
November 17, 2017 10:9 WSPC/INSTRUCTION FILE
ijufks-abdmR1˙Final

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
c© World Scientific Publishing Company

Fuzzy concept lattices and fuzzy relation equations in the

retrieval processing of images and signals∗

Cristina Alcalde
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Jesús Medina
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1. Introduction

Fuzzy property-oriented concept lattices 1 provide a parallel framework, which arises

as a fuzzy generalization of Rough Set Theory and in which a set of objects and a

set of attributes are assumed, following the view point of Formal Concept Analysis.

This theory has been considered to solve fuzzy relation equations 2,3 and important

results, in order to obtain the whole set of solutions, are given.

On the other hand, mathematical morphology (initiated by 4 and 5) is based on

set theory, integral geometry and lattice algebra. This methodology is used in the

recent years in general contexts related to activities as the information extraction

in digital images, the noise elimination or the pattern recognition.

This theory was extended to a fuzzy setting, considering fuzzy subsets as objects,

by 6,7,8,9,10,11,12 using L-fuzzy sets as images and structuring elements, which was

called fuzzy morphological image processing. These works have been generalized

by 13.

Both theories, fuzzy mathematical morphology and fuzzy property-oriented con-

cept lattice, have been related by 14, extending the initial relation given by 15,13.

For example, it has been proved that the erosion and dilation operators are the

necessity and possibility operators of the associated context, respectively. More-

over, closing and opening (images) are univocally related to the concepts of a fuzzy

property-oriented concept lattice.

In mathematical morphology, the usual procedure is, given a structuring ele-

ment, to obtain the dilation and the erosion from an initial image. But what happen

if we lose the original image or, simply, we have not got it because we only know

its corresponding dilation or erosion, how can the original image be obtained?

This paper studies the problem of objects retrieval in the framework of mathe-

matical morphology. It is usual that there is noise in the transmission of information

or, in several cases, it is easier to send a kind of image than another one. Hence,

the received object is not equal to the original one. Note that this problem is also

related to other settings, such as object recognition.

Hence, this paper is focused on solving the problem of obtaining the original

object A from another one received B, assuming a structuring image and that B is

the dilation or the erosion of the original image A. For that, this problem will be

written as a fuzzy relation equation and the relationship introduced by 14 and the

results given by 2,3 will be used to solve it.

Moreover, in the last section we will analyze two of the most useful tools in fuzzy

mathematical morphology: the gradient and the top-hat transforms 5,16,17,18,19,20,21.

In mathematical morphology, these operators are used to find relevant elements in

an image, that is, to distinguish these relevant elements from the rest ones forming

the background of the image. Specifically, we will define them in a fuzzy setting, we

will present different properties and we will introduce these notions, interpreting

their meaning, in a general fuzzy property-oriented concept lattice framework.

The work is organized as follows: in Section 2, we show some preliminary notions



November 17, 2017 10:9 WSPC/INSTRUCTION FILE
ijufks-abdmR1˙Final

3

about fuzzy property-oriented concept lattice, fuzzy mathematical morphology and

the relation between both theories. Also fuzzy relation equations are presented. In

Section 3, we carry out a study on the application of fuzzy relation equation to

objects retrieval in the fuzzy property-oriented concept lattice. Then, in Section 4,

we introduce the notions of morphological gradient and top-hat transforms in the

fuzzy setting and we use the relationship between fuzzy property-oriented concept

lattice and fuzzy mathematical morphology to obtain interesting results. In all the

paper, some examples of images and signals are shown to illustrate the results.

Finally we present some conclusions and future lines of work.

2. Preliminaries

This section recalls the fuzzy property-oriented concept lattice framework 1, fuzzy

mathematical morphology 6,7,8,9,10,11,12, the relationship beetween them, introduced

by 14, and fuzzy relation equations 22.

2.1. Fuzzy property-oriented concept lattice

In this framework a complete residuated lattice (L,∨,∧, ∗, I, 0, 1,≤) is considered

as algebraic structure.

Definition 1. A complete residuated lattice is a tuple (L,∨,∧, ∗, I, 0, 1,≤), where

(L,∨,∧, 0, 1,≤) is a complete lattice and ∗ : L×L → L, I : L×L → L are mappings

verifying the called adjunction property:

x ∗ y ≤ z if and only if x ≤ I(y, z)

for all x, y, z ∈ L.

The pair (∗, I) is called residuated pair.

For example, every triangular norm defined on the unit interval, together with

its residuated implication, satisfies the adjunction property.

Example 1. The pair (∗L, IL), where ∗L : [0, 1] × [0, 1] → [0, 1] and IL : [0, 1] ×

[0, 1] → [0, 1] are defines by

x ∗L y = max{x + y − 1, 0}, IL(x, y) = min{1 + y − x, 1}

is a residuated pair called the  Lukasiewicz residuated pair.

