de-
creases as the grid becomes sparser (d ↑) and closer to the ground plane
(h ↓) due to the coupling with evanescent Floquet modes. This is illus-
trated in Fig. 6.3, which depicts the magnitude Xw/ω, for a = 0.001λ,
with wire separations ranging from 0.01λ to 0.5λ and distances to the
ground plane of 0.01λ, 0.02λ, 0.05λ and 0.1λ.

Moreover, (6.19) reveals that the frequency domain behavior of the
required load approximately follows a linear progression with a negative
slope, i.e., it is a negative inductor. Unfortunately, the implementation of
such load requires from non-Foster elements [118], and any passive imple-
mentations will lead to a limited bandwidth. However, this approximately
frequency linear progression can also be considered a great advantage: the
system is robust against tolerances of the loads, and the design of recon-
figurable loads, as those provided by ferromagnetic wires, is simple.

6.3.4 Feasibility of the Load

Let us analyze potential implementations of the required wire impedance.
According to Fig. 6.3, the wire reactance must provide values of the order
of Xw/ω ∼ µΩs/m. For example, if the resonance is placed at 10GHz,
the value of the wire reactance must be of the order of Xw ∼ 2π kΩ/m. It
can be concluded from Fig. 3.2 that ferromagnetic wires can easily provide
the necessary reactive loading.
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Figure 6.3 – Ratio of the reactance per unit length required to satisfy the resonant
condition and angular frequency, for a grid of wires with a = 0.001λ radius, distance
to the ground plane of 0.01λ, 0.02λ, 0.05λ and 0.1λ, and separation between wires
ranging from 0.01λ to 0.5λ.

However, the losses of the wires could be too high to sustain the res-
onance. In particular, Fig. 3.2 also reveals that Rw > Xw for conductive
ferromagnetic wires. Therefore, if the resistance required for a perfect ab-
sorbing boundary, i.e., Rw = η0/d·sin2 (k0h), is smaller than the reactance
required to enforce the resonance, i.e., (6.19), it should be concluded that
the studied ferromagnetic wires are not suitable for the design of reso-
nant absorbers. In fact, bearing in mind that the resistance required for
a perfect absorbing boundary is Rw = η0/d · sin2 (k0h) (i.e., it decays as
h2 for small h), it appears that the resistance must be smaller than the
reactance. This intuition can be tested numerically. To this end, Fig. 6.4
depicts the comparison between the required resistance and reactance to
achieve perfect absorption for all the cases studied in Fig. 6.3. The figures
illustrates how the resistance required for maximal absorption is indeed
smaller than the reactance required to enforce the resonance. Regretfully,
it must be concluded that although ferromagnetic wires can provide the
necessary reactive loads to enforce the resonance, the resistance associ-
ated to such reactive loads are too high to produce a perfect absorbing
boundary.

On the bright side, other wire-based implementations could lead to
more successful designs. For example, Fig. 6.5 gathers two alternatives:
conductive wires lumped elements, and conductive wires with a non-
conductive magnetic coatings.
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Figure 6.4 – Reactance and resistance per unit length required to satisfy the res-
onant condition divided by angular frequency, for a grid of wires with a = 0.001λ
radius, distance to the ground plane of (a) 0.01λ, (b) 0.02λ, (c) 0.05λ and (d) 0.1λ,
and separation between wires ranging from 0.01λ to 0.5λ.

Figure 6.5 – Potential implementations of impedance loaded wires: (a) lumped
elements, (b) conductive wires with magnetic coating.
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In the first place, impedance loaded wires can be implemented by peri-
odically arranging lumped elements in conductive wires (see Fig. 6.5(a)).
Note that this does not necessarily imply the use of circuit elements,
since small variations on the wire geometry might be sufficient (i.e. small
cuts on the wires instead of capacitors). In particular, a capacitance C,
distributed with the period p, provides a distributed impedance ZC =
−j/ (ωCp), so that the required capacitance C is also directly propor-
tional to the frequency of operation. As an example, the required capac-
itance for a periodicity of p = λ/10, a = 0.001λ, h = 0.01λ and d = 0.1λ
is of 1.38 pF at 1GHz, 0.138 pF at 10GHz. . . Therefore, it is possible to
satisfy the resonant condition with realistic loads.

Secondly, note that the excess of losses in ferromagnetic wires comes
from the fact that magnetic material loading and conduction currents are
embedded on the same physical space. In other words, permeability and
conductivity are gathered in the same medium. Therefore, if the field
inside the wire is augmented to increase the influence of its permeability,
ohmic losses increase at the same time. This situation can be solved
by placing the electric and magnetic materials of the wires in different
layers, for example, covering a conductive wire with a magnetic coating
(see Fig. 6.5(b)).

In such a case, the wire distributed impedance can be found by in-
cluding the scattering coefficients of a coated cylinder [119], into (2.40),
which leads to the closed form expression

Zw =
jη2
2πa2

J0 (k2a2) + T1 ·H(2)
0 (k2a2)

J ′
0 (k2a2) + T1 ·H ′(2)

0 (k2a2)
(6.20)

with

T1 =
η1J0 (k1a1) J

′
0 (k2a1)− η2J

′
0 (k1a1) J0 (k2a1)

η2J ′
0 (k1a1)H

(2)
0 (k2a1)− η1J0 (k1a1)H

′(2)
0 (k2a1)

(6.21)

where a1 and a2 are the internal and external radius, respectively, while
k1 and η1, and k2 and η2, stand for the propagation constant and medium
impedance inside the conductive wire and magnetic coating, respectively.
More interestingly, if we take asymptotic limits for a thin wire k0a2 ≪ 1,
composed by an electrically small coating k2a2 ≪ 1, k2a1 ≪ 1 and a good
conductor core k1a1 ≫ 1 (with k′′1a1 ≫ 1), the wire distributed impedance
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can be written as follows

Zw = jω
µ2

2π
ln

(
a2
a1

)
+

1

2πa1

1 + j√
2

√
ωµ1

σ
(6.22)

Intuitively, (6.22) is composed by two addends corresponding to the
loading produced by the magnetic coating and the conducting core, re-
spectively. The former addend is a function of the coating permeability,
and it can be either inductive (Re [µ2] > 0) or capacitive (Re [µ2] < 0),
while the magnetic losses of the coating increase the distributed resistance
of the wire. The latter addend is produced by the finite conductivity of the
metallic core. Naturally, this results in an increase of the wire distributed
resistance, and, more surprisingly, in additional inductive loading. This
behavior can be ascribed to the electromagnetic energy stored within the
metallic core, not present in a PEC wire.

As an example, let us consider a wire consisting of a copper core (σ =
6.7·107 S/m, µ1 ≃ µ0), coated by an insulating YIG (Yttrium Iron Garnet)
magnetic layer, characterized by [92]: µ0Ms = 0.176T, α = 0.005, Hk ≃
0 kA/m, γ = 2.088 × 1011T−1s−1, and ε2 = 15 (1− j0.001) ε0. Fig. 6.6
represents the wire distributed impedance at a frequency of 10GHz as
a function of the DC magnetic field acting on the wire. The radius of
the copper core has been set to a1 = 0.001λ, and thicknesses of the
magnetic layer equal to 0.05a1 (Fig. 6.6(a)) and 0.1a1 (Fig. 6.6(b)) have
been represented. Recall that, at 10GHz, the reactance required to satisfy
the resonant condition is of the order of Xw ∼ 2π kΩ/m. Therefore, it
is apparent from Fig 6.6 that coatings as thin as 0.05a1 and 0.1a1 are
sufficient to provide the required reactance and, at the same time, feature
a significantly smaller resistance.

In summary, it has been found that the ferromagnetic wires consid-
ered in the dissertation are able to provide the necessary reactive loads
to excite the resonance of a grid of wires in the proximity of a ground
plane. However, the losses associated to such reactives loads have been
found too high to develop perfect absorbing boundaries. Nevertheless,
alternative technologies such as conductive wires with lumped elements
and conductive wires with magnetic coatings can overcome such difficulty.
The performance of these implementations is considered in more detail in
AppendixC. Hybrid implementations of all the aforementioned options
could also be considered.
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Figure 6.6 – Real and imaginary parts of the distributed wire impedance as a
function of the normalized DC magnetic field for a copper wire of radius a1 = 0.001λ,
covered by a YIG layer of thickness (a) t = 0.05a1 and (b) t = 0.1a1.

6.4 Reconfigurable Absorbers based on

Resistive Sheets

Bearing in mind the dominant role of the wire resistance, the logical
alternative is to investigate the use of grid of wires as resistive sheets in-
corporated in multi-layered electromagnetic absorbers. Moreover, since
the resistance of the wires is a function of their magnetic properties,
such resistive sheets can be reconfigured through DC magnetic fields,
mechanical stresses, or, more interestingly, DC currents flowing along the
wires [36, 37].

Such property can be exploited at least in the design of two different re-
configurable absorbers: wideband absorbers with reconfigurable notches,
and narrowband absorbers with a reconfigurable absorbing band. The for-
mer are useful to track objects that are hidden to external observers. For
example, consider an object covered by a wideband absorber with a nar-
row non-absorbing notch, whose frequency position dynamically changes
with time. In such a case, only those radar stations aware of the time-
frequency position sequence of the notch would have a reasonable proba-
bility to track the object. Contrarily, narrowband absorbers with a recon-
figurable absorbing band could be useful to mitigate the effect of interfer-
ences in wireless communication systems, suppressing a given frequency
channel without affecting the other ones.

