
Universidad Pública de Navarra

Escuela Técnica Superior de Ingenieros Industriales y de
Telecomunicación

 Securing communications in

Surgery Robots

Grado en Ingeniería

en Tecnologías de Telecomunicación

Trabajo Fin de Grado

Beatriz V. Fernández Muro

Paolo Ernesto Prinetto (Politecnico di Torino)
Giuseppe Airò Farulla (Politecnico di Torino)
Luis Javier Serrano Arriezu (Universidad Pública de Navarra)

Turín, Julio de 2018

i

Acknowledgments

Completing a thesis is one of the most importants works in the profes-

sional career, and I would not have been able to complete this without the

aid and support of countless people over the past recent months.

First and foremost, I would like to thank my advisers from my destiny

university Politenico di Torino, Prof. Paolo Prinetto and from my home

university, Luis Javier Serrano Arriezu for the oportunity of working in a

topic that I am really interested in, for their support and their always gen-

erously feedback during all stages of the development of this thesis.

I am very much indebted to my adviser Giuseppe Airò Farulla of the

DAUIN Department at Politecnico di Torino. He consistently allowed this

paper to be my own work, but steered me in the right direction whenever he

thought I needed it, providing me advices, help and fast feedback whenever

I ran into a trouble spot or had a question about my research or writing.

Giuseppe also provided me contact with other students and the Cyber-

Security group who I am also thankful to because of their help, advices and

for calming me down in my first days and steps.

Moreover, I would like to thank my friends, family and relatives from

Spain, Bulgaria, Portugal, Italy, Hungary and France, all of whom cannot

be listed here, for accompanying me on this unforgettable experience. In

particular I would like to mention Veni, Leonor, Rodrigo and Abel for their

warm friendship, patient and for cheering me in my worst moments.

I want to express my gratitude to my best friend, Leire, who has helped

me, advised me and motivate me even with almost a thousand kilometers

of distance between us.

ii

I dedicate this thesis to my beloved parents and my sister, Pedro Ángel,

Ma Pilar and Ángela, whose love, company, efforts and understanding are

incomparable. They are my role models of honesty, strength, and persis-

tence.

iii

Abstract

This thesis describes the analysis and implementation of methods for ap-

plying cyber-security to the exchange messages between tele-surgery robots.

Several scenarios are developed while different security aspects to the com-

munication between the nodes of Robot Operating System (ROS) are added.

Those features concern the integration of Virtual Private Networks and de-

vices specially tailored to cyber-security applications in a virtual scenario

which represents a real one, applying the proper configuration on them in

order to stablish encryption and authentication to the message exchange

between the different robots.

The final goal of this analysis is to provide a solution to the cyber-security

shortage in tele-surgery systems since its lack implies that someone’s life

could be affected.

Keywords

Cyber-security, ROS, SEcube, Tele-surgery, robots

iv

Resumen

En el presente Trabajo Fin de Grado se estudia el análisis e imple-

mentación de métodos para aportar ciber-seguridad al intercambio de men-

sajes entre robots de tele-ciruǵıa.

A lo largo del trabajo se desarrollan varios escenarios en los que se van

añadiendo distintos aspectos de seguridad a la comunicación entre nodos

de Sistema Operativo Robótico (ROS). Estos aspectos versan sobre la in-

tegración de Redes Privadas Virtuales (VPN) y dispositivos especialmente

diseñados para aplicar ciber-seguridad en un escenario virtual representa-

tivo del real, configurádolos para establecer encriptación y autenticación en

el intercambio de mensajes entre los distintos robots.

Con este análisis se pretende aportar un avance en el ámbito de la tele-

ciruǵıa ya que la seguridad tiene una alta relevancia, sin ella la vida de una

persona puede verse afectada.

Palabras clave

Ciber-seguridad, ROS, SEcube, tele-ciruǵıa, robots

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Structure . 2

2 State of art 3
2.1 Brief history of Robotics in medicin . 3
2.2 Resources . 7

2.2.1 Robot Operating System . 7
2.2.1.1 ROS communication . 9
2.2.1.2 ROS vulnerabilities and possible attacks on tele-surgery

robots . 9
2.2.2 SEcubeTM . 13

2.2.2.1 SEKeyTM . 16
2.2.2.2 SEFileTM . 16
2.2.2.3 SELinkTM . 17

2.2.3 Tunnelling - Virtual Private Network (VPN) 18
2.2.3.1 VPN Protocols . 19

3 Architecture and methodology 23
3.1 Material and methods . 23
3.2 Scenarios . 25

4 Results and discussion 34
4.1 Basic scenario . 34
4.2 Adding VPN to Basic scenario . 36
4.3 Adding SEcube to Basic scenario within VPN 38

5 Conclusions 45

6 Future work 46

Appendices 47

A Table of surgical procedures per year 47

B Defence scenario 47
B.1 Basic scenario . 47

B.1.1 Publisher file in surgeon . 47
B.1.2 Publisher and Subscriber file in master 50
B.1.3 Subscriber file in patient . 51
B.1.4 Configuration of the network and ROS parameters 53

B.2 Adding the VPN . 54
B.3 Adding the SEcubeTM. Open/Close de DevKit device every time a mes-

sage is sent/received. 55
B.3.1 Publisher file in surgeon . 55

vi

B.3.2 Publisher and Subscriber file in Master 62
B.3.3 Subscriber file in patient . 64

B.4 Adding the SEcubeTM. Open/Close de DevKit device only once. 71
B.4.1 Publisher file in surgeon . 71
B.4.2 Publisher and Subscriber file in Master 76
B.4.3 Subscriber file in patient . 76

vii

List of Figures

1 PUMA 560: robotic surgical arm [1]. 3
2 Zeus Robotic Surgical System. 4
3 Da Vinci Surgical System. 4
4 Parts of the Da Vinci surgery robot [2]. 5
5 Number of world-wide procedures performed with da Vinci Surgical Robot

System per year. Table with the exact values is available in A [3–5]. . . . 6
6 Effects of lag time on remote tele-surgery [6]. 7
7 ROS basic features schema: relation between nodes, topics and services [7]. 8
8 Schema of network when a Man In The Middle attack is being carried out. 10
9 Schema of steps that an attacker has to follow in order to know the relevant

information of the ROS network to execute an attack. 12
10 SEcubeTM components. 14
11 The SEcubeTM Dev Kit Board. 15
12 SEcubeTM Dev Kit Board: interfaces and peripherals. 15
13 The USEcubeTM Stick. 15
14 USEcube Internal structural details. 15
15 SEcubeTM: Software architecture. 16
16 SEfile: process of coding the name of the file. 17
17 SELink: Client and Server side components [8]. 17
18 SELink: Connection establishment process. 18
19 SELink: final connections. 18
20 VPN definition summary. 19
21 Secure Architecture of a ROS Network using SEcubeTM. 23
22 Secure Architecture of a Surgery Robot Network using SEcubeTM 24
23 ROS: schema of publishers, subscribers and topics in a Surgery Robot

network. 25
24 Basic scenario: schema of virtual machines. 25
25 Basic scenario: axes of movement when surgeon moves the robot. 26
26 Scenario 1: networks and schema of folders and files in each virtual machine. 27
27 VPN: schema of virtual machines. 28
28 VPN: network. 28
29 Encryption and decryption process using SEfile library. 30
30 Encryption and Decryption algorithm processes. It is represented each

mode of encryption/decryption (CTR or ECB) depending on the block. . 31
31 Schema of variables and environment needed in Surgeon node to encrypt

the data sent via ROS within VPN. 32
32 Schema of variables and environment needed in Patient node to decrypt

the data received via ROS within VPN. 32
33 Plain data of a message sent via ROS. 35
34 Basic scenario: Wireshark capture of a plain message when surgeon prints

its data. 36
35 Basic scenario: Wireshark capture of a plain message when surgeon send

the motion data. 36

viii

36 Adding VPN scenario: Wireshark capture of messages in master Virtual
Machine. 37

37 Adding VPN scenario: Wireshark capture of messages in external PC. . . 38
38 Encrypted data of file created using SEfile library. 39
39 Encrypted data of a message sent via ROS. 39
40 Encryption process of 4 messages in terminal 40
41 Decryption process of 4 messages in terminal 41
42 Encryption process of a message in terminal and the encrypted content

that is sent. 41
43 Time-lag graphs of encryption and decryption processes using and not

using SEcube. 43
44 Time-lag graphs of encryption and decryption processes using SEcube.

Comparison between the process of opening and closing the device only
once or every time a message is exchanged. 44

ix

List of Tables

1 Comparation between VPN protocols [9]. 22
2 Example of encode commands. 26
3 Number of Surgical Procedures per year from 2011 to 2018. 47

x

1 Introduction

The topic of this thesis is related to secure tele-surgery, surgical procedures carried out

remotely thanks to advances in robotic and computer technology.

This thesis focuses on ROS (Robotic Operating System) [10] architecture, security and

applications given it is the most preferred software architecture of robotic applications,

including surgical ones such as Raven II [11] or da Vinci Reseach Kit [12] robots.

1.1 Motivation

There is a wide range of medical robotics applications such as Robotic Assistance, Surgi-

cal robots, Pharmabotics, Companion Robots, Disinfectant Robots in healthcare, etc, [13]

and applications related to them are increasing nowadays. Their use is expected to be

very common in the future which signifies robots’ architecture and communications have

to be secure by reason of, as main goal, the patient who is being operated could not be

harm by any external agent.

The analysis and research on tele-surgery - which implies ROS as well - remain in con-

tinuous improvement and, being focused on terms of security, it is well known that ROS

developers did not focus on the cyber security of the system, quoting Brian Gerkey at

the ROS-I conference in Stuttgart: “If you claim that you’ve found a security hole in

ROS, you’re lying: there is no security”. Securing ROS is important in tele-medicin

applications such as surgery robots, due to the possibility of suffering an attack which

could damage the robot and even harm people as the surgeon or the patient.

1.2 Objectives

The principal purpose of this thesis is to provide security to the whole communication

channel and the messages exchanged between robots, particularly in the area of Tele-

surgery.

The first objective is to create a simple scenario that represents a tele-surgery network,

designing and developing it using a virtualized environment. The second one is to imple-

ment strategies of how to secure the environment after having a deep study and analysis

1

of them.

1.3 Structure

This thesis is organized as follows:

Section 2 introduces the state of art of Tele-medicin and provides a description of the

history of surgery robots with a focus on possible attacks and countermeasures.

Section 3 describes the methodology that has been used as well as the scenarios devel-

oped, showing the vulnerabilities of each one and implementing security improvements

until a final - secure - scenario.

Section 4 and Section 5 give the results achieved and some conclusions derived from

them.

Section 6 presents the ideas of future work on this topic and possible improvements.

All the code developed for this thesis is presented and explained in the Appendices at

the end of the thesis.

2

2 State of art

2.1 Brief history of Robotics in medicin

Since the XX century, robotics has been applied to different fields, not only to the in-

dustry field but also to research. Ideas of its use in medicin did not take long to appear,

PUMA - Programmable Universal Machine for Assembly, or Programmable Universal

Manipulation Arm - was created by Victor Scheinman as an industrial robotic arm but

PUMA 560, Figure 1, was used for the first time in robotic stereotactic brain biopsy in

1985. Three years later, PROBOT was used to perform transurethral prostate surgery

and in 1992, ROBODOC was used to prepare (more precisely and quickly than the human

surgeon) a cavity in the femur for hip replacement in human patients.

Figure 1: PUMA 560: robotic surgical arm [1].

In the decade of 1990 the da Vinci Surgical System and Zeus Robotic Surgical systems

(Figure 2) were designed for minimally invasive surgery. Many surgeries were carried out

by the Zeus system that time but finally the da Vinci Surgical System (Figure 3) became

the most used and most known for its use in general surgery, urology and gynaecology [14].

3

Figure 2: Zeus Robotic Surgical System.

(A) Surgeon console (B) Robotic arms. [1]

Figure 3: Da Vinci Surgical System.

From left to right: surgeon console, patient cart, vision cart. [1]

Da Vinci system is based on a “Master-Slave” paradigm. The surgeon uses a console

which controls the arms using joysticks and foot pedals as Figure 4 shows. These joysticks

copy the movement of the hands, scaling it and applying a filter of possible tremors.

This console also contains a 3-Dimensional screen allowing the surgeon to see the surgery

without needing special glasses. [2]

4

Figure 4: Parts of the Da Vinci surgery robot [2].

Some significant advantages of using the Da Vinci system are its 7 Degree of Freedom

(DoF) and that a surgeon controls the surgery from a seated position separated from the

patient. This method is known as telesurgery and can theoretically be performed from

any distance. 7 DoF, which means 7 independent parameters that define the movement,

are typically required to mimic the movement of human forelimb.

Figure 5 represents the number of operations using da Vinci surgical robot system from

2011 to 2018. It can clearly be seen that there has been a significant increase in the

amount of them. Approximately 350,000 surgical procedures were performed in 2011,

753,000 and 877,000 procedures were performed in 2016 and 2017 respectively, and they

are expected to increase around 11% to 15% in 2018 [3].

5

Figure 5: Number of world-wide procedures performed with da Vinci Surgical Robot System per year. Table with the
exact values is available in A [3–5].

Owing to the rising trend in Figure 5, it could be claimed that the demand for op-

erations is growing really fast, which implies that improvement on the methodology has

to be developed. Some experts believe that the next step in tele-surgery progress will be

the combination of surgical robotics and artificial intelligence.

There is also a problem with da Vinci Surgical System: the machine is very expensive, it

is not portable and it uses a proprietary software as well. However, it has been developed

an affordable and Linux-based operating system that lets users modify code, which is

called Raven II. The mentioned system consists of two robot arms, a camera, and an

interface for the surgeon.

In tele-surgery the lag time is really important and many researchers have studied

about the possible impact of its smaller or bigger value. In [6] and [15] it is explained

that surgeons can adapt to tele-surgical latencies but the maximum latency recommended

is about 300ms. Figure 6 shows the effects of the delay depending of which is the value

of the time-lag.

6

Figure 6: Effects of lag time on remote tele-surgery [6].

This values refers to possible problems caused by video lacency which could make the

surgeon to be confused and to not make his/her best.