From now on, a residuated lattice (L,∨,∧, ∗, I, 0, 1,≤) will be fixed.

A fuzzy context is assumed, (X,Y,R), where R : X × Y → L is an L-fuzzy

relation between the sets X and Y , where X can be interpreted as a set of objects

and Y as a set of properties (attributes).

Given a fuzzy context (X,Y,R), two mappings R∃ : LX → LY and R∀ : LY →

LX can be defined as:

R∃(A)(y) = sup{A(x) ∗R(x, y) | x ∈ X} (1)

R∀(B)(x) = inf{I(R(x, y), B(y)) | y ∈ Y } (2)
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for all A : X → L, B : Y → L, x ∈ X and y ∈ Y , where I is the residuated

implication associated with the conjunctor ∗. Examples of these operators are given

in 23,24.

As a first result, the pair (R∃, R
∀) forms an isotone Galois connection 25. There-

fore, a fuzzy property-oriented concept (or, a fuzzy concept based on rough set theory)

of (X,Y,R) is a pair (A,B) ∈ LX × LY such that B = R∃(A) and A = R∀(B).

The set of all fuzzy property-oriented concepts of (X,Y,R) is denoted by

P(X,Y,R) and it is a complete lattice 1, which is called the fuzzy property-oriented

concept lattice of (X,Y,R) (or, the fuzzy concept lattice of (X,Y,R) based on rough

set theory) 1. For that isotone Galois connection (R∃, R
∀) and lattice P(X,Y,R)

interesting properties have been proven, e.g., in 23,26,25,1.

2.2. Fuzzy mathematical morphology

Fuzzy morphological image processing has been developed using L-fuzzy sets A ∈ LX

and S (with X = R
2 or X = Z

2) as images and structuring elements in 6,7,8,9,10,11,12.

The structuring image S represents the effect that we want to produce over the

original image A.

Fuzzy morphological dilations δS : LX → LX and fuzzy morphological erosions

εS : LX → LX are defined using some operators of the fuzzy logic. In the litera-

ture (see 8,6,27,11) erosion and dilation operators are introduced associated with the

residuated pair (∗, I) as follows:

If S : X → L is an image that we take as structuring element, then we consider

the following definitions associated with (L,X, S), given by 6.

Definition 2. The fuzzy erosion of the image A ∈ LX by the structuring element

S is the L-fuzzy set εS(A) ∈ LX defined as:

εS(A)(x) = inf{I(S(y − x), A(y)) | y ∈ X} for all x ∈ X

The fuzzy dilation of the image A by the structuring element S is the L-fuzzy

set δS(A) defined as:

δS(A)(x) = sup{S(x− y) ∗A(y) | y ∈ X} for all x ∈ X

From these definitions arise two mappings which will be called the fuzzy erosion

and dilation operators εS , δS : LX → LX .

We can compose these operators dilation and erosion associated with the struc-

turing element S and obtain the basic filters morphological opening γS : LX → LX

and morphological closing φS : LX → LX defined by:

γS = δS ◦ εS , φS = εS ◦ δS .

The opening and the closing operators verify the two conditions that characterize

the morphological filters: they are isotone and idempotent operators. Moreover, for

all A,S ∈ LX it is also verified γS(A) ⊆ A ⊆ φS(A).

These operators will characterize some special images: the S-open (γS(A) = A)

and the S-closed ones (φS(A) = A).
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2.3. Relationship between both theories

In 14 these previous theories were related. For that, first of all, any fuzzy image

S ∈ LX was associated with the fuzzy relation RS ∈ LX×X , defined as:

RS(x, y) = S(y − x)

for all x, y ∈ X. Hence, the fuzzy erosion and dilation of an L-fuzzy subset A of X

are written as follows:

εS(A)(x) = inf{I(RS(x, y), A(y)) | y ∈ X} (3)

δS(A)(x) = sup{RS(y, x) ∗A(y) | y ∈ X} (4)

and the following results were proved in 14.

Proposition 1. Let (L,X, S) be the triple associated with the structuring element

S ∈ LX . Let (X,X,RS) be the fuzzy property-oriented context whose incidence

relation is the relation RS associated with S. Then the erosion εS and dilation δS
operators in (L,X, S) are related to the derivation operators (RS)∀ and (RS)∃ in

the fuzzy property-oriented context (X,X,RS) by:

εS = (RS)∀

δS = (RS)∃

This relation provides that the dilation and erosion are exactly the possibility

and necessity operators associated with the context (X,X,RS). As a consequence,

they have the properties of the isotone Galois connection (R∃, R
∀). The following

result shows the connection between the outstanding morphological elements and

the fuzzy property-oriented concepts.