Let us implement a classic absorber, the Salisbury screen [48, 120],
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as a proof-of-concept example of absorbers incorporating resistive sheets.
This absorber consists of a resistive layer placed at a λ/4 distance of a
ground plane, i.e., at the distance where the local electric field acting on
the resistive layer is maximized. From a transmission line standpoint, the
short-circuit produced at the ground plane is transformed into an open-
circuit at the specific distance of λ/4 [22]. Therefore, the input impedance
seen by an incident plane wave propagating in free space is given by
the grid impedance connected in parallel with an open-circuit, trivially
reducing to the grid impedance. In this manner, if the grid impedance
equals to that of free-space, the propagation in free-space is matched to
the Salisbury screen, there is no reflection, and all of the incident power
is dissipated within the absorber.

Consider first the design of a Salisbury screen with a reconfigurable
notch, i.e., a reconfigurable narrow non-absorbing band within a wider
absorbing band. The design of the absorber is simple if the resistive
sheet is composed of wires whose resistance is dominant over the other
impedance terms. In such a case, the grid impedance is given by the
product of the wire resistance by the separation between wires, Zgrid ≃
d ·Rw (i.e., the current flowing in the wire is averaged over the grid period,
and therefore the impedance must be multiplied by the same factor).
Moreover, if the wire resistance can be approximated by its QS value,
Rw ≃ 1/

(
πa2σ

)
, a simple design rule to select the radius, conductivity,

and separation between the wires can be written as

d

πa2σ
= η0 (6.23)

Following the analysis carried out in Chapter 3 and, in particular,
Fig. 3.2, it can be concluded that wire radii on the order of one micron
are optimal for such purpose in the GHz frequency range. For such wires,
the wire distributed resistance is dominant over the other impedance
terms (see Fig. 3.2(c)), and it has in general converged to its QS value
Rw ≃ 1/

(
πa2σ

)
. However, the latter does not hold at the specific FMR

frequency, at which the magnetic losses result in a minimum of the pen-
etration depth. Thus, the QS limit has not been reached, and the wire
resistance is significantly larger. Therefore, a notch in the absorbing band
is bound to appear at the FMR frequency.

Among the wires reported in the literature, the Fe-rich wire exper-
imentally characterized in [25] has been identified as the most suitable
candidate. Such wire has a nominal composition Fe76Si9B10P5, a metal-
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lic core of a = 0.75µm radius, and total diameter (including the Pyrex
coating) of 28µm. The magnetic properties of the wire have been re-
trieved by the authors of [25] by fitting theoretical models to the mea-
sured absorption spectra, and are given by: µ0Ms = 1.422T, α = 0.00135,
Hk = 47.75 kA/m, γ = 2.088× 1011T−1s−1, and σ = 1.31× 105 S/m.

Assuming such material parameters, the wire features the NFMR
(FMR in the absence of DC biasing) at a frequency

fNFMR =
µ0γ

2π

√
Hk (Hk +Ms) ≃ 9.91GHz (6.24)

which is the frequency at which the notch in the absorbing band is cen-
tered in the absence of any external DC biasing. Furthermore, the fre-
quency position of the notch can be tuned by an electric DC current
circulating along the wires. In essence, the field induced by the DC cur-
rent produces a torque on the axial magnetization that shifts the FMR
resonance frequency towards lower frequencies. This effect can be macro-
scopically modeled by associating an effective DC magnetic field, HIDC

, to
the applied DC electric current IDC. The effective field can be retrieved
experimentally by examining the position of the FMR frequency as a func-
tion of IDC and, following the experimental data presented in [36], it has
been assumed as follows

IDC (mA) HIDC
(kA/m)

0 0
5.75 -10
8 -17
10 -29

Note that the wires studied in [36] have a different composition than
the selected Fe-rich wire. Therefore, the effective fields acting on the
wire might differ from the ones assumed in our analysis. However, since
wires with larger content in iron are affected by larger effective fields per
current unit [36], the values assumed in our analysis can be considered a
pessimistic estimation of the reconfigurable capabilities.

Finally, the absorber design is completed by setting the separation
between the resistive sheet and ground plane as h = 7.5mm (λ/4 at
10GHz), and selecting the separation between the wires according to the
design rule (6.23), i.e., d = η0πa

2σ = 67µm. The performance of the
resultant absorber has been analytically and numerically assessed: the



102 6.4 Reconfigurable Absorbers

0 mA

5.75 mA
8 mA

10 mA

Figure 6.7 – Comparison of numerical and analytical reflection power coefficients
for a Salisbury screen composed of a grid of Fe-rich wires of a = 0.75µm radius,
separation between the wires of d = 67µm, and distance to the ground plane of
h = 7.5mm (λ/4 at 10GHz). Each line corresponds to a different DC current
circulating along the wires.

analytical solution corresponds to the evaluation of (6.11), and the nu-
merical solution has been computed with the commercial full-wave simu-
lator HFSS. In order to obtain an accurate response from the numerical
solver, the maximum mesh step within the ferromagnetic wire has been
set to 25 nm.

Fig. 6.7 depicts the comparison of the numerical and analytical reflec-
tion power coefficients. There is an excellent agreement between ana-
lytical and numerical predictions. Moreover, it is apparent that simple
design rule (6.23) leads to a good absorbing performance, i.e., the reflec-
tion power coefficient is minimized at 10GHz, with a value below -30 dB,
and its value is below -10 dB for frequencies ranging from 6.25GHz to
17.75GHz (i.e., a 115% fractional bandwidth). In addition, the reflec-
tion power coefficient is characterized by the presence of a narrow non-
absorbing band, whose width and maximum peak is determined by the
strength of the FMR. As predicted by the theory, the frequency position
of the notch is centered at 9.9GHz when there is no DC current circu-
lating along the wire, IDC = 0. Moreover, the frequency position of the
notch decreases as IDC increases, and a current of IDC=10mA is sufficient
to move the notch from the center of to completely outside the absorbing
band.

Secondly, consider the design of an electromagnetic absorber with a
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narrow reconfigurable absorbing band. To this end, the separation be-
tween wires must be selected significantly sparser, so that the condition
d · Rw = η0 is only satisfied at the FMR resonance frequency. By doing
so, the absorption is maximized at the FMR frequency, while it should
be negligible at other frequencies. Since the SE limit holds at the specific
FMR frequency, the wire resistance can be written as Zw ≃ ηw/ (2πa) (see
equation (3.4)), and a simple design rule to select the radius, conductivity,
and separation between the wires can be written as

d

2πa

√
ωµ′′

w

σ
= η0 (6.25)

where µ′′
w is the negative of the imaginary part of the wire permeability

(2.21), evaluated at the resonant frequency, (2.22). To finalize the design,
the wire radius has been increased up to a = 5µm to reduce losses out-
side the absorbing band, assuming the same electromagnetic properties
for the wires. Thus, according to the design rule (6.25), the interwire
spacing must be set to d = 230µm, while the distance to the ground
plane has been fixed to h = 7.5mm (λ/4 at 10GHz). Fig. 6.8 depicts the
comparison of the numerical and analytical reflection power coefficients.
Again, a good agreement is found between numerical and analytical data.
Moreover, the reflection power coefficient is characterized by a narrow
absorbing band, whose frequency position decreases as the DC current is
increased. Outside the absorbing band, the reflection power coefficient is
above -1.5 dB. Note that the bandwidth of this absorbing band is mostly
determined by the resonant linewidth, and therefore it is significantly nar-
rower than other absorber designs with the same height, for example, the
previous example. Far from being a disadvantage, this behavior can be ex-
ploited to avoid interferences in wireless communications, where only one
interfering channel, and not the whole transmission, must be suppressed.

Therefore, it can be concluded that this class of ferromagnetic wires
can be adopted in the design of reconfigurable absorbers, e.g., wideband
absorbers with a reconfigurable non-absorbing notch, and narrowband
absorbers with a reconfigurable absorbing band. It is worth remarking
again that the Salisbury screen must be considered as a proof-of-concept
example, and that resistive sheets based on ferromagnetic wires could be
included in state-of-the-art multi-layered ultra-wideband absorbers. [121].
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Figure 6.8 – Comparison of numerical and analytical reflection power coefficients for
a Salisbury screen composed of a grid of Fe-rich wires of a = 5µm radius, separation
between the wires of d = 230µm, and distance to the ground plane of h = 7.5mm
(λ/4 at 10GHz). Each line corresponds to a different DC current circulating along
the wires.

6.5 Conclusions

The focus of this chapter has been artificial impedance surfaces realized
as grids of ferromagnetic wires close to a ground plane. To this end, the
analytical solution to the problem has been formulated, resulting in a
general expression for the reflection coefficient as a function of frequency
and angle of arrival.

This model has been employed to derive the resonant condition under
which strong currents are excited along the wires, even when the grid is
located in the proximity of the ground plane. Moreover, an explicit ex-
pression for the reactive load required to satisfy this resonant condition
has been introduced. In particular, the required reactive load is capacitive
and follows a soft and linear frequency dependence. This non-resonant
behavior is an advantage for the design of reconfigurable systems. It has
also been demonstrated that the values for the required load are realistic,
and that it can be implemented with ferromagnetic wires. Unfortunately,
although ferromagnetic wires can provide the necessary reactive loads,
the resistance associated to such reactive loads is to high to sustain the
resonance, even for their operation as electromagnetic absorbers. How-
ever, alternative implementations, such as conductive wires loaded with
lumped elements and/or non-conductive magnetic coatings, could be more
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successful, and are analyzed in AppendixC.
The dominant role of the losses has motivated the study of electro-

magnetic absorbers based on resistive sheets composed of ferromagnetic
wires. In this regard, it is demonstrated that ferromagnetic wires can
be adopted in the design of wideband absorbers with a reconfigurable
non-absorbing notch, of interest, for example, in the tracking of objects
hidden to other observers. This concept has been pushed forward with
a proof-of-concept design consisting of a notched Salisbury screen. The
design has been constructed by using wires available in the literature, and
reconfigurable capabilities based on DC electric currents flowing along the
wire are analyzed.
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Chapter 7

Ferromagnetic Wires for

Contact-Less Sensing

7.1 Introduction

Technological applications of ferromagnetic wires have been traditionally
related to the field of sensing devices in the low-frequency range (up to
MHz) [6]. As a matter of fact, MI based sensors in which the ferromagnetic
wire is integrated in an electronic circuit have been popular for applica-
tions not only including very sensitive magnetic field sensors, but also
mechanical stress, temperature, position, chemical and multi-functional
sensors [32].