2.2 Resources

Owing to the increasing use of this method in surgeries it has become necessary to secure

the systems, which means to secure ROS. To know how to secure the system, what

Robot Operating System is, its vulnerabilities and some possible hardware and software

to develop security have been investigated.

2.2.1 Robot Operating System

As defined in ROS Wiki [7] “ROS is an open-source, meta-operating system for your

robot. It provides the services you would expect from an operating system, including hard-

ware abstraction, low-level device control, implementation of commonly-used functional-

ity, message-passing between processes, and package management. (...) The primary goal

of ROS is to support code reuse in robotics research and development”.

The ROS framework is implemented in different programming languages such as C++,

Python and Lisp and research is being carried out in order to implement JAVA and Lua.

In terms of operating systems in which ROS could be used, it only runs on Unix-based

7

platforms; although a port to Microsoft Windows is possible, it has not been tested yet.

The network of ROS is Computation Graph, a peer-to-peer network of processes that are

processing data together [7]. The basic Computation Graph concepts of ROS are:

· nodes: written with the use of a ROS client library, such as roscpp or rospy. The

communication with one another uses streaming topics, Remote Prodecure Call

services, and the Parameter Server.

· master: provides name registration and lookup to the rest of the Computation

Graph, without it, nodes would not be able to find each other, exchange messages,

or invoke services.

· parameter server: allows data to be stored.

· messages: a data structure, comprising typed fields. Messages are routed via a

transport system with publish/subscribe semantics: a node sends out a message by

publishing it to a given topic.

· topics: an identifier of message’s content.

· services: provide request-reply interactions between nodes.

· bags: files format for restoring ROS message data.

As a summary of what is mentioned above, Figure 7 shows a diagram of how the structure

of a pair of nodes which are communication in a topic is.

Figure 7: ROS basic features schema: relation between nodes, topics and services [7].

8

2.2.1.1 ROS communication

Information about the availability of topics, services and the negotiation of connection

transport are implemented using XML Remote Procedure Call (XML-RPC). It is the

backend of the ROS system APIS which provides the communication between the nodes

[16]. There are three different API listings, Master API, Parameter Server API and Slave

API that are available in [17], [18] and [19]. Some of the most relevant functions for our

study are:

· getSystemState - Master API: shows a list representation of system state, for

example publishers, subscribers, and services.

· lookupNode - Master API: provides the XML-RPC URI of the node with the as-

sociated name, or caller identifier, called within the function. This API is used for

looking information about publishers and subscribers.

· publisherUpdate - Slave API: after a node is subscribed to a specific topic, this

functions will also provide information about new publishers in that topic.

2.2.1.2 ROS vulnerabilities and possible attacks on tele-surgery robots

The system has known vulnerabilities due to the fact that the security in ROS was not

taken into account:

1. the messages which are sent between ROS core and a node are non-encrypted

2. no authentication is required

3. there is no confidentiality

The lack of encryption, confidentiality and authentication lets an attacker carry out unau-

thorized Publishing (Injections), unauthorized Data Access, and even Denial of Service

(DoS) attacks on specific ROS nodes [20] :

• Unauthorized publishing: a node is able to publish data to an arbitrary topic

without prior authorization, what makes it possible to inject data or commands

into an application in order to disturb its operation and even false sensor data.

9

• Unauthorized data access: every node in ROS may subscribe to every topic

within the application. After that, it will receive any data that is published for this

topic. This attack is especially hard to discover since a node itself may have no

outgoing ROS communication.

• Denial of Service: there is no control of which node should publish any partic-

ular data, which makes it easy to launch an attack that publishes a large number of

fake data. The attacker can also prevent the subscriber from receiving the real data.

It is possible for an attacker to deal with unauthorized publishing and unauthorized

data access attacks at the same time, for instance, a malicious node may act as a

subscriber to a publisher and as a publisher to a subscriber - a Man In The Middle

Attack - and transparently record and manipulate the data flow between those two

nodes, represented in Figure 8 as a change of the data exchange - 0 is modified to

1. In this situation, the attacker is receiving data from the topic (receives data=0)

which means unauthorized data access and, after that, he is publishing the data on

a topic that he has no authorization, unauthorized publishing.

Figure 8: Schema of network when a Man In The Middle attack is being carried out.

The attacker acts as publisher or subscriber depending on what node is it attacking.

Authors in [21] classify attackers to medical robotic infrastructures into two groups,

considering the attacker’s role within the system:

(I) Network observer that eavesdrops on information exchange between a surgeon and a

10

robot. Based on the collected information he/she starts inserting false messages into

the network, while still allowing both the benign parties to communicate directly.

(II) Network intermediary that assumes a role of an intermediary between a robot and a

surgeon, such as MITM (Figure 8). The benign parties don’t communicate directly.

Figure 9 represents a schema of the process to develop an attack and know the rele-

vant information of the ROS network, such as topic names and addresses of the nodes.

Typically, the first step is to find the URI of the ROS master - which is the IP and port

of the ROS master. There are different possibilities to do so, the first one is to read it

from the ROS MASTER URI environment variable - the one that client nodes use to

locate the master node - but even if that is not possible, yet an attacker can scan the

network using Address Resolution Protocol (ARP) in order to identify the hosts in the

network. Once the hosts are known, the master can be found by trying the ROS default

port on each host until it is found. If the master is configured to use a different network

port - with respect to the default ROS port 11311 -, a full portscan on all nodes must be

performed.

Next requirement is to get the URI of the subscriber. To do so, first a call to the proce-

dure getSystemState within the XML Remote Procedure Call, previously introduced in

section 2.2.1.1, is carried out. The master will return information about the registered

publishers, subscribers and services so the node name and topic name is known.

Now, after extracting the name of the subscriber which should receive the (faked) mes-

sages, the URI of the subscriber could be got by sending a lookupNode XMLRPC message

to the master with the name of the node as parameter. With this URI, the attacker is

able to send the XMLRPC message publisherUpdate to the subscriber, containing the

topic and a list of the new publishers to the topic - which contains the (fake) publisher

created by the attacker.

While the original publisher is still active and visible in the ROS graph, its data will

not reach the subscriber anymore. Note that this attack is reversible, thus, after being

done, the attacker can just send another publisherUpdate containing the original pub-

lishers [20].

11

Figure 9: Schema of steps that an attacker has to follow in order to know the relevant information of the ROS network
to execute an attack.

According to the impact of the attack on the surgery, it is also possible to distinguish

three different categories [21]:

(A) Intention modification: the attacker modify the messages while packets are in-

flight, the surgeon has no control over them. The effects of this attack could be for

example:

· unusual robot movements

12

· robot becoming randomly engaged or disengaged

· unusual delays in movements

Considering the attacker’s role as a network intermediary, it could be diferentiated

four subgroups of attacks:

(a) Reordering → the attacker does not forward the messages to the robot in the

same order as he/she receives it, the attacker sends them in a random order

(and with some delay) what produces that the robot skip the messages received

out of order, playing out a jerky robot motion.

(b) Packet loss→ the attacker drop some packets which makes the motion become

delayed and jerky.

(c) Packet delay → the attacker does not forward the messages in the exact mo-

ment he/she receives them, but sends them after some amount of time.

(d) Content modification → the attacker modifies surgeon’s packets on-the-fly

before forwarding them to the robot.

(B) Intention manipulation: the attacker only modifies feedback messages originat-

ing from a robot, such as video feed or haptic feedback. As the feedback is assumed

to be valid, the attack could end up becoming harmful to a patient.

(C) Hijacking attacks: the robot ignores the intentions of a surgeon completely,

and, instead, performs some potentially harmful actions. These attacks cause a

temporary or a permanent takeover of the robot.

2.2.2 SEcubeTM

The exploits explained in the previous section occurs for any robotic system with tele-

communication. Taking Brian Gerkey’s quote in the ROS-I conference in Stuttgart “ROS

assumes a secure network! If that assumption is not true, arbitrarily bad things can hap-

pen” into consideration, it could be assumed that the only way to secure the system is

securing the network where the system is developed.

13

The first strategy is to provide security to the whole communication channel between all

the parts of a system, providing a layer of security. By adding encryption and authenti-

cation to data streams - although the use of them will increase the use of memory, the

amount will be acceptable in most cases [21] -, the attacker will have to carry out more

complex attacks because it will become hampered.

Blu5 Group 1 develops added value “bricks” for others to build integrated trusted

systems. An example of interest in the topic of our concern is SEcubeTM that, in rough

lines, provides:

- secure key storage,

- encryption and decryption of data stream

- authentication of data streams

SEcubeTM - Secure Environment cube - Open Security platform is an open hardware and

software platform for security and application developments, a system on Chip embed-

ded environment, a unique security environment where each function can be optimised,

executed, and verified on its proper hardware device [8].

Three key security elements in a single package are implemented: a fast floating-point

Cortex-M4 CPU, a high-performance FPGA, and an EAL5+ certified SmartCard as rep-

resented in Figure 10.

Figure 10: SEcubeTM components.

1 http://www.blu5group.com/

14

Besides the already described SEcubeTM Chip, there are two other hardware devices

related to SEcube: the Development Board, named SEcubeTM DevKit (represented in

Figures 11 and 12) and the USB Stick, named USEcubeTM Stick (represented in Figures

13 and 14). The SEcubeTM DevKit is an open development board designed to support de-

velopers to integrate the SEcubeTM Chip in their hardware and software projects whereas

USEcubeTM Stick is an USB form factor based on the SEcubeTM Chip, which deploys

the SEcubeTM functionalities through a USB 2.0 High-Speed interface [22].

Figure 11: The SEcubeTM Dev Kit Board. Figure 12: SEcubeTM Dev Kit Board: interfaces and peripherals.

Figure 13: The USEcubeTM Stick. Figure 14: USEcube Internal structural details.

The architecture of the firmware - represented in Figure 15 - is based on Abstraction

Layers (L0, L1, L2, L3 and Applications) in which each element (but the lowest one)

represents a “service” for the upper level and relies on “services” provided by lower

levels [8].

15

Figure 15: SEcubeTM: Software architecture.

What makes SEcubeTM interesting, in terms of security, is that developers are pro-

vided with an easy-to-use, high-security abstraction layer - all the digital and organisa-

tional security processes are integrated in a comprehensive, flexible and seamless way,

for instance, mathematical and cryptographic elements, like keys and algorithms, are re-

placed by simpler concepts: groups and policies -, but security experts can verify, change,

or write from scratch the whole system starting from the elementary low-level blocks.

The APIs are organised in modular libraries and abstraction layers and developers are

open to create their solution starting from the most suitable entry point according to their

expertise. The L2 level APIs offer optimized and easy-to-use functionalities to ease the

development of applications fully protected (i.e., authenticated and confidential), without

being forced to understand in details all the low-level hardware and security mechanisms.

The provided APIs include:

· SEKeyTM : a Key Management System. Whenever a group - pool of one or many

users - is created, SEKeyTM manages the creation of the group communication key

(which is used to generate session communication keys and a set of security policies),

the security mechanisms and the relative transmission to the entitled users.

· SEFileTM: a data-at-rest protection facility. It provides encryption and signature

16

facilities, based on two master keys (EncDBKey and SigDBKey). Every secure file

is encrypted and signed, sector by sector, using dedicated keys derived by the two

mSE master keys, and - as represented in Figure 16 - the file name is coded in a

way that nobody can recognize it looking directly at the physical file system.

Figure 16: SEfile: process of coding the name of the file.

· SELinkTM: a data-at-motion protection facility. It secure the network traffic

by encrypting network streams originating from any application, regardless the

application-level protocol. Encrypts connections silently with no modification to

the application. Figure 17 shows the architecture, the Client-side components

are SELink driver, SELink service and SELink GUI, and the server-side ones are

SELink gateway and SELink gateway web UI. Figure 18 represents how a driver

redirects the connection requests to SELink service and, finally, Figure 19 shows the

final connections where the Service and Gateway components take care of bridging

non-secure connection to the Secure Link.

Figure 17: SELink: Client and Server side components [8].

17

Figure 18: SELink: Connection establishment process.

Each directed arrow represents a TCP connection request [8].

Figure 19: SELink: final connections.

Each directed arrow represents a TCP connection [8].

2.2.3 Tunnelling - Virtual Private Network (VPN)

Besides SEcubeTM, another technology used to carry out this purpose is Virtual Private

Network (or VPN), which is a technology built using public wires - usually the Internet

- to privately connect remote users.

The advantage of using VPN is that connections between remote networks could be

established no matter of the distance and that, as added value, it guarantees the security

level when the underlying infrastructure cannot provide it on its own. It secures the

private network, using encryption and other security mechanisms to ensure that only

authorized users can access the network and that the data cannot be intercepted. This

type of network is designed to provide a secure, encrypted tunnel in which transmit

18

the data between one user and another - remotely connected. This means that once a

connection through a VPN is established, all the traffic becomes encrypted and - as shown

in Figure 20 - the client’s IP address (IP X) gets replaced (in eyes of external agents)

with the address (IP Y) of the VPN server - the third party that connects to the final

destination on your behalf.

In rough lines, using a VPN provides:

· Encryption of the online data

· Activity hiding from any external agent

· Location hiding

· Anonymity

Figure 20: VPN definition summary.

Hosts on Internet will see the IP address Y as the IP address of the devices and an external agent could not be able to
manage the online data.

There are different implementations of VPN such as IPSec, OpenSSH, OpenVPN,

Socat, etc, and many differents protocols to use within them.

2.2.3.1 VPN Protocols

A VPN protocol defines how the service handles data transmission over a VPN. The

most common protocols are all to be cited:

· Point-To-Point Tunneling Protocol (PPTP) was designed by Microsoft as part of

the Windows Operation System. It encapsulate the existing protocol PPP (Point-

19

to-Point Protocol). Due to its easy configuration it is one of the most used protocols,

but its autentication protocols, such as MS-CHAP-v1/v2, make it vulnerable.

· Layer 2 Tunneling Protocol (L2TP) is a combination of PPTP and Cisco’s L2F

protocol and it is also associated with the Internet Protocol security (IPsec) pro-

tocol in order to apply a strong encryption and authentication. It establishes a

secure connection using keys for authenticating and encrypting each IP packet of

the communication, nonetheless there may be ways for an attacker to decrypt the

VPN session.