Theorem 1. Let S ∈ LX and its associated relation RS ∈ LX×X , the following

statements are equivalent:

(1) The pair (A,B) ∈ LX × LX is a fuzzy property-oriented concept of the context

(X,X,RS).

(2) A is S-closed (i.e. εS ◦ δS(A) = A) and B is the S-dilation of A.

(3) B is S-open (i.e. δS ◦ εS(B) = B) and A is the S-erosion of B.

As a consequence, every S-closed (or S-open) set determines only one fuzzy

property-oriented concept, and vice versa. This relation will be fundamental in the

images and signals retrieval process we will present in this paper.

2.4. Fuzzy relation equations and concept lattices

Fuzzy relation equations have been widely studied, for instance in 28,29,30. This

section recalls these kind of equations in the particular case in which the unknown

and independent fuzzy relations have only one argument (only one column), which

will be the case needed in this paper.



November 17, 2017 10:9 WSPC/INSTRUCTION FILE
ijufks-abdmR1˙Final

6

Given two sets U, V , two fuzzy relations R ∈ LU×V and T ∈ LU , and an unknown

fuzzy relation Z ∈ LV , a fuzzy relation equation with sup-∗-composition (FRE∗), is

the equation

R ◦ Z = T (5)

where the composition ◦ is defined as R ◦ Z(u) =
∨

v∈V (R(u, v) ∗ Z(v)), for all

u ∈ U .

Assuming the same sets and fuzzy relations, its counterpart is a fuzzy relation

equation with inf-I-composition (FREI), that is,

R⊳ Z = T (6)

where the composition ⊳ is defined as R ⊳ Z(u) =
∧

v∈V I(R(u, v), Z(v)), for all

u ∈ U .

In 2, the authors related the solvability of the previous fuzzy relation equa-

tions to the fuzzy property-oriented concept lattice theory, considering the context

(V,R,R−1) associated with Equation 5, where R−1 represents the inverse relation

of R, that is, R−1(v, u) = R(u, v), for all (u, v) ∈ U × V , and the context (U, V,R)

associated with Equation 6. Several results introduced in the aforementioned paper

will be needed in the following section and so, they will be recalled below.

Theorem 2. Considering the above environment and consideration, Equation (5)

can be solved if and only if (R−1)∃(R−1)∀(T )) = T .

Analogously, Equation (6) can be solved if and only if R∀(R∃(T )) = T .

When Equation (5) (resp. Equation (6)) is solvable, a greatest (resp. least)

solution exists, as the following result shows.

Proposition 2. If Equation (5) can be solved, then (R−1)∀(T ) is the greatest so-

lution. Analogously, if Equation (6) can be solved, then R∃(T ) is the least solution.

The following result provides a characterization of the solutions of Equation (5).

A similar result can be given for Equation (6).

Theorem 3. Let (µ1, λ1), (µ2, λ2), . . . , (µr, λr) ∈ P(V,U,R−1) the lower neighbors

of the concept ((R−1)∀(T ), T ), if an element µ ∈ LV is a solution of Equation (5)

then either µi < µ ≤ (R−1)∀(T ), for some i ∈ {1, . . . , r} or µ is incomparable with

µi, for all i ∈ {1, . . . , r}.

3. Images and signals retrieval

This section introduces an application of fuzzy relation equation to objects retrieval

in the fuzzy mathematical morphology setting. From the relationship between fuzzy

mathematical morphology and fuzzy property-oriented concept lattice, recalled in

Section 2.3, and the relationship between fuzzy property-oriented concept lattice

and fuzzy relation equations 2, we will solve the problem of obtaining the original
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object A : X → L from another one received B : X → L and a fixed structuring

image S : X → L.

Specifically, given an image B : X → L, we can consider a structuring image

S : X → L and ask if there exists A : X → L such that δS(A) = B and, if there

exists, how to obtain it. Analogously, for each image A : X → L, we can ask if there

exists B : X → L such that εS(B) = A, for a structuring image S, and, if there

exists, how to obtain it.

First of all, we will write this mathematical morphology problem in terms of

fuzzy relation equations using Equations (4) and (3), and the definition of the

corresponding compositions, Equations (5) and (6), respectively.

Given an image B : X → L and a structuring image S : X → L, if we want

to obtain an image A : X → L such that δS(A) = B, then we need to solve the

following equation:

R−1
S ◦A = B (7)

Analogously, given an image A : X → L and a structuring image S : X → L,

obtaining an image B : X → L, such that εS(B) = A, is equivalent to solve the

equation:

RS ⊳B = A (8)

Next, several results will be presented in the fuzzy mathematical morphology

framework, based on the properties introduced in 2 and recalled previously. The

first one is about the solvability of Equations (7) and (8).