More recently, sensing applications of ferromagnetic wires in the GHz
frequency range have been proposed under the paradigm of self-sensing
materials [122]. Instead of integrating the wires within an electronic cir-
cuit, an ensemble of wires is distributed within the sample under study,
and the variations in the magnitude of interest are recorded as alterations
in the reflected/transmitted fields when the sample is illuminated by an
antenna.

A sketch of this paradigm is depicted on Fig. 7.1. Consider an imaging
system in which an antenna illuminates an object and records the scat-
tered/reflected field, which is a function of its electromagnetic properties.
Processing the recorded field by means of inverse scattering techniques
makes it possible to estimate the electromagnetic properties of the object,
or even to create a 3D map of its electromagnetically heterogeneous struc-
ture. Unfortunately, this process is intrinsically restricted to magnitudes
that affect the electromagnetic properties of the solid at the frequency
band of operation. Thus, many useful magnitudes (mechanical stress,

107



108 7.1 Introduction

Figure 7.1 – Sketch of ferromagnetic materials as self-sensing materials.

temperature, chemical activity...) might be lost to such sensing mecha-
nism. One way to overcome this restriction is to introduce contrast par-
ticles whose electromagnetic properties are a function of the magnitudes
of interest. Specifically, ferromagnetic wires featuring magnetostrictive
effect can be adopted as contrast particles for mechanical-stress sensing,
of great interest for architectural and health monitoring. An additional
advantage of ferromagnetic wires is that, being conductive particles, they
scatter a significant amount of power.

State-of-the-art experiments treat ensembles of ferromagnetic wires
as artificial electromagnetic materials [45–47], and the sensing process
consist of estimating the effective constitutive parameters of the material
as a function of the applied mechanical stresses, giving rise to the concept
of self-sensing materials. Notwithstanding the success of such material-
oriented systems, this dissertation would also like to emphasize the use
of a single wire for contact-less sensing. In fact, a single wire can be
placed where the mechanical action is bound to happen, enabling the
sensing at such specific location. This technique can be of great interest
for circuit-less battery-less monitoring of implants.

Previous experiments on ferromagnetic wires for self-sensing materi-
als have been focused on Co-rich wires [38, 39, 42, 45–47]. Most prob-
ably, this is due to the heritage of low-frequency MI sensors, in which
the largest impedance variations are achieved with negative but near-zero
magnetostriction constants. However, Fe-rich wires, which have not been
investigated yet in this context, could be advantageous in the design of
radar-based contact-less sensors. Note that Fe-rich wires feature positive
and large magnetostriction constants, which results in a dominant axial
magnetization and in the presence of the natural ferromagnetic resonance



Chapter 7. Contact-Less Sensing 109

(NFMR) at GHz frequencies [3, 5]. Therefore, Fe-rich wires are advan-
tageous for high-frequency sensors, since no biasing field is required to
produce the ferromagnetic resonance (FMR). Even in the presence of a
biasing field, Fe-rich wires provide a stronger and higher-frequency FMR
due to their higher magnetization at saturation, thus leading to higher
spatial resolutions and smaller antennas. Moreover, a high magnetostric-
tion constant ensures a strong response to external mechanical stresses.

This chapter investigates the possibility of using Fe-rich wires for me-
chanical stress self-sensing materials, including the characterization of
magnetostrictive effect at GHz frequencies, as well as the estimation of
their performance as self-sensing materials and single-wire contact-less
sensors.

7.2 Characterization of the Magnetostric-

tive Effect at GHz Frequencies

The magnetostrive effect can be understood as the variation of the wire
impedance as a function of applied mechanical stresses. Unfortunately,
the characterization of the wire impedance under mechanical stresses at
high-frequencies can be a cumbersome task. As a matter of fact, while
the wire impedance can be easily measured at the low-frequency limit
with an oscilloscope by means of the two/four probe method [123], as
frequency increases the probe effect becomes dramatic and the wires tend
to radiate. Therefore, high-frequency MI measurements are based on the
integration of ferromagnetic wires in transmission lines, such as microstrip
lines [38, 39, 42], coaxial cables [43, 44] and waveguides [45].

It is worth remarking that these experiments measure the impedance
of the transmission line formed by the wire, and an additional retrieval
technique is required to recover the actual wire impedance. Although
this might seem a subtle difference, it must be considered for contact-less
sensing, since the wires are not integrated in any circuit/tranmission line,
and thus the actual wire impedance is required to estimate the magni-
tudes of interest. A retrieval procedure for coaxial lines was presented
in [43]. However, both ends of the ferromagnetic wire must be connected
to the coaxial line, which hinders the application of mechanical stresses
within such experimental setup. To go further in the state of the art and
overcome this problem, a retrieval procedure using metallic rectangular
waveguides is presented here.
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7.2.1 Retrieval Procedure

Fig. 7.2 represents the setup for the characterization of ferromagnetic
wires in a metallic rectangular waveguide: a wire of radius a is positioned
in the middle of a waveguide of width d, height h and length 2l. The wire
ends are short-circuited to the waveguide walls to emulate an analytically
tractable infinitely-long wire, and the incident electric field is parallel
to the wire so that its magnetic response is excited. The goal of the
retrieval procedure is to recover the wire impedance, Zw, from the S11

and S21 scattering parameters measured at the input and output of the
waveguide.

This experimental setup has been analytically solved in Chapter 2,
and closed form expressions for the S11 and S21 scattering parameters
have been introduced in (2.49) and (2.50), respectively. Those equations
must be rewritten in terms of Zw to serve our experimental purposes.
To this end, note that the scattered field coefficient, bTM0 , is given by(
bTM0

)−1
= − 4

k0d

(
Zw + α−1

0

)
. By doing so, the S11 and S21 scattering

parameters can be written as

S11 = −η0k0
kgd

1

Zw + α−1
0 + η0k0

4 Gwg
int

e−j2kgl (7.1)

S21 =

[
1− η0k0

kgd

1

Zw + α−1
0 + η0k0

4 Gwg
int

]
e−j2kgl (7.2)

In view of (7.1) and (7.2), it is straightforward to compute Zw from either
S11 or S21 as follows

ZR
w = −η0k0

kgd

1

S11ej2kgl
− α−1

0 − η0k0
4

Gwg
int (7.3)

d

Y

X

x = l
x = -l

d

h Y

Z
2a

OutputInput

R T

Figure 7.2 – Sketch of a ferromagnetic wire of radius a inside a rectangular waveg-
uide of width d, height h and length 2l.
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ZT
w = −η0k0

kgd

1

S21ej2kgl − 1
− α−1

0 − η0k0
4

Gwg
int (7.4)

The first term of (7.3) and (7.4) must be understood as the impedance of
a wire inside the waveguide. The second and third terms subtract from
this impedance the loading produced by the waveguide walls (η0k0/4·Gwg)
and the impedance of a PEC wire (α−1

0 ), so that the final result is the
actual wire impedance, Zw. In theory, ZR

w = ZT
w = Zw, so that Zw can

be indifferently computed from S11 or S21. From a practical standpoint,
S11 is significantly smaller than S21 due to the reduced cross-section of
the wire as compared to the waveguide width, and therefore ZR

w is much
more sensitive to noise, reflections produced by mismatched junctions and
other experimental artifacts than ZT

w .

7.2.2 Numerical Validation

In order to check the accuracy of the analytical model employed for the
retrieval technique, the results have been tested with a well-established
full-wave electromagnetic solver: CST Microwave Studio [124].

The model of the numerical simulation is depicted in Fig. 7.3(a) and
consists of a WR-90 metallic rectangular waveguide (d = 22.86 mm,
h = 11 mm, 2l = 15 cm) and a wire placed in the middle of the waveg-
uide. The inset in the figure represents the wire geometry. Note that the
simulation of a rectangular waveguide (of a few wavelengths size) with
a ferromagnetic wire (of 10−4 ∼ 10−5 wavelengths size) with finite con-
ductivity and gyrotropic magnetic susceptibility is a cumbersome task for
current numerical solvers, and therefore the numerical simulations have
been performed with a simpler, two layer wire. Such a wire is composed
of an inner PEC wire of radius a1, covered by a magnetic coating of per-
meability µ = µrµ0, and total radius a2. The distributed impedance of
this type of wires can be written as in (6.22)

Zw = j
ωµ

2π
ln

(
a2
a1

)
(7.5)

In essence, the magnetic coating loads the PEC wire with a given
reactance (for lossless µ), which increases with µ and the ratio between
the external and internal radii, a2/a1.