· Secure Socket Tunneling Protocol (SSTP) transports the traffic through Secure

Sockets Layer (SSL) protocol and use SSL/TLS encryption.

· Internet Key Exchange Version 2 (IKEV2) establishes a security association over

IPsec. IKE uses a Diffie-Hellman secret exchange of keys in order to establish the

shared secret of the session.

· OpenVPN is a full-featured open source SSL VPN solution provided in the Ubuntu

Repositories and licensed under the GNU General Public License (GPL). It imple-

ments OSI layer 2 or 3 secure network extension using the SSL/TLS protocol.

Table 1 represents a comparison between all this protocols. It is focused on their security

and uses in order to know which one meets our requirements and specifications: to get

the objective of this thesis the whole session has to be secured as much as possible so

OpenVPN is used owing to its principal advantages such as portability, compatibility

with NAT and dynamic addresses, ease of configuration and fast speeds, and because it

is one of the most secure protocols, the most reliable and the most stable.

It accommodates a wide range of configurations, including remote access, site-to-site

VPNs, Wi-Fi security, and enterprise-scale remote access solutions with load balancing,

failover, and fine-grained access-controls [23].

OpenVPN is the best option for our purpose because it is open-source, its installation

is easy and fast, it supports NATs and has cross-platform portability across most of the

20

known computing devices and, in addition, it has encryption combined with authentica-

tion which could be useful for our security purpose.

Still it is not impenetrable by an expert attacker so we need to add extra security - by

implementing SEcube - that does not conflict with the one offered by OpenVPN: by

leveraging on both, we ensure compliance to best standards in security.

21

P
P

T
P

L
2T

P
/I

P
se

c
S

S
T

P
IK

E
V

2
O

p
en

V
P

N

E
n

cr
y
p

ti
on

S
tr

en
gt

h
12

8
b

it
s

u
si

n
g

M
P

P
E

p
ro

to
co

l
25

6
b

it
s

u
si

n
g

A
E

S
ci

p
h

er
25

6
b

it
s

25
6

b
it

s
u

si
n

g
A

E
S

ci
p

h
er

2
5
6

b
it

s
u

si
n

g
A

E
S

ci
p

h
er

S
ec

u
ri

ty
B

as
ic

en
cr

y
p

ti
on

H
ig

h
es

t
en

cr
y
p

ti
on

:
ch

ec
k
s

d
at

a
in

te
gr

it
y

an
d

en
ca

p
su

la
te

s
th

e
d

at
a

tw
ic

e

H
ig

h
es

t
en

cr
y
p

ti
on

:
d

at
a

ge
ts

v
er

ifi
ed

b
e-

fo
re

b
ei

n
g

se
n
t

an
d

re
ce

iv
ed

,
S
S

L
en

-
cr

y
p

ti
on

in
cl

u
d

ed

F
as

te
st

a
n

d
m

o
st

se
-

cu
re

V
P

N
p

ro
to

co
l

H
ig

h
es

t
en

cr
y
p

-
ti

o
n

:
A

u
th

en
ti

ca
te

s
d

a
ta

w
it

h
d

ig
it

a
l

ce
rt

ifi
ca

te
s

S
p

ee
d

F
as

t
d

u
e

to
lo

w
er

le
ve

l
of

en
cr

y
p

ti
on

R
el

at
iv

el
y

sl
ow

,
re

q
u

ir
es

m
or

e
C

P
U

p
ro

ce
ss

in
g

S
lo

w
sp

ee
d

d
u

e
to

su
p

er
io

r
le

v
el

of
p

ri
-

va
cy

an
d

se
cu

ri
ty

F
as

t
sp

ee
d

s
F

a
st

sp
ee

d
s

C
om

p
at

ib
il

it
y

·
W

in
d

ow
s

·
M

A
C

·
iO

S

·
W

in
d

ow
s

·
M

A
C

·
iO

S

·
W

in
d

ow
s

·
M

A
C

·
W

in
d

ow
s

·
M

A
C

·
iO

S

·
W

in
d

ow
s

·
M

A
C

·
iO

S

·
A

n
d

ro
id

·
L

in
u

x

·
R

o
u

te
r

·
R

a
sp

b
er

ry
P

i

·
Q

n
a
p

·
S

y
n

o
lo

g
y

N
a
s

T
a
b
le

1
:

C
o
m

p
a
ra

ti
o
n

b
et

w
ee

n
V

P
N

p
ro

to
co

ls
[9

].

22

3 Architecture and methodology

To create the proposal for this thesis, all the exposed and described specifications in State

of Art section has been taken into account. By doing this, the implementations thought

for securing a tele-surgery scenario are ensuring to be accurately conveyed.

The methodology adopted is based on creating a basic scenario with no security, and

add security improvements - OpenVPN and SEcubeTM - to it until a secure scenario is

developed.

3.1 Material and methods

The resulting architecture in Figure 21 shows the secure communication between a node

and ROS core. A SEcubeTM is going to be used for each robot of the network and another

for the Master PC (in which ROS core is going to be run) as well.

In the particular case of Surgery Robots, as Figure 22 shows, it will be needed a first

SEcubeTM device - previously introduced in section 2.2.2- for the robot where the surgery

is taken place, a second one for the robot which the surgeon will use and a third one for

the Master PC.

However, in this thesis, it is going to be used only two SEcubeTM Development Kits -

one in Surgeon node and another in Patient node - instead of three as explained in the

previous paragraph. This change in the scenario was applied due to a faster development

and because it is not compulsory, nor necessary, that the Master node use it: the only

purpose of the mentioned node is to resend the data from the Surgeon to the Patient and

for that, it does not need to understand the exchanged data.

RobotROS core

ROS Network

SEcube SEcube

Non-secure communication
Secure communication

Figure 21: Secure Architecture of a ROS Network using SEcubeTM.

23

The network has been thought to enable a tele-surgery, that is to say that is remotely-

connected: the surgeon could be in a hospital from, for instance, Germany, and the

surgery could take place in, for example, Italy. So, we use VPN to provide connectivity

between remote networks no matter how far they are or if the Network Address Transla-

tion (NAT) [24] configuration is set - which do not let the connection to be established.

Robot
(Surgeon)

Master PC
(ROS core) SEcube

SEcube

Robot
(Pacient)SEcube

Non-secure communication
Secure communication

Figure 22: Secure Architecture of a Surgery Robot Network using SEcubeTM

When the surgeon robot has to communicate with the patient robot, the path which

the messages has to go through is:

Robot (surgeon) ←→ Master PC ←→ Robot (Patient)

It will never be possible to directly communicate between the surgeon robot and the

patient robot: in terms of programming in ROS - as explained in section 2.2.1 -, there

is a listener in the Master PC subscribed to a topic in which a publisher in the surgeon

publishes; moreover, there is another listener in the patient robot which is subscribed to

a second topic, in which the Master PC’s publisher publishes. A clarifying schema of the

structure could be seen in Figure 23, in which the concepts related to a first topic are

printed in a green color and the ones related to a second one are in blue.

24

Figure 23: ROS: schema of publishers, subscribers and topics in a Surgery Robot network.

3.2 Scenarios

To study the final scenario, in which a surgery robot will be implemented developing

VPNs and using SEcubeTM, we have worked on different virtualized scenarios.

(I) Basic scenario:

Three nodes in different virtual machines are implemented - as represented in Figure

24 -, representing Master PC, surgeon’s robot and patient’s robot each, in which a

communication protocol is used. This protocol is based in 4 types of messages that

include different information:

0 = Emergency Stop

1 = Initialization

2 = Pedal UP

3 = Pedal DOWN

Figure 24: Basic scenario: schema of virtual machines.

In the case of Pedal DOWN, besides the code 3 it will be also sent the movement

that the patient’s robot has to follow [25]. The movement could have different di-

rections so, for simplicity and clarity, three axes are represented: X, Y and Z. Each

25

of it is shown in Figure 25: X represents right (positive) and left (negative), Y, up

(positive) and down (negative) and Z, the depth: when the movement goes to the

front it is negative and when it gets closer to the surgeon, positive.

As an example of what has just been explained, in Table 2 it is shown the encode

data of some given instructions.

Figure 25: Basic scenario: axes of movement when surgeon moves the robot.

Instruction Encode result

Emergency Stop 0

Init 1

Pedal Up 2

Pedal Down and the movement that the surgeon

does is 1 left, 2 up and 0.3 to the front

3 ->-1 2 -0.3

Pedal Down and the movement that the surgeon

does is 0.2 right, 0.1 down and 0.1 to him

3 - >0.2 -0.1 0.1

Table 2: Example of encode commands.

A in-deep explanation and the code of this scenario could be found in Appendix B.1.

To create the scenarios it has been used 3 virtual machines where it has been

implemented one node each - with its required ROS files - as Figure 26 shows. The

26

figure mentioned also represents the network of the scenario: Surgeon and Master

machines are in one network and Master and Patient ones, in another, what means

that surgeon has one interface in Internal Network mode, master has two in the

same mode but different networks each and finally, patient, as surgeon machine,

has only one.

Figure 26: Scenario 1: networks and schema of folders and files in each virtual machine.

Besides, owing to ROS configuration in multiple machines, a configuration of ROS

parameters and default routes to concrete IP addresses have to be set. This config-

uration and its steps is available in Appendix B.1.4.

(II) Adding the VPN to basic scenario:

Same structure as the first one but adding tunnels, using OpenVPN - introduced

before in Chapter 2.2.3.1 -, in order to provide the connection though Internet

between every remote network.

In this scenario, each virtual machine is connected to Internet through a bridged

interface as shown in Figure 27. Moreover, the surgeon node and patient node are

VPN clients and the master node is the VPN server. This architecture and the

27

tunnels that are going to be created are represented in Figure 28.

Figure 27: VPN: schema of virtual machines.

Figure 28: VPN: network.

A in-deep explanation of the architecture and configuration of this scenario could

be found in Appendix B.2.

The verification of OpenVPN working properly for our objective has been done

analyzing the exchanged messages. For this purpose Wireshark tool is utilized cap-

turing a message exchange between master and surgeon. This results are available

in section 4.2.

(III) Adding SEcubeTM to the basic scenario within VPN (complete scenario):

Same structure as the second mentioned, but SEcubeTM is added in each node to

make the communication secure - encrypted and authenticated.

28

Given the fact that what is needed in the field of tele-surgery within ROS is to

secure the exchanging information via ROS topic, there are many possibilities, it is

possible to implement the SEFileTM libraries and SELinkTM ones as well to secure

the whole software environment where ROS runs.

Besides, installing the ROS core on top of a protected File System on UserSpace

(FUSE) allows building a system that intrinsically prevents external agents (attack-

ers) from tampering with any of the functionalities exposed by ROS. In addition,

the attacks mentioned in section 2.2.1.2 will be hindered, neither an attacker could

modify the core libraries used by ROS - the ROS environment -, nor could change

any of the configuration files used by a robot to store its inner status and parameters.

In the current work, SEfile is going to be used: although this process is a data-at-

rest protection - it creates a secure, signed and encrypted file with an encrypted

name from an unsecured file which contains plain text -, it could be use in ROS

systems by creating and reading files in each node:

1.- the content of the ROS message is created as a file in the publisher node.

2.- the data of the file is encrypted and wrote as the file content.

3.- the new encrypted data is read and sent through the communication channel.

Consequently, the opposite process takes place in the subscriber node:

4.- the received data is saved as a file.

5.- the resulted file data is decrypted.

6.- That plain text generated data is read and execute by the patient node.

The schema of the whole process is represented in Figure 29 with the intention of

clarifying the concept.

29

Figure 29: Encryption and decryption process using SEfile library.

The Encryption Algorithm used is The Advanced Encryption Standard (AES) [26]

which is a symmetric cryptography algorithm that ciphers blocks of data. Nowa-

days, some theoretical attacks have been shown, but still it has not been detected a

successful attack to this cipher what makes of it a proper option to use. In SEfile,

the data-to-encrypt is divided into blocks, and each block is encrypted separately:

each sector is encrypted using AES-256-CTR with exception of the header that is

encrypted using AES-256-ECB. This concept is represented in Figure 30.

The first mode, CTR - counter - generates the next keystream block by encrypt-

ing successive values of a value called “counter” which is a sequence that is not

repeated for a long time. That way, each block cipher depends on an ascending

counter which start from a randomly selected initialization vector. Today, CTR

mode is widely accepted and any problems are considered a weakness of the under-

lying block cipher. The Electronic Codebook mode, instead, is used in the header

to provide independence from any initialization vector.

30

(a) Encryption algorithm process of two blocks and the header.

(b) Decryption algorithm process of two blocks and the header.

Figure 30: Encryption and Decryption algorithm processes. It is represented each mode of encryption/decryption (CTR
or ECB) depending on the block.

Data confidentiality is guaranteed with the algorithms mentioned above, but au-

thentication is also required. To sign each sector, including the header, Secure Hash

Algorithm (SHA) - in particular SHA-256 - and keyed-hash message authentication

code (HMAC) are used what means that within SEfile the signature depends on

both the data contained in the sector itself and on a chosen encryption key. For

having a deep explanation of how this algorithms works within SEfile see the pdf

file available in [22].

These processes of authentication and encryption are carried out creating a secure

environment setting variables that are going to be used within the functions such

as a session identifier, key identifier and cipher algorithm and mode.

31

The code and explanation of this scenario could be found in Appendix B.3.

Finally, Figure 31 and 32 summarize the in-variables needed in Publisher and Pa-

tient node functions, respectively.

Figure 31: Schema of variables and environment needed in Surgeon node to encrypt the data sent via ROS within VPN.

Figure 32: Schema of variables and environment needed in Patient node to decrypt the data received via ROS within
VPN.

Since the main goal of this thesis is applying the secure pipeline to tele-surgery, an

application where even a small time-lag could cause huge problems, it is mandatory to

analyse the performances of the proposed solution.