Theorem 4. Equation (7) can be solved if and only if B is S-open in X. In that

case, εS(B) ∈ LX is the greatest solution.

Analogously, Equation (8) can be solved if and only if A is S-closed in X. In

that case, δS(A) ∈ LX is the least solution.

Proof. From Theorem 2, we have Equation (7) can be solved if and only

(RS)∃((RS)∀(B) = B, and, by Proposition 1 and Theorem 1, this is equivalent

to B is an S-open image. Now, applying Proposition 2 and Theorem 2 we obtain

that εS(B) ∈ LX is the greatest solution of Equation (7).

The other equivalence is similarly proved.

The second result relates the independent term and greatest solution to a fuzzy

property-oriented concept.

Theorem 5. Equation (7) can be solved if and only if (εS(B), B) is a fuzzy

property-oriented concept of the context (X,X,RS).

Similarly, Equation (8) can be solved if and only if (A, δS(A)) is a fuzzy property-

oriented concept of the context (X,X,RS).
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Proof. The first equivalence is obtained from Theorem 4, Proposition 1 and the

property of Galois connections, which ensure that εS(δS(εS(B))) = εS(B). The

second one is similarly proved.

Now, we present an application to digital signals.

Example 2. We consider in this example the particular residuated lattice

(L,∨,∧, ∗L, IL, 0, 1,≤), where L = {0, 0.1, 0.2, . . . , 0.9, 1} and (∗L, IL) the restric-

tion of the  Lukasiewicz residuated pair (∗L, IL) on L.

Let us assume the set X = {0, 1, 2, . . . , 21, 22} ⊆ Z, the mapping B : X → L,

which is represented in Figure 2, and the structuring set S = {−1, 0, 1}. Note that

B can be interpreted as a 1-D discrete signal.

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 2 4 6 8 10 12 14 16 18 20 22

L

X

Fig. 1. Discrete signal received

From this environment a fuzzy relation equations similar to Equation (7) is

considered, in order to obtain a signal A with dilation B.

First of all, we need to check if this equation has a solution. Hence, we consider

the context (X,X,RS), where the fuzzy relation RS ⊆ X ×X is defined, for each

(x, y) ∈ X ×X, as

RS(x, y) = S(y − x) =

{

1 if |y − x| ≤ 1

0 otherwise

Since the signal B is S-open in X, that is (δS ◦ εS)(B) = B, by Theorems 4 and 5,

we have that the considered equation has, at least, one solution and the greatest

solution Ag is εS(B), which is given in Figure 2 and defined as

εS(B)(x) = inf{I(RS(x, y), B(y)) | y ∈ X} = inf{B(y) | |y − x| ≤ 1}

for all x ∈ X. Moreover, (Ag, B) is a fuzzy property-oriented concept.
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1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 2 4 6 8 10 12 14 16 18 20 22

L

X

S =
−1 1

Fig. 2. Greatest solution

It is clear, in Example 2, that the original signals A may not be the greatest

solution, but another one of the proposed Equation. In order to obtain the whole

set of solutions the following result is introduced.

Theorem 6. Given an S-open object B ∈ LX , if A ∈ LX is the original object,

such that δS(A) = B, then either Al < A ≤ εS(B) for some (Al, Bl) lower neighbour

of (εS(B), B) in P(X,X,RS); or A < εS(B) and A is incomparable with Al, for all

(Al, Bl) lower neighbour of (εS(B), B) in P(X,X,RS).

Analogously, given an S-closed object A ∈ LX , if B ∈ LX is the original object,

such that εS(B) = A, then either δS(A) ≤ B < Bu for some upper neighbour

(Au, Bu) of (A, δS(A)) in P(X,X,RS); or δS(A) < B and B is incomparable with

Bu, for all (Au, Bu) upper neighbour of (A, δS(A)) in P(X,X,RS).

Proof. Given an S-open object B ∈ LX , by Theorem 5, we have that (εS(B), B)

is a fuzzy property-oriented concept of the context (X,X,RS), that is (εS(B), B) ∈

P(X,X,RS), and by Proposition 1 we have εS = (RS)∀. Hence, since the original

object A ∈ LX is a solution of Equation 7, applying Theorem 3, we obtain the

result.

The second part is similarly obtained.

Therefore, Theorem 6 can be applied in order to obtain the whole set of solutions

of the system given in Example 2.

Notice that the original image can be a minimal solution instead of the greatest

solution. Hence, an suitable methodology should consider the whole set of solutions

in order to detect the original image. More results related to the computation of

the whole set of solutions and minimal solutions are given in 31,32,33.

The following example focus on images retrieval.
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Example 3.

In this example, we consider the residuated lattice (L,∨,∧, ∗L, IL, 0, 1,≤), where

L = {0, 1
256 ,

2
256 ,

3
256 , . . . , 1} (1 represents the white color and 0 the black color),

(∗L, IL) is the restriction of the  Lukasiewicz residuated pair on L.