For illustrative purposes, three different values of the magnetic coat-
ing µr = 5, 10 and 15, with dimensions a2 = 0.1 mm and a1 = 0.05 mm,
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Figure 7.3 – (a) CST Model of the WR-90 waveguide with connected wire. The
inset in the figure represents the structure of the simulated wire. (b) Comparison of
the theoretical wire reactance and the reactance retrieved from the R, T coefficients
simulated with CST.

have been employed in the numerical simulations. Once the S11 and S21

scattering parameters have been computed with CST, Zw has been de-
termined by means of the proposed retrieval technique and compared to
the theoretical solution (i.e., equation (7.5)), as it is shown in Fig. 7.3(b).
In this numerical example, ZR

w and ZT
w converged perfectly, and therefore

a single Zw line has been represented. It can be concluded that there
is a good agreement between the retrieved and theoretical results. Small
differences can be ascribed to numerical errors in the simulator (mesh and
truncation), the truncation of the Gwg

int interaction constant (2.47)-(2.48),
and the small argument bessel function approximations intrinsically as-
sumed in the theoretical Zw, (7.5).

7.2.3 Experimental Validation

Recall that in Chapter 3, three different (Co0.94Fe0.06)75Si12.5B12.5 wires of
22.5 µm, 5 µm and 2 µm metallic radius were measured in a metallic rect-
angular waveguide in order to investigate the correlation between the wire
geometry and absorption spectrum. Such wires were trapped between two
WR-90 waveguides so that the experimental setup adjusts to that of the
retrieval technique (see Fig. 7.2). Therefore, those experimental data can
be used to test the consistency of the retrieval technique.

The Zw values retrieved from the S21 scattering parameter are de-
picted in Fig. 7.4, where each color line corresponds to a different biasing
magnetic field as specified in the caption. The retrieved impedances are
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consistent with the study of Zw with FMR effect in saturated wires (see
Fig. 3.2): On the one hand, a peak of resistance appears at the FMR,
whose frequency position increases along with the biasing field. In ad-
dition, the resistance increases as the wire radius decreases, due to the
higher penetration of the electromagnetic field in the wires. On the other
hand, the retrieved reactance presents the expected maximum-minimum
sequence. However, the reactance is asymmetric with respect to the res-
onant point due to parasitic reactive loading. This effect is an artifact
of the experimental setup, produced by the small separation between the
waveguides where wires are positioned. Note that the measurements were
originally carried out to evaluate the absorption spectrum, in which this
effect has a minor impact, and that it can be mitigated with the correct
setup/calibration procedure.

7.3 Fe-rich Wires for Contact-Less Sensing

7.3.1 Characterization of the Wires

In order to assess the performance of Fe-rich wires as mechanical stress
self-sensing materials, a Fe77.5Si12.5B10 wire was fabricated by means of the
Taylor-Ulitovsky technique [7, 8] in collaboration with Prof. M. Vázquez
at the Material Science Institute of Madrid (ICMM). A SEM image of the
wire was taken at the Foundation for the Research and Development of
Nanotechnology in Navarra (Fidena) with the assistance of J. Bravo, and
it is represented in Fig. 7.5. As it is shown, the wire consists of a metallic
core of 5.25 µm radius and total radius (metallic core and pyrex coating)
of 12.5 µm.

A photograph of the experimental setup employed to characterize
the wires is depicted in Fig. 7.6. To further clarify the setup, the fig-
ure includes schematic views of the setup in the XY-, XZ-, and YZ-
planes. The experimental setup consists of a WR-112 rectangular waveg-
uide (d = 28.6 mm, h = 12.8 mm, 2l = 10 cm), where both waveguide
ends are connected to SMA adaptors and the scattering parameters are
recorded with an Agilent PNA-X N5242A network analyzer. The WR-
112 rectangular waveguide was selected so that the NFMR of the wires
lies within the frequency range of the experiment. Note how a small hole
has been drilled in the center of the broad wall of the waveguide. By
doing so, the wires can entirely cross the waveguide while being parallel
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Figure 7.4 – Retrieved resistance (a)-(c) and reactance (d)-(f) for Co-rich wires of
22.5 µm, 5 µm and 2 µm metallic radius, respectively. Each line corresponds with
a different biasing field H1 = 89.4 kA/m, H2 = 117.7 kA/m and H3 = 146.0 kA/m,
directed along the wire axis.
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Figure 7.5 – SEM image of the Fe-rich wire under test.

to the incident electric field, i.e., the wires are positioned along the Y-axis
according to Fig. 7.6. Due to the orientation of the waveguide, no holder
or insulating platform is required. Outside the waveguide, both wire ends
have been fixed to micropositioners. In this way, when one of the microp-
ositioners is shifted mechanical stresses are produced along the wires axis,
resulting in an elongation dL. Due to the magnetostrictive behavior of
the wires, such mechanical stresses produce variations of measured scat-
tering parameters and, as a consequence of it, of the retrieved distributed
impedance. It is worth remarking that no external DC magnetic field has
been employed to polarize the ferromagnetic wires. The parasitic loading
produced by the waveguide holes was estimated and calibrated by mea-
suring copper wires of different sections. Furthermore, it was checked that
no variation in the reflection and transmission coefficients was observed
when the copper wires were subjected to mechanical stresses.

The retrieved distributed impedance Zw as a function of the wire elon-
gation for the Fe-rich wire is represented in Fig. 7.7. It can be concluded
that the wires feature the typical resonant behavior produced by the
NFMR within a homogeneous core, consistent with the theoretical anal-
ysis of Chapter 3. Namely, a maximum of resistance and an inductive-to-
capacitive transition of the reactance around the resonance. In addition,
the elongation of the wires from 0 to 60 µm produces a shift of the NFMR
frequency, fNFMR, from 7 GHz to 8.25 GHz.

This behavior is ascribed to an increase in the anisotropy field, Hk.
When no mechanical forces are applied to the wire, Hk is defined by the
mechanical stresses produced during the fabrication process. Due to the
positive magnetostriction constant of the wires, these stresses result in
a positive Hk and the occurrence of the NFMR. Therefore, additional
mechanical stresses increase Hk, with the consequent increase in fNFMR.
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To further clarify this fact, note that fNFMR is given by the well-known
Kittel relationship [23]

fNFMR =
µ0γ

2π

√
Hk (Hk +Ms) (7.6)

Inversely, for Ms ≫ Hk the anisotropy field can be determined as
follows

Hk =

(
2π

µ0γ

)2
f 2
NFMR

Ms

(7.7)

Fig. 7.8 depicts Hk and f 2
NFMR as a function of the elongation in the

wires. To this end, fFMR has been fixed to the frequency of maximal
resistance, and typical parameters of Fe-rich wires [3] µ0Ms = 1.60 T and
γ = 2.088 · 1011T−1s−1 have been assumed. The retrieved values of Hk,
approximately ranging from 20 kA/m to 30 kA/m, are in accordance to
those of wires with high magnetostriction constant [24]. Furthermore,
both Hk and f 2

FMR increase linearly along with the elongation.

7.3.2 Estimation of the Sensing Performance

Once the wire impedance Zw has been experimentally characterized, it is
possible to estimate the sensing performance of both, a single wire system
and an artificial electromagnetic material composed of a random ensemble
of wires.
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7.3.2.1 Single Wire Contact-Less Sensing

Consider first a single ferromagnetic wire sensing system. The goal is
to retrieve the mechanical stresses at which the wire is subjected from
variations of the scattering from the wire. In general, the environment
of the wire also scatters the incident field, which must be included in the
analysis. However, the environment is bound to vary as a function of the
specific application, and free-space scattering will be considered here for
the sake of simplicity.

Typical radar techniques figures of how much the incident field is dis-
turbed by the presence of the wire are the backscattering, scattering,
absorption and extinction cross-sections. The former is also called mono-
static cross-section or simply radar cross section, and it is given by [77]

σback = 4πr2
r̂ · Sscat

(
φ = 0, θ = π

2

)

n̂inc · Sinc
(7.8)

σback has area units and represents the effective area of an ideally
isotropic scatterer that provides the same power density in the back di-
rection than the scatterer under consideration. Thus, this figure is a
measure of the power scattered at an specific direction. Additional fig-
ures corresponding to the overall scattered and absorbed powers are the
scattering and absorption cross-sections, given by [77]

σscat =
Pscat

n̂inc · Sinc
(7.9)

σabs =
Pabs

n̂inc · Sinc
(7.10)

which also have area units, and represent the areas that, projected on to
the incident power density, contain the scattered and absorbed powers,
respectively. The addition of the total scattering and absorption cross-
sections is defined as the extinction cross-section, σext = σscat + σabs.
According to the optical theorem [81], σext is related to the imaginary
part of the forward scattering amplitude, and represents the reduction in
the power carried by the incident field produced by the presence of the
scatterer.

Fig. 7.9 represents the backscattering, scattering, absorption and ex-
tinction cross-sections as a function of the wire elongation for the studied
Fe-rich ferromagnetic wire of a = 5.25 µm radius and length L = 7.5mm.
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Figure 7.9 – (a) Backscattering, (b) scattering, (c) absorption and (d) extinction
cross-sections as a function of the wire elongation for a Fe-rich ferromagnetic wire
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Such length has been selected so that 2L = λ/2 at 10GHz, and there-
fore enabling large scattered powers at the frequency band of interest.
Based on the experimental values of Zw reported in the previous section,
the scattering cross-sections have been computed modeling the wire as
introduced in Chapter 2, Section 2.4.1.

It is apparent from Fig. 7.9 that all cross-section spectra shift towards
higher frequencies along with the elongation. Moreover, the peculiari-
ties of the frequency dispersion behavior of the cros-section spectra can
be explained in accordance to Chapter 3 analysis. In particular, both ab-
sorption and scattering processes are a function of the current in the wire,
which is maximized close to the half-wavelength resonance, thus produc-
ing a peak of scattering and absorption close to 10GHz. In addition,
the inductive loading produced by the short-wire below the resonance
also increases the current of the wire, producing a second peak of both,
absorption and scattering, below the resonance. Finally, the absorption
cross-section is much larger than the scattering cross-section for this lossy
wire, which is in accordance with Chapter 4 results.