32

For this goal, we need to know how much time does the encryption and decryption

processes take. To do so, the Boost library of C++ is going to be used and four different

measures will be analysed: publisher and subscriber time-lags using SEcube and pub-

lisher and subscriber time-lags not using SEcube. The values obtained with this process

correspond to the difference of the time when the data is ready to be sent and the time

when the motion data from the instructions file is read. A schema of the included pro-

cesses when calculating the time-lag of encryption or decryption is shown in Equations

1, 2, 3 and 4. With this measure, the time-lag that distance or network use could cause

is not interfering in the analysis.

time lag = time 1− time 0

time0 = read instructions

time1 = read instructions+encode data+write encoded file+encrypt+read encrypted file

Equation 1: Schema of which functions does the calculation of time-lag in publisher include when SEfile is being used.

time lag = time 1− time 0

time0 = read instructions

time1 = read instructions + encode data

Equation 2: Schema of which functions does the calculation of time-lag in publisher include when SEfile is not being
used.

time lag = time 1− time 0

time0 = read received data

time1 = read received data + decrypt + read decrypted file + decode data

Equation 3: Schema of which functions does the calculation of time-lag in subscriber include when SEfile is being used.

time lag = time 1− time 0

time0 = read received data

time1 = read received data + decode data

Equation 4: Schema of which functions does the calculation of time-lag in subscriber include when SEfile is not being
used.

33

4 Results and discussion

This section deals with the results of applying the explained methods in Section 3, and

discuss them taking into account the following aspects:

(1) If it is possible to encrypt and decrypt the exchange data

(2) If that process entails a communication time-lag between nodes which is appropriate

to tele-surgery.

To do so, the scenarios have been developed and the exchanged messages between the

parts have been observed, analysed and saved using Wireshark tool 2 - a network packet

analyzer that captures live packet data from one ore more network interfaces and displays

the packets with very detailed protocol information [29] - and ROS command-line tools

such as:

rostopic: it is a command-line tool for printing information about ROS Topics.

rostopic info → prints information about an active topic.

rostopic echo → prints messages that are being exchanged in that moment

to screen.

rosnode: it is a command-line tool for printing information about ROS Nodes.

rosnode list → lists active nodes.

rosnode info → prints information about a node.

The following results are explained divided in different sections depending of which sce-

nario is it involved.

4.1 Basic scenario

In the case of this scenario, as expected, the messages are sent in plain text and without

any kind of security. An example of some data exchanged is shown in Figure 33 where it

can be seen that the data is exactly the same as the one after being encode.

2 https://www.wireshark.org/

34

Figure 33: Plain data of a message sent via ROS.

To obtain this information the command “rostopic echo nameOfTopic” has been executed.

Due to the lack of security in ROS, in this scenario an attacker is able to eavesdrop

the communication and get some information about it. As an example of that, Figure 34

and Figure 35 - two different Wireshark captures of packets between Surgeon node and

Master node - show that an attacker could be able to know (among others):

1.- IP and MAC addresses of the nodes

2.- ROS topic

3.- nodes names

4.- information contained in a message

35

Figure 34: Basic scenario: Wireshark capture of a plain message when surgeon prints its data.

Capture taken from a Virtual Machine in the same network the nodes VMs are. The message shown is a message that
the surgeon sends to the master in which ROS topic is surgeon2master, the surgeon IP is 10.0.0.1 and its name, surgeon,
the master IP is 10.0.0.2, and its name, master. The message corresponds to one sent when surgeon execute the function
ROS INFO(), which is used to print data in the shell of a node.

Figure 35: Basic scenario: Wireshark capture of a plain message when surgeon send the motion data.

Capture taken from the master node Virtual Machine. The message shown is a message that the surgeon sends to the
master in which the surgeon IP is 10.0.0.1 the master IP is 10.0.0.2 and the data that is being sent is 3 -> 0.2 0.5 0.7.

4.2 Adding VPN to Basic scenario

A Wireshark capture of messages sent via VPN is shown in Figure 36. It seems that the

messages are still in plain text, but that is only caused because Wireshark is running in

36

master and the VPN server has already decrypted the data.

Nonetheless, in Figure 37 - which is another messages capture has been taken in the PC

that hosts the virtual machines- it is appreciated how data is encrypted and an external

agent is not able to know any information contained within a message.

Another difference between both figures, are the IP addresses: whereas in Figure 36 the

IPs correspond to the tun interfaces: surgeon’s is 10.8.0.6 and master’s, 10.8.0.1, in Figure

37 those are the public IPs: surgeon’s is 192.168.1.146 and master’s, 192.168.1.208.

Figure 36: Adding VPN scenario: Wireshark capture of messages in master Virtual Machine.

Capture taken from master Virtual Machine. The message shown is sent from surgeon to master including surgeon2master
ROS topic.

37

Figure 37: Adding VPN scenario: Wireshark capture of messages in external PC.

Capture taken from the PC which host the virtual machines. The message shown is sent from surgeon to master through
public IP addresses. The data is encrypted so no information could be known or deduced.

4.3 Adding SEcube to Basic scenario within VPN

In the final scenario the data sent via ROS is encrypted and authentication is required.

The first fact that let us know that effects is the content of the file created by the

encryption function. Figure 38 shows part of the binary data contained in the mentioned

file. The second one is that, when executing “rostopic echo nameOfTopic” - whose result

is available in Figure 39 - the data cannot be clearly understood because it is an amount

of bytes, whereas in the basic scenario (Figure 34, Section 4.1) the data could be easily

read and interpreted.

38

Figure 38: Encrypted data of file created using SEfile library.

Figure 39: Encrypted data of a message sent via ROS.

To obtain this information the command “rostopic echo nameOfTopic” has been executed.

Finally, the last fact that make encryption evident is the encryption and decryption

process shown in terminal when running each node. Figure 40 and 41 show those processes

when sending and receiving four example messages, respectively. Each message sent

correspond to the one received, they are delivered in order, for example, the motion data

of the first one is Init and its equivalent message in the decryption process is also the first

one which after decrypting shows the result: data is Init. That means that encryption

and decryption are successfully working.

Besides, Figure 42 shows the content sent via ROS. The amount of characters seen in

it corresponds to the data read from the encrypted file and that is going to be sent. In

39

this example, the mentioned file contains the result of encrypting 0, which is the encoded

data of Init, what in other words is that those characters mean Init.

Figure 40: Encryption process of 4 messages in terminal

40

Figure 41: Decryption process of 4 messages in terminal

Figure 42: Encryption process of a message in terminal and the encrypted content that is sent.

Our results demonstrated that the exchanged data can be actually encrypted and

decrypted with the SEcube that means it provides also with authentication given that

both the ROS nodes involved in the communication need to have a valid device connected

and the password to unlock it.

41

The results confirm that SEcube is a good choice for securing data but VPNs are also

needed because the connection between the nodes is possible through the tunnel and also

because otherwise an attacker will still be able to know the rostopic information, IP and

MAC addresses of the nodes and nodes names.

Summarizing, VPNs and SEcube has to be implemented together in order to create a

layered security structure with greater relevance in the data exchanged above all and to

have communication between nodes.

In Figure 43 it is seen that the average of publishing with encryption process is about

342 ms, subscribing with decryption 462 ms , publisher without implementing SEfile is

about 131 us and subscribing, 4 us.

In Section 2.1 it has been explained that the maximum recommended latency value is

about 300 ms which means that SEcube implementation is not well enough as it is created

at the moment and that the implementation needs to be improved because the sum of

the time-lags of encryption and decryption processes far exceed the recommendation.

Those high amounts could be caused by:

1. Process of encryption and decryption takes lot of time to be done.

2. Non-efficient code. For example: each creation of an encrypted data open and close

the device.

3. Creation and Reading of files depend on the power of the computer that is being

used to develop the experiment.

The steps of the first and the third one cannot be changed, because it depends of external

agents or it is the available material, so the only improvement that could be applied is

the second one, changing the connection to de DevKit device to be done just once instead

of every time a message is received or sent. The resulting more efficient code is available

in Appendix B.4 and the graphs in Graph 44.

Once the changes are applied, the recollected results have an encryption average of

126 ms and decryption one of 220 ms which means a decrease of more than half time.

Even so, the sum of those amounts is still higher than the recommended value mentioned,

but it gets closer to it.

42

(a) Time-lags of publisher using and not using SEcube as well as of subscriber using and not
using it.

(b) Time-lags of publisher using and not using SEcube.

(c) Time-lags of subscriber using and not using SEcube.

Figure 43: Time-lag graphs of encryption and decryption processes using and not using SEcube.

43

(a) Time-lags of publisher and subscriber using SEcubecube when connection with DevKit is
every time or just once.

(b) Time-lags of publisher using SEcubecube when connection with DevKit is every time or
just once.

(c) Time-lags of subscriber using SEcube when connection with DevKit is every time or just
once.

Figure 44: Time-lag graphs of encryption and decryption processes using SEcube. Comparison between the process of
opening and closing the device only once or every time a message is exchanged.

44

5 Conclusions

The implementation and analysis of this thesis have a double structure that is composed

of developing a representative scenario of a tele-surgery robot within security functional-

ities are implemented.

To address the challenges in analysis of tele-surgery communications security, we

leveraged on the SEcubeTM, an open hardware and software platform for security devel-

opments which combine different secure techniques such as signing and encryption.

We used SEcube together with one of its libraries, SEFile to protect the exchanged

messages based in Robot operating System. We presented a C and C++ code that can

provide security funtionalities and stopped adverse consequences of malicious attacks

(e.g., change motion commands) for what was also necessary the implementation of tun-

nelling protocols. Those were used to provide communication between the robot parts

and to encrypt ROS data that could not be encrypted using SEFile.

Besides, we further studied the delay that the process of encryption and decryption

add to the communication and our analysis showed the need of improving the process. Our

150 time-lags samples on the encryption and decryption code proved that the presented

implementation can apply safety but it is still not completely adequate to tele-surgery

systems if it is not more improved because the delay values were a little bit higher than

the recommended one.

In conclusion, the proposal method can be applied to tele-surgery systems because,

even the obtained values do not meet the specifications accurately - there will be a

dependency of the surgeon capabilities during the surgery -, it will not cause the system

to become unsafe.

45

6 Future work

Many opportunities to progress have been left for future work due to the lack of time

(i.e. learning how to program C and C++ efficiently will take lot of time).

Future work concerns deeper analysis based on the research described in this thesis. The

following are a few directions that can be explored in the future:

· Create a more efficient code for encryption and decryption: it has been

developed a code that works properly for the purpose it is created but it is probably

not efficient enough: the system is based on C and C++ programming but the

developer of the code does not have too much experience on it.

· Implement tunneling protocols directly via the SEcubeTM: the SElink

library could be used to detect ROS messages by filtering every connection and

encrypt the network streams. Implementing this library, VPN will not be necessary

as security provider, it will be just implemented to allow communications between

the different nodes.

· Implement the process in a real tele-surgery robot: the last step and final

goal is to implement the resulting process to a real scenario and analyse it for future

implementation in real surgeries.

46

Appendices

A Table of surgical procedures per year

Year Number of surgical procedures [Thousand]

2011 359

2012 450

2013 523

2014 570

2015 652

2016 753

2017 877

2018 990

Table 3: Number of Surgical Procedures per year from 2011 to 2018.

B Defence scenario

B.1 Basic scenario

B.1.1 Publisher file in surgeon

In order to create the instructions of the surgeon, it has been created a data.txt file (that
is saved in the same folder as the cpp files) which contains an example of movements.
Its first column represents the time, the second, the action and the third (if needed), the
movement that the patient robot has to apply.

0 I n i t

1 Pedal Down 1 .0 0 .0 0 .0

2 Pedal Down −0.5 0 .1 0 .5

3 Pedal Up

5 Pedal Down 0 .2 0 .5 0 .7

6 Pedal Down −1 0 .2 −0.3

7 Pedal Down 0 0 .1 −0.2

8 Pedal Down 0 .3 0 0

9 Pedal Down 0 .1 0 0 .4

10 Pedal Up

15 Pedal Down 0 .2 1 .5 −0.7

47

16 E−Stop

24 I n i t

25 Pedal Down 0 0 0 .1

26 Pedal Down 1 .2 −0.4 0

27 Pedal Up

28 E−Stop

29 I n i t

30 Pedal Down 0 .2 0 .5 −0.7

31 Pedal Down 0 .6 0 .9 −0.3

32 Pedal Down 0 1 0

33 Pedal Down 0 −0.4 −0.6

34 Pedal Up

The first step of the surgeon’s publisher file will be receive that instructions, which means,

in this case, read the file and convert the data to the format of the communication

protocol.

#inc lude ” ros / ro s . h”

#inc lude ” std msgs / St r ing . h”

#inc lude <sstream>

#inc lude <c s t d l i b >

#inc lude <s t r i ng>

#inc lude <iostream>

#inc lude <fstream>

i n t main (i n t argc , char ∗∗ argv)

{

// Var iab le i n i t i a l i z a t i o n

std : : s t r i n g sec [4 0] ;

s td : : s t r i n g data [4 0] ;

s td : : s t r i n g coord [4 0] ;

i n t i =0;

i n t t =0;

//Read motion data o f surgeon robot

std : : i f s t r e a m myReadFile ;

myReadFile . open (”/home/bea/ catk in ws / s r c / surgery / s r c / data . txt ”) ;

s td : : s t r i n g output ;

i f (myReadFile . i s o pe n ())

{

whi le (! myReadFile . e o f ())

{

// Var iab le i n i t i a l i z a t i o n f o r each i t e r a c t i o n

s i z e t pos = 0 ;

s i z e t pos2 = 0 ;

48

g e t l i n e (myReadFile , output) ;

// The l i n e format o f the f i l e i s :

[s e c] [movement] [motion coo rd ina t e s (i f needed)]

std : : s t r i n g d e l i m i t e r = ” ” ;

pos = output . f i n d (d e l i m i t e r) ;

s e c [i] = output . subs t r (0 , pos) ;

data [i]= output . subs t r (pos+1, output . l ength ()) ;

pos2 = data [i] . f i n d (d e l i m i t e r) ;

i f (pos2 != std : : s t r i n g : : npos)

{

coord [i]= data [i] . subs t r (pos2+1, data [i] . l ength ()) ;

data [i] = data [i] . subs t r (0 , pos2) ;

}

e l s e

{

coord [i]= ” ” ;

}

++i ;

}

}

myReadFile . c l o s e () ;

i =0;

//ROS parameters and i n i z i a l i z a t i o n

ros : : i n i t (argc , argv , ” surgeon ”) ;

ro s : : NodeHandle n ;

ro s : : Pub l i she r chatter pub = n . adve r t i s e<std msgs : : Str ing >(” surgeon2master ” , 1000) ;

ro s : : Rate l o o p r a t e (1 0) ;

s td : : s t r i n g value = ”2” ;

whi l e (ro s : : ok ())

{

i f (t==a t o i (s ec [i] . c s t r ()))

{

std msgs : : S t r ing msg ;

std : : s t r i ng s t r eam s s ;

// Asign value to send depending on the motion executed

i f (data [i]==”E−Stop ”)

{

value = ”0” ; //0=emergency stop

}

e l s e i f (data [i]== ” I n i t ”)

{

value = ”1” ; //1= i n i t i a z l i z a c i o n

49

}

e l s e i f (data [i]==”Pedal Up ”)

{

value = ”2” ; //2=pedal up

}

e l s e i f (data [i]==”Pedal Down ”)

{

value = ”3 −> ” + coord [i] ; //3=pedal down with i n f o de xyz

}

//Send

s s << value ;

msg . data = s s . s t r () ;

ROS INFO(”%s ” , msg . data . c s t r ()) ;

chatter pub . pub l i sh (msg) ;

ro s : : spinOnce () ;

l o o p r a t e . s l e e p () ;

++i ;

}

++t ;

}

r e turn 0 ;

}

B.1.2 Publisher and Subscriber file in master

The master node has a subscriber to the topic surgeon2master and a publisher to the

master2patient one. It reads the motion information from the first one and sends it

through the second.