A two dimensional pixelated image in a 8-bits grayscale will be represented

by a mapping A : X → L, where X = Z
2. The elements in X are denoted as

x = (x1, x2) ∈ Z
2.

In this case, the image B : Z2 → L, given in Figure 3, is obtained and we want

to retrieve the original image or a good approximation.

Fig. 3. Original image

The structuring element is a fuzzy disk of radius r = 5 with center in the origin

(0,0), where the belonging value of center is 1 and this is progressively decreasing

to 0 outside the circle, as follows:

S(x, y) =

{

1 − x2+y2

r2+1 if x2 + y2 ≤ r2

0 otherwise

Now, we consider a Equation (7) and a context (Z2,Z2, RS), where the associated

incidence relation RS ⊆ Z
2 × Z

2 is defined, for each x = (x1, x2), y = (y1, y2), as

RS(x, y) = S(y − x) =

{

1 − (y1−x1)
2+(y2−x2)

2

52+1 if (y1 − x1)2 + (y2 − x2)2 ≤ 52

0 otherwise

Given the image B : Z2 → L, which has been obtained as the dilation, B =

δS(A), of an initial image, A, by the fuzzy structuring element S, the considered
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problem is to find the image A, or the best possible approximation. The considered

operators are the  Lukasiewicz t-norm and its residuated implication.

In this example the initial image, B, is given in Figure 4.

Fig. 4. Initial image, B.

Therefore, by the previous results, the greatest solution Ag : Z2 → L, associated

with B and the structuring image S, can be a good approximation of B. This image

is given in Figure 5 and it is defined as:

εS(B)(x) = (RS)∀(B)(x)

= inf{I(RS(x, y), B(y) | y ∈ X}

= inf{
(y1 − x1)2 + (y2 − x2)2

52 + 1
+ B((y1, y2)) | (y1 − x1)2 + (y2 − x2)2 ≤ 52}

By Theorem 5, the pair (A,B) is a fuzzy property-oriented concept of the context

(Z2,Z2, RS).

The best approximation of the original image we can obtain is given by the

erosion εS(B), represented in the Fig.5. This is the greatest solution of the problem,

that is, the greatest image (the most white) which dilation is the initial image.

However, in this case, the considered original image is not the greatest solution Ag

but a solution less than it.

The use of fuzzy structuring elements allows the computation of good results

because several gray levels can be considered. For instance, if we use the crisp disk
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Fig. 5. Greatest solution, Ag .

of radius 5 as structuring element in the previous example:

S(x, y) =

{

1 if x2 + y2 ≤ 52

0 otherwise

the obtained image by the dilation of the original image will be the one given in

Figure 6, and the computed (greatest) solution (applying the erosion with the crisp

structuring element) is the image represented in Figure 7, which is clearly worse

than the one obtained from the fuzzy case.

4. Some elements of Fuzzy Mathematical Morphology in fuzzy

property-oriented concept lattices

The morphological gradient and the top-hat transforms 16,20,21,5 are tools defined in

mathematical morphology. In this section, we will introduce their fuzzy definitions

and we will study their meaning from the viewpoint of the fuzzy property-oriented

concept lattice framework. Hereon, a residuated lattice (L,∨,∧, ∗, I, 0, 1,≤), a set

X = R
2 or X = Z

2 and a structuring element S ∈ LX are fixed.

4.1. Morphological Gradient in (L,X, S).

Erosions and dilations are the basic elements in mathematical morphology and they

can be combined defining morphological gradient operators.

In image analysis, the objects are considered as areas of rather homogeneous

grey levels. Then, object boundaries or edges are located where there are high grey
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Fig. 6. Initial image, B, with the crisp structuring element.

Fig. 7. Gratest solution, Ag , with the crisp structuring element

level variations. Gradient operators 16,18,20 are used to locate these variations. The

morphological gradient outputs the maximum variation of the grey level intensities

within the neighborhood defined by the structuring element.

Many gradient operators have been proposed in image analysis because there
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is no unique discrete equivalent of the gradient operator defined for differentiable

continuous functions. Three combinations are currently used:

• The arithmetic difference between the original image and the eroded image.

This operator enhances the internal boundaries of the objects of the image and

it is said to be the internal gradient.

• The external gradient is defined as the arithmetic difference between the dilated

image and the original one. This gradient extracts the externals boundaries of

the objects in the image.

Internal and external gradients are also called half gradients and they are used

when thin contours are needed.

• The basic morphological gradient, also called Beucher gradient 16,20, is defined

as the arithmetic difference between the dilation and the erosion of the image.

This operator gives the maximum variation of grey level in a region defined by

the structuring element.