7.3.2.2 Self-Sensing Materials

Consider now a cloud of short ferromagnetic wires that can be modeled as
an artificial electromagnetic material. As a first approximation, the con-
stitutive parameters of such artificial material can be estimated via classi-
cal electromagnetic mixing formulas such as Clausius-Mossotti/Maxwell-
Garnett [126].

Due to practical reasons, these composite materials typically consist
of ensembles of short-wires, which result in artificial dielectric materials
whose effective permittivity is defined by the electric dipole moments
excited in the short-wires. Solving the current excited in the wires as in
Chapter 2, the wire electric polarizability αee can be found as [75]

αee =
1

jω

ˆ L

−L

I (z)

E0
dz (7.11)

Knowing the polarizability of a given inclusion, it is straightforward
to apply mixing rules to estimate the effective permittivity. For the sake
of simplicity, let us start with a mixture of wires aligned along the z
axis. Under a Clausius-Mossotti/Maxwell-Garnett formalism, an aligned
mixture of ellipsoids is characterized by an effective uniaxial permittivity
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given by [126]

ǫeff = ǫxx̂x̂+ ǫyŷŷ + ǫzẑẑ (7.12)

where each of its elements is given by

ǫi = ǫh +
pαi

ee

1−Ni
pαi

ee

ǫh

i = x, y, z (7.13)

ǫh is the polarizability of the host medium, p is the number of wires per
unit of volume, and Ni and αi

ee are the depolarization factor and the
polarizability of the ellipsoid along the i direction.

Due to the high aspect ratio of the wires the “needle” depolarization
factors Nx = Ny =

1
2 , Nz = 0 are the natural choice, and it is sufficient to

consider the polarizability along the wires (i.e. αx
ee = αy

ee ≃ 0, αz
ee = αee).

Therefore, the effective permittivity simplifies to

ǫeff = ǫh (x̂x̂+ ŷŷ) + ǫzẑẑ (7.14)

with

ǫz = ǫh + pαee (7.15)

Fig. 7.10(a)-(b) represents the computed real and imaginary parts of the z-
component of the effective permittivity ǫz/ǫ0 for wires of length L = 1 mm
and density p = 5 wires/cm3. It can be appreciated that the real part
of the effective permittivity is positive as in mixtures of conductive short
wires, although its dipersion profile is defined by the occurrence of the
NFMR.

As expected, external stresses shift the permittivity dispersion profile
towards higher frequencies, which can be measured through variations in
the reflection/transmission from the sample, or directly from the retrieval
of its constitutive parameters. If only a part of the sample is subjected to
mechanical stresses, it must be treated as an heterogeneous solid, where
the shape and size of the volume affected by the mechanical stresses can
be determined through inverse scattering techniques.

In most practical applications the mixture will be a random ensemble
of wires. In such a case, the directionality of the mixtures vanishes, the
sample behaves as an isotropic mixture, and the effective permittivity can
be written as

ǫeff = ǫm (x̂x̂+ ŷŷ + ẑẑ) (7.16)
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Figure 7.10 – Real and imaginary parts of the effective permittivity for aligned
(a)-(b) and random (c)-(d) mixtures of short (L = 1 mm) Fe-rich wires with density
p = 5 wires/cm3 as a function of the wire elongation, dL.
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where the electric polarization results from the averaging of each direction
susceptibility [126]. For wires with high aspect ratio only one susceptibil-
ity component is relevant and therefore

ǫm = ǫh + pαee/3 (7.17)

Fig. 7.10(c)-(d) shows the effective permittivity of the same mixture of
wires than in Fig. 7.10(a)-(b), but with random orientation of the wires.
The results confirm that the response of a random mixture is a diluted
version of the aligned one, in the sense that the aligned mixture results
in larger permittivity values than the random one, for the same density
of wires.

Both random and aligned mixtures are subjected to the limitations
of homogenization models. Therefore, their predictions will be accurate
as long as the wires and the separation between wires is small enough,
and as long as a sufficiently large number of wires is affected by the
mechanical stresses. If the former condition is not fulfilled, the structure
must be inevitability modeled with complex theory of groups of individual
scatterers. If the latter condition is not fulfilled, the structure can still
be modeled as an homogeneous mixture, but multiphase mixing rules
must be applied. In general, the Pyrex coating of the wires prevents the
appearance of percolation processes in the mixtures. However, one must
recall this effect when dealing with wires after glass-removal processes. In
those cases, more generalized mixing formulas must be adopted [127].

To sum up, multiple models can be adopted to predict the performance
of a self-sensing material, where the selection of the model depends on the
properties of the mixture. In any case, all applicable models rely on the
characterization of the wires through retrieval techniques, as discussed in
previous sections.

7.4 Conclusions

This chapter has investigated the possibility of using Fe-rich wires as
mechanical stress self-sensing materials. To this end, a retrieval tech-
nique aimed to evaluate the wire distributed impedance under mechanical-
stresses has been introduced. A Fe-rich Fe77.5Si12.5B10 wire of a = 5.25 µm
metallic radius has been characterized with the proposed retrieval tech-
nique. The wire main feature is the presence of the FMR at 7 GHz with no
magnetic biasing. Moreover, the magnetostrictive behaviour of the wires
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leads to shifts in the FMR frequency from 7 GHz to 8.25 GHz for elon-
gations ranging from 0 to 60 µm. This result demonstrates the potential
of Fe-rich ferromangetic wires as contact-less mechanical-stress sensors.
Furthermore, it proves that no external DC biasing is required for the
sensing system. To finalize, it has been pointed out how to estimate the
performance of both artificial materials and single-wire sensing systems.



Chapter 8

Conclusions and Guidelines

for Future Research

This chapter provides a summary of the main results presented along this
dissertation, as well as some guidelines for future research.

8.1 Conclusions

This dissertation has introduced diverse results concerning (amorphous
glass-coated) ferromagnetic wires and their use in microwave engineer-
ing. While most previous works have been experimentally driven and/or
were focused on describing the electromagnetic properties of the wires,
this dissertation provides a step forward by introducing modeling tools
for the theoretical investigation and design of ferromagnetic wire-based
devices. Moreover, these modeling tools have been employed to system-
atically analyze the main phenomena related to the scattering by ferro-
magnetic wires, to identify their main potentialities and limitations, and
to formulate simple design rules.

First, the analytical modeling of the scattering by ferromagnetic wires
has been addressed in Chapter 2. Interestingly, it has been found that,
within the thin wire approximation, the scattering by a ferromagnetic
wire can be accurately modeled by means of very simple circuit models.

By using those models, a detailed analysis of the transition from sur-
face to bulk phenomena in the scattering by ferromagnetic wires has been
presented in Chapter 3. The analysis has revealed that the MI effect
tends to disappear in the SE and QS limits. Therefore, wires with radius
in the transition from surface to bulk effects lead to the strongest FMR-
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based MI effect. Such wires are able to provide reconfigurable resistive,
inductive and capacitive loading. However, the distributed resistance is
always larger than the distributed reactance, which suggests electromag-
netic absorbers and contact-less sensors as their most promising appli-
cations. Moreover, the complex size-dependent absorption spectrum of
the wires has been clarified, and the absorbed to scattered power ratio
has been proposed as a size-independent indicator of the FMR resonance
frequency.

The limits in the balance of powers involved in the scattering by fer-
romagnetic wires have been analyzed in Chapter 4. Upper bounds for the
maximal absorbed, scattered and extracted powers have been formulated,
and the implications of these bounds on ferromagnetic-wire based systems
have been discussed. In particular, contact-less sensors based on ferro-
magnetic wires present a compromise between sensitivity against external
agents and the amount of power scattered by the wire. In addition, and
counter-intuitively, ferromagnetic wires are found too lossy to reach the
upper bound of absorbed power, which limits the scope of very diluted
mixtures of wires as electromagnetic absorbers.

Artificial electromagnetic materials based on ferromagnetic wires are
addressed in Chapter 5. In contrast with previous experimental studies
suggesting that composites of ferromagnetic wires belong to the class of
DNG media, the homogenization approach reveals that such composites
belong to the class of artificial dielectrics with magnetically controlled
permeability. Furthermore, numerical simulations suggest the use of slabs
of ferromagnetic wires as narrowband reconfigurable absorbers (exploit-
ing FMR resonance effect) and/or wideband absorbers (exploiting the
reduced conductivity of amorphous wires).

Artificial impedance surfaces realized as grids of ferromagnetic wires
close to a ground plane have been investigated Chapter 6. Unfortunately,
although ferromagnetic wires can provide the necessary reactive loading
to create resonant low-profile absorbers, they associated losses are to high
to sustain the resonance. However, alternative implementations, such as
conductive wires loaded with lumped elements and/or non-conductive
magnetic coatings, have been found to be more successful. By contrast,
ferromagnetic wires can be adopted in the design of reconfigurable elec-
tromagnetic absorbers based on resistive sheets. This paradigm can be
applied to at least two different reconfigurable absorbers: wideband ab-
sorbers with a reconfigurable non-absorbing notch, and narrowband ab-
sorbers with a reconfigurable absorbing band. The former are of interest
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to track of objects hidden to external observers, and the latter are of
interest to mitigate interferences in wireless communications. This con-
cept has been further explored with proof-of-concept designs based on
a Salisbury screen tuned through DC electric currents flowing along the
wires.