#inc lude ” ros / ro s . h”

#inc lude ” std msgs / St r ing . h”

#inc lude <sstream>

#inc lude <c s t d l i b >

#inc lude <s t r i ng>

#inc lude <iostream>

// Var iab le i n i z i a l i z a t i o n

std : : s t r i n g value ;

bool pub l i sh ing=f a l s e ;

// Rece ipt o f messages over the ROS system from the surgeon

void chat t e rCa l lback (const std msgs : : S t r ing : : ConstPtr& msg)

{

50

ROS INFO(”The master heards : [%s] ” , msg−>data . c s t r ()) ;

va lue=msg−>data . c s t r () ;

pub l i sh ing=true ;

}

i n t main (i n t argc , char ∗∗ argv)

{

//ROS parameters and i n i z i a l i z a t i o n

ros : : i n i t (argc , argv , ” master ”) ;

ro s : : NodeHandle n l i s t e n e r ;

ro s : : NodeHandle n p u b l i s h e r ;

ro s : : Subsc r ibe r sub = n l i s t e n e r . s ub s c r i b e (” surgeon2master ” , 1000 , chat t e rCa l lback) ;

ro s : : Pub l i she r chatter pub = n p u b l i s h e r . adve r t i s e<std msgs : : Str ing >(” master2pat i ent ” , 1000) ;

ro s : : Rate l o o p r a t e (1 0) ;

whi l e (ro s : : ok ())

{

std msgs : : S t r ing msg ;

std : : s t r i ng s t r eam s s ;

s s << value ;

msg . data = s s . s t r () ;

//Send only i f r e c e i v e d

i f (pub l i sh ing){

chatter pub . pub l i sh (msg) ;

ROS INFO(” Sending . . . %s ” , msg . data . c s t r ()) ;

pub l i sh ing=f a l s e ;

}

ro s : : spinOnce () ;

l o o p r a t e . s l e e p () ;

}

r e turn 0 ;

}

B.1.3 Subscriber file in patient

The patient node is subscribed to the topic master2patient, where it receives the motion

information and execute it - in this case it only shows it on screen.

#inc lude ” ros / ro s . h”

#inc lude ” std msgs / St r ing . h”

#inc lude <sstream>

#inc lude <c s t d l i b >

#inc lude <s t r i ng>

#inc lude <iostream>

#inc lude <fstream>

51

// Rece ipt o f messages over the ROS system from the master

void chat t e rCa l lback (const std msgs : : S t r ing : : ConstPtr& msg)

{

// Var iab le i n i t i a l i z a t i o n

std : : s t r i n g value = ” ” ;

std : : s t r i n g data ;

std : : s t r i n g coord ;

data=msg−>data . c s t r () ;

// Convert r e c e i v e d data to l e g i b l e and comprehensive t ext and show i t on sc r e en

i f (data==”0”)

{

value = ”E−Stop ” ; //0=emergency stop

}

e l s e i f (data== ”1”)

{

value = ” I n i t ” ; //1= i n i t i a z l i z a c i o n

}

e l s e i f (data==”2”)

{

value = ”Pedal Up ” ; //2=pedal up

}

e l s e

{

std : : s t r i n g d e l i m i t e r = ” −> ” ;

s i z e t pos = 0 ;

pos = data . f i n d (d e l i m i t e r) ;

coord = data . subs t r (pos+4, data . l ength ()) ;

va lue = ”Pedal Down −> ” + coord ; //3=pedal down with coo rd ina t e s in fo rmat ion

}

ROS INFO(”The pat i en t heards : [%s] ” , va lue . c s t r ()) ;

}

i n t main (i n t argc , char ∗∗ argv)

{

//ROS parameters and i n i z i a l i z a t i o n

ros : : i n i t (argc , argv , ” p a t i e n t l i s t e n e r ”) ;

ro s : : NodeHandle n ;

ro s : : Subsc r ibe r sub = n . su b s c r i b e (” master2pat i ent ” , 1000 , chat t e rCa l lback) ;

ro s : : sp in () ;

r e turn 0 ;

}

Besides all of this, the CMakeLists.txt of each node has to be modified. As an example,
the master node file results as follows.

cmake minimum required (VERSION 2 . 8 . 3)

52

p r o j e c t (surgery)

f ind package (ca tk in REQUIRED COMPONENTS

roscpp

rospy

std msgs

message generat ion

)

Generate added messages and s e r v i c e s with any dependenc ies l i s t e d here

generate messages (

DEPENDENCIES

std msgs # Or other packages conta in ing msgs

)

###################################

catk in s p e c i f i c c o n f i g u r a t i o n

###################################

catk in package (

INCLUDE DIRS

LIBRARIES surgery

CATKIN DEPENDS roscpp

DEPENDS s y s t e m l i b

CATKIN DEPENDS message runtime

)

###########

Build

###########

i n c l u d e d i r e c t o r i e s (

inc lude

${catkin INCLUDE DIRS}

)

add executab le (master s r c / l i s t e n&pub master . cpp)

t a r g e t l i n k l i b r a r i e s (master ${catkin LIBRARIES })

add dependenc ies (master su rge ry gene ra t e mes sage s cpp)

B.1.4 Configuration of the network and ROS parameters

First of all, IP addresses of each interface of each machine has to be assigned. Secondly,

owing to ROS configuration in multiple machines the next commands are necessary to

execute in every terminal [7]:

53

user : ˜/ catk in ws$ export ROS MASTER URI=http :// master IP :11311

user : ˜/ catk in ws$ export ROS IP=IP currentMachine

where master IP is the IP address of the master, where roscore is going to be run,

and IP currentMachine is the IP of the node of the machine which is being configured.

After that, a route for one of the machines - surgeon or patient - is necessary because

the master IP only refers to a IP of one of the two existing networks. In the machine

which is not directly connected to the network of the IP master IP it is needed to type

the command:

$ sudo route add −net net1 netmask mask gw IP X

where net1 is the IP address of the distant network, mask is the netmask of the distant

network and IP X is the IP address of the directly connected node through which the

connection will be established.

Finally, roscore and the nodes are run.

B.2 Adding the VPN

To begin, the configuration of default routes of the previous scenario is not needed any

longer, so it is reset. Next, only one interface of each virtual machine is needed to be up

and it has to be configured as Bridged in order to access Internet.

Secondly, a VPN server - in Master node - and two clients - in surgeon and patient nodes

- are created with the steps explained by Digital Ocean in [27] and [28], as well as the

firewall configuration.

Once the VPN service is created and running, the configuration has to be adapted to ROS

specifications: the ROS port has to be allowed in the firewall and the ROS MASTER URI

and ROS IP has to be assigned using the tun interface created by the VPN service.

user : ˜/ catk in ws$ export ROS MASTER URI=http :// master tun IP :11311

user : ˜/ catk in ws$ export ROS IP=tun IP currentMachine

Finally, roscore and the nodes are run normally.

54

B.3 Adding the SEcubeTM. Open/Close de DevKit device ev-

ery time a message is sent/received.

On the basis of the code created in basic scenario, it has been developed a ROS commu-

nication between a publisher which encrypt the data file and a subscriber which decrypt

it. It has been developed taking care of the explanations mentioned in Section 3.2 and

in Figure 29.

B.3.1 Publisher file in surgeon

Next code correspond to the publisher node and following it, the encryption function
which is called. Due to the fact that the data to be sent are bytes, some changes had to be
applied in the type of content: instead of std msgs::String, it is used std msgs::ByteMultiArray.

#inc lude ” ros / ro s . h”

#inc lude ” std msgs / St r ing . h”

#inc lude <sstream>

#inc lude <c s t d l i b >

#inc lude <s t r i ng>

#inc lude <iostream>

#inc lude <fstream>

#inc lude <sstream>

us ing namespace std ;

#inc lude ” std msgs / MultiArrayLayout . h”

#inc lude ” std msgs / MultiArrayDimension . h”

#inc lude ” std msgs / ByteMultiArray . h”

// S E f i l e l i b r a r i e s

extern ”C” {

i n t encryptMessage (char f i lenameEncryptedChar [2 0 0]) ;

void p r i n t s n (u i n t 8 t ∗ v) ;

i n t decryptMessage () ;

}

i n t l i n e =1;

i n t t o t a l L i n e s =1;

std : : i f s t r e a m myReadFile , myFile ;

i n t readMotionData (std : : s t r i n g ∗ outputLine) ;

void createCmdFile (std : : s t r i n g content) ;

i n t main (i n t argc , char ∗∗ argv)

{

// Star t ROS connect ion

55

ro s : : i n i t (argc , argv , ” surgeon ”) ;

ro s : : NodeHandle n ;

ro s : : Pub l i she r chatter pub = n . adve r t i s e<std msgs : : ByteMultiArray>

(” surgeon2master ” , 1024) ;

ro s : : Rate l o o p r a t e (1 0) ;

std msgs : : ByteMultiArray msgEnc ;

whi l e (ro s : : ok ()){

//Read data

std : : s t r i n g motionData ;

whi l e (readMotionData(&motionData)==0){

p r i n t f (”MOTION DATA: %s \n” , motionData . c s t r ()) ;

// Write p l a i n f i l e with data o f motion

createCmdFile (motionData . c s t r ()) ;

// Encrypt f i l e content

char f i l ename [2 0 0] ;

char ∗encData ;

encryptMessage (f i l ename) ;

//Read content o f the encrypted f i l e

f i l ename [6 4] = ’\0 ’ ;

s td : : i f s t r e a m myReadFileEnc ;

myReadFileEnc . open (f i l ename) ;

char temp ;

msgEnc . data . c l e a r () ;

s td : : s t r i n g out ;

i f (myReadFileEnc . i s o pe n ())

{

whi le (! myReadFileEnc . e o f ())

{

temp = myReadFileEnc . get () ;

out=out+temp ;

msgEnc . data . push back (temp) ;

}

}

cout<<”ENCRYPTED DATA: \n”<<out<<”\n ” ;

myReadFileEnc . c l o s e () ;

// Publ i sh v ia ROS

chatter pub . pub l i sh (msgEnc) ;

// s l e e p (5) ;

ro s : : spinOnce () ;

l o o p r a t e . s l e e p () ;

}

ro s : : shutdown () ;

}

r e turn 0 ;

}

i n t readMotionData (std : : s t r i n g ∗ outputLine){

56

i f (l i n e ==1){

std : : s t r i n g output ;

myReadFile . open (”/home/bea/ catk in ws / s r c / surgery / s r c / data . txt ”) ;

i f (myReadFile . i s o pe n ())

{

whi le (g e t l i n e (myReadFile , output))

{

t o t a l L i n e s ++;

}

}

myReadFile . c l o s e () ;

myFile . open (”/home/bea/ catk in ws / s r c / surgery / s r c / data . txt ”) ;

} e l s e i f (l i n e==t o t a l L i n e s)

{

myReadFile . c l o s e () ;

r e turn 1 ;

}

i f (myFile . i s o pe n ())

{

g e t l i n e (myFile ,∗ outputLine) ;

}

++l i n e ;

r e turn 0 ;

}

void createCmdFile (std : : s t r i n g content){

//Encode data

std : : s t r i n g sec ;

s td : : s t r i n g data ;

std : : s t r i n g coord ;

std : : s t r i n g d e l i m i t e r = ” ” ;

s i z e t pos = 0 ;

s i z e t pos2 = 0 ;

std : : s t r i n g value =”2”;

pos = content . f i n d (d e l i m i t e r) ;

s e c = content . subs t r (0 , pos) ;

data= content . subs t r (pos+1, content . l ength ()) ;

pos2 = data . f i n d (d e l i m i t e r) ;

i f (pos2 != std : : s t r i n g : : npos)

{

coord= data . subs t r (pos2 +1, data . l ength ()) ;

data = data . subs t r (0 , pos2) ;

}

e l s e

57

{

coord= ” ” ;

}

i f (data==”E−Stop ”)

{

value = ”0” ; //0=emergency stop

}

e l s e i f (data== ” I n i t ”)

{

value = ”1” ; //1= i n i t i a z l i z a c i o n

}

e l s e i f (data==”Pedal Up ”)

{

value = ”2” ; //2=pedal up

}

e l s e i f (data==”Pedal Down ”)

{

value = ”3 −> ” + coord ; //3=pedal down with motion i n f o

}

// Create p l a i n f i l e

std : : s t r i ng s t r eam s s ;

std msgs : : S t r ing msg ;

s s << value ;

msg . data = s s . s t r () ;

s td : : o f s tream arch ivo (” message . txt ”) ;

a rch ivo << msg . data . c s t r () << ’\n ’ ;

a rch ivo . c l o s e () ;