Only structuring elements containing the origin are considered to make sure that

the arithmetic difference is always non negative.

Extending this idea to the L-fuzzy case, we can define the following operators,

which are not the simple consideration of the fuzzy definitions of the dilation and

erosion as was considered in 34:

Definition 3. Let (L,X, S) be a tuple associated with the structuring element

S ∈ LX . We define the internal gradient of A ∈ LX as

GRAD−

S (A) = A ∗ (εS(A))′

being ∗ a t-norm and ′ an involutive negation defined on LX .

Definition 4. The external gradient of the set A ∈ LX with the structuring element

S ∈ LX is defined as

GRAD+
S (A) = δS(A) ∗A′

Finally, the Beucher gradient can be extended as follows:

Definition 5. Consider the structuring element S ∈ LX and (L,X, S) a tuple

associated with S. The morphological gradient of an L-fuzzy set A ∈ LX is defined

as

GRADS(A) = δS(A) ∗ (εS(A))′

These three definitions for the gradient operator are related in the following

proposition.

Proposition 3. If the structuring element S is such that it contains the origin, i.e.

S(0) = 1, then for any L-fuzzy set A ∈ LX it is fulfilled that:

sup{GRAD−

S (A),GRAD+
S (A)} ≤ GRADS(A)
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Proof. Let us denote by O the L-fuzzy set that represents the origin, that is,

O : X → L, defined, for all x ∈ X, as:

O(x) =

{

1 if x = 0

0 otherwise

Since the structuring element S contains the origin, the inequality O(x) ≤ S(x)

holds, for all x ∈ X, and, by the monotonicity of I and the definition of O, we have

εS(A)(x) = inf{I(S(y − x), A(y)) | y ∈ X} ≤ inf{I(O(y − x), A(y)) | y ∈ X} =

= I(O(x− x), A(x)) = A(x)

On the other hand,

δS(A)(x) = sup{S(x− y) ∗A(y) | y ∈ X} ≥ sup{O(x− y) ∗A(y) | y ∈ X} =

= O(x− x) ∗A(x) = A(x)

Therefore,

GRADS(A) = δS(A) ∗ (εS(A))′ ≥ A ∗ (εS(A))′ = GRAD−

S (A)

and

GRADS(A) = δS(A) ∗ (εS(A))′ ≥ δS(A) ∗A′ = GRAD+
S (A)

From the proof of the previous result, the following interesting property arises.

Corollary 1. If the structuring element S contains the origin, then

εS(A) ≤ A ≤ δS(A)

for all A ∈ LX .

The gradient is an useful mapping in order to know the possible error given by

the approximation in Section 3. From this value we have a bounded of the maximum

difference between the approximation given by the greatest solution of Equation (7)

or the minimal solutions and the original image.

As we explained in Section 3, the greatest solution is εS(B) and the equality

δS(A) = δS(εS(B)) = B holds. On the other hand, since a minimal solution M

exists, such as M ≤ A, then εS(M) ≤ εS(A). Therefore,

GRADS(A) ≤ B ∗ (εS(M))′

Other useful operators in mathematical morphology are the top-hat transforms,

which will be studied in the fuzzy case in the following section.
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4.2. Top-Hat Transforms in (L,X, S)

In most of the cases, the choice of a morphological filter is due to the available

knowledge about the shape, size and orientation of the elements we would like to

filter. Morphological Top-Hat transforms 17,19,21,35 proceed in a different way since

the approach undertaken with these transforms consists in using knowledge about

the shape characteristics that are not shared by the relevant image elements.a In

this sense, we use opening or closing with a structuring element that does not fit

the relevant image structures in order to remove them from the image.

These operators are useful when variations in the background mean that extrac-

tion of relevant structures in an image cannot be achieved by a simple threshold.

In mathematical morphology two types of top-hat transform are defined:

• The top-hat by opening is defined as the difference between the original image

and its opening by a structuring element. This transform is appropriate for

finding bright features in an image, this is why it is also called white top-hat.

• The top-hat by closing is obtained when the original image is subtracted from

the closing by a structuring element. Since the top-hat by closing returns an

image containing those elements that are darker than their surroundings, it is

called black top-hat.

The extension of these definitions to the L-fuzzy framework can be done as

follows:

Definition 6. Let (L,X, S) be a tuple associated with the structuring element

S ∈ LX . We define the top-hat by opening THγ
S : LX → LX and top-hat by closing

THφ
S : LX → LX as:

THγ
S(A) = A ∗ (γS(A))′

THφ
S(A) = φS(A) ∗A′

for all A ∈ LX , where ′ is an involutive negation defined on LX and ∗ is a t-norm

that can be the same or different from the one used to obtain the fuzzy erosion and

dilation.