Finally, the use of Fe-rich wires in contact-less sensing has been stud-
ied in Chapter 7. To this end, a retrieval technique aimed to evaluate
the wire distributed impedance under mechanical-stresses has been intro-
duced. The wire main feature is the presence of the FMR at 7GHz with no
magnetic biasing, whose frequency position shifts from 7GHz to 8.25GHz
for elongations ranging from 0 to 60µm. This result demonstrates the
potential of Fe-rich ferromagnetic wires as contact-less mechanical-stress
sensors. To finalize, several methods to estimate the performance of both
artificial materials and single-wire sensing systems have been given.

8.2 Guidelines for Future Research

The focus of this dissertation has been the use of ferromagnetic wires in
microwave engineering, where reconfigurable electromagnetic absorbers
and contact-less sensors have been identified as some of the most promis-
ing applications. The development of reconfigurable electromagnetic ab-
sorbers might continue with the integration of ferromagnetic wires in
state-of-the-art multilayered absorbers, as well as carrying out an analy-
sis of their power handling capabilities. As for their use as contact-less
sensors, the next logical step could be the study of the stress-dependent
scattering within a realistic environment.

Moreover, many antenna applications of ferromagnetic wires have been
ruled out due to the presence of excessive losses. To overcome this limita-
tion, the fabrication by means of the Taylor-Ulitovski technique of wires
composed by a conductive core with a non-conductive magnetic coating
could be investigated. If successful, one could benefit from the mass-
production of wires with an acceptable level of losses.

Finally, the approximation of a uniform axial magnetization has been
adopted along the dissertation. While the present experimental studies
support the use of this approximation, many interesting phenomena could
be discovered studying more complex, dynamic, magnetizations.
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Appendix A

Series of Hankel Functions

The aim of this Appendix is to derive the methods needed to compute
the series of Hankel functions that arise along the dissertation. Although
the series of Hankel functions can be computed numerically, alternative
representations are required to accelerate the convergence of such series
and to rewrite the series in a more intuitive manner. A fundamental tool
to accelerate the convergence of such series is the Poisson summation for-
mula, which is introduced in SectionA.1, and it is systematically applied
to transform series in SectionA.2.

A.1 Poisson Summation Formula

The Poisson summation formula is named after Siméon Denis Poisson,
and it is also labeled as Poisson resummation or Poisson summation rule.
It is a common and powerful tool in applied electromagnetics [104], and
it is usually adopted to accelerate the convergence of series that arise in
periodic structures. Physically speaking, the formula transforms a series
that illustrates how the field produced by a periodic structure is con-
structed from the individual contributions of the elements composing the
structure, into a series in which the field is constructed from a set of struc-
tural modes, usually referred to as Floquet modes. From a mathematical
standpoint, the Poisson summation formula relates the periodic sampling
of a function to a sampling of the function’s Fourier transform, and it can
be stated as [128]

∞∑

n=−∞
f (nd) =

1

d

∞∑

m=−∞
f̂
(m
d

)
(A.1)
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where f̂ (ξ) is the Fourier transform of f (t), given by (see, e.g., (1.14.1)
[129, 130])

f̂ (ξ) = F {f (t)} (ξ) =
ˆ ∞

−∞
f (t) e−j2πξtdt (A.2)

The Poisson summation formula can be readily demonstrated by ap-
plying the Fourier transform definition

∞∑

m=−∞

f̂ (m) =

∞∑

m=−∞

ˆ

∞

−∞

f (t) e−j2πmtdt =

ˆ

∞

−∞

f (t)

(
∞∑

m=−∞

e−j2πmt

)
dt (A.3)

and by identifying the Fourier series representation of the Dirac comb

∞∑

n=−∞
δ (t− n) =

∞∑

m=−∞
e−j2πmt (A.4)

so that the series reduces to

∞∑

m=−∞
f̂ (m) =

ˆ ∞

−∞
f (t)

( ∞∑

n=−∞
δ (t− n)

)
dt =

∞∑

n=−∞
f (n) (A.5)

Finally, (A.1) is fully constructed by introducing the Fourier transform
property

F {f (td)} (ξ) = 1

d
f̂

(
ξ

d

)
(A.6)

into (A.5).
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A.2 Series of Hankel Functions

A.2.1 Series: Sgrid

Let us define Sgrid as the series

Sgrid =

∞∑

n=−∞
H

(2)
0

(
k0

√
x2 + (y − nd)2

)
(A.7)

Recall the Fourier transform of the Hankel function (see, e.g., [104] p.
72)

ˆ ∞

−∞
H

(2)
0

(
k0
√

x2 + t2
)
e−j2πξt = 2

e−j
√

k20−(2πξ)2|x|
√

k20 − (2πξ)2
(A.8)

with Im
[
k20 − (2πξ)2

]
< 0. Invoking the Poisson summation formula, i.e.,

(A.1), with (A.8), Sgrid can be rewritten as

Sgrid =
2

d

∞∑

m=−∞

e−jk
(m)
x |x|ej

2πm
d

y

k
(m)
x

(A.9)

where k
(m)
x =

√
k20 −

(
2πm
d

)2
, with Im

[
k
(m)
x

]
< 0. Taking the zero-term

separately, it can also be written as

Sgrid =
2

k0d
e−jk0|x| +

4

d

∞∑

m=1

cos

(
2πm

d
y

)
e−jk

(m)
x |x|

k
(m)
x

(A.10)

A.2.2 Series: Sgrid
int

Let us define Sgrid
int as the series

Sgrid
int =

∑

n 6=0

H
(2)
0 (k0 |nd|) (A.11)

First of, note that (A.11) can be rewritten as the x → 0 limit of (A.7)
minus its n = 0 term

Sgrid
int =

lim
x → 0

{ ∞∑

n=−∞
H

(2)
0

(
k0

√
x2 + (nd)2

)
−H

(2)
0 (k0 |x|)

}
(A.12)
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Although both addends within the curly brackets are divergent, their
singularity can be analytically cancelled out. To begin with, the second
addend can be evaluated through small arguments of Bessel functions as

lim
x → 0

{
H

(2)
0 (k0 |x|)

}
= 1− j

2

π

lim
x → 0

{
ln

(
k0 |x|
2

)
+ γ

}
(A.13)

Secondly, the series of Hankel functions can be rewritten by using

the Poisson summation formula as in (A.10). Moreover, note that k
(m)
x →

−j 2πm
d

for large n, so that (A.10) can be split into dominant and correction
parts

∞∑

m=1

e−jk
(m)
x |x|

k
(m)
x

=

∞∑

m=1

{
e−jk

(m)
x |x|

k
(m)
x

− e−
2πm
d

|x|

−j 2πm
d

}
+

∞∑

m=1

e−
2πm
d

|x|

−j 2πm
d

(A.14)

Taking the x → 0 limit on the right hand side (r.h.s.) of (A.14), the
first added becomes a rapidly convergent series, so that the singularity is
confined in to the second addend, which can be written in closed form by
applying

∞∑

m=1

e−
2πm
d

|x|

m
= −ln

(
1− e−

2π|x|
d

)
(A.15)

In this manner, the series Sgrid
int can be evaluated by introducing (A.15)

into (A.14), and (A.14) into (A.10). Next, taking the x → 0 limit of (A.10)
and subtracting (A.13), which leads to

Sgrid
int =

2

k0d
− 1 + j

4

d

∞∑

m=1

(
1

jk
(m)
x

− 1
2πm
d

)

+j
2

π

lim
x → 0

{
ln

(
k0 |x|
2

)
− ln

(
1− e−

2π|x|
d

)
+ γ

} (A.16)

The singularity is removed by taking the Taylor series expansion of

the exponential function e−
2π|x|
d = 1 − 2π|x|

d
+ . . . so that Sgrid

int is finally
written as

Sgrid
int =

2

k0d
− 1 + j

2

π

[
ln

(
k0d

4π

)
+ γ

]
+ j

4

d

∞∑

m=1

(
1

jk
(m)
x

− 1
2πm
d

)
(A.17)
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A.2.3 Series: Swg

Let us define Swg as the series

Swg =

∞∑

n=−∞
(−1)nH

(2)
0

(
k0

√
x2 + (y − nd)2

)
(A.18)

Note that Swg can be divided into two series gathering the even (2n)
and odd (2n+ 1) elements, corresponding to positive and negative signs
of (−1)n, respectively

Swg =
∞∑

n=−∞

H
(2)
0

(
k0

√
x2 + [y − (2n) d]2

)
−H

(2)
0

(
k0

√
x2 + [y − (2n+ 1) d]2

)
(A.19)

Decomposing both series as in (A.10) and adding the result, Swg can
be rewritten as

Swg =
2

d

∞∑

m=1

e−jk
(m)
wg,x|x|

k
(m)
wg,x

[
cos
(πm

d
y
)
− cos

(πm
d

(y − d)
)]

(A.20)

with k
(m)
wg,x =

√
k20 −

(
πm
d

)2
, Im

[
k
(m)
wg,x

]
< 0. Finally, let us make use of the

following trigonometric identities

cosA− cosB = −2sin

(
A+ B

2

)
sin

(
A− B

2

)
(A.21)

sin (A±B) = sin (A) cos (B)± cos (A) sin (B) (A.22)

to write Swg in the form of the modes of a rectangular waveguide

Swg =
4

d

∑

m=1,3...

cos
(πm

d
y
) e−jk

(m)
wg,x|x|

k
(m)
wg,x

(A.23)

A.2.4 Series: Swg
int

Let us define Swg
int as the series

Swg
int =

∑

n 6=0

(−1)nH
(2)
0 (k0 |nd|) (A.24)
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Let us follow the singularity cancellation procedure develop in Sec-
tionA.2.2. First of, note that (A.24) can be rewritten as the x → 0 limit
of (A.18) minus its n = 0 term

Swg
int =

lim
x → 0

{ ∞∑

n=−∞
(−1)nH

(2)
0

(
k0

√
x2 + (nd)2

)
−H

(2)
0 (k0 |x|)

}

(A.25)
Again, both addends within the curly brackets are divergent. The

second addend can be evaluated as in (A.13). The first addend can be ex-
pressed as in (A.23), and then written in terms of dominant and correction

series by noting k
(m)
wg,x → −j πm

d
for large n

∑

m=1,3...

e−jk
(m)
wg,x|x|

k
(m)
wg,x

=
∑

m=1,3...