}

/∗ ∗∗∗∗ ENCRYPTION FUNCTION ∗∗∗∗ ∗/

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

#inc lude <s tdde f . h>

#inc lude <s t d i n t . h>

#inc lude <s tdboo l . h>

#inc lude ” se3 /L1 . h”

#inc lude ” S E f i l e . h”

s t a t i c u i n t 8 t p i n u s e r [3 2] = {

’u ’ , ’ s ’ , ’ e ’ , ’ r ’ , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,0 ,0 ,0

58

} ;

s e 3 s e s s i o n s ;

char nameEncr=NULL;

void p r i n t s n (u i n t 8 t ∗ v) {

s i z e t i ;

f o r (i = 0 ; i < SE3 SERIAL SIZE ; i++) {

p r i n t f (”%u ” , (unsigned) v [i]) ;

}

p r i n t f (”\n ”) ;

r e turn ;

}

char ∗ encryptMessage (){

char f i lenameEncryptedChar [2 0 0] ;

//open SEcube

s e 3 d i s c o i t i t ;

s e 3 d e v i c e dev ;

u i n t 1 6 t r e t u r n v a l u e = 0 ;

bool l o g g e d i n = f a l s e ;

p r i n t f (” Looking f o r SEcube d e v i c e s . . . \ n ”) ;

/∗ L i s t a l l SEcube attached ∗/

L 0 d i s c o v e r i n i t (& i t) ;

whi l e (L0 d i s cove r nex t (& i t)) {

p r i n t f (” SEcube found !\ nInfo :\n ”) ;

p r i n t f (” Path :\ t %l s \n” , i t . d e v i c e i n f o . path) ;

p r i n t f (” S e r i a l Number : ”) ;

p r i n t s n (i t . d e v i c e i n f o . s e r i a l n o) ;

// p r i n t f (”\n\n ”) ;

/∗ Open SEcube dev i c e ∗/

r e t u r n v a l u e = L0 open(&dev , &(i t . d e v i c e i n f o) , SE3 TIMEOUT) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to open dev i ce \n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

59

p r i n t f (” Device i s now open\n ”) ;

}

/∗ Log in as user ∗/

r e t u r n v a l u e = L1 log in (&s , &dev , p in use r , SE3 ACCESS USER) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to log in as user \n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Logged in as user \n ”) ;

}

/∗ Set time f o r crypto f u n c t i o n s ∗/

r e t u r n v a l u e = L1 c ryp to s e t t ime (&s , (u i n t 3 2 t) time (0)) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to s e t time\n ”) ;

L1 logout (&s) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (”Time s e t \n ”) ;

}

/∗ ∗/

/∗ Set Secure Environment∗/

r e t u r n v a l u e = s e c u r e i n i t (&s , −1, SE3 ALGO MAX+1);

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to s e t s e cu re environment\n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Secure environment s e t \n ”) ;

}

/∗ ∗/

/∗ S E f i l e ∗/

char p la inF i l ePath =”/home/bea/ catk in ws /message . txt ” ;

SEFILE FHANDLE s e f i l e f i l e , s e f i l e f i l e 2 ;

u i n t 1 6 t l e n e n c f i l e n a m e = 0 ;

char f i l enameEncrypted ;

u i n t 3 2 t p la inFi l eLength , bytesRead ;

u i n t 8 t ∗ b u f f e r ;

char f i lenameDecryptedChar [2 0 0] ;

/∗Encryption ∗/

p r i n t f (” Encrypting f i l e . . . \ n ”) ;

60

FILE ∗ p l a i n f i l e = fopen (” message . txt ” , ” r ”) ;

char ∗ p la inF i l eContent ;

long p l a i n f i l e l e n ;

i f (! p l a i n f i l e){

r e turn f a l s e ;

}

// read p l a i n f i l e & save in array o f bytes

f s e e k (p l a i n f i l e , 0 , SEEK END) ; // Jump to the end o f the f i l e

p l a i n f i l e l e n = f t e l l (p l a i n f i l e) ; // Get the cur rent byte o f f s e t in the f i l e

rewind (p l a i n f i l e) ; // Jump back to the beg inning o f the f i l e

p l a inF i l eContent = (char ∗) mal loc ((p l a i n f i l e l e n +1)∗ s i z e o f (char)) ;

// Enough memory f o r f i l e + \0

f r ead (p la inFi l eContent , p l a i n f i l e l e n , 1 , p l a i n f i l e) ; // Read in the e n t i r e f i l e

f c l o s e (p l a i n f i l e) ; // Close the f i l e

i f (c ryp to f i l ename (”/home/bea/ catk in ws /message . txt ” , f i lenameEncryptedChar ,

&l e n e n c f i l e n a m e) != 0){

r e turn f a l s e ;

}

// Open encrypted f i l e

i f (s ecure open (”/home/bea/ catk in ws /message . txt ” , &s e f i l e f i l e , SEFILE WRITE,

SEFILE NEWFILE) != 0){

r e turn f a l s e ;

}

i f (s e c u r e w r i t e (& s e f i l e f i l e , (u i n t 8 t ∗) p la inFi l eContent , p l a i n f i l e l e n) != 0){

s e c u r e c l o s e (& s e f i l e f i l e) ;

r e turn f a l s e ;

}

s e c u r e c l o s e (& s e f i l e f i l e) ;

p r i n t f (” Encrypted ”) ;

p r i n t f (” in ”) ;

p r i n t f (f i lenameEncryptedChar) ;

p r i n t f (”\n ”) ;

/∗ Log out ∗/

s e c u r e f i n i t () ;

r e t u r n v a l u e = L1 logout (&s) ;

61

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to log out\n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Logged out\n ”) ;

}

/∗ ∗/

/∗ Close dev i c e ∗/

L 0 c l o s e (&dev) ;

/∗ ∗/

}

r e turn f i lenameEncryptedChar ;

}

The files provided by the library SEfile, such as SEfile.c and SEfile.h are compulsory,

as well as the se3 folder with the files of SHA, AES, L0, L1 and more files of SEcube.

Besides, due to the fact that SEcube and SEfile files are created in C but ROS files

has been created with C++, the CMakeLists.txt has been modified including

a d d l i b r a r y (encrypt s r c / S E f i l e / se3 / aes256 . c s r c / S E f i l e / se3 / sha256 . c s r c / S E f i l e / se3 / crc16 . c

s r c / S E f i l e / se3 /pbkdf2 . c s r c / S E f i l e / se3 /se3comm . c s r c / S E f i l e / se3 /se3 common . c

s r c / S E f i l e / se3 /L0 . c s r c / S E f i l e / se3 /L1 . c s r c / S E f i l e / S E f i l e . c s r c / S E f i l e / encryptMessage . c)

and changing the following lines

add executab le (surgeon s r c / S E f i l e / se3 / aes256 . c s r c / S E f i l e / se3 / sha256 . c

s r c / S E f i l e / se3 / crc16 . c s r c / S E f i l e / se3 /pbkdf2 . c s r c / S E f i l e / se3 /se3comm . c

s r c / S E f i l e / se3 /se3 common . c s r c / S E f i l e / se3 /L0 . c s r c / S E f i l e / se3 /L1 . c

s r c / S E f i l e / S E f i l e . c s r c / S E f i l e / encryptMessage . c s r c / pub l i she r surgeon2maste r . cpp)

t a r g e t l i n k l i b r a r i e s (surgeon encrypt ${catkin LIBRARIES })

B.3.2 Publisher and Subscriber file in Master

The master node code is the same as the one presented in the Basic Scenario of Appendix
B.1 but with the message type variable changed to std msgs::ByteMultiArray, the includes
that correspond and how to read the message content. The message contents are read as
an array:

#inc lude ” ros / ro s . h”

#inc lude ” std msgs / St r ing . h”

#inc lude <sstream>

#inc lude <c s t d l i b >

62

#inc lude <s t r i ng>

#inc lude <iostream>

#inc lude ” std msgs / MultiArrayLayout . h”

#inc lude ” std msgs / MultiArrayDimension . h”

#inc lude ” std msgs / ByteMultiArray . h”

std : : s t r i n g value ;

bool pub l i sh ing=f a l s e ;

std msgs : : ByteMultiArray msgEnc ;

void chat t e rCa l lback (const std msgs : : ByteMultiArray : : ConstPtr& msg)

{

char Arr [1 0 2 4] ;

i n t i =0;

memset (Arr , 0 , 1 0 2 4) ;

msgEnc . data . c l e a r () ;

f o r (std : : vector<s igned char > : : c o n s t i t e r a t o r i t = msg−>data . begin () ;

i t != msg−>data . end () ; ++i t)

{

Arr [i] = ∗ i t ;

i ++;

}

f o r (i = 0 ; i <1024; i ++){

msgEnc . data . push back (Arr [i]) ;

}

ROS INFO(”The master heards something ”) ;

pub l i sh ing=true ;

}

i n t main (i n t argc , char ∗∗ argv)

{

ro s : : i n i t (argc , argv , ” master ”) ;

ro s : : NodeHandle n l i s t e n e r ;

ro s : : NodeHandle n p u b l i s h e r ;

// Subscr ibe

ro s : : Subsc r ibe r sub = n l i s t e n e r . s ub s c r i b e (” surgeon2master ” , 1024 , chatterCa l lback ,

ro s : : TransportHints () . tcpNoDelay ()) ;

// Publ i sh

ro s : : Pub l i she r chatter pub = n p u b l i s h e r . adve r t i s e<std msgs : : ByteMultiArray>

(” master2pat i ent ” , 1024) ;

ro s : : Rate l o o p r a t e (1 0) ;

whi l e (ro s : : ok ())

{

63

std : : s t r i ng s t r eam s s ;

i f (pub l i sh ing){

chatter pub . pub l i sh (msgEnc) ;

ROS INFO(” Sending . . . ”) ;

pub l i sh ing=f a l s e ;

}

ro s : : spinOnce () ;

l o o p r a t e . s l e e p () ;

}

r e turn 0 ;

}

There is no more difference because the master do not have to work with the data so it

does not matter that it does not understand what it is said in the communication between

the surgeon and the patient nodes, there is no need to use SEfile nor SEcube.

B.3.3 Subscriber file in patient

Next code correspond to the subscriber node and following it, the decryption function
which is called.

#inc lude ” ros / ro s . h”

#inc lude ” std msgs / St r ing . h”

#inc lude <sstream>

#inc lude <c s t d l i b >

#inc lude <s t r i ng>

#inc lude <iostream>

#inc lude <fstream>

#inc lude <sstream>

us ing namespace std ;

#inc lude ” std msgs / MultiArrayLayout . h”

#inc lude ” std msgs / MultiArrayDimension . h”

#inc lude ” std msgs / ByteMultiArray . h”

// S E f i l e l i b r a r i e s

extern ”C” {

i n t decryptMessage (char Arr [1 0 2 4]) ;

void p r i n t s n (u i n t 8 t ∗ v) ;

}

s t r i n g decodeData (std : : s t r i n g data) ;

void readDecryptedData (std : : s t r i n g ∗ out) ;

char Arr [1 0 2 4] ;

i n t i =0;

64

// Rece ipt o f messages over the ROS system from the master

void chat t e rCa l lback (const std msgs : : ByteMultiArray : : ConstPtr& msg)

{

//Read content o f message

i =0;

memset (Arr , 0 , 1 0 2 4) ;

f o r (std : : vector<s igned char > : : c o n s t i t e r a t o r i t = msg−>data . begin () ;

i t != msg−>data . end () ; ++i t)

{

Arr [i] = ∗ i t ;

i ++;

}

// Decrypt r e c e i v e d data

decryptMessage (Arr) ;

//Read decrypted data

std : : s t r i n g out =””;

readDecryptedData(&out) ;

//Decode data

out=decodeData (out) ;

// Fina l a c t i on

ROS INFO(”The pat i en t heards : [%s] ” , out . c s t r ()) ;

}

i n t main (i n t argc , char ∗∗ argv)

{

ro s : : i n i t (argc , argv , ” pa t i en t ”) ;

ro s : : NodeHandle n ;

ro s : : Subsc r ibe r sub = n . su b s c r i b e (” master2pat i ent ” , 1024 , chat t e rCa l lback) ;

ro s : : sp in () ;

r e turn 0 ;

}

s t r i n g decodeData (std : : s t r i n g data){

std : : s t r i n g value = ”” ;

i f (data==”0”)

{

value = ”E−Stop ” ; //0=emergency stop

}

e l s e i f (data== ”1”)

{

value = ” I n i t ” ; //1= i n i t i a z l i z a c i o n

}

65

e l s e i f (data==”2”)

{

value = ”Pedal Up ” ; //2=pedal up

}

e l s e

{

std : : s t r i n g d e l i m i t e r = ” −> ” ;

s i z e t pos = 0 ;

pos = data . f i n d (d e l i m i t e r) ;

s td : : s t r i n g coord =””;

i f (pos != std : : s t r i n g : : npos){

coord = data . subs t r (pos+4, data . l ength ()) ;

va lue = ”Pedal Down −> ” + coord ;

} e l s e {

value=”COMMAND NOT VALID” ;

}

}

r e turn value ;

}

void readDecryptedData (std : : s t r i n g ∗ out){

std : : i f s t r e a m myReadFile ;

myReadFile . open (”/home/bea/ catk in ws /message . txt ”) ;

s td : : s t r i n g output ;

std : : s t r i n g l i n e ;

i f (myReadFile . i s o pe n ())

{

∗out =””;

whi l e (! myReadFile . e o f ())

{

g e t l i n e (myReadFile , l i n e) ;

∗out=∗out + l i n e ;

}

}

}

/∗ ∗∗∗∗ DECRYPTION FUNCTION ∗∗∗∗ ∗/

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

#inc lude <s tdde f . h>

#inc lude <s t d i n t . h>

#inc lude <s tdboo l . h>

#inc lude <sys / s t a t . h>

#inc lude ” se3 /L1 . h”

#inc lude ” S E f i l e . h”

66

s t a t i c u i n t 8 t p i n u s e r [3 2] = {

’u ’ , ’ s ’ , ’ e ’ , ’ r ’ , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,0 ,0 ,0