The following result relates both top-hat operators from a symmetrical struc-

turing element S, that is, a structuring element S verifying that S(−x) = S(x), for

all x ∈ X.

Proposition 4. If A ∈ LX is an S-open fuzzy set and A′ is S-closed, then

THγ
S(A) = THφ

S(A′)

aNote that, in mathematical morphology, the relevant images are the images that are not part of
the background of the image.
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Proof. Since A is S-open and A′ is S-closed, we have that A = γS(A) and A′ =

φS(A′).

Therefore,

THγ
S(A) = A ∗ (γS(A))′ = A ∗A′ = A′ ∗A = φS(A′) ∗A = THφ

S(A′)

Note that, if the negation ′ associated with the implication of the residuated

lattice (that is, x′ = I(x, 0), for all x ∈ [0, 1]) is involutive and S is symmetric, then

we have that (εS(A))
′

= δS(A′) and (δS(A))
′

= εS(A′). See 13,36 for more details.

As a consequence, we obtain the following result.

Corollary 2. Given a symmetrical structuring element S. If the negation ′ associ-

ated with the residuated implication I is involutive and A ∈ LX is an S-open fuzzy

set, then

THγ
S(A) = THφ

S(A′)

Proof. If S is symmetrical, ′ is the negation associated with I and it is involutive,

we have that A is S-open if and only if A′ is S-closed. Therefore, the result is

obtained from Theorem 4.

When the original image is approximated, for instance, by the greatest solution

of Equation (7) (A ≈ εS(B)), the top hat mappings can also be computed using

this approximation as:

THγ
S(A) = A ∗ (γS(A))′ ≈ εS(B) ∗ (γS(A))′

THφ
S(A) = φS(A) ∗A′ ≈ εS(B) ∗ (εS(B))′

From the last equation we can conclude that the approximation of the top hat by

closing is not optimal by the greatest solutions and a better approximation would

be given by a minimal solution of Equation (7).

The next section introduces the gradient and top-hat transforms in the fuzzy

property-oriented concept lattice framework.

4.3. Application in the fuzzy property-oriented concept lattice

Let (L,X, S) be the tuple associated with the structuring element S ∈ LX and let

the fuzzy property-oriented context (X,X,RS) be.

Using Proposition 1 we can analyze the effect of the transformations defined in

the previous paragraph when we are working with the particular fuzzy property-

oriented context (X,X,RS) and how can be extended to a general framework. First

of all, we need to note that in Rough Set Theory the notion of gradient is similar to

the difference between the upper and lower approximations of a given set of objects

and, specifically, in the fuzzy property-oriented context (X,X,RS), the gradient

can be considered as the intersection between the ‘upper approximations’ of the

sets of objects A and A′.
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Proposition 5. If S is a symmetrical structuring element and the negation ′ as-

sociated with the residuated implication I is involutive, then for all A ∈ LX

GRADS(A) = (RS)∃(A) ∗ (RS)∃(A′)

Proof. If S is a symmetrical structuring element, then (εS(A))
′

= δS(A′).

Therefore, the gradient can be obtained as

GRADS(A) = δS(A) ∗ δS(A′) = (RS)∃(A) ∗ (RS)∃(A′)

The following example shows the applicability of the morphological gradient.

Example 4. In the context (Z,Z, RS) of the two dimensional 8-bits grayscale im-

ages, let us consider the initial image represented in Figure 8.

Fig. 8. Initial image

Taking the following fuzzy ball as the structuring element:

S(x, y) =

{

1 − x2+y2

52+1 if x2 + y2 ≤ 52

0 otherwise

and the negation ′ : L → L associated with the residuated implication IL, which is

defined by x′ = 1 − x, for all x ∈ L, and it is involutive, the gradient of Figure 8 is

shown in Figure 9. It represents the points belonging to the derived of the image A

and to the derived of the negative image of A.

As in Example 3, if we use the crisp disk of radius 5 as structuring element, the

result is clearly worse as it can be seen in Figure 10,
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Fig. 9. Gradient

Fig. 10. Initial image with the clear-cut structuring element.

This notion can straightforwardly be translated to a general fuzzy property-

oriented context (X,Y,R).

Definition 7. Given a complete residuated lattice (L,∨,∧, ∗, I, 0, 1,≤), a fuzzy
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property-oriented context (X,Y,R), an involutive negation ′ on L and A ∈ LX , the

gradient of the fuzzy subset of objects A is defined as

GRADX(A) = R∃(A) ∗R∃(A′)

Notice that an analogous notion related to a subset of attributes B ∈ LY cannot be

considered since the operator R∀ must be used and, in this case, we have R∀(B) ∗

(R∀(B))′ that coincides with the empty set in the classical case.

The next result establishes that the top-hat by closing of the L-fuzzy set A can

be interpreted as the existing difference between the ‘upper closure’ of the image A

and the complement of A.