(
e−jk

(m)
wg,x|x|

k
(m)
wg,x

− e−
πm
d
|x|

−j πm
d

)
+
∑

m=1,3...

e−
πm
d
|x|

−j πm
d

(A.26)

The first addend on the r.h.s. of (A.26) becomes a rapidly convergent
series when taking the x → 0 limit. In this manner, the singularity is
confined in to the second addend, which can be written in closed form by
applying (see, e.g. [59] p. 409)

∑

m=1,3...

e−
πm
d
|x|

m
=

1

2
ln

(
1 + e−

π
d
|x|

1− e−
π
d
|x|

)
(A.27)

Therefore, the series Swg
int can be evaluated by introducing (A.27) into

(A.26), and (A.26) into (A.10). Next, taking the x → 0 limit of (A.10)
and subtracting (A.13), which leads to

Swg
int = −1 + j

4

d

∑

m=1,3...

(
1

jk
(m)
wg,x

− 1
πm
d

)

+j
2

π

lim
x → 0

{
ln

(
1 + e−

π
d
|x|

1− e−
π
d
|x|

)
+ ln

(
k0 |x|
2

)
+ γ

} (A.28)

Again, The singularity is removed by taking the Taylor series expan-

sion of the exponential function e−
π|x|
d = 1− π|x|

d
+ . . . so that Swg

int is finally
written as

Swg
int = −1 + j

2

π

[
ln

(
k0d

π

)
+ γ

]
+ j

4

d

∑

m=1,3...

(
1

jk
(m)
wg,x

− 1
πm
d

)
(A.29)



Appendix B

Impact of the Pyrex Coating

The impact of the Pyrex coating on the wire response is neglected along
the dissertation. In fact, the same assumption is implicit in previous
theoretical studies on the electromagnetic response of the wires both for
infinitely-long [17, 58] and finite-length [34] wires. This Appendix tries
to further justify such assumption with some numerical simulations and
discussion of the results.

Initially, the assumption can be based on the weak dielectric response
of Pyrex (ǫp ≃ 4.9) as compared to that of the conductive ferromagnetic
core (σ ∼ 105 S/m). Additionally, this dielectric coating is placed in a
minimum of electric field for wires behaving as good conductors.

Let us run a numerical simulation to test this intuition. To this end,
the scattering problem addressed in Refs. [17,58] must be completed with
an additional cylindrical region. The result is a new wire with radius
ac = a + t, where t is the thickness of the coating, and with a new
distributed impedance, Zc

w, which is found to be equal to

Zc
w =

jηc
2πac

J0 (kcac) + T1 ·H(2)
0 (kcac)

J ′
0 (kcac) + T1 ·H ′(2)

0 (kcac)
(B.1)

with

T1 =
ZwJ

′
0 (kca)− jηc

2πaJ0 (kca)
jηc
2πaH

(2)
0 (kca)− ZwH

′(2)
0 (kca)

(B.2)

where ηc and kc stand for the medium impedance and propagation con-
stant inside the coating, and Zw is the wire distributed impedance of the
uncoated wire, given by (2.40).

Fig. B.1 represents the absorption spectrum of both, an infinitely-
long, and a 2L = 9.8 mm long ferromagnetic wire of a = 22.5 µm radius,
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Figure B.1 – Absorption spectrum of (a) an infinitely-long and (b) a 2L = 9.8 mm
long Co-rich ferromagnetic wire of a = 22.5µm radius, and covered by with different
Pyrex coatings of thickness 1 µm, 5 µm, 10 µm and 20 µm

.

covered by different Pyrex coatings of thickness 1 µm, 5 µm, 10 µm and
20 µm. It can be concluded that the Pyrex coating has a negligible impact
on the absorption spectrum of infinitely-long ferromagnetic wires. On
the contrary, the coating is shown to shift down in frequency absorption
peak corresponding to an axial resonance in finite-length wires. This
behavior can be justified at a field level. To this end, note that the
electric field excited by an infinitely long wire is perfectly tangential to
the surface of the wire. Thus, if the uncoated wire is a good conductor,
there is almost no electric field within the coating, and the impact of
the coating is negligible. By contrast, radial electric fields are excited by
finite size dipoles, leading to non-vanishing electric fields perpendicular
to the wire even in the surface of the good conductor, i.e., within the
coating. Therefore, the impact of the coating is larger in finite-size wires
than in infinitely-long wires. Moreover, it is found that the main effect of
the coating is to shift down in frequency the absorption peak produced
by an axial resonance. However, it is worth remarking, that this effect is
still much smaller than the one that would be produced by a magnetic
coating.



Appendix C

Alternative Implementations

of Artificial Impedance

Surfaces

Chapter 6 reveals that the ferromagnetic wires considered in this disser-
tation are too lossy to sustain the necessary resonance to develop low-
profile artificial impedance surfaces. However, it is also pointed out that
alternative implementations, e.g., conductive wires loaded with lumped
elements, and/or conductive wires coated with a non-conductive magnetic
layer, could be able to overcome this problem. This Appendix gathers a
more exhaustive analysis of the performance of such alternative imple-
mentations, including the numerical validation of the analytical model,
bandwidth considerations, and a study of the robustness of the system
against variations in the angle-of-arrival of the incoming plane wave.

C.1 Numerical Validation

The results presented in Chapter 6 are based on an analytical treatment
of the problem. In such a treatment, the theory is derived from the well-
known scattering from impedance loaded wires and the local field method,
with the only approximation that the wires are electrically thin, condition
which is easily satisfied. Therefore, although the solutions are presented in
simple, analytically-closed forms, they are indeed the complete solution to
the problem and thus more accurate than solutions provided by numerical
solvers. This is particularly true for systems based on magnetic wires,
since the simulation of such wires requires the discretization of very small
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Figure C.1 – Comparison between numerical (CST) and analytical solutions. The
geometry is composed of a grid of parallel conductive wires of a = 0.001λ0 radius,
periodically loaded (p = λ0/10) with a lumped capacitance C = 1.38 pF. The
separation between wires is of d = 0.1λ0 and grid is placed at h = 0.01λ0 to the
ground plane. The frequency of operation is set at 1 GHz. (a) Phase of the reflection
coefficient for lossless wires. (b) Magnitude of the reflection coefficient for wires
loaded with lumped resistors of 1.5 Ω.

details (i.e., the wire radius) compared to the wavelength of operation,
complex constitutive parameters (i. e., finite conductivity and gyrotropic
permeability tensor), and rapid variations of the electromagnetic fields
inside the wires.

Despite this, it is always desirable to test the theory against full-wave
simulations. To this end, an example has been simulated using CST com-
mercial software [124]. To avoid the complexity arising from ferromagnetic
wires, the geometry corresponds to a conductive wire loaded with lumped
elements. In addition, the geometry has been scaled with respect to a
central frequency of operation equal to 1GHz. Namely, a grid of parallel
conductive wires of a = 0.001λ0 radius, periodically loaded (p = λ0/10)
with a lumped capacitance C = 1.38 pF. The separation between the
wires of d = 0.1λ0 and the grid is placed at the distance h = 0.01λ0 to the
ground plane. In the CST model, a period of the wire is placed parallel to
magnetic walls to simulate the grid of wires, and cut by electrical walls to
simulate infinitely long wires. The capacitor has been introduced in a gap
of 0.01 λ0 width. In order to ensure the convergence of the results, the
structure has been meshed on a Cartesian grid with the minimum spa-
tial increment ∆h = λup/45, where λup is the wavelength at the highest
frequency of operation. Moreover, the simulation has been run until the
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energy limit of -80 dB inside the calculation domain.
The phase of the reflection coefficient for this structure with lossless

wires is shown in Fig. C.1(a). Both CST and the analytical approach
predict the resonance with similar bandwidth. However, the frequency at
which the phase of the reflection coefficient is zero for the CST solution is
3.3% shifted from 1 GHz. At the first sight, this deviation might be caused
by the additional capacitance produced by the gap between the wires,
though this explanation is discarded since the same result is reproduced
with different numerical simulations for distinct gap lengths.

As anticipated, an absorbing boundary is obtained by loading the
wires with a certain resistance. This is evidenced in Fig. C.1(b), which
represents the magnitude of the reflection coefficient for the same struc-
ture but wires with an additional resistive load of 1.5 Ω. As expected,
the analytical reflection coefficient completely vanishes at the resonance
frequency (1 GHz). The numerical results cannot exactly equal zero, but
the reflection coefficient is reduced up to -35.5 dB, which demonstrates an
excellent agreement between analytical theory and full-wave simulation.

C.2 Bandwidth Considerations

Eq. (6.19) reveals that the reactance required to satisfy the resonant con-
dition, Xw, is a function of frequency. Although a frequency independent
reflection coefficient is in theory possible with a load designed to fol-
low such specific frequency dependence, the implementation of such load
would require non-Foster elements [118], and in practice the operational
bandwidth is finite.