} ;

s e 3 s e s s i o n s ;

void p r i n t s n (u i n t 8 t ∗ v) {

s i z e t i ;

f o r (i = 0 ; i < SE3 SERIAL SIZE ; i++) {

p r i n t f (”%u ” , (unsigned) v [i]) ;

}

p r i n t f (”\n ”) ;

r e turn ;

}

i n t decryptMessage (char ∗ Arr [1 0 2 4]) {

char f i lenameEncryptedChar [6 4] ;

//open SEcube

s e 3 d i s c o i t i t ;

s e 3 d e v i c e dev ;

u i n t 1 6 t r e t u r n v a l u e = 0 ;

bool l o g g e d i n = f a l s e ;

p r i n t f (” Looking f o r SEcube d e v i c e s . . . \ n ”) ;

/∗ L i s t a l l SEcube attached ∗/

L 0 d i s c o v e r i n i t (& i t) ;

whi l e (L0 d i s cove r nex t (& i t)) {

p r i n t f (” SEcube found !\ nInfo :\n ”) ;

p r i n t f (” Path :\ t %l s \n” , i t . d e v i c e i n f o . path) ;

p r i n t f (” S e r i a l Number : ”) ;

p r i n t s n (i t . d e v i c e i n f o . s e r i a l n o) ;

// p r i n t f (”\n\n ”) ;

/∗ Open SEcube dev i c e ∗/

r e t u r n v a l u e = L0 open(&dev , &(i t . d e v i c e i n f o) , SE3 TIMEOUT) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to open dev i ce \n ”) ;

r e turn (! SE3 OK) ;

67

}

e l s e {

p r i n t f (” Device i s now open\n ”) ;

}

/∗ Log in as user ∗/

r e t u r n v a l u e = L1 log in (&s , &dev , p in use r , SE3 ACCESS USER) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to l og in as user \n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Logged in as user \n ”) ;

}

/∗ Set time f o r crypto f u n c t i o n s ∗/

r e t u r n v a l u e = L1 c ryp to s e t t ime (&s , (u i n t 3 2 t) time (0)) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to s e t time\n ”) ;

L1 logout (&s) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (”Time s e t \n ”) ;

}

/∗ ∗/

/∗ Set Secure Environment∗/

r e t u r n v a l u e = s e c u r e i n i t (&s , −1, SE3 ALGO MAX+1);

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to s e t s e cu re environment\n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Secure environment s e t \n ”) ;

}

/∗ ∗/

/∗ S E f i l e ∗/

char p la inF i l ePath =”/home/bea/ catk in ws /message . txt ” ;

SEFILE FHANDLE s e f i l e f i l e , s e f i l e f i l e 2 ;

u i n t 1 6 t l e n e n c f i l e n a m e = 0 ;

68

char f i l enameEncrypted ;

u i n t 3 2 t p la inFi l eLength , bytesRead ;

u i n t 8 t ∗ b u f f e r ;

char f i lenameDecryptedChar [2 0 0] ;

/∗ CREATE FILE WITH ENCRYPTED CONTENT ∗/

i f (c ryp to f i l ename (” message . txt ” , f i lenameEncryptedChar ,

&l e n e n c f i l e n a m e) != 0){

r e turn f a l s e ;

}

f i lenameEncryptedChar [l e n e n c f i l e n a m e]= ’\0 ’ ;

FILE ∗ f i l eW ;

umask (0 0 0 0) ;

f i l eW = fopen (fi lenameEncryptedChar , ”wb”) ;

f w r i t e (Arr , 1 , 1024 , f i l eW) ;

f c l o s e (f i l eW) ;

/∗ ∗/

/∗ Decryption ∗/

p r i n t f (” Decrypting f i l e . . . \n ”) ;

// Open encrypted f i l e

i f (s ecure open (” message . txt ” , &s e f i l e f i l e 2 ,

SEFILE READ, SEFILE OPEN) != 0){

p r i n t f (” Fa i l u r e opening Encrypted F i l e ”) ;

r e turn f a l s e ;

}

// Get the s i z e o f the r e s u l t i n g p l a i n f i l e

i n t tmpState=g e t f i l e s i z e (& s e f i l e f i l e 2 , &p la inF i l eLength) ;

i f (tmpState != 0){

p r i n t f (”ERROR SEFILE %d\n” , tmpState) ;

s e c u r e c l o s e (& s e f i l e f i l e 2) ;

p r i n t f (” Fa i l u r e g e t t i n g s i z e o f the F i l e ”) ;

r e turn f a l s e ;

}

// Get o r i g i n a l f i l ename

i f (d e c r y p t f i l e h a n d l e (& s e f i l e f i l e 2 ,

f i lenameDecryptedChar) != 0){

s e c u r e c l o s e (& s e f i l e f i l e 2) ;

p r i n t f (” Fa i l u r e decrypt ing name o f the F i l e ”) ;

69

r e turn f a l s e ;

}

b u f f e r = (u i n t 8 t ∗) c a l l o c (p la inFi l eLength ,

s i z e o f (u i n t 8 t)) ;

i f (s e c u r e r e a d (& s e f i l e f i l e 2 , bu f f e r , p la inFi l eLength ,

&bytesRead) != 0) {

s e c u r e c l o s e (& s e f i l e f i l e 2) ;

p r i n t f (” Fa i l u r e s e c u r e r e a d ”) ;

r e turn f a l s e ;

}

// Create a p l a i n f i l e to s t o r e the p l a i n content

FILE ∗ f i l e D e c ;

f i l e D e c = fopen (f i lenameDecryptedChar , ”w”) ;

f p r i n t f (f i l eDec , b u f f e r) ;

f c l o s e (f i l e D e c) ;

s e c u r e c l o s e (& s e f i l e f i l e 2) ;

//chmod(fi lenameEncryptedChar , 0666) ;

// char d i r [100]=”/home/bea/ catk in ws /” ;

// s t r c a t (d i r ,& fi lenameEncryptedChar) ;

/∗ i n t r e t = remove (f i lenameEncryptedChar) ;

p r i n t f (”REMOVE %d\n” , r e t) ;

∗/

/∗ ∗/

/∗ Log out ∗/

s e c u r e f i n i t () ;

r e t u r n v a l u e = L1 logout (&s) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to log out\n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Logged out\n ”) ;

}

/∗ ∗/

/∗ Close dev i c e ∗/

L 0 c l o s e (&dev) ;

/∗ ∗/

}

70

r e turn 0 ;

}

Besides, as in publisher node, a modification of the file CMakeList.txt is needed

including the corresponding decryption files.

B.4 Adding the SEcubeTM. Open/Close de DevKit device only

once.

B.4.1 Publisher file in surgeon

The main part of the code that changes comparing to the section B.3 is the encryption
function due to it has become three different functions: openSEcube(), closeSEcube()
and encryptMessage(). In the file of ROS code, the only changes are where to call the
two first mention functions:

/∗ ∗∗∗∗ ROS MAIN ∗∗∗∗ ∗/

i n t main (i n t argc , char ∗∗ argv)

{

// Star t ROS connect ion

ros : : i n i t (argc , argv , ” surgeon ”) ;

ro s : : NodeHandle n ;

ro s : : Pub l i she r chatter pub = n . adve r t i s e<std msgs : : ByteMultiArray >(” surgeon2master ” , 1024) ;

ro s : : Rate l o o p r a t e (1 0) ;

std msgs : : ByteMultiArray msgEnc ;

whi l e (ro s : : ok ()){

//Read data

std : : s t r i n g motionData ;

i f (openSEcube () !=0){

r e turn 1 ;

}

whi le (readMotionData(&motionData)==0){

p r i n t f (”MOTION DATA: %s \n” , motionData . c s t r ()) ;

boost : : chrono : : h i g h r e s o l u t i o n c l o c k : : t ime po int s t a r t = boost : : chrono : :

h i g h r e s o l u t i o n c l o c k : : now () ;

// Write p l a i n f i l e with data o f motion

createCmdFile (motionData . c s t r ()) ;

// Encrypt f i l e content

char f i l ename [2 0 0] ;

char ∗encData ;

encryptMessage (f i l ename) ;

//Read content o f the encrypted f i l e

71

f i l ename [6 4] = ’\0 ’ ;

s td : : i f s t r e a m myReadFileEnc ;

myReadFileEnc . open (f i l ename) ;

char temp ;

msgEnc . data . c l e a r () ;

s td : : s t r i n g out ;

i f (myReadFileEnc . i s o pe n ())

{

whi le (! myReadFileEnc . e o f ())

{

temp = myReadFileEnc . get () ;

out=out+temp ;

msgEnc . data . push back (temp) ;

}

}

// cout<<”ENCRYPTED DATA: \n”<<out<<”\n ” ;

myReadFileEnc . c l o s e () ;

// Publ i sh v ia ROS

boost : : chrono : : h i g h r e s o l u t i o n c l o c k : : t ime po int f i n i s h = boost : : chrono

: : h i g h r e s o l u t i o n c l o c k : : now () ;

chatter pub . pub l i sh (msgEnc) ;

// s l e e p (5) ;

ro s : : spinOnce () ;

l o o p r a t e . s l e e p () ;

arch ivot ime << boost : : chrono : : dura t i on ca s t<boost : : chrono : : nanoseconds>

(f i n i s h−s t a r t) << ’\n ’ ;

}

arch ivot ime . c l o s e () ;

ro s : : shutdown () ;

c loseSEcube () ;

}

r e turn 0 ;

}

/∗ ∗∗∗∗ ENCRYPTION FUNCTIONS ∗∗∗∗ ∗/

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

#inc lude <s tdde f . h>

#inc lude <s t d i n t . h>

#inc lude <s tdboo l . h>

#inc lude ” se3 /L1 . h”

#inc lude ” S E f i l e . h”

s t a t i c u i n t 8 t p i n u s e r [3 2] = {

’u ’ , ’ s ’ , ’ e ’ , ’ r ’ , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

72

0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,0 ,0 ,0

} ;

s e 3 s e s s i o n s ;

s e 3 d e v i c e dev ;

u i n t 1 6 t r e t u r n v a l u e = 0 ;

char nameEncr=NULL;

void p r i n t s n (u i n t 8 t ∗ v) {

s i z e t i ;

f o r (i = 0 ; i < SE3 SERIAL SIZE ; i++) {

p r i n t f (”%u ” , (unsigned) v [i]) ;

}

p r i n t f (”\n ”) ;

r e turn ;

}

i n t openSEcube (){

//open SEcube and c o n f i g u r e the environment

s e 3 d i s c o i t i t ;

bool l o g g e d i n = f a l s e ;

p r i n t f (” Looking f o r SEcube d e v i c e s . . . \ n ”) ;

/∗ L i s t a l l SEcube attached ∗/

L 0 d i s c o v e r i n i t (& i t) ;

whi l e (L0 d i s cove r nex t (& i t)) {

p r i n t f (” SEcube found !\ nInfo :\n ”) ;

p r i n t f (” Path :\ t %l s \n” , i t . d e v i c e i n f o . path) ;

p r i n t f (” S e r i a l Number : ”) ;

p r i n t s n (i t . d e v i c e i n f o . s e r i a l n o) ;

// p r i n t f (”\n\n ”) ;

/∗ Open SEcube dev i c e ∗/

r e t u r n v a l u e = L0 open(&dev , &(i t . d e v i c e i n f o) , SE3 TIMEOUT) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to open dev i ce \n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Device i s now open\n ”) ;

}

/∗ Log in as user ∗/

73

r e t u r n v a l u e = L1 log in (&s , &dev , p in use r , SE3 ACCESS USER) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to log in as user \n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Logged in as user \n ”) ;

}

/∗ Set time f o r crypto f u n c t i o n s ∗/

r e t u r n v a l u e = L1 c ryp to s e t t ime (&s , (u i n t 3 2 t) time (0)) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to s e t time\n ”) ;

L1 logout (&s) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (”Time s e t \n ”) ;

}

/∗ ∗/

/∗ Set Secure Environment∗/

r e t u r n v a l u e = s e c u r e i n i t (&s , −1, SE3 ALGO MAX+1);

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to s e t s e cu re environment\n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Secure environment s e t \n ”) ;

}

/∗ ∗/

}

r e turn 0 ;

}

i n t encryptMessage (char f i lenameEncryptedChar [2 0 0]) {

/∗ S E f i l e ∗/

char p la inF i l ePath =”/home/bea/ catk in ws /message . txt ” ;

SEFILE FHANDLE s e f i l e f i l e , s e f i l e f i l e 2 ;

u i n t 1 6 t l e n e n c f i l e n a m e = 0 ;

char f i l enameEncrypted ;

u i n t 3 2 t p la inFi l eLength , bytesRead ;

char f i lenameDecryptedChar [2 0 0] ;

/∗Encryption ∗/

74

p r i n t f (” Encrypting f i l e . . . \ n ”) ;

FILE ∗ p l a i n f i l e = fopen (” message . txt ” , ” r ”) ;

char ∗ p la inF i l eContent ;

long p l a i n f i l e l e n ;

i f (! p l a i n f i l e){

r e turn f a l s e ;

}

// read p l a i n f i l e & save in array o f bytes

f s e e k (p l a i n f i l e , 0 , SEEK END) ; // Jump to the end o f the f i l e

p l a i n f i l e l e n = f t e l l (p l a i n f i l e) ; // Get the cur rent byte o f f s e t in the f i l e

rewind (p l a i n f i l e) ; // Jump back to the beg inning o f the f i l e

p l a inF i l eContent = (char ∗) mal loc ((p l a i n f i l e l e n +1)∗ s i z e o f (char)) ;

f r ead (p la inFi l eContent , p l a i n f i l e l e n , 1 , p l a i n f i l e) ; // Read in the e n t i r e f i l e

f c l o s e (p l a i n f i l e) ; // Close the f i l e

i f (c ryp to f i l ename (” message . txt ” , f i lenameEncryptedChar , &l e n e n c f i l e n a m e) != 0){

r e turn f a l s e ;

}

// Open encrypted f i l e

i f (s ecure open (” message . txt ” , &s e f i l e f i l e , SEFILE WRITE, SEFILE NEWFILE) != 0){

r e turn f a l s e ;

}

i f (s e c u r e w r i t e (& s e f i l e f i l e , (u i n t 8 t ∗) p la inFi l eContent , p l a i n f i l e l e n) != 0){

s e c u r e c l o s e (& s e f i l e f i l e) ;

r e turn f a l s e ;

}

s e c u r e c l o s e (& s e f i l e f i l e) ;

//}

r e turn 0 ;

}

i n t c loseSEcube (){

/∗ Log out ∗/

s e c u r e f i n i t () ;

r e t u r n v a l u e = L1 logout (&s) ;

i f (SE3 OK != r e t u r n v a l u e) {

75

p r i n t f (” Fa i l u r e to log out\n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Logged out\n ”) ;

}

/∗ ∗/

/∗ Close dev i c e ∗/

L 0 c l o s e (&dev) ;

/∗ ∗/

re turn 0 ;

}

B.4.2 Publisher and Subscriber file in Master

Master’s code is exactly the same one as in section B.3.