Proposition 6. In the fuzzy property-oriented context (X,X,RS), the top-hat by

closing of the L-fuzzy set A ∈ LX can be obtained as

THφ
S(A) = (RS)∀ ((RS)∃(A)) ∗A′

Proof. Since THφ
S(A) = φS(A) ∗ A′ and φS = εS ◦ δS , applying Proposition 1, we

obtain the proposed equality.

Analogously, the top-hat by opening of the L-fuzzy set A represents the existing

difference between an initial set A and the intension of the property-oriented concept

obtained from A, as the following result explains.

Proposition 7. The top-hat by opening of the L-fuzzy set A ∈ LX can be obtained

as

THγ
S(A) = A ∗

(

(RS)∃((RS)∀(A))
)′

Proof. The proof is straightforwardly obtained from the definition of the top-hat

by opening THγ
S(A) = A ∗ (γS(A))′, the equality γS = δS ◦ εS and Proposition 1.

Example 5. Returning to the context in the previous example, the top-hat trans-

forms of the initial image are in Figure 11.

In order to interpret an image by a property-oriented concept the top-hat

transform provides an interesting procedure. Given an image A ∈ LX , if A

is considered as a subset of attributes in the fuzzy property-oriented context

(X,X,RS), then the associated concept is C1 = ((RS)∀(A), (RS)∃((RS)∀(A))).

Otherwise, if A is assumed as a subset of objects, then the associated concept

is C2 = ((RS)∀ ((RS)∃(A)) , (RS)∃(A)). Therefore, top-hat by opening compares the

original image with the first concept and top-hat by closing compares the original

image with the second one.

Hence, in both previous cases, the top-hat transform provide us a tool to find

the most robust sets in the context.

For example, in the previous example we can see that the initial image (Figure 4)

is very similar to the extension (morphological opening) of the first concept and to
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(a) Top-hat by opening (b) Top-hat by closing

Fig. 11. Top-hat transforms

the intension (morphological closing) of the second one, since in both cases the

obtained image only consists of a few points. Moreover, in order to chose the more

representative concept, the second one will be chosen due to the top-hat by closing

has less white points.

From these comments the top hat can be introduced in a general fuzzy property-

oriented framework as follows.

Definition 8. Given a complete residuated lattice (L,∨,∧, ∗, I, 0, 1,≤), a fuzzy

property-oriented context (X,Y,R), an involutive negation ′ on L, A ∈ LX and

B ∈ LY :

• the object top hat of the fuzzy subset of objects A is defined as

THX(A) = R∀ (R∃(A)) ∗A′

• the attribute top hat of the fuzzy subset of attributes B is defined as

THY (B) = B ∗
(

R∃(R∀(B))
)′

5. Conclusions and future work

The usual procedure in mathematical morphology is, given a structuring element,

obtaining the dilation and the erosion of an original image. This paper have studied

the opposite problem, that is, given a fuzzy object B : X → L and a structuring

element S : X → L, find out the original object A : X → L such that B is the

dilation of A, δS(A) = B, or the erosion of A, εS(A) = B, and, if there exists, how

to obtain it.

We have shown that this problem is associated with solving fuzzy relation equa-

tions. Therefore, the results given in 2 and the relationship introduced in 14 have
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been used to obtain the original image or a good approximation. Moreover, we have

introduced some results focus on searching the whole set of possible original images.

Furthermore, the generalization of two important tools in mathematical mor-

phology: gradient and top-hat transformations, have been presented and several

properties of them have been introduced from the viewpoint of the analysis of fuzzy

property-oriented concept lattices.

In the future, more tools, properties and applications will be studied in order to

improve the existing mechanisms in image and signal processing, such as in object

recognition. Moreover, we will study equations in which the input and output images

are known and the structuring relation is unknown.
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18. Manuel González-Hidalgo, Sebastia Massanet, Arnau Mir, and Daniel Ruiz-Aguilera.
On the Generalization of the Uninorm Morphological Gradient, pages 436–449.
Springer International Publishing, Cham, 2015.

19. Nikhil Gupta and Purnendu Sinha. FPGA implementation of fuzzy morphological
filters, 2004.

20. J.F. Rivest, P. Soille, and S. Beucher. Morphological gradients. Journal of Electronic
Imaging, 2(4):326–336, 2014.

21. P. Soille. Morphological Image Analysis. Principles and Applications. Springer, second
edition, 2004.

22. E. Sanchez. Resolution of composite fuzzy relation equations. Information and Con-
trol, 30(1):38–48, 1976.
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30. I. Perfilieva and L. Nosková. System of fuzzy relation equations with inf-→ composi-
tion: Complete set of solutions. Fuzzy Sets and Systems, 159(17):2256–2271, 2008.
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