Fig. C.2 represents the frequency behavior of the required reactance,
as well as the reactance implemented with a capacitor and with a con-
ductive wire covered by a magnetic coating. The dimensions have been
selected so that the magnetically coated wire satisfies the absorber con-
dition (Rw = η/d · sin2 (k0h)) which will be employed in another example.
It can be concluded that the required load follows a soft and almost linear
progression with a negative slope. The implementation of this negative
slope would require non-Foster elements [118], in contrast to the passive
implementations represented in Fig. C.2, which produce reactances that
increases with frequency. However, the non-resonant behavior ofXw could
be considered a great advantage: the system is robust against tolerances
of the loads, and the design of reconfigurable loads is simple.



142 C.2 Bandwidth Considerations

Consider first an implementation with distributed capacitive load with
frequency dependence Xw = −j/ωCw, so that Cw satisfies the resonant
condition at a certain frequency ω0. On the contrary, the distributed
resistance, Rw, is supposed to be frequency independent. In order to
illustrate the influence of the system geometry on the bandwidth, Fig. C.3
represents the frequency behavior of the reflection coefficient phase for
lossless wires with different distances to the ground plane and separation
between wires. As expected, the phase of the reflection coefficient is zero
at the resonant frequency, and the operational bandwidth is enhanced by
increasing the distance to the ground plane and grid density. This appears
intuitive since the closer the grid is to the ground plane, the stronger must
be the resonance to compensate the null of electric field, and typically, the
stronger the resonance the smaller the bandwidth. As usual, the result is a
trade-off between the bandwidth, profile and complexity of the geometry.

A similar result is obtained for the system operating as an absorber,
as shown in Fig. C.4, which represents the frequency behaviour of the
reflection coefficient magnitude for the same configuration but with the
wires having resistance per unit length Rw = η/d · sin2 (k0h), where k0 is
the propagation constant at the resonant frequency.

For systems based on magnetic wires, the frequency behavior is not
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Figure C.2 – Frequency behavior of the required reactance, reactance implemented
with a capacitor and reactance implemented with a conductive wire covered by a
magnetic coating. The grid is placed at a distance h = 0.02λ0 to the ground plane,
and with d = 0.1λ0 separation between the wires of the grid. The wire radius is
of a = 0.006λ0, and, in the case of magnetically coated wires, the coating has a
thickness t = a/2.
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Figure C.3 – Frequency behavior of the reflection coefficient phase for lossless
(Rw = 0) wires with (a) different distances to the ground plane and d = 0.1λ and
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so simple due to the frequency dispersive behavior of the distributed
impedance. Loosely speaking, the bandwidth should be smaller than
in the capacitive load case for wires operating close to the FMR, while
it should be comparable or larger for wires operating far away from the
FMR. Furthermore, the correlation between the grid geometry and the
bandwidth is the same as in the capacitor case. Moreover, due to the
Lorentzian frequency dispersion of the wire distributed impedance, there
are in general two frequencies where the required reactance is met (see
Fig. C.2). Although this makes in theory possible a dual-frequency opera-
tion, the first frequency corresponds to a very lossy and highly dispersive
load.

The main advantage of using magnetic wires is the tunability. To
illustrate this point, Fig. C.5 represents the magnitude of the reflection
coefficient as a function of the frequency for the scenario described in
Fig. C.2 for different magnetic fields of 0.01 · H0, 0.2 · H0, 0.5 · H0, H0,
1.2 · H0, 1.5 · H0, where H0 is the DC magnetic field which satisfies the
resonant absorber condition at ω0. It can be concluded that the system
can be tuned over a wide frequency range with a minor impact on the
performance.
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C.3 Angle-Of-Arrival Dependency

In order to illustrate the influence of the Angle-Of-Arrival (AOA) on the
system performance, let us rewrite the reflection coefficient, (6.10), as

R = −1 +
2sin2 (kxh)

kx
k0

dRw

η0
+ sin2 (kxh) + j kx

2
ζ

(C.1)

with

ζ =

[
sin (2kxh)

kx
− sin (2k0h)

k0

]
−
∑

m 6=0

[
e−2qamh

qam
− e−2qmh

qm

]

+
∑

m 6=0

[
1

qam
− 1

qm

] (C.2)

where (qam)
2 = (ky + 2πm/d)2 − k2r .

For the case of the system operating as a reactive high-impedance
surface (Rw = 0) the reflection coefficient simplifies to

R = −1 +
2

1 + j kx
2sin2(kxh)

ζ
(C.3)

In the case of lossless wires, the magnitude of the reflection coefficient
is equal to unity. However, ζ 6= 0 for oblique incidence, affecting the
phase of the reflection coefficient. The first term of ζ comes from the
differences in the phase of the reflected plane wave, the second term from
the differences in the coupling with evanescent Floquet modes, and the
third term from differences of coupling inside the grid. For large h, the
first term is dominant and the angular response is independent on d.
Conversely, for small h all terms contribute and the second and third
terms increase along with d.

Let us first focus on variations in the elevation angle, θinc. In that
case, qam > qm, so that both terms have the opposite sign. Therefore,
it is possible to to find the optimal values of h and d that inhibits the
angular dependency in the elevation angle, as it is shown in Fig. C.6(a).
On the contrary, for variations in the azimuthal angle, φinc, it is found
that qam > qm for m > 0 and qam < qm for m < 0. Since the qam < qm
addends dominate, the second and third terms of Eq. C.2 are positive
and the angular dependence gets stronger along with their value. In
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Figure C.6 – Phase of the reflection coefficient as a function of the θinc (a) and
the φinc (b) angles of arrival for a grid of lossless wires (Rw = 0) at the distance
h = 0.01λ to the ground plane and different values of the separation between wires
d = 0.02λ, d = 0.05λ, d = 0.08λ and d = 0.1λ.

other words, the angular performance in the azimuthal angle degrades
for sparser grids (↑ d) and lower profiles (↓ h). This is evidenced in
Fig. C.6(b), which represents the phase of the reflection coefficient as a
function of the angle of arrival for a system satisfying the high-impedance
condition under normal incidence.

As for the case of absorber operation (Rw = η0/d · sin2 (k0h)), the
impact of small changes in ζ is negligible and, approximating sin2(x) ≃ x2,
the reflection coefficient simplifies to

R = −1 +
2

1 + 1
cos(φ)sin(θ)

(C.4)

Strikingly, the angular response of the system is geometry-independent.
This fact is evidenced in Fig. C.7, which represents the magnitude of the
reflection coefficient as a function of the angle of arrival for a grid of lossy
wires satisfying the absorbing boundary condition.
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Figure C.7 – Magnitude of the reflection coefficient as a function of the θinc (a)
and the φinc (b) angles of arrival for a grid lossy wires (Rw = η/d · sin2 (k0h)) at
the distance h = 0.01λ to the ground plane and different values of the separation
between wires d = 0.02λ, d = 0.05λ, d = 0.08λ and d = 0.1λ.
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I. Pérez-Landazábal, “Experimental Verification of the Electromag-
netic Response of Ferromagnetic Microwires”, EuMW, Manchester,
UK, November, 2011.

5. I. Liberal, I. Ederra, R. Gonzalo, “Low-Profile Dual-Band An-
tenna based on Meta-Surfaces”, Metamaterials, Barcelona, Spain,
November, 2011.

6. J. C. Iriarte, J.L. Mart́ınez de Falcón, I. Maestrojuán, I. Liberal,
A. Rebollo, I. Ederra and R. Gonzalo, “Broadband RCS Reduction
Using AMC Technology”, EuCAP, Rome, Italy, April, 2011.

7. J. C. Iriarte, D. Etayo, I. Palacios, I. Maestrojuan, I. Liberal, A.
Rebollo, J. Teniente, I. Ederra and R. Gonzalo, “Water Content
Evolution in Leaves Based on Active Terahertz Imaging”, EuCAP,
Rome, Italy, April, 2011.

8. I. Liberal, I. Ederra and R. Gonzalo, “Analytical Modelling of
Amorphous Glass-Coated Microwires for Microwave Applications ”,
EuCAP, Rome, Italy, April, 2011.

9. I. Liberal, I. Ederra and R. Gonzalo, “Compact Multi-Frequency
Metamaterial-Inspired Antenna ”, EuCAP, Rome, Italy, April, 2011.

10. I. Liberal, I. Ederra and R. Gonzalo, “Design of a Dual-Frequency
Highly-Directive Planar Antenna with Meta-Surfaces”, LAPC, Lough-
borough, UK, November, 2010.



162 BIBLIOGRAPHY

11. I. Liberal, D.Caratelli, A. Yarovoy, R. Cicchetti and M. Russo
“Conformal Butterfly Antennas for Ultra-Wideband Radio Direc-
tion Finding Applications”, EuMW, Paris, France, November, 2010.

12. I. Liberal, I. Ederra and R. Gonzalo, “Highly-Directive Aperture-
Coupled Microstrip Patch Antenna based on Planar Meta-Surface”,
IEEE AP-S, Toronto, Canada, July, 2010.

National Conferences

1. I. Palacios, I. Liberal, I. Ederra, J. Teniente, R. Gonzalo“Fabricación
de un Mezclador para la Detección de Radiación Sub-mm ”, URSI,
Bilbao, Spain, October, 2010.

2. D. Etayo, J. C. Iriarte, I. Palacios, I. Ederra, J. Teniente, R. Gon-
zalo, I. Liberal, J. L. Mart́ınez de Falcón, Itziar Maestrojuán, “Tec-
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