B.4.3 Subscriber file in patient

The main part of the code that changes comparing to the section B.3 is the encryption
function due to it has become three different functions: openSEcube(), closeSEcube()
and decryptMessage(). In the file of ROS code, the only changes are where to call the
two first mention functions:

/∗ ∗∗∗∗ ROS MAIN ∗∗∗∗ ∗/

i n t main (i n t argc , char ∗∗ argv)

{

openSEcube () ;

ro s : : i n i t (argc , argv , ” pa t i en t ”) ;

ro s : : NodeHandle n ;

ro s : : Subsc r ibe r sub = n . su b s c r i b e (” master2pat i ent ” , 1024 , chat t e rCa l lback) ;

ro s : : sp in () ;

c loseSEcube () ;

r e turn 0 ;

}

/∗ ∗∗∗∗ DECRYPTION FUNCTIONS ∗∗∗∗ ∗/

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

#inc lude <s tdde f . h>

#inc lude <s t d i n t . h>

#inc lude <s tdboo l . h>

#inc lude <sys / s t a t . h>

#inc lude ” se3 /L1 . h”

76

#inc lude ” S E f i l e . h”

s t a t i c u i n t 8 t p i n u s e r [3 2] = {

’u ’ , ’ s ’ , ’ e ’ , ’ r ’ , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,0 ,0 ,0

} ;

s e 3 s e s s i o n s ;

s e 3 d e v i c e dev ;

u i n t 1 6 t r e t u r n v a l u e = 0 ;

void p r i n t s n (u i n t 8 t ∗ v) {

s i z e t i ;

f o r (i = 0 ; i < SE3 SERIAL SIZE ; i++) {

p r i n t f (”%u ” , (unsigned) v [i]) ;

}

p r i n t f (”\n ”) ;

r e turn ;

}

i n t openSEcube (){

//open SEcube

s e 3 d i s c o i t i t ;

bool l o g g e d i n = f a l s e ;

p r i n t f (” Looking f o r SEcube de v i c e s . . . \ n ”) ;

/∗ L i s t a l l SEcube attached ∗/

L 0 d i s c o v e r i n i t (& i t) ;

whi l e (L0 d i s cove r nex t (& i t)) {

p r i n t f (” SEcube found !\ nInfo :\n ”) ;

p r i n t f (” Path :\ t %l s \n” , i t . d e v i c e i n f o . path) ;

p r i n t f (” S e r i a l Number : ”) ;

p r i n t s n (i t . d e v i c e i n f o . s e r i a l n o) ;

// p r i n t f (”\n\n ”) ;

/∗ Open SEcube dev i c e ∗/

r e t u r n v a l u e = L0 open(&dev , &(i t . d e v i c e i n f o) , SE3 TIMEOUT) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to open dev i ce \n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

77

p r i n t f (” Device i s now open\n ”) ;

}

/∗ Log in as user ∗/

r e t u r n v a l u e = L1 log in (&s , &dev , p in use r , SE3 ACCESS USER) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to log in as user \n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Logged in as user \n ”) ;

}

/∗ Set time f o r crypto f u n c t i o n s ∗/

r e t u r n v a l u e = L1 c ryp to s e t t ime (&s , (u i n t 3 2 t) time (0)) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to s e t time\n ”) ;

L1 logout (&s) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (”Time s e t \n ”) ;

}

/∗ ∗/

/∗ Set Secure Environment∗/

r e t u r n v a l u e = s e c u r e i n i t (&s , −1, SE3 ALGO MAX+1);

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to s e t s e cu re environment\n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Secure environment s e t \n ”) ;

}

/∗ ∗/

}

r e turn 0 ;

}

i n t decryptMessage (char ∗ Arr [1 0 2 4]) {

char f i lenameEncryptedChar [6 4] ;

/∗ S E f i l e ∗/

char p la inF i l ePath =”/home/bea/ catk in ws /message . txt ” ;

SEFILE FHANDLE s e f i l e f i l e , s e f i l e f i l e 2 ;

78

u i n t 1 6 t l e n e n c f i l e n a m e = 0 ;

char f i l enameEncrypted ;

u i n t 3 2 t p la inFi l eLength , bytesRead ;

u i n t 8 t ∗ b u f f e r ;

char f i lenameDecryptedChar [2 0 0] ;

/∗ CREATE FILE WITH ENCRYPTED CONTENT ∗/

i f (c ryp to f i l ename (” message . txt ” , f i lenameEncryptedChar , &l e n e n c f i l e n a m e) != 0){

r e turn f a l s e ;

}

f i lenameEncryptedChar [l e n e n c f i l e n a m e]= ’\0 ’ ;

FILE ∗ f i l eW ;

umask (0 0 0 0) ;

f i l eW = fopen (fi lenameEncryptedChar , ”wb”) ;

f w r i t e (Arr , 1 , 1024 , f i l eW) ;

f c l o s e (f i l eW) ;

/∗ ∗/

/∗ Decryption ∗/

p r i n t f (” Decrypting f i l e . . . \n ”) ;

// Open encrypted f i l e

i f (s ecure open (” message . txt ” , &s e f i l e f i l e 2 , SEFILE READ, SEFILE OPEN) != 0){

p r i n t f (” Fa i l u r e opening Encrypted F i l e ”) ;

r e turn f a l s e ;

}

// Get the s i z e o f the r e s u l t i n g p l a i n f i l e

i n t tmpState=g e t f i l e s i z e (& s e f i l e f i l e 2 , &p la inF i l eLength) ;

i f (tmpState != 0){

p r i n t f (”ERROR SEFILE %d\n” , tmpState) ;

s e c u r e c l o s e (& s e f i l e f i l e 2) ;

p r i n t f (” Fa i l u r e g e t t i n g s i z e o f the F i l e ”) ;

r e turn f a l s e ;

}

// Get o r i g i n a l f i l ename

i f (d e c r y p t f i l e h a n d l e (& s e f i l e f i l e 2 , f i lenameDecryptedChar) != 0){

s e c u r e c l o s e (& s e f i l e f i l e 2) ;

p r i n t f (” Fa i l u r e decrypt ing name o f the F i l e ”) ;

r e turn f a l s e ;

79

}

b u f f e r = (u i n t 8 t ∗) c a l l o c (p la inFi l eLength , s i z e o f (u i n t 8 t)) ;

i f (s e c u r e r e a d (& s e f i l e f i l e 2 , bu f f e r , p la inFi l eLength , &bytesRead) != 0) {

s e c u r e c l o s e (& s e f i l e f i l e 2) ;

p r i n t f (” Fa i l u r e s e c u r e r e a d ”) ;

r e turn f a l s e ;

}

// Create a p l a i n f i l e to s t o r e the p l a i n content

FILE ∗ f i l e D e c ;

f i l e D e c = fopen (f i lenameDecryptedChar , ”w”) ;

f p r i n t f (f i l eDec , b u f f e r) ;

f c l o s e (f i l e D e c) ;

s e c u r e c l o s e (& s e f i l e f i l e 2) ;

/∗ ∗/

re turn 0 ;

}

i n t c loseSEcube (){

/∗ Log out ∗/

s e c u r e f i n i t () ;

r e t u r n v a l u e = L1 logout (&s) ;

i f (SE3 OK != r e t u r n v a l u e) {

p r i n t f (” Fa i l u r e to log out\n ”) ;

r e turn (! SE3 OK) ;

}

e l s e {

p r i n t f (” Logged out\n ”) ;

}

/∗ ∗/

/∗ Close dev i c e ∗/

L 0 c l o s e (&dev) ;

/∗ ∗/

re turn 0 ;

}

80

References

[1] Maroun Bechara Patrick Aı̈dan. Gasless trans-axillary robotic thyroidec-

tomy: The introduction and principle. pages 229–235, 6 2017.

[2] AnThea Gerrie. Four-armed cyborg helping surgeons to conquer lung

cancer: New ’da vinci’ robot allows patients to leave hospital just two

days after major surgery. The Mail On Sunday, 8 2015.

[3] Inc. Intuitive Surgical. Intuituve surgical. URL: https://

intuitivesurgical.com/.

[4] Inc. Intuitive Surgical. Annual report 2013. URL: http:

//www.annualreports.com/HostedData/AnnualReportArchive/i/

NASDAQ_ISRG_2013.pdf.

[5] Inc. Intuitive Surgical. Annual report 2016. URL: http:

//www.annualreports.com/HostedData/AnnualReports/PDF/NASDAQ_

ISRG_2016.pdf.

[6] Lucas Mearian. Hospital tests lag time for robotic

surgery 1,200 miles away from doctor. URL: https:

//www.computerworld.com/article/2927471/healthcare-it/

robot-performs-test-surgery-1200-miles-away-from-doctor.

html.

[7] Isaac Saico. Ros - ros wiki. URL: http://wiki.ros.org/ROS.

[8] Blu5 View Pte. Ltd. System on chip embedded environment - secubeTM.

URL: https://www.secube.eu/.

[9] VPN Comparison Staff. Pure vpn review – scam or not? URL: http:

//www.vpncomparison.org/provider/purevpn/.

[10] Mark Allinson. All’s well that ros well: Robot

operating system taking over the world. URL:

https://roboticsandautomationnews.com/2016/10/30/

alls-well-that-ros-well-robot-operating-system-taking-over-the-world/

8369/.

81

[11] KWC. Raven ii open-source surgical robots. URL: http://www.ros.

org/news/2012/01/raven-ii-open-source-surgical-robots.html.

[12] Russell H. Taylor Zihan Chen, Anton Deguet and Peter

Kazanzides. Software architecture of the da vinci research kit.

URL: https://raw.githubusercontent.com/wiki/jhu-dvrk/

sawIntuitiveResearchKit/chen-deguet-etal-irc-2017.pdf.

[13] The Medical Futurist Institute. The medical futurist. URL: http://

medicalfuturist.com/robotics-healthcare/.

[14] Eric J. Moore. Robotic surgery. URL: https://www.britannica.com/

science/robotic-surgery#ref1225036.

[15] Steven E. Butner and Moji Ghodoussi. Transforming a surgical

robot for human telesurgery. URL: https://www.researchgate.net/

publication/3299375_Transforming_a_Surgical_Robot_for_Human_

Telesurgery.

[16] Isaac Saico. Ros - master slave apis - ros wiki. URL: http://wiki.ros.

org/ROS/Master_Slave_APIs.

[17] Isaac Saico. Ros - master apis - ros wiki. URL: http://wiki.ros.org/

ROS/Master_API.

[18] Isaac Saico. Ros - slave apis - ros wiki. URL: http://wiki.ros.org/

ROS/Slave_API.

[19] Isaac Saico. Ros - parameter server apis - ros wiki. URL: http://wiki.

ros.org/ROS/Parameter%20Server%20API.

[20] Sebastian Taurer Severin Kacianka Stefan Rass Peter Schartner Bern-

hard Dieber, Benjamin Breiling. Security for the robot operating system.

Robotics and Autonomous Systems, volume 98, Pages 192-203, 10 2017.

[21] Tariq Yusuf Junjie Yan Tadayoshi Kohno Howard Jay Chizeck

Tamara Bonaci, Jeffrey Herron. To make a robot secure: An experi-

mental analysis of cyber security threats against teleoperated surgical

robotics, 2015.

82

[22] Blu5 View Pte. Ltd. SecubeTM development kit l2

user manual. URL: https://www.secube.eu/download/

SEcube-Development-Kit-L2-Manual-PUBLIC-v0.3.pdf.pdf.

[23] OpenVPN Inc. What is openvpn? URL: https://openvpn.net/index.

php/open-source/documentation.html.

[24] Cisco. Network address translation (nat) faq. URL:

https://www.cisco.com/c/en/us/support/docs/ip/

network-address-translation-nat/26704-nat-faq-00.html.

[25] Homa Alemzadeh. Data-driven resiliency assessment of medical cyber-

physical systems, 2016.

[26] National Institute of Standards and Technology (NIST). Spec-

ification for the advanced encryption standard (aes). URL:

https://web.archive.org/web/20150407153905/http://csrc.

nist.gov/publications/fips/fips197/fips-197.pdf.

[27] Digital Ocean. Initial server setup with ubuntu 16.04.

URL: https://www.digitalocean.com/community/tutorials/

initial-server-setup-with-ubuntu-16-04#step-five-%E2%80%

94-disable-password-authentication-(recommended).

[28] DigitalOcean. How to set up an openvpn server on ubuntu

16.04. URL: https://www.digitalocean.com/community/tutorials/

how-to-set-up-an-openvpn-server-on-ubuntu-16-04.

[29] Wireshark Foundation. Wireshark · documentation. URL: https://www.

wireshark.org/.

[30] Sergi Hernandez Juan. Multi-master ros systems, 2015.

[31] Ecole Polytechnique Federale de Lausanne. Setting up vpn between ros

machines. URL: https://wiki.epfl.ch/roscontrol/vpn-setup.

[32] Samplecaptures - the wireshark wiki. openvpn protocol (openvpn). URL:

https://wiki.wireshark.org/OpenVPN.

83

[33] OpenVPN Inc. What is openvpn. how to. URL: https://openvpn.net/

index.php/open-source/documentation/howto.html.

[34] Standard C++ Foundation. Standard c++. isocpp.org. URL: https:

//isocpp.org/wiki/faq/mixing-c-and-cpp.

[35] Marco Magliona. Selegram. gitlab. URL: https://gitlab.com/marco.

magliona/SDP/tree/master.

